[go: up one dir, main page]

CN1902478A - Method of reducing the effect of direct interference current in an electrochemical test strip - Google Patents

Method of reducing the effect of direct interference current in an electrochemical test strip Download PDF

Info

Publication number
CN1902478A
CN1902478A CN 200480039533 CN200480039533A CN1902478A CN 1902478 A CN1902478 A CN 1902478A CN 200480039533 CN200480039533 CN 200480039533 CN 200480039533 A CN200480039533 A CN 200480039533A CN 1902478 A CN1902478 A CN 1902478A
Authority
CN
China
Prior art keywords
working electrode
test strip
layer
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200480039533
Other languages
Chinese (zh)
Other versions
CN100473983C (en
Inventor
O·W·H·达维斯
R·马沙尔
D·E·H·巴斯基费尔德
L·怀特
E·莱珀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Scotland Ltd
Original Assignee
LifeScan Scotland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LifeScan Scotland Ltd filed Critical LifeScan Scotland Ltd
Publication of CN1902478A publication Critical patent/CN1902478A/en
Application granted granted Critical
Publication of CN100473983C publication Critical patent/CN100473983C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明描述了当使用电化学传感器(62)来测量分析物时降低干扰化合物影响的方法。本发明方法特别适用于电化学传感器,其中传感器(62)包括衬底(50)、第一个和第二个工作电极(10、12)和参比电极(14),并且第一个和第二个工作电极或者仅第二个工作电极包括没有试剂(22)的区域。在本发明中,描述了使用本发明测试条实施方案的算法,其以数学手段校正干扰物影响。

Figure 200480039533

The present invention describes a method for reducing the influence of interfering compounds when using an electrochemical sensor (62) to measure an analyte. The method of the present invention is particularly applicable to electrochemical sensors, wherein the sensor (62) includes a substrate (50), first and second working electrodes (10, 12) and a reference electrode (14), and the first and second Both working electrodes or only the second working electrode include regions free of reagent (22). In the present invention, an algorithm is described that mathematically corrects for interferent effects using the test strip embodiments of the present invention.

Figure 200480039533

Description

降低电化学测试条中 直接干扰电流的影响的方法Method for reducing the effect of direct interfering currents in electrochemical test strips

                    发明领域Field of Invention

本发明一般涉及降低干扰化合物对通过分析物测量系统进行的测量的影响的方法,更具体来说,涉及降低使用电化学测试条的葡萄糖监测系统中直接干扰电流的影响的方法,所述电化学测试条具有有着未涂布区域的电极。The present invention relates generally to methods of reducing the effect of interfering compounds on measurements made by an analyte measurement system, and more particularly, to methods of reducing the effect of directly interfering currents in glucose monitoring systems using electrochemical test strips that The test strip has electrodes with uncoated areas.

                    发明背景Background of the Invention

在很多情况下,电化学测量系统可由于生理流体中常见的干扰化合物的氧化而具有增高的氧化电流,所述干扰化合物是例如扑热息痛、抗坏血酸、胆红素、多巴胺、龙胆酸、谷胱甘肽、左旋多巴、甲基多巴、妥拉磺脲、甲苯磺丁脲和尿酸。因此,通过降低或消除由干扰化合物产生的那部分氧化电流,可提高葡萄糖测量仪的准确度。理想情况是,应当没有由任何干扰化合物产生的氧化电流,这样整个氧化电流仅取决于葡萄糖浓度。In many cases, electrochemical measurement systems can have increased oxidation currents due to the oxidation of interfering compounds commonly found in physiological fluids, such as paracetamol, ascorbic acid, bilirubin, dopamine, gentisic acid, glutathione peptides, levodopa, methyldopa, tolazamide, tolbutamide, and uric acid. Thus, by reducing or eliminating the portion of the oxidation current generated by interfering compounds, the accuracy of the glucose meter can be improved. Ideally, there should be no oxidation current due to any interfering compounds, such that the overall oxidation current depends only on the glucose concentration.

因此,希望提高在可能的干扰化合物例如在生理流体中常见的抗坏血酸盐、尿酸盐和扑热息痛存在下,电化学传感器的准确度。对于这样的电化学传感器,分析物的实例可包括葡萄糖、乳酸盐和果糖胺。虽然葡萄糖是所讨论的主要分析物,但是对于本领域技术人员来说显而易见的是,本发明也可用于其它分析物。Therefore, it is desirable to improve the accuracy of electrochemical sensors in the presence of possible interfering compounds such as ascorbate, urate and paracetamol which are commonly found in physiological fluids. For such electrochemical sensors, examples of analytes may include glucose, lactate, and fructosamine. While glucose is the primary analyte discussed, it will be apparent to those skilled in the art that the present invention is applicable to other analytes as well.

氧化电流可通过几条途径产生。特别是,所期望的氧化电流由氧化还原介体与所关注的分析物(例如葡萄糖)的相互作用产生,而不期望的氧化电流通常由在电极表面被氧化以及通过的与氧化还原介体的相互作用而被氧化的干扰化合物产生。例如,某些干扰化合物(例如扑热息痛)在电极表面被氧化。其它干扰化合物(例如抗坏血酸)通过与氧化还原介体的化学反应而被氧化。在葡萄糖测量系统中,干扰化合物的氧化引起测量的氧化电流既依赖于葡萄糖的浓度也依赖于任何干扰化合物的浓度。因此,在干扰化合物以与葡萄糖同样的效率氧化,并且相对于葡萄糖浓度,干扰化合物的浓度是高的时,葡萄糖浓度的测量可通过降低或消除干扰化合物对总氧化电流的贡献而得到改善。Oxidation currents can be generated through several pathways. In particular, the desired oxidation current results from the interaction of the redox mediator with the analyte of interest (e.g., glucose), whereas the undesired oxidation current typically results from oxidation at the electrode surface and through interaction with the redox mediator. Interfering compounds that are oxidized by the interaction are produced. For example, certain interfering compounds such as paracetamol are oxidized on the electrode surface. Other interfering compounds, such as ascorbic acid, are oxidized through chemical reactions with redox mediators. In a glucose measurement system, oxidation of interfering compounds causes the measured oxidation current to depend on both the concentration of glucose and the concentration of any interfering compounds. Therefore, when the interfering compound oxidizes with the same efficiency as glucose, and the concentration of the interfering compound is high relative to the glucose concentration, the measurement of the glucose concentration can be improved by reducing or eliminating the contribution of the interfering compound to the total oxidation current.

降低干扰化合物的影响的一个已知策略是使用带负电荷的薄膜来覆盖工作电极。作为一个实例,可以使用磺化氟代聚合物例如NAFIONTM来排斥所有带负电荷的化学物质。一般情况下,大部分干扰化合物例如抗坏血酸盐和尿酸盐带有负电荷,因此,带负电荷的薄膜阻止带负电荷的干扰化合物到达电极表面以及在电极表面上被氧化。然而,由于某些干扰化合物例如扑热息痛不带负电荷,并且从而可以通过带负电荷的薄膜,所以该技术不总是成功的。该技术也不能降低由于干扰化合物与某些氧化还原介体的相互作用而产生的氧化电流。在工作电极上使用带负电荷的薄膜还可阻止某些常用的氧化还原介体例如铁氰化物通过带负电荷的薄膜来与电极进行电子交换。A known strategy to reduce the effect of interfering compounds is to cover the working electrode with a negatively charged thin film. As an example, sulfonated fluoropolymers such as NAFION can be used to repel all negatively charged chemicals. In general, most interfering compounds such as ascorbate and urate are negatively charged, therefore, the negatively charged film prevents negatively charged interfering compounds from reaching and being oxidized on the electrode surface. However, this technique is not always successful since certain interfering compounds such as paracetamol are not negatively charged and thus can pass through negatively charged membranes. The technique also does not reduce oxidation currents due to the interaction of interfering compounds with certain redox mediators. The use of a negatively charged film on the working electrode also prevents certain commonly used redox mediators such as ferricyanide from exchanging electrons with the electrode through the negatively charged film.

可用于降低干扰化合物的影响的另一个策略是在工作电极顶部使用尺寸选择薄膜。作为一个实例,可以将100道尔顿尺寸排阻薄膜例如乙酸纤维素薄膜来覆盖工作电极,以排除分子量大于100道尔顿的所有化学物质。大部分干扰化合物的分子量大于100道尔顿,因此被排除而不能在电极上被氧化。然而,这样的选择薄膜通常使得测试条的制造更复杂,并且由于氧化的葡萄糖必须通过选择薄膜扩散到达电极而增加了测量时间。Another strategy that can be used to reduce the effect of interfering compounds is to use a size selective membrane on top of the working electrode. As an example, a 100 Dalton size exclusion membrane, such as a cellulose acetate membrane, can be placed over the working electrode to exclude all chemicals with a molecular weight greater than 100 Daltons. Most interfering compounds have a molecular weight greater than 100 Daltons and are therefore excluded from being oxidized at the electrode. However, such selective membranes generally complicate the manufacture of test strips and increase measurement time since oxidized glucose must diffuse through the selective membrane to reach the electrodes.

可用于降低干扰化合物的影响的另一个策略是使用具有低氧化还原电位的氧化还原介体,例如氧化还原电位为约-300mV至+100mV(当关于饱和甘汞电极测量时)的氧化还原介体。因为氧化还原介体具有低氧化还原电位,施加给工作电极的电压也可以较低,这降低了干扰化合物被工作电极氧化的速度。具有较低氧化还原电位的氧化还原介体的实例包括锇联吡啶络合物、二茂铁衍生物和醌衍生物。该策略的缺点是,具有较低氧化还原电位的氧化还原介体经常难以合成,较不稳定以及具有低的水溶解度。Another strategy that can be used to reduce the effect of interfering compounds is to use a redox mediator with a low redox potential, such as a redox mediator with a redox potential of about -300 mV to +100 mV (when measured with respect to a saturated calomel electrode) . Because the redox mediator has a low redox potential, the voltage applied to the working electrode can also be lower, which reduces the rate at which interfering compounds are oxidized by the working electrode. Examples of redox mediators having a lower redox potential include osmium bipyridyl complexes, ferrocene derivatives, and quinone derivatives. The disadvantage of this strategy is that redox mediators with lower redox potentials are often difficult to synthesize, are less stable, and have low aqueous solubility.

可用于降低干扰化合物的影响的另一个策略是使用涂布了氧化还原介体的伪电极。在某些情况下,还可以将伪电极用惰性蛋白或失活的氧化还原酶。伪电极的目的是在电极表面上氧化干扰化合物和/或氧化被干扰化合物还原的氧化还原介体。在该策略中,将在伪电极上测量的电流从在工作电极测量的总氧化电流中减去,以消除干扰影响。该策略的缺点是,其需要测试条包括不能用于测量葡萄糖的另外的电极和另外的电连接(即伪电极)。包括伪电极是在葡萄糖测量系统中无效率地使用电极。Another strategy that can be used to reduce the effect of interfering compounds is to use pseudo-electrodes coated with redox mediators. In some cases, it is also possible to use inert proteins or inactivated oxidoreductases as pseudo-electrodes. The purpose of the dummy electrode is to oxidize interfering compounds and/or redox mediators reduced by interfering compounds on the electrode surface. In this strategy, the current measured at the dummy electrode is subtracted from the total oxidation current measured at the working electrode to remove interfering effects. The disadvantage of this strategy is that it requires the test strip to include additional electrodes and additional electrical connections (ie dummy electrodes) that cannot be used to measure glucose. Including dummy electrodes is an inefficient use of electrodes in a glucose measurement system.

                      发明概述Invention overview

本发明涉及当使用电化学传感器来检测分析物时降低干扰物影响的方法。可用于本发明方法的电化学传感器包括衬底、至少第一个和第二个工作电极和参比电极。将试剂层布置在电极上,使得试剂层完全覆盖第一个工作电极的全部区域,并且仅部分覆盖第二个工作电极。在本发明方法中,使用在第二个工作电极的未被试剂层覆盖的部分上产生的氧化电流来校正干扰物对葡萄糖测量的影响。The present invention relates to methods of reducing the effect of interferents when using electrochemical sensors to detect analytes. An electrochemical sensor useful in the methods of the invention includes a substrate, at least first and second working electrodes and a reference electrode. Place the reagent layer on the electrodes such that the reagent layer completely covers the entire area of the first working electrode and only partially covers the second working electrode. In the method of the invention, the oxidation current generated on the part of the second working electrode not covered by the reagent layer is used to correct for the influence of interfering substances on the glucose measurement.

本发明还包括降低电化学传感器中的干扰的方法,包括下列步骤:测量在第一个工作电极上的第一个氧化电流,其中第一个工作电极被试剂层覆盖;测量在第二个工作电极上的第二个氧化电流,其中试剂层仅部分覆盖第二个工作电极;和计算代表预选择的分析物(例如葡萄糖)的浓度的校正氧化电流。在该计算中,使用第二个工作电极的覆盖面积与未覆盖面积的比例来消除干扰物对氧化电流的影响。更具体来说,可使用以下公式来计算校正电流值,The present invention also includes a method of reducing interference in an electrochemical sensor comprising the steps of: measuring a first oxidation current at a first working electrode, wherein the first working electrode is covered by a reagent layer; measuring at a second working electrode a second oxidation current at the electrode where the reagent layer only partially covers the second working electrode; and calculating a corrected oxidation current representing the concentration of a preselected analyte (eg, glucose). In this calculation, the ratio of covered to uncovered area of the second working electrode was used to remove the effect of interferents on the oxidation current. More specifically, the correction current value can be calculated using the following formula,

GG == WEwe 11 -- {{ (( AA covcov AA uncunc )) Xx (( WEwe 22 -- WEwe 11 )) }}

其中G是校正电流密度,VE1是在第一个工作电极上的未校正电流密度,WE2是在第二个工作电极上的未校正电流密度,Acov是第二个工作电极的涂布面积,Aunc是第二个工作电极的未涂布面积。where G is the corrected current density, VE 1 is the uncorrected current density at the first working electrode, WE 2 is the uncorrected current density at the second working electrode, and A cov is the coating on the second working electrode area, A unc is the uncoated area of the second working electrode.

在可用于本发明的电化学测试条的一个实施方案中,电化学葡萄糖测试条包括第一个和第二个工作电极,其中第一个工作电极被试剂层完全覆盖,而第二个工作电极仅被试剂层部分覆盖。因此,第二个工作电极具有试剂涂布面积和未涂布面积。试剂层可包括例如氧化还原酶例如葡萄糖氧化酶和氧化还原介体例如铁氰化物。第一个工作电极将具有两个氧化电流源的叠加,一个来自葡萄糖,另一个来自干扰物。类似地,第二个工作电极将具有三个电流源的叠加,这三个电流源分别来自葡萄糖、在试剂涂布部分上的干扰物以及在未涂布部分上的干扰物。由于在该区域中没有试剂,所以第二个工作电极的未涂布部分仅氧化干扰物,而不氧化葡萄糖。在第二个工作电极的未涂布部分上测量的氧化电流可由于估计总干扰物氧化电流,和计算消除了干扰物影响的校正氧化电流。In one embodiment of an electrochemical test strip useful in the present invention, the electrochemical glucose test strip includes first and second working electrodes, wherein the first working electrode is completely covered by a reagent layer and the second working electrode Only partially covered by the reagent layer. Thus, the second working electrode has a reagent coated area and an uncoated area. The reagent layer may include, for example, a redox enzyme such as glucose oxidase and a redox mediator such as ferricyanide. The first working electrode will have the superposition of two oxidation current sources, one from glucose and the other from the interferent. Similarly, the second working electrode will have a superposition of three current sources from the glucose, the interferent on the reagent coated part, and the interferent on the uncoated part. Since there is no reagent in this region, the uncoated portion of the second working electrode oxidizes only the interferents, but not the glucose. The oxidation current measured on the uncoated portion of the second working electrode can be used to estimate the total interferer oxidation current, and to calculate a corrected oxidation current that removes the effect of the interferer.

在可用于本发明方法中的另一个测试条实施方案中,电化学葡萄糖测试条包括第一个和第二个工作电极,其中第一个和第二个工作电极仅被试剂层部分覆盖。因此,在该实施方案中,第一个和第二个工作电极都具有试剂涂布部分和未涂布部分。第一个工作电极的第一个未覆盖面积与第二个工作电极的第二个未覆盖面积是不同的。使用在第一个和第二个工作电极的未涂布部分上测量的氧化电流来估计未涂布部分的干扰物氧化电流,和计算校正葡萄糖电流。In another test strip embodiment useful in the methods of the present invention, an electrochemical glucose test strip includes first and second working electrodes, wherein the first and second working electrodes are only partially covered by a reagent layer. Thus, in this embodiment, both the first and second working electrodes have reagent-coated and uncoated portions. The first uncovered area of the first working electrode is different from the second uncovered area of the second working electrode. The oxidation current measured on the uncoated portion of the first and second working electrodes was used to estimate the interferent oxidation current in the uncoated portion, and to calculate the corrected glucose current.

本发明还包括降低电化学传感器中的干扰的方法,包括下列步骤:测量在第一个工作电极上的第一个氧化电流,其中第一个工作电极被试剂层部分覆盖;测量在第二个工作电极上的第二个氧化电流,其中试剂层仅部分覆盖第二个工作电极;和计算代表预选择的分析物(例如葡萄糖)的浓度的校正氧化电流。在该计算中,使用第一个和第二个工作电极的覆盖面积与未覆盖面积的比例来消除干扰物对氧化电流的影响。更具体来说,可使用以下公式来计算校正电流值,The present invention also includes a method of reducing interference in an electrochemical sensor comprising the steps of: measuring a first oxidation current at a first working electrode, wherein the first working electrode is partially covered by a reagent layer; measuring at a second a second oxidation current on the working electrode, where the reagent layer only partially covers the second working electrode; and calculating a corrected oxidation current representing the concentration of a preselected analyte (eg, glucose). In this calculation, the ratio of covered to uncovered areas of the first and second working electrodes was used to remove the effect of interferents on the oxidation current. More specifically, the correction current value can be calculated using the following formula,

GG == WEwe 11 -- {{ (( ff 11 ++ ff 22 ff 22 -- 11 )) ×× (( WEwe 22 -- WEwe 11 )) }}

其中f1等于Acov1/Aunc1;f2等于Acov2/Aunc2;Aunc1是第一个工作电极的未涂布面积;Aunc2是第二个工作电极的未涂布面积;Acov1是所述第一个工作电极的涂布面积;Acov2是第二个工作电极的涂布面积;G是校正电流值;WE1是在第一个工作电极上的未校正电流密度,且WE2是在第二个工作电极上的未校正电流密度。where f 1 is equal to A cov1 /A unc1 ; f 2 is equal to A cov2 /A unc2 ; A unc1 is the uncoated area of the first working electrode; A unc2 is the uncoated area of the second working electrode; A cov1 is Coated area of the first working electrode; A cov2 is the coated area of the second working electrode; G is the corrected current value; WE 1 is the uncorrected current density on the first working electrode, and WE 2 is the uncorrected current density at the second working electrode.

                      附图简述Brief description of attached drawings

通过下面给出示例性实施方案的详细描述,可以更好地了解本发明的特征和优点,其中使用了本发明的原理以及附图:A better understanding of the features and advantages of the present invention may be obtained from the following detailed description of exemplary embodiments, using the principles of the invention and the accompanying drawings:

图1是根据本发明一个实施方案的测试条的部件分解透视图。Figure 1 is an exploded perspective view of a test strip according to one embodiment of the present invention.

图2是测试条的远端部分的简化平面视图,所述测试条是根据图1所示的本发明实施方案的测试条,并且包括导电层和绝缘层。2 is a simplified plan view of a distal portion of a test strip according to the embodiment of the invention shown in FIG. 1 and including a conductive layer and an insulating layer.

图3是根据图1所示本发明实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层以及绝缘层和导电层的位置。3 is a simplified plan view of the distal portion of the test strip according to the embodiment of the invention shown in FIG. 1 showing the location of the reagent layer and the insulating and conductive layers.

图4是根据本发明另一个实施方案的测试条的部件分解透视图。Figure 4 is an exploded perspective view of a test strip according to another embodiment of the present invention.

图5是测试条的远端部分的简化平面视图,所述测试条是根据图4所示的本发明实施方案的测试条,并且包括导电层和绝缘层。5 is a simplified plan view of a distal portion of a test strip according to the embodiment of the invention shown in FIG. 4 and including a conductive layer and an insulating layer.

图6是根据图4所示本发明实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层以及绝缘层和导电层。6 is a simplified plan view of the distal portion of the test strip according to the embodiment of the invention shown in FIG. 4 showing the reagent layer and the insulating and conductive layers.

图7是根据图4所示本发明实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层以及导电层。7 is a simplified plan view of the distal portion of the test strip according to the embodiment of the invention shown in FIG. 4 showing the reagent layer and the conductive layer.

图8是根据本发明另一个实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层,其具有有助于降低IR位降效应的导电层。8 is a simplified plan view of the distal portion of a test strip showing a reagent layer with a conductive layer to help reduce IR drop effects according to another embodiment of the present invention.

图9是根据本发明另一个实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层以及导电层和绝缘层,这样存在两个具有未涂布部分的工作电极。9 is a simplified plan view of the distal portion of a test strip according to another embodiment of the present invention showing the reagent layer and the conductive and insulating layers such that there are two working electrodes with uncoated portions.

图10是根据本发明另一个实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层以及导电层和绝缘层,这样存在两个具有未涂布部分的工作电极。10 is a simplified plan view of the distal portion of a test strip according to another embodiment of the present invention showing the reagent layer and the conductive and insulating layers such that there are two working electrodes with uncoated portions.

图11表示了在根据本发明设计的测试条的第一个工作电极上的电流,测量是用添加了不同水平尿酸的70mg/dL葡萄糖的血样进行的。Figure 11 shows the current at the first working electrode of a test strip designed in accordance with the present invention, measured with blood samples of 70 mg/dL glucose spiked with various levels of uric acid.

图12表示了在根据本发明设计的测试条的第一个工作电极上的电流,测量是用添加了不同水平尿酸的240mg/dL葡萄糖的血样进行的。Figure 12 shows the current at the first working electrode of a test strip designed according to the present invention, measured with blood samples of 240 mg/dL glucose spiked with various levels of uric acid.

图13是具有整体刀片的测试条的部件分解透视图。Figure 13 is an exploded perspective view of a test strip with an integral blade.

图14是表明与测试条连接的测量仪的简化图解图,所述测试条具有布置在衬底上的第一个接触点(contact)、第二个接触点和参比接触点。14 is a simplified diagrammatic view showing a meter connected to a test strip having a first contact, a second contact, and a reference contact disposed on a substrate.

                      发明详述                    Invention Details

本发明包括用于提高电化学葡萄糖测量系统的选择性的测试条和方法。The present invention includes test strips and methods for improving the selectivity of electrochemical glucose measurement systems.

图1是根据本发明第一个实施方案的测试条的部件分解透视图。在图1所示的本发明实施方案中,用于测量体液例如血液或间隙液中葡萄糖浓度的电化学测试条62包括第一个工作电极10和第二个工作电极12,其中第一个工作电极10被试剂层22完全覆盖,而第二个工作电极12仅被试剂层22部分覆盖。因此,第二个工作电极具有试剂涂布部分和未涂布部分。试剂层22可包括例如氧化还原酶如葡萄糖氧化酶和氧化还原介体例如铁氰化物。因为铁氰化物在碳电极上具有约400mV的氧化还原电位(当相对于饱和甘汞电极测量时),所以引入体液例如血液可通过氧化还原介体和/或工作电极产生显著的干扰物氧化,从而产生显著的不期望的氧化电流。因此,在第一个工作电极10上测量的氧化电流将是氧化电流源的叠加:由于葡萄糖的氧化而产生的第一个期望的氧化电流,和通过干扰物产生的第二个不期望的氧化电流。在第二个工作电极12上测量的氧化电流也将是氧化电流源的叠加:由于葡萄糖的氧化而产生的第一个期望的氧化电流,在第二个工作电极12的覆盖部分上通过干扰物产生的第二个不期望的氧化电流,和在第二个工作电极12的未覆盖部分上通过干扰物产生的第三个氧化电流。第二个工作电极12的未涂布部分将仅氧化干扰物,而不氧化葡萄糖,因为在第二个工作电极12的未涂布部分上没有试剂。因为在第二个工作电极12的未涂布部分上测量的氧化电流与葡萄糖无关,并且二个工作电极12的未涂布面积是已知的,所以可以计算出第二个工作电极12的未涂布部分的干扰物氧化电流。从而,使用计算的第二个工作电极12的未涂布部分的干扰物氧化电流以及知道第一个工作电极10的面积和第二个工作电极12的涂布部分的面积,能够计算出消除了在电极上氧化的干扰化合物的影响的校正葡萄糖电流。Figure 1 is an exploded perspective view of a test strip according to a first embodiment of the present invention. In the embodiment of the invention shown in FIG. 1, an electrochemical test strip 62 for measuring glucose concentration in a bodily fluid such as blood or interstitial fluid includes a first working electrode 10 and a second working electrode 12, wherein the first working electrode The electrode 10 is completely covered by the reagent layer 22 , while the second working electrode 12 is only partially covered by the reagent layer 22 . Thus, the second working electrode has a reagent-coated portion and an uncoated portion. Reagent layer 22 may include, for example, a redox enzyme such as glucose oxidase and a redox mediator such as ferricyanide. Since ferricyanide has a redox potential of about 400 mV at a carbon electrode (when measured against a saturated calomel electrode), introduction into body fluids such as blood can produce significant interference oxidation by redox mediators and/or the working electrode, This results in a significant undesired oxidation current. Therefore, the oxidation current measured at the first working electrode 10 will be the superposition of the oxidation current sources: the first desired oxidation current due to the oxidation of glucose, and the second undesired oxidation current by the interfering species. current. The oxidation current measured on the second working electrode 12 will also be a superposition of the oxidation current sources: the first desired oxidation current due to the oxidation of glucose, on the covered part of the second working electrode 12 by the interfering A second undesired oxidation current is generated, and a third oxidation current is generated by the interferent on the uncovered portion of the second working electrode 12 . The uncoated portion of the second working electrode 12 will only oxidize the interferents, not the glucose, since there is no reagent on the uncoated portion of the second working electrode 12 . Since the oxidation current measured on the uncoated portion of the second working electrode 12 is independent of glucose, and the uncoated areas of the two working electrodes 12 are known, the uncoated area of the second working electrode 12 can be calculated. Disturbance oxidation current of coated sections. Thus, using the calculated interferent oxidation current for the uncoated portion of the second working electrode 12 and knowing the area of the first working electrode 10 and the area of the coated portion of the second working electrode 12, the elimination of Glucose current corrected for the effect of oxidized interfering compounds on the electrodes.

图1是根据本发明第一个实施方案的测试条62的部件分解透视图。如图1所示的测试条62可通过一系列6个连续印制步骤来生产,这些步骤是将6层材料置于衬底50上。可通过例如筛网印制将这6个层沉积在衬底50上。在本发明的一个实施方案中,这6层可包括导电层64、绝缘层16、试剂层22、粘合层66、亲水层68和顶层40。导电层64可进一步包括第一个工作电极10、第二个工作电极12、参比电极14、第一个接触点11、第二个接触点13、参比接触点15和测试条检测板17。绝缘层16可进一步包括切口(cutout)18。粘合层66可进一步包括第一个粘着垫24、第二个粘着垫26和第三个粘着垫28。亲水层68可进一步包括第一个亲水性膜32和第二个亲水性膜34。顶层40可进一步包括透明部分36和不透明部分38。如图1所示,测试条62具有第一个侧面54和第二个侧面56、电极远侧58和电极近侧60。下面的章节将更详细地描述测试条62的各个层。Figure 1 is an exploded perspective view of a test strip 62 according to a first embodiment of the present invention. A test strip 62 as shown in FIG. 1 can be produced by a series of 6 sequential printing steps which place 6 layers of material on the substrate 50 . These 6 layers can be deposited on the substrate 50 by eg screen printing. In one embodiment of the invention, the six layers may include conductive layer 64 , insulating layer 16 , reagent layer 22 , adhesive layer 66 , hydrophilic layer 68 and top layer 40 . The conductive layer 64 may further include a first working electrode 10, a second working electrode 12, a reference electrode 14, a first contact point 11, a second contact point 13, a reference contact point 15 and a test strip detection plate 17 . The insulating layer 16 may further include a cutout 18 . Adhesive layer 66 may further include first adhesive pad 24 , second adhesive pad 26 and third adhesive pad 28 . The hydrophilic layer 68 may further include a first hydrophilic film 32 and a second hydrophilic film 34 . The top layer 40 may further include a transparent portion 36 and an opaque portion 38 . As shown in FIG. 1 , the test strip 62 has a first side 54 and a second side 56 , an electrode distal side 58 and an electrode proximal side 60 . The following sections describe the various layers of test strip 62 in more detail.

在本发明的一个实施方案中,衬底50是电绝缘材料例如塑料、玻璃、陶瓷等。在本发明的一个优选实施方案中,衬底50可以是塑料例如尼龙、聚碳酸酯、聚酰亚胺、聚氯乙烯、聚乙烯、聚丙烯、PETG或聚酯。更具体来说,聚酯可以是例如由DuPont Teijin Films生产的MelinexST328。衬底50还可以包括丙烯酸涂层,涂层是涂在一个或两个侧面上来改善墨粘合。In one embodiment of the invention, substrate 50 is an electrically insulating material such as plastic, glass, ceramic, or the like. In a preferred embodiment of the invention, substrate 50 may be a plastic such as nylon, polycarbonate, polyimide, polyvinyl chloride, polyethylene, polypropylene, PETG or polyester. More specifically, the polyester may be, for example, Melinex(R) ST328 produced by DuPont Teijin Films. Substrate 50 may also include an acrylic coating applied to one or both sides to improve ink adhesion.

沉积在衬底50上的第一层是导电层64,该层包括第一个工作电极10、第二个工作电极12、参比电极14和测试条检测板17。根据本发明,可以以图1所示的限定几何学,用具有乳胶图案的筛网来沉积材料例如导电碳墨。参比电极14还可以是反电极、参比电极/反电极或准参比电极。可通过筛网印制、轮转凹板印制、溅射、蒸发、无电喷镀、喷墨、升华、化学气相沉积等将导电层64沉积在衬底50上。可用于导电层64的合适的材料是Au、Pd、Ir、Pt、Rh、不锈钢、掺杂的氧化锡、碳等。在本发明的一个实施方案中,碳墨层可具有1-100微米,更特别是5-25微米,甚至更特别是约13微米的高度。导电层的高度可根据所需要的导电层的电阻以及用于印制导电层的材料的电导率而改变。The first layer deposited on the substrate 50 is the conductive layer 64 which includes the first working electrode 10 , the second working electrode 12 , the reference electrode 14 and the test strip detection plate 17 . According to the present invention, a screen with a latex pattern can be used to deposit a material such as conductive carbon ink in the defined geometry shown in FIG. 1 . The reference electrode 14 can also be a counter electrode, a reference electrode/counter electrode or a quasi-reference electrode. Conductive layer 64 may be deposited on substrate 50 by screen printing, rotogravure printing, sputtering, evaporation, electroless plating, inkjet, sublimation, chemical vapor deposition, or the like. Suitable materials that may be used for the conductive layer 64 are Au, Pd, Ir, Pt, Rh, stainless steel, doped tin oxide, carbon, and the like. In one embodiment of the present invention, the carbon ink layer may have a height of 1-100 microns, more specifically 5-25 microns, even more specifically about 13 microns. The height of the conductive layer can vary depending on the desired resistance of the conductive layer and the conductivity of the material used to print the conductive layer.

第一个接触点11、第二个接触点13和参比接触点15可用于和测量仪电连接。这使得测量仪分别通过第一个接触点11、第二个接触点13和参比接触点15与第一个工作电极10、第二个工作电极12和参比电极14电联通。The first contact point 11, the second contact point 13 and the reference contact point 15 can be used for electrical connection with the measuring instrument. This places the meter in electrical communication with the first working electrode 10 , the second working electrode 12 and the reference electrode 14 via the first contact point 11 , the second contact point 13 and the reference contact point 15 respectively.

沉积在衬底50上的第二个层是绝缘层16。如图1所示,将绝缘层16沉积在至少一部分导电层64上。图2是测试条62的远端部分的简化平面视图,该图重点突出了第一个工作电极10、第二个工作电极12和参比电极14相对于绝缘层16的位置。绝缘层16还包括切口(cutout)18,其可具有如图1和2所示的T-形结构。切口18暴露了可以被液体润湿的一部分第一个工作电极10、第二个工作电极12和参比电极14。切口18进一步包括远端切口宽度W1、近端切口宽度W2、远端切口长度L4和近端切口长度L5。如图2所示,远端切口宽度W1与第一个工作电极10和参比电极14的宽度相对应。远端切口长度L4所对应的长度大于第一个工作电极10与参比电极14的长度之和。近端切口宽度W2和近端切口长度L5形成暴露了第二个工作电极12的宽度和长度的矩形切面。根据本发明,远端切口宽度W1、近端切口宽度W2、远端切口长度L4和近端切口长度L5可分别具有约0.7、1.9、3.2和0.43mm的尺寸。在本发明的一个实施方案中,第一个工作电极10、参比电极14和第二个工作电极12分别具有长度L1、L2和L3,它们可分别为约0.8、1.6和0.4mm。电极间距S1是第一个工作电极10与参比电极14之间的距离;以及参比电极14与第二个工作电极12之间的距离,其可以为约0.4mm。The second layer deposited on substrate 50 is insulating layer 16 . As shown in FIG. 1 , insulating layer 16 is deposited on at least a portion of conductive layer 64 . FIG. 2 is a simplified plan view of the distal portion of test strip 62 highlighting the positions of first working electrode 10 , second working electrode 12 , and reference electrode 14 relative to insulating layer 16 . The insulating layer 16 also includes a cutout 18 which may have a T-shaped structure as shown in FIGS. 1 and 2 . The cutout 18 exposes a portion of the first working electrode 10, the second working electrode 12 and the reference electrode 14 that can be wetted by the liquid. The incision 18 further includes a distal incision width W1, a proximal incision width W2, a distal incision length L4, and a proximal incision length L5. As shown in FIG. 2 , the distal incision width W1 corresponds to the width of the first working electrode 10 and the reference electrode 14 . The length corresponding to the distal incision length L4 is greater than the sum of the lengths of the first working electrode 10 and the reference electrode 14 . Proximal incision width W2 and proximal incision length L5 form a rectangular cut that exposes the width and length of second working electrode 12 . According to the present invention, the distal incision width W1, the proximal incision width W2, the distal incision length L4 and the proximal incision length L5 may have dimensions of about 0.7, 1.9, 3.2 and 0.43 mm, respectively. In one embodiment of the invention, the first working electrode 10, the reference electrode 14 and the second working electrode 12 have lengths L1, L2 and L3, respectively, which may be about 0.8, 1.6 and 0.4 mm, respectively. The electrode spacing S1 is the distance between the first working electrode 10 and the reference electrode 14; and the distance between the reference electrode 14 and the second working electrode 12, which may be about 0.4 mm.

沉积在衬底50上的第三个层是试剂层22。如图1所示,试剂层22布置在导电层64和绝缘层16的至少一部分上。图3是根据本发明第一个实施方案的测试条62的远端部分的简化平面视图,该图重点突出了试剂层22相对于第一个工作电极10、第二个工作电极12、参比电极14和绝缘层16的位置。试剂层22可以是如图1和3所示的矩形,该矩形具有试剂宽度W3和试剂长度L6。在本发明的一个实施方案中,试剂宽度W3可以为约1.3mm,且试剂长度L6可以为约4.7mm。在本发明的另一个实施方案中,试剂层22具有足够大的宽度W3和长度L6,使得试剂层22完全覆盖第一个工作电极10和参比电极14。然而,试剂层22具有适当大小的宽度W3和长度L6,使得第二个工作电极没有被试剂层22完全覆盖。在这样的方案中,如图3所示,第二个工作电极12具有涂布部分12c和未涂布部分12u。未涂布部分12u可以成两个矩形的形状,其中未涂布部分12u具有翼宽度W4和对应于第二个工作电极长度L3的长度。作为非限制性实例,翼宽度W4可以为约0.3mm。在本发明的一个实施方案中,试剂层22可包括氧化还原酶例如葡萄糖氧化酶或PQQ-葡萄糖脱氢酶(其中PQQ是吡咯并-喹啉-醌的首字母组合词),和氧化还原介体例如铁氰化物。The third layer deposited on substrate 50 is reagent layer 22 . As shown in FIG. 1 , reagent layer 22 is disposed on conductive layer 64 and at least a portion of insulating layer 16 . 3 is a simplified plan view of the distal portion of a test strip 62 according to a first embodiment of the present invention, which highlights the relationship of the reagent layer 22 to the first working electrode 10, the second working electrode 12, the reference The position of electrode 14 and insulating layer 16. Reagent layer 22 may be rectangular as shown in Figures 1 and 3, having a reagent width W3 and a reagent length L6. In one embodiment of the invention, the reagent width W3 may be about 1.3 mm and the reagent length L6 may be about 4.7 mm. In another embodiment of the present invention, the reagent layer 22 has a width W3 and a length L6 sufficiently large such that the reagent layer 22 completely covers the first working electrode 10 and the reference electrode 14 . However, the reagent layer 22 has a width W3 and a length L6 of appropriate size such that the second working electrode is not completely covered by the reagent layer 22 . In such an arrangement, as shown in FIG. 3, the second working electrode 12 has a coated portion 12c and an uncoated portion 12u. The uncoated portion 12u may be in the shape of two rectangles, wherein the uncoated portion 12u has a wing width W4 and a length corresponding to the second working electrode length L3. As a non-limiting example, wing width W4 may be about 0.3 mm. In one embodiment of the invention, the reagent layer 22 may include an oxidoreductase such as glucose oxidase or PQQ-glucose dehydrogenase (where PQQ is an acronym for pyrrolo-quinoline-quinone), and a redox mediator bodies such as ferricyanide.

沉积在衬底50上的第四个层是粘合层66,其包括第一个粘着垫24、第二个粘着垫26和第三个粘着垫28。第一个粘着垫24和第二个粘着垫26形成样本接收室的壁。在本发明的一个实施方案中,第一个粘着垫24和第二个粘着垫26可布置在衬底50上,使得这两个粘着垫都不接触试剂层22。在其中不需要减小测试条体积的本发明的另一个实施方案中,可将第一个粘着垫24和/或第二个粘着垫26布置在衬底50上,使得其与试剂层22重叠。在本发明的一个实施方案中,粘合层66具有约70-110微米的高度。粘合层66可包括双侧压敏粘合剂、UV固化粘合剂、热激活粘合剂、热固化粘合剂或本领域技术人员已知的其它粘合剂。作为非限制性实例,粘合层66可通过筛网印制压敏粘合剂来形成,所述粘合剂是例如水基丙烯酸共聚物压敏粘合剂,其购自Tape Specialties LTD in Tring,Herts,United Kingdom(part#A6435)。The fourth layer deposited on the substrate 50 is an adhesive layer 66 that includes the first adhesive pad 24 , the second adhesive pad 26 and the third adhesive pad 28 . A first adhesive pad 24 and a second adhesive pad 26 form the walls of the sample receiving chamber. In one embodiment of the invention, the first adhesive pad 24 and the second adhesive pad 26 may be disposed on the substrate 50 such that neither adhesive pad contacts the reagent layer 22 . In another embodiment of the present invention where reducing the volume of the test strip is not required, the first adhesive pad 24 and/or the second adhesive pad 26 may be disposed on the substrate 50 such that it overlaps the reagent layer 22 . In one embodiment of the invention, the adhesive layer 66 has a height of about 70-110 microns. Adhesive layer 66 may comprise a double sided pressure sensitive adhesive, UV curable adhesive, heat activated adhesive, heat curable adhesive or other adhesives known to those skilled in the art. As a non-limiting example, adhesive layer 66 may be formed by screen printing a pressure sensitive adhesive such as a water-based acrylic copolymer pressure sensitive adhesive available from Tape Specialties LTD in Tring , Herts, United Kingdom (part #A6435).

沉积在衬底50上的第五个层是亲水层68,如图1所示,其包括第一个亲水性膜32和第二个亲水性膜34。亲水层68形成样本接收室的“室顶”。样本接收室的“侧壁”和“底板”分别是通过一部分粘合层66和衬底50形成的。作为非限制性实例,亲水层68可以是具有亲水性防雾涂层的任选透明的聚酯,例如购自3M的那些。在测试条62的设计中使用涂层的亲水性性质,因为其有助于把液体填充到样本接收室内。The fifth layer deposited on substrate 50 is hydrophilic layer 68 , which includes first hydrophilic film 32 and second hydrophilic film 34 as shown in FIG. 1 . The hydrophilic layer 68 forms the "roof" of the sample receiving chamber. The "side walls" and "floor" of the sample receiving chamber are formed by a portion of the adhesive layer 66 and the substrate 50, respectively. As a non-limiting example, hydrophilic layer 68 may be an optionally clear polyester with a hydrophilic anti-fog coating, such as those available from 3M. The hydrophilic nature of the coating is used in the design of the test strip 62 as it facilitates the filling of liquid into the sample receiving chamber.

沉积在衬底50上的第六个层是顶层40,如图1所示,其包括透明部分36和不透明部分38。根据本发明,顶层40包括在一侧用压敏粘合剂涂布的聚酯。顶层40具有不透明部分38,当血液在透明部分36的下面时,其帮助使用者观察高对比度。这使得使用者能够凭视力证实样本接收室足够充满。在将测试条62完全层压之后,将其沿着切口线A-A’切开,在此过程中,产生了如图3所示的样本入口52。The sixth layer deposited on substrate 50 is top layer 40 , which includes transparent portion 36 and opaque portion 38 as shown in FIG. 1 . According to the invention, the top layer 40 comprises polyester coated on one side with a pressure sensitive adhesive. The top layer 40 has an opaque portion 38 that helps the user see high contrast when blood is beneath the transparent portion 36 . This enables the user to visually verify that the sample receiving chamber is sufficiently filled. After the test strip 62 has been fully laminated, it is cut along the cut line A-A', in the process creating the sample inlet 52 as shown in Figure 3 .

图1-3所示的第一个测试条实施方案可具有可能的缺点,因为试剂层22可在液体样本中溶解,并且把一部分溶解的试剂层移动到第二个工作电极12的未涂布部分12u上。如果发生这样的情况,未涂布部分12u将也测量也与葡萄糖浓度成正比的氧化电流。这将降低使用数学算法来消除干扰物氧化影响的能力。在本发明的另一个实施方案中,试剂层22应当被设计成以不迁移到未涂布部分12u上的方式溶解。例如,可将试剂层22与第一个工作电极10、第二个工作电极12和参比电极14化学结合,或者可具有能够将溶解的试剂层22的迁移降至最小程度的增稠剂。The first test strip embodiment shown in FIGS. 1-3 can have a possible disadvantage because the reagent layer 22 can dissolve in the liquid sample and move a portion of the dissolved reagent layer to the uncoated portion of the second working electrode 12. Part 12u on. If this occurs, the uncoated portion 12u will also measure an oxidation current which is also proportional to the glucose concentration. This will reduce the ability to use mathematical algorithms to remove the effects of oxidation of interferents. In another embodiment of the invention, the reagent layer 22 should be designed to dissolve in such a way that it does not migrate onto the uncoated portion 12u. For example, reagent layer 22 may be chemically bonded to first working electrode 10, second working electrode 12, and reference electrode 14, or may have a thickener that minimizes migration of dissolved reagent layer 22.

本发明的另一个实施方案如图4所示,图4所示实施方案降低了溶解的试剂向第二个工作电极的未涂布部分上的迁移,并且在一些情况下,将这种迁移降至最小程度。在该实施方案中,如图4所示,第二个工作电极102具有C-形几何形状,其中第二个工作电极102的2个不连续部分被切口108暴露。根据本发明,如图6所示,试剂层110仅布置在一部分第二个工作电极102上,以消除未涂布部分102u和涂布部分102c。未涂布部分102u与样本入口52相邻。涂布部分102c与第一个工作电极100相邻。当把液体施加到装配的测试条162的样本入口52中时,液体将从样本入口52流到涂布部分102c上,直至所有电极都被液体覆盖。通过将未涂布部分102u的位置布置在液体流的上游,这几乎完全防止了试剂层110溶解和迁移到未涂布部分102u上。这使得数学算法能够精确地消除干扰物对测量的氧化电流的影响。Another embodiment of the present invention is shown in FIG. 4. The embodiment shown in FIG. 4 reduces the migration of dissolved reagents to the uncoated portion of the second working electrode, and in some cases, reduces this migration. to a minimum. In this embodiment, the second working electrode 102 has a C-shaped geometry, as shown in FIG. According to the present invention, as shown in FIG. 6, the reagent layer 110 is only disposed on a portion of the second working electrode 102, so as to eliminate the uncoated portion 102u and the coated portion 102c. Uncoated portion 102u is adjacent to sample inlet 52 . The coated portion 102c is adjacent to the first working electrode 100 . When liquid is applied to the sample inlet 52 of the assembled test strip 162, the liquid will flow from the sample inlet 52 onto the coated portion 102c until all electrodes are covered with liquid. By arranging the location of the uncoated portion 102u upstream of the liquid flow, this almost completely prevents the reagent layer 110 from dissolving and migrating onto the uncoated portion 102u. This enables the mathematical algorithm to precisely remove the influence of interfering substances on the measured oxidation current.

图4是测试条162的部件分解透视图。测试条162是按照类似于测试条62的方式制得的,但是对导电层164、绝缘层106和试剂层110做出了几何学或位置方面的改变。对于本发明的第二个实施方案,衬底50、粘合层66、亲水层68和顶层40与第一个测试条实施方案相同。测试条162具有第一个侧面54和第二个侧面56、电极远侧58和电极近侧60。还应当注意,本发明的第一个和第二个测试条实施方案可包括具有类似结构的部件,这些部分是用相同编号和名称表示。如果各个测试条实施方案的类似部件在结构上不同,这些部件可具有相同名称,但是用不同的部件编号给出。下面的章节将更详细地描述测试条162的各个层。FIG. 4 is an exploded perspective view of test strip 162 . Test strip 162 is fabricated in a similar manner to test strip 62 , but with changes in geometry or location to conductive layer 164 , insulating layer 106 , and reagent layer 110 . For the second embodiment of the present invention, the substrate 50, adhesive layer 66, hydrophilic layer 68 and top layer 40 are the same as the first test strip embodiment. The test strip 162 has a first side 54 and a second side 56 , an electrode distal side 58 and an electrode proximal side 60 . It should also be noted that the first and second test strip embodiments of the present invention may include components having similar structures, and these parts are designated by the same number and designation. If similar components of various test strip embodiments are structurally different, those components may have the same name but be given different part numbers. The following sections describe the various layers of test strip 162 in more detail.

对于图4所示的测试条实施方案,布置在衬底50上的第一个层是导电层164,其包括第一个工作电极100、第二个工作电极102、参比电极104、第一个接触点101、第二个接触点103和参比接触点105以及测试条检测板17。根据本发明,可以以图4所示的限定几何学,用具有乳胶图案的筛网来沉积材料例如导电碳墨。第一个接触点101、第二个接触点103和参比接触点105可用于和测量仪电连接。这使得测量仪分别通过第一个接触点101、第二个接触点103和参比接触点15与第一个工作电极100、第二个工作电极102和参比电极104电联通。For the test strip embodiment shown in FIG. 4, the first layer disposed on substrate 50 is conductive layer 164, which includes first working electrode 100, second working electrode 102, reference electrode 104, first A contact point 101, a second contact point 103, a reference contact point 105 and a test strip detection plate 17. According to the present invention, a screen with a latex pattern can be used to deposit a material such as conductive carbon ink in the defined geometry shown in FIG. 4 . The first contact point 101, the second contact point 103 and the reference contact point 105 can be used for electrical connection with the meter. This places the meter in electrical communication with the first working electrode 100, the second working electrode 102, and the reference electrode 104 via the first contact point 101, the second contact point 103, and the reference contact point 15, respectively.

在图4中,沉积在衬底50上的第二个层是绝缘层106。如图4所示,将绝缘层106沉积在至少一部分导电层164上。图5是测试条162的远端部分的简化平面视图,该图重点突出了第一个工作电极100、第二个工作电极102和参比电极104相对于绝缘层106的位置。In FIG. 4 , the second layer deposited on substrate 50 is insulating layer 106 . As shown in FIG. 4 , insulating layer 106 is deposited on at least a portion of conductive layer 164 . FIG. 5 is a simplified plan view of the distal portion of test strip 162 highlighting the positions of first working electrode 100 , second working electrode 102 , and reference electrode 104 relative to insulating layer 106 .

在图4中,沉积在衬底50上的第三个层是试剂层110,如图6所示,试剂层110布置在导电层164和绝缘层106的至少一部分上。图6是根据本发明第二个实施方案的测试条162的远端部分的简化平面视图,该图重点突出了试剂层110相对于第一个工作电极100、第二个工作电极102、参比电极104和绝缘层106的位置。试剂层110可以是矩形,该矩形具有试剂宽度W13和试剂长度L16。在本发明的一个实施方案中,试剂宽度W13可以为约1.3mm,且试剂长度L16可以为约3.2mm。在本发明的一个优选实施方案中,试剂层110具有足够大的宽度W13和长度L16,使得试剂层110完全覆盖第一个工作电极100、涂布部分102c和参比电极104,但是不覆盖未涂布部分102u。In FIG. 4 , the third layer deposited on substrate 50 is reagent layer 110 , which is disposed on at least a portion of conductive layer 164 and insulating layer 106 as shown in FIG. 6 . 6 is a simplified plan view of the distal portion of a test strip 162 according to a second embodiment of the present invention, which highlights the relationship of the reagent layer 110 to the first working electrode 100, the second working electrode 102, the reference The location of the electrode 104 and insulating layer 106. Reagent layer 110 may be rectangular having a reagent width W13 and a reagent length L16. In one embodiment of the invention, reagent width W13 may be about 1.3 mm and reagent length L16 may be about 3.2 mm. In a preferred embodiment of the present invention, the reagent layer 110 has a width W13 and a length L16 sufficiently large such that the reagent layer 110 completely covers the first working electrode 100, the coated portion 102c, and the reference electrode 104, but does not cover the remaining electrodes. Coated portion 102u.

图7是根据图4所示本发明实施方案的测试条的远端部分的简化平面视图,其中显示了试剂层和导电层。与图6不同,图7没有显示出绝缘层106。这帮助证实了未涂布部分102u与涂布部分102c之间的导电关系,其隐藏在绝缘层106的不透明符号的下面。Figure 7 is a simplified plan view of the distal portion of the test strip according to the embodiment of the invention shown in Figure 4, showing the reagent layer and the conductive layer. Unlike FIG. 6 , FIG. 7 does not show the insulating layer 106 . This helps to demonstrate the conductive relationship between the uncoated portion 102u and the coated portion 102c, which is hidden beneath the opaque symbols of the insulating layer 106. FIG.

对于图4所示的测试条实施方案,绝缘层106用于限定第一个工作电极100,第二个工作电极102、参比电极104的宽度。绝缘层106还包括切口108,其可具有如图4-6所示的T-形结构。切口108暴露了可以被液体润湿的一部分第一个工作电极100、第二个工作电极102和参比电极104。如图5和6所示,切口108进一步包括远端切口宽度W11、近端切口宽度W12、远端切口长度L14和近端切口长度L15。远端切口宽度W11与未涂布部分102u的宽度相对应。远端切口长度L14大于未涂布部分102u的长度。近端切口宽度W12和近端切口长度L15形成大体暴露了第一个工作电极100、参比电极104和涂布部分102c的宽度和长度的矩形切面。For the test strip embodiment shown in FIG. 4 , the insulating layer 106 is used to define the width of the first working electrode 100 , the second working electrode 102 , and the reference electrode 104 . The insulating layer 106 also includes a cutout 108, which may have a T-shaped structure as shown in FIGS. 4-6. The cutout 108 exposes a portion of the first working electrode 100, the second working electrode 102, and the reference electrode 104 that can be wetted by the liquid. As shown in FIGS. 5 and 6 , the incision 108 further includes a distal incision width W11 , a proximal incision width W12 , a distal incision length L14 , and a proximal incision length L15 . The distal cutout width W11 corresponds to the width of the uncoated portion 102u. The distal cut length L14 is greater than the length of the uncoated portion 102u. Proximal cut width W12 and proximal cut length L15 form a rectangular cut that generally exposes the width and length of first working electrode 100, reference electrode 104, and coated portion 102c.

根据本发明,远端切口宽度W11、近端切口宽度W12、远端切口长度L14和近端切口长度L15可分别具有约1.1、0.7、2.5和2.6mm的尺寸。According to the present invention, distal incision width W11, proximal incision width W12, distal incision length L14, and proximal incision length L15 may have dimensions of about 1.1, 0.7, 2.5, and 2.6 mm, respectively.

在图4的实施方案中,未涂布部分102u、参比电极104、第一个工作电极100和涂布部分102c分别具有长度L10、L12、L11和L13,它们可分别为约0.7、0.7、0.4和0.4mm。电极间距S11是未涂布部分102u与参比电极104之间的距离,其可以为约0.2-0.75mm更优选为约0.6-0.7mm。电极间距S10是参比电极104与第一个工作电极100之间的距离;以及涂布部分102c与第一个工作电极100之间的距离,其可以为约0.2mm。应当注意,电极间距S11大于电极间距S10,以降低试剂溶解和迁移到未涂布部分102u上的可能性。此外,电极间距S11大于电极间距S10,以降低由于印制处理中的差异而使试剂层110布置在未涂布部分102u上的可能性。第四至第六个层以与第一个测试条实施方案相同的方式依次沉积在测试条162上。粘合层66、亲水层68和顶层40的相对位置和形状如图4所示。In the embodiment of FIG. 4, uncoated portion 102u, reference electrode 104, first working electrode 100, and coated portion 102c have lengths L10, L12, L11, and L13, respectively, which may be about 0.7, 0.7, 0.4 and 0.4mm. The electrode spacing S11 is the distance between the uncoated portion 102u and the reference electrode 104, which may be about 0.2-0.75 mm, more preferably about 0.6-0.7 mm. The electrode spacing S10 is the distance between the reference electrode 104 and the first working electrode 100; and the distance between the coated portion 102c and the first working electrode 100, which may be about 0.2 mm. It should be noted that the electrode spacing S11 is greater than the electrode spacing S10 to reduce the possibility of reagent dissolution and migration onto the uncoated portion 102u. In addition, the electrode spacing S11 is larger than the electrode spacing S10 to reduce the possibility that the reagent layer 110 is disposed on the uncoated portion 102u due to a difference in printing process. The fourth through sixth layers are sequentially deposited on test strip 162 in the same manner as the first test strip embodiment. The relative positions and shapes of the adhesive layer 66, the hydrophilic layer 68 and the top layer 40 are shown in FIG.

在图8所示的本发明实施方案中,可部分改变第二个工作电极102的C-形状,使得液体润湿电极的顺序为未涂布部分102u、第一个工作电极100、参比电极104和涂布部分102c。在另一个形式中,第一个工作电极100和涂布部分102c与参比电极104的距离相等,从IR位降角度来看这是期望的。在图7所示的第二个测试条实施方案(即测试条162)中,电极的排列使得液体润湿电极的顺序为未涂布部分102u、参比电极104、第一个工作电极100和涂布部分102c。对于测试条162,涂布部分102c与参比电极104之间的距离大于第一个工作电极100与参比电极104之间的距离。In the embodiment of the invention shown in FIG. 8, the C-shape of the second working electrode 102 can be partially altered such that the sequence of liquid wetting the electrodes is the uncoated portion 102u, the first working electrode 100, the reference electrode 104 and coating portion 102c. In another form, the first working electrode 100 and the coated portion 102c are equidistant from the reference electrode 104, which is desirable from an IR drop perspective. In the second test strip embodiment (i.e., test strip 162) shown in FIG. The portion 102c is coated. For test strip 162 , the distance between coated portion 102 c and reference electrode 104 is greater than the distance between first working electrode 100 and reference electrode 104 .

因此,可使用一个算法来计算不受干扰物影响的校正葡萄糖电流。给测试条施加样本后,给第一个工作电极和第二个工作电极施加恒定的电位,并测量这两个电极的电流。在其中试剂覆盖整个电极面积的第一个工作电极上,可使用下列公式来描述对氧化电流作出贡献的成分,Therefore, an algorithm can be used to calculate the corrected glucose current unaffected by interferents. After applying the sample to the test strip, apply a constant potential to the first working electrode and the second working electrode, and measure the current at both electrodes. On the first working electrode where the reagent covers the entire electrode area, the following formula can be used to describe the composition that contributes to the oxidation current,

        WE1=G+Icov                    (公式1)WE 1 =G+I cov (Formula 1)

其中WE1是在第一个工作电极上的电流密度,G是不受干扰物影响的由于葡萄糖而产生的电流密度,并且Icov是由于在被试剂覆盖的工作电极部分上的干扰物而产生的电流密度。where WE is the current density at the first working electrode, G is the current density due to glucose unaffected by the interferer, and I cov is due to the interferer on the part of the working electrode covered by the reagent the current density.

在被试剂部分覆盖的第二个工作电极上,可使用下列公式来描述对氧化电流作出贡献的成分,On the second working electrode partially covered by the reagent, the following formula can be used to describe the components contributing to the oxidation current,

          WE2=G+Icov+Iunc                (公式2)WE 2 =G+I cov +I unc (Formula 2)

其中WE2是在第二个工作电极上的电流密度,Iunc是由于在未被试剂覆盖的工作电极部分上的干扰物而产生的电流密度。可在第一个和第二个工作电极上使用不同的试剂涂布面积来得到另外的本发明实施方案,但是公式必须考虑不同的未涂布面积。where WE2 is the current density at the second working electrode and I unc is the current density due to interferents at the part of the working electrode not covered by the reagent. Additional embodiments of the invention can be obtained using different reagent coated areas on the first and second working electrodes, but the formula must take into account the different uncoated areas.

为了降低干扰物的影响,制订了描述在第二个工作电极的涂布部分上的干扰电流与在第二个工作电极的未涂布部分上的干扰电流之间的关系的公式。估计在涂布部分上测量的干扰物氧化电流密度与在未涂布部分上测量的电流密度大约相同。通过下面的公式进一步描述该关系,To reduce the influence of interferents, a formula was developed describing the relationship between the interference current on the coated portion of the second working electrode and the interference current on the uncoated portion of the second working electrode. The interferer oxidation current density measured on the coated portion was estimated to be about the same as the current density measured on the uncoated portion. This relationship is further described by the following formula,

I cov = A cov A unc × I unc (公式3a) I cov = A cov A unc × I unc (Formula 3a)

其中Acov是被试剂覆盖的第二个工作电极的面积,并且Aunc是未被试剂覆盖的第二个工作电极的面积。where A cov is the area of the second working electrode covered by the reagent, and A unc is the area of the second working electrode not covered by the reagent.

应当注意,未涂布部分12u和涂布部分12c可具有各自指定为Aunc和Acov的面积。未涂布部分12u可氧化干扰物,但是不氧化葡萄糖,因为其上面没有涂布试剂层22。相反,涂布部分12c可氧化葡萄糖和干扰物。因为通过实验发现,未涂布部分12u以与涂布部分12c的面积成正比的方式氧化干扰物,所以能够预测干扰电流占在第二个工作电极12上测量的总电流的比例。这使得在第二个工作电极12上测量的总电流可通过减去干扰电流而被校正。在本发明的一个实施方案中,Aunc∶Acov的比例可以为约0.5∶1-5∶1,并且优选为约3∶1。对关于电流校正的该数学算法的更详细描述将在下面的章节中描述。It should be noted that uncoated portion 12u and coated portion 12c may have areas designated A unc and A cov , respectively. The uncoated portion 12u can oxidize interferents, but not glucose, since there is no reagent layer 22 coated thereon. In contrast, the coated portion 12c can oxidize glucose and interferents. Since it was found experimentally that the uncoated portion 12u oxidizes the interfering species in a manner proportional to the area of the coated portion 12c, the proportion of the interfering current to the total current measured at the second working electrode 12 can be predicted. This allows the total current measured at the second working electrode 12 to be corrected by subtracting the interfering current. In one embodiment of the invention, the ratio of Aunc : Acov may be from about 0.5:1 to 5:1, and is preferably about 3:1. A more detailed description of this mathematical algorithm for current correction will be described in the following sections.

在本发明的另一个实施方案中,在涂布部分上测量的干扰物氧化电流密度可以与在未涂布部分上测量的电流密度不同。这可能是因为,在涂布部分上效率更高或效率更低的干扰物氧化。在一种情况下,相对于未涂布部分,存在的氧化还原介体可提高干扰物的氧化。在另一种情况下,相对于未涂布部分,存在的增加粘度的物质例如羟乙基纤维素可降低干扰物氧化。根据将第二个工作电极部分涂布的试剂层中所包括的成分,在涂布部分上测量的干扰物氧化电流可以比未涂布部分大或小。这种性质可以通过将公式3a改写成以下形式来进行唯象模型化,In another embodiment of the invention, the interferer oxidation current density measured on the coated portion may be different from the current density measured on the uncoated portion. This may be due to more or less efficient interference oxidation on the coated part. In one instance, the presence of a redox mediator can enhance the oxidation of interferents relative to the uncoated portion. In another instance, the presence of a viscosity-increasing substance such as hydroxyethylcellulose may reduce interferer oxidation relative to the uncoated portion. Depending on the components included in the reagent layer to which the second working electrode portion is coated, the interferer oxidation current measured on the coated portion may be greater or smaller than the uncoated portion. This property can be modeled phenomenologically by rewriting Equation 3a as,

    Icov=f×Iunc                    (公式3b)I cov =f×I unc (Formula 3b)

其中f是校正因子,其引入了涂布部分的干扰物氧化效率对未涂布部分的影响。where f is a correction factor that incorporates the effect of the interference oxidation efficiency of the coated part on the uncoated part.

在本发明的一个实施方案中,可以运算公式1、2和3a来推导能输出不受干扰物影响的校正葡萄糖电流密度的公式。应当注意,这三个公式(公式1、2和3a)总共具有3个未知数,这3个未知数是G、Icov和Iunc然而,可将公式1重新排列成以下形式。In one embodiment of the present invention, Equations 1, 2 and 3a can be manipulated to derive an equation that outputs a corrected glucose current density that is not affected by interferents. It should be noted that these three formulas (Equations 1, 2 and 3a) have a total of 3 unknowns which are G, I cov and I unc However, Equation 1 can be rearranged into the following form.

G=WE1-Icov                            (公式4)G=WE 1 -I cov (Formula 4)

接下来,可将得自公式3a的Icov替代到公式4内,得到公式5。Next, I cov from Equation 3a can be substituted into Equation 4 to obtain Equation 5.

G = WE 1 - [ A cov A unc × I unc ] (公式5) G = we 1 - [ A cov A unc × I unc ] (Formula 5)

接下来,可将公式1和公式2合并,得到公式6。Next, Equation 1 and Equation 2 can be combined to obtain Equation 6.

     Iunc=WE2-WE1                (公式6)I unc =WE 2 -WE 1 (Equation 6)

接下来,可将得自公式6的Iunc替代到公式5内,得到公式7a。Next, Iunc from Equation 6 can be substituted into Equation 5, resulting in Equation 7a.

G = WE 1 - { ( A cov A unc ) X ( WE 2 - WE 1 ) } (公式7a) G = we 1 - { ( A cov A unc ) x ( we 2 - we 1 ) } (Formula 7a)

公式7a输出了校正葡萄糖电流密度G,葡萄糖电流密度G消除了干扰物的影响,该公式仅需要从第一个工作电极和第二个工作电极的电流密度输出,以及第二个工作电极的涂布面积与未涂布面积的比例。在本发明的一个实施方案中,可将比例Acov/Aunc程序化到葡萄糖测量仪内,例如程序化到测量仪的只读存储器内。在本发明的另一个实施方案中,可将比例Acov/Aunc通过校准码芯片传递给测量仪,所述校准码芯片可消除Acov或Aunc中的制造差异。Equation 7a outputs the corrected glucose current density G, which eliminates the influence of interfering substances. This formula only needs the current density output from the first working electrode and the second working electrode, and the coating of the second working electrode. Ratio of cloth area to uncoated area. In one embodiment of the invention, the ratio A cov /A unc can be programmed into the glucose meter, for example into the read only memory of the meter. In another embodiment of the invention, the ratio A cov /A unc can be communicated to the gauge via a calibration code chip that can eliminate manufacturing variations in A cov or A unc .

在本发明的另一个实施方案中,当涂布部分的干扰物氧化电流密度与未涂布部分的干扰物氧化电流密度不同时,可使用公式1、2和3b。在这样的情况下,推导出如下所示的另一校正公式7b。In another embodiment of the invention, Equations 1, 2 and 3b may be used when the interferer oxidation current density of the coated portion is different from the interferer oxidation current density of the uncoated portion. In such a case, another correction formula 7b as shown below is derived.

       G=WE1-{f×(WEX-WE1)}                    (公式7b)G=WE 1 -{f×(WEX-WE 1 )} (Formula 7b)

在本发明的另一个实施方案中,只有当超过一定阈值时,测量仪才可以使用校正葡萄糖电流公式7a或7b。例如,如果WE2比WE1大出约10%或10%以上,则测量仪将使用公式7a或7b来校正输出电流。然而,如果WE2比WE1大出约10%或10%以下,则测量仪将简单地取WE1与WE2之间的平均电流值,来提高测量的准确度和精确度。只有在一些其中样本中存在显著水平的干扰化合物的情况下使用公式7a或7b的策略减轻了测量的葡萄糖电流校正过度的危险。应当注意,当WE2比WE1足够大时(例如大出约20%或更多)时,这是具有非常高浓度的干扰化合物的指示。在这样的情况下,可能希望输出错误信息而不是葡萄糖值,因为非常高水平的干扰物可引起公式7a或7b准确度的打破。In another embodiment of the present invention, the meter may use the corrected glucose current formula 7a or 7b only when a certain threshold is exceeded. For example, if WE 2 is about 10% or more larger than WE 1 , the meter will use Equation 7a or 7b to correct for output current. However, if WE 2 is about 10% larger than WE 1 or less, the meter will simply take the average current value between WE 1 and WE 2 to increase the accuracy and precision of the measurement. The strategy of using equation 7a or 7b mitigates the risk of overcorrection of the measured glucose current only in some cases where significant levels of interfering compounds are present in the sample. It should be noted that when WE 2 is sufficiently larger than WE 1 (eg, about 20% or more larger), this is an indication of having a very high concentration of interfering compounds. In such cases, it may be desirable to output an error message instead of a glucose value, since very high levels of interferents can cause a breakdown in the accuracy of Equation 7a or 7b.

在图9和10所示的本发明实施方案中,第一个和第二个工作电极以这样的方式被试剂层部分覆盖,使得第一个和第二个工作电极的未涂布部分是不同的。这与其中第一个工作电极被试剂层完全覆盖的上述第一个和第二个测试条实施方案不同。In the embodiment of the invention shown in Figures 9 and 10, the first and second working electrodes are partially covered by the reagent layer in such a way that the uncoated portions of the first and second working electrodes are different of. This is in contrast to the first and second test strip embodiments described above in which the first working electrode is completely covered by the reagent layer.

图9是根据本发明另一个实施方案的测试条2000的远端部分的简化平面视图,其中显示了试剂层22以及导电层和绝缘层2002,有两个具有未涂布部分的工作电极。测试条2000是按照类似于测试条62的方式制备的,但是对图1所示的切口18做出了几何学改变。测试条2002与测试条62具有相同的衬底50、导电层64、试剂层22、粘合层66、亲水层68和顶层40。改变测试条2002,使其具有切口2004,该切口具有如图9所示的哑铃样形状。对切口2004的改变的形状使得第一个工作电极2008包括第一个涂布部分2008c和第一个未涂布部分2008u;第二个工作电极2006包括第二个涂布部分2006c和第二个未涂布部分2006u。为了让测试条2000有效地降低干扰物的影响,第一个未涂布部分2008u必须具有与第二个未涂布部分2006u不同的总面积。9 is a simplified plan view of the distal portion of a test strip 2000 showing reagent layer 22 and conductive and insulating layers 2002, with two working electrodes having uncoated portions, according to another embodiment of the present invention. Test strip 2000 is prepared in a manner similar to test strip 62, but with geometric changes to cutout 18 shown in FIG. 1 . Test strip 2002 has the same substrate 50 , conductive layer 64 , reagent layer 22 , adhesive layer 66 , hydrophilic layer 68 and top layer 40 as test strip 62 . The test strip 2002 is modified to have a cutout 2004 having a dumbbell-like shape as shown in FIG. 9 . The altered shape of the cutout 2004 is such that the first working electrode 2008 includes a first coated portion 2008c and a first uncoated portion 2008u; the second working electrode 2006 includes a second coated portion 2006c and a second Uncoated portion 2006u. In order for the test strip 2000 to effectively reduce the influence of interferents, the first uncoated portion 2008u must have a different total area than the second uncoated portion 2006u.

图10是根据本发明另一个实施方案的测试条5000的远端部分的简化平面视图,其中显示了试剂层820以及导电层,有两个具有未涂布部分的工作电极。测试条5000是按照类似于测试条162的方式制备的,但是对导电层164做出了几何学改变,使得第一个工作电极4002和第二个工作电极4004都具有C-形状。测试条5000与测试条162具有相同衬底50、绝缘层106、试剂层110、粘合层66、亲水层68和顶层40。这种改变的几何学使得第一个工作电极4002包括第一个涂布部分4002c和第一个未涂布部分4002u;第二个工作电极4004包括第二个涂布部分4004c和第二个未涂布部分4004u。为了让测试条2000有效地降低干扰物的影响,第一个未涂布部分4002u必须具有与第二个未涂布部分4004u不同的面积。Figure 10 is a simplified plan view of the distal portion of a test strip 5000 showing a reagent layer 820 and a conductive layer with two working electrodes having uncoated portions according to another embodiment of the present invention. Test strip 5000 was prepared in a manner similar to test strip 162, but with geometric changes to conductive layer 164 such that both first working electrode 4002 and second working electrode 4004 had a C-shape. Test strip 5000 has the same substrate 50 , insulating layer 106 , reagent layer 110 , adhesive layer 66 , hydrophilic layer 68 and top layer 40 as test strip 162 . This altered geometry is such that the first working electrode 4002 includes a first coated portion 4002c and a first uncoated portion 4002u; the second working electrode 4004 includes a second coated portion 4004c and a second uncoated portion 4002u. Coated portion 4004u. In order for the test strip 2000 to effectively reduce the influence of interferents, the first uncoated portion 4002u must have a different area than the second uncoated portion 4004u.

测试条2000和5000的优点在于,在将试剂层沉积到所期望的位置以及任何随后沉积的层方面,它们可易于生产。此外,第一个和第二个工作电极将在某些程度上具有相同的与任何干扰物的化学和电化学相互作用,由此保证了在校正方法中具有更大的准确度。由于两个工作电极都具有某些水平的未涂布面积,在两个电极上将发生相同的但是不同程度的反应。对公式7a做简单的改变,下面的公式7c可用作葡萄糖的校正公式,An advantage of test strips 2000 and 5000 is that they can be easily produced in terms of depositing the reagent layer to the desired location and any subsequently deposited layers. Furthermore, the first and second working electrodes will have to some extent identical chemical and electrochemical interactions with any interferents, thereby ensuring greater accuracy in the calibration method. Since both working electrodes have some level of uncoated area, the same but different degrees of reaction will occur on both electrodes. With a simple change to Equation 7a, the following Equation 7c can be used as the correction formula for glucose,

G = WE 1 - { ( f 1 + f 2 f 2 - 1 ) × ( WE 2 - WE 1 ) } (公式7c) G = we 1 - { ( f 1 + f 2 f 2 - 1 ) × ( we 2 - we 1 ) } (Formula 7c)

其中f1=Acov1/Aunc1,f2=Acov2/Aunc2,Aunc1=第一个工作电极的未涂布面积,Aunc2=第二个工作电极的未涂布面积,Acov1=第一个工作电极的涂布面积,且Acov2=第二个工作电极的涂布面积。where f 1 =A cov1 /A unc1 , f 2 =A cov2 /A unc2 , A unc1 =uncoated area of the first working electrode, A unc2 =uncoated area of the second working electrode, A cov1 = The coated area of the first working electrode, and A cov2 = the coated area of the second working electrode.

本发明的一个优点是,能够使用第一个和第二个工作电极来确定样本接收室已经被液体足够充满。本发明的一个优点是,第二个工作电极不仅校正干扰物影响,而且还能够测量葡萄糖。这能获得能准确的结果,因为在使用一个测试条的情况下,可将2次葡萄糖测量进行平均。An advantage of the present invention is that the first and second working electrodes can be used to determine that the sample receiving chamber has been sufficiently filled with liquid. An advantage of the present invention is that the second working electrode not only corrects for interferent effects, but also enables the measurement of glucose. This allows for more accurate results as 2 glucose measurements can be averaged with one test strip.

                   实施例1Example 1

根据图1-3所示的本发明第一个实施方案制备测试条。在具有不同浓度干扰物的血液中测定这些测试条。为了测定这些测试条,将它们与恒电势器电连接,恒电势器具有部件来在第一个工作电极与参比电极810之间;以及第二个工作电极与参比电极之间施加0.4伏特的恒定电位。给样本入口施加血样,让血液浸吸到样本接收室内,并且润湿第一个工作电极、第二个工作电极和参比电极。试剂层变得被血液水合,然后产生亚铁氰化物,亚铁氰化物可以与样本中存在的葡萄糖的量和/或干扰物浓度成正比。在给测试条施加样本5秒钟后,测量作为第一个工作电极和第二个工作电极的电流的亚铁氰化物的氧化。A test strip was prepared according to the first embodiment of the invention shown in Figures 1-3. These test strips were assayed in blood with varying concentrations of interfering substances. To measure these test strips, they were electrically connected to a potentiostat having means to apply 0.4 volts between the first working electrode and the reference electrode 810; and between the second working electrode and the reference electrode constant potential. Apply the blood sample to the sample inlet and allow the blood to soak into the sample receiving chamber and wet the first working electrode, the second working electrode and the reference electrode. The reagent layer becomes hydrated by blood, which then produces ferrocyanide, which can be directly proportional to the amount of glucose and/or the concentration of interferents present in the sample. Oxidation of ferrocyanide was measured as currents at the first working electrode and the second working electrode 5 seconds after the sample was applied to the test strip.

图11表示了第一个工作电极上的电流反应,测量是用添加了不同水平尿酸的70mg/dL葡萄糖的血样进行的。在第一个工作电极上的未校正电流(用正方形表示)表现出与尿酸浓度成正比的电流增加。然而,通过公式7a处理的校正电流(用三角形表示)表现出没有受到增加的尿酸浓度的影响。Figure 11 shows the current response at the first working electrode, measured with blood samples spiked with 70 mg/dL glucose at various levels of uric acid. The uncorrected current at the first working electrode (indicated by the squares) shows a current increase proportional to the concentration of uric acid. However, the corrected current (represented by triangles) processed by Equation 7a appears to be unaffected by increasing uric acid concentration.

图12表示了第一个工作电极上的电流反应,测量是用添加了不同水平尿酸的240mg/dL葡萄糖的血样进行的。在240mg/dL葡萄糖测定测试条的目的是表明,公式7a的校正算法在一定范围的葡萄糖浓度下也是有效的。与图11类似,在第一个工作电极上的未校正电流(用正方形表示)表现出与尿酸浓度成正比的电流增加。然而,校正电流(用三角形表示)表现出没有受到增加的尿酸浓度的影响。Figure 12 shows the current response at the first working electrode, measured with blood samples spiked with 240 mg/dL glucose at various levels of uric acid. The purpose of the test strip for glucose determination at 240 mg/dL is to show that the correction algorithm of Equation 7a is also valid over a range of glucose concentrations. Similar to Figure 11, the uncorrected current at the first working electrode (indicated by the squares) exhibited a current increase proportional to the concentration of uric acid. However, the corrected current (indicated by triangles) appears to be unaffected by increasing uric acid concentration.

                      实施例2Example 2

为了表明校正干扰物电流的方法适用于多种干扰物,除了尿酸以外,还用不同浓度水平的扑热息痛和龙胆酸测定根据图1的实施方案构建的测试条。为了定量确定该影响的大小,将大于10%(对于葡萄糖水平>70mg/dL)或7mg/dL(对于葡萄糖水平≤70mg/dL)的葡萄糖输出改变定义为显著干扰。表1表明,与通过使用公式7a的校正电流反应测定的测试条相比,在第一个工作电极上的未校正电流在较低的干扰物浓度表现出显著干扰影响。这表明,使用公式7a校正第一个工作电极的输出电流的方法在校正干扰方面是有效的。表1表明,对于扑热息痛、龙胆酸和尿酸的干扰,公式7a中的电流校正是有效的。表1还表明了在血液中发现的干扰物的正常浓度范围。此外,表1也表明,在240mg/dL葡萄糖浓度水平,,公式7a中的电流校正是有效的。In order to show that the method of correcting the interferor current is applicable to a variety of interferors, test strips constructed according to the embodiment of Figure 1 were also assayed with different concentration levels of paracetamol and gentisic acid in addition to uric acid. To quantify the magnitude of this effect, changes in glucose output greater than 10% (for glucose levels >70 mg/dL) or 7 mg/dL (for glucose levels <70 mg/dL) were defined as significant disturbances. Table 1 shows that the uncorrected current at the first working electrode exhibits significant interfering effects at lower interferent concentrations compared to the test strip determined by the corrected amperometric response using Equation 7a. This shows that using Equation 7a to correct the output current of the first working electrode is effective in correcting for interference. Table 1 shows that the current correction in Equation 7a is effective for paracetamol, gentisic acid, and uric acid interferences. Table 1 also shows the normal concentration ranges of the interferents found in blood. In addition, Table 1 also shows that the current correction in Equation 7a is valid at a glucose concentration level of 240 mg/dL.

图13是测试条800的部件分解透视图,测试条800是设计刺进使用者的皮肤层,以使得生理流体被压出来并且以无缝方式收集到测试条800内。测试条800包括衬底50、导电层802、绝缘层804、试剂层820、粘合层830和顶层824。测试条800还包括远端5和近端60。FIG. 13 is an exploded perspective view of a test strip 800 that is designed to penetrate the user's skin layers so that physiological fluid is expressed and collected within the test strip 800 in a seamless manner. Test strip 800 includes substrate 50 , conductive layer 802 , insulating layer 804 , reagent layer 820 , adhesive layer 830 and top layer 824 . The test strip 800 also includes a distal end 5 and a proximal end 60 .

在测试条800中,导电层802是布置在衬底50上的第一个层。如图13所示,导电层802包括第二个工作电极806、第一个工作电极808、参比电极810、第二个接触点812、第一个接触点814、参比接触点816、测试条检测板17。由于导电层802的材料和用于印制导电层802的方法与测试条62和测试条800相同。In test strip 800 , conductive layer 802 is the first layer disposed on substrate 50 . As shown in Figure 13, the conductive layer 802 includes a second working electrode 806, a first working electrode 808, a reference electrode 810, a second contact point 812, a first contact point 814, a reference contact point 816, a test Strip detection plate 17. The material of the conductive layer 802 and the method for printing the conductive layer 802 are the same as the test strip 62 and the test strip 800 .

绝缘层804是布置在衬底50上的第二个层。绝缘层16包括可具有矩形结构的切口18。切口18暴露了可被液体润湿的第二个工作电极806、第一个工作电极808和参比电极810的一部分。用于绝缘层804的材料和用于印制绝缘层804的方法与测试条62和测试条800相同。Insulating layer 804 is a second layer disposed on substrate 50 . The insulating layer 16 includes a cutout 18 which may have a rectangular configuration. The cutout 18 exposes a portion of the second working electrode 806, the first working electrode 808, and the reference electrode 810 that are wettable by the liquid. The material used for insulating layer 804 and the method used to print insulating layer 804 are the same as test strip 62 and test strip 800 .

试剂层820是布置在衬底50上的第三个层,第一个工作电极808和参比电极810。用于试剂层820的材料和用于印制试剂层820的方法与测试条62和测试条800相同。Reagent layer 820 is the third layer disposed on substrate 50 , first working electrode 808 and reference electrode 810 . The materials used for reagent layer 820 and the method used to print reagent layer 820 are the same as test strip 62 and test strip 800 .

粘合层830是布置在衬底50上的第四个层。用于粘合层830的材料和用于印制粘合层830与测试条62和测试条800相同。粘合层830的作用是将顶层824固定在测试条800上。在本发明的一个实施方案中,顶层824可以是如图13所示的整体化刀片的形式。在这样的实施方案中,顶层824可包括位于远端58上的刀片826。Adhesive layer 830 is a fourth layer disposed on substrate 50 . The material used for adhesive layer 830 and the material used to print adhesive layer 830 are the same as test strip 62 and test strip 800 . Adhesive layer 830 functions to secure top layer 824 to test strip 800 . In one embodiment of the invention, the top layer 824 may be in the form of an integral blade as shown in FIG. 13 . In such an embodiment, the top layer 824 can include a blade 826 on the distal end 58 .

也可以称为穿透部件的刀片826可适于刺入使用者的皮肤并且把血液抽吸到测试条800内,这样第二个工作电极806、第一个工作电极808和参比电极810被润湿。刀片826包括在装配的测试条的远端部分58上终止的刀片基底832。刀片826可以由绝缘材料例如塑料、玻璃和硅或导电材料例如不锈钢和金制成。使用整体化刀片的整体化医疗装置的进一步描述可参见国际申请PCT/GB01/05634和U.S.专利申请10/143,399。此外,刀片826可例如通过级进模冲压技术来制造,所述技术如公开在上述国际申请PCT/GB01/05634和U.S.专利申请10/143,399中。Blade 826, which may also be referred to as a penetrating member, may be adapted to pierce the user's skin and draw blood into test strip 800 such that second working electrode 806, first working electrode 808, and reference electrode 810 are moisten. Blade 826 includes a blade base 832 that terminates on distal portion 58 of the assembled test strip. Blade 826 may be made of insulating materials such as plastic, glass, and silicon, or conductive materials such as stainless steel and gold. Further descriptions of integrated medical devices using integrated blades can be found in International Application PCT/GB01/05634 and U.S. Patent Application 10/143,399. Additionally, the blade 826 may be manufactured, for example, by progressive die stamping techniques as disclosed in the aforementioned International Application PCT/GB01/05634 and U.S. Patent Application 10/143,399.

图14是表明与测试条连接的测量仪900的简化图解图。在本发明的一个实施方案中,下列测试条可适于和测量仪900一起使用:测试条62、测试条162、测试条800、测试条2000、测试条3000或测试条5000。测量仪900具有至少3个电接触点,这些电接触点形成与第二个工作电极、第一个工作电极和参比电极的电连接。特别是,第二个接触点(13、103或812)和参比接触点(15、105或816)与第一个电压源910连接;第一个接触点(11、101或814)和参比接触点(15、105或816)与第二个电压源920连接。FIG. 14 is a simplified diagrammatic view showing the meter 900 connected to a test strip. In one embodiment of the invention, the following test strips may be suitable for use with meter 900: test strip 62, test strip 162, test strip 800, test strip 2000, test strip 3000 or test strip 5000. Meter 900 has at least 3 electrical contacts that form electrical connections to the second working electrode, the first working electrode, and the reference electrode. In particular, the second contact (13, 103 or 812) and the reference contact (15, 105 or 816) are connected to the first voltage source 910; the first contact (11, 101 or 814) and the reference The contact point (15, 105 or 816) is connected to a second voltage source 920.

当进行测量时,第一个电压源910在第二个工作电极与参比电极之间施加第一个电位E1;第二个电压源920在第一个工作电极与参比电极之间施加第二个电位E2。在本发明的一个实施方案中,第一个电位E1和第二个电位E2可以相同,例如约为+0.4V。在本发明的另一个实施方案中,第一个电位E1和第二个电位E2可以不同。施加血样,这样第二个工作电极、第一个工作电极和参比电极被血液覆盖。这容许第二个工作电极和第一个工作电极测量与葡萄糖和/或非酶特定源成正比的电流。施加样本5秒钟后,测量仪900测量第二个工作电极和第一个工作电极的氧化电流。When measuring, the first voltage source 910 applies the first potential E1 between the second working electrode and the reference electrode; the second voltage source 920 applies the first potential E1 between the first working electrode and the reference electrode. Two potentials E2. In one embodiment of the present invention, the first potential E1 and the second potential E2 may be the same, for example about +0.4V. In another embodiment of the invention, the first potential E1 and the second potential E2 may be different. Apply the blood sample so that the second working electrode, the first working electrode and the reference electrode are covered with blood. This allows the second working electrode and the first working electrode to measure a current proportional to glucose and/or a non-enzyme specific source. Five seconds after applying the sample, meter 900 measures the oxidation current of the second working electrode and the first working electrode.

表1.使用校正和未校正输出电流的干扰物影响的总结   模式   干扰物   葡萄糖浓度(mg/dL)   影响是显著的干扰物浓度   干扰物的正常浓度范围   未校正   扑热息痛   70   11   1-2   未校正   龙胆酸   70   10   0.05-0.5   未校正   尿酸   70   5   2.6-7.2   未校正   扑热息痛   240   16   1-2   未校正   龙胆酸   240   12   0.05-0.5   未校正   尿酸   240   8   2.6-7.2   校正   扑热息痛   70   120   1-2   校正   龙胆酸   70   47   0.05-0.5   校正   尿酸   70   33   2.6-7.2   校正   扑热息痛   240   59   1-2   校正   龙胆酸   240   178   0.05-0.5   校正   尿酸   240   29   2.6-7.2 Table 1. Summary of interferent effects using corrected and uncorrected output currents model interferer Glucose concentration (mg/dL) The effect is significant for the concentration of interferents Normal concentration range of interfering substances uncorrected paracetamol 70 11 1-2 uncorrected Gentisic acid 70 10 0.05-0.5 uncorrected uric acid 70 5 2.6-7.2 uncorrected paracetamol 240 16 1-2 uncorrected Gentisic acid 240 12 0.05-0.5 uncorrected uric acid 240 8 2.6-7.2 Correction paracetamol 70 120 1-2 Correction Gentisic acid 70 47 0.05-0.5 Correction uric acid 70 33 2.6-7.2 Correction paracetamol 240 59 1-2 Correction Gentisic acid 240 178 0.05-0.5 Correction uric acid 240 29 2.6-7.2

Claims (4)

1.降低电化学传感器中的干扰的方法,所述方法包括:1. A method of reducing interference in an electrochemical sensor, the method comprising: 测量在第一个工作电极上的第一个电流,所述第一个工作电极被试剂层覆盖;measuring a first current on a first working electrode covered by a reagent layer; 测量在第二个工作电极上的第二个电流,其中所述试剂层部分覆盖所述第二个工作电极,所述第二个工作电极具有覆盖面积与未覆盖面积;和measuring a second current on a second working electrode, wherein the reagent layer partially covers the second working electrode, the second working electrode having a covered area and an uncovered area; and 使用所述第二个工作电极的所述覆盖面积与所述未覆盖面积的比例来计算代表葡萄糖浓度的校正电流值。A corrected current value representative of glucose concentration is calculated using the ratio of the covered area to the uncovered area of the second working electrode. 2.权利要求1的方法,其中所述校正电流值是用以下公式计算的:2. The method of claim 1, wherein said correction current value is calculated with the following formula: GG == WEwe 11 -- {{ (( AA covcov AA uncunc )) Xx (( WEwe 22 -- WEwe 11 )) }} 其中G是校正电流值,WE1是在所述第一个工作电极上的未校正电流密度,WE2是在所述第二个工作电极上的未校正电流密度,Acov是所述第二个工作电极的涂布面积,且Aunc是所述第二个工作电极的未涂布面积。where G is the corrected current value, WE 1 is the uncorrected current density at the first working electrode, WE 2 is the uncorrected current density at the second working electrode, A cov is the second is the coated area of the second working electrode, and A unc is the uncoated area of the second working electrode. 3.降低电化学传感器中的干扰的方法,所述方法包括:3. A method of reducing interference in an electrochemical sensor, said method comprising: 测量在第一个工作电极上的第一个电流,其中试剂层部分覆盖所述第一个工作电极,所述第一个工作电极具有第一个覆盖面积与第一个未覆盖面积;measuring a first current on a first working electrode, wherein the reagent layer partially covers the first working electrode, the first working electrode having a first covered area and a first uncovered area; 测量在第二个工作电极上的第二个电流,其中所述试剂层部分覆盖所述第二个工作电极,所述第二个工作电极具有第二个覆盖面积与第二个未覆盖面积;和measuring a second current on a second working electrode, wherein the reagent layer partially covers the second working electrode, the second working electrode having a second covered area and a second uncovered area; and 使用所述第一个和所述第二个工作电极的所述覆盖面积与所述未覆盖面积的比例来计算代表葡萄糖浓度的校正电流值。A corrected current value representative of glucose concentration is calculated using the ratio of the covered area to the uncovered area of the first and second working electrodes. 4.权利要求3的方法,其中所述校正电流值是用以下公式计算的:4. The method of claim 3, wherein said correction current value is calculated with the following formula: G = WE 1 - { ( f 1 + f 2 f 2 - 1 ) &times; ( WE 2 - WE 1 ) } (公式7c) G = we 1 - { ( f 1 + f 2 f 2 - 1 ) &times; ( we 2 - we 1 ) } (Formula 7c) 其中in f1=Acov1/Aunc1f 1 =A cov1 /A unc1 ; f2=Acov2/Aunc2f 2 =A cov2 /A unc2 ; Aunc1是所述第一个工作电极的未涂布面积; Auncl is the uncoated area of the first working electrode; Aunc2是所述第二个工作电极的未涂布面积;A unc2 is the uncoated area of the second working electrode; Acov1是所述第一个工作电极的涂布面积;A cov1 is the coating area of the first working electrode; Acov2是所述第二个工作电极的涂布面积;A cov2 is the coating area of the second working electrode; G是校正电流值;G is the correction current value; WE1是在所述第一个工作电极上的未校正电流密度,且WE2是在所述第二个工作电极上的未校正电流密度。 WE1 is the uncorrected current density on the first working electrode and WE2 is the uncorrected current density on the second working electrode.
CNB2004800395335A 2003-10-31 2004-10-29 Method for reducing the effect of direct interference current in an electrochemical test strip Expired - Fee Related CN100473983C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51625203P 2003-10-31 2003-10-31
US60/516,252 2003-10-31
US60/558,424 2004-03-31
US60/558,728 2004-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN 200910002047 Division CN101533007B (en) 2003-10-31 2004-10-29 Method of reducing the effect of direct interference current in an electrochemical test strip

Publications (2)

Publication Number Publication Date
CN1902478A true CN1902478A (en) 2007-01-24
CN100473983C CN100473983C (en) 2009-04-01

Family

ID=37657575

Family Applications (8)

Application Number Title Priority Date Filing Date
CN 200480039541 Pending CN1902479A (en) 2003-10-31 2004-10-29 Electrochemical test strip for reducing the effect of direct and mediated interference current
CN 200910007080 Expired - Fee Related CN101493466B (en) 2003-10-31 2004-10-29 Method for reducing interference in electrochemical sensor using two different applied potentials
CN 200480039546 Pending CN1902481A (en) 2003-10-31 2004-10-29 Method of reducing the effect of direct and mediated interference current in an electrochemical test strip
CN200480039527XA Expired - Fee Related CN101163963B (en) 2003-10-31 2004-10-29 A measurer of reducing interferences in an electrochemical sensor using two different applied potentials
CN 200480039544 Pending CN1902480A (en) 2003-10-31 2004-10-29 Electrochemical test strip for reducing the effect of direct interference current
CNB2004800395265A Expired - Fee Related CN100473982C (en) 2003-10-31 2004-10-29 Method for reducing interferences in an electrochemical sensor using two different applied potentials
CN 200910002047 Expired - Fee Related CN101533007B (en) 2003-10-31 2004-10-29 Method of reducing the effect of direct interference current in an electrochemical test strip
CNB2004800395335A Expired - Fee Related CN100473983C (en) 2003-10-31 2004-10-29 Method for reducing the effect of direct interference current in an electrochemical test strip

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN 200480039541 Pending CN1902479A (en) 2003-10-31 2004-10-29 Electrochemical test strip for reducing the effect of direct and mediated interference current
CN 200910007080 Expired - Fee Related CN101493466B (en) 2003-10-31 2004-10-29 Method for reducing interference in electrochemical sensor using two different applied potentials
CN 200480039546 Pending CN1902481A (en) 2003-10-31 2004-10-29 Method of reducing the effect of direct and mediated interference current in an electrochemical test strip
CN200480039527XA Expired - Fee Related CN101163963B (en) 2003-10-31 2004-10-29 A measurer of reducing interferences in an electrochemical sensor using two different applied potentials
CN 200480039544 Pending CN1902480A (en) 2003-10-31 2004-10-29 Electrochemical test strip for reducing the effect of direct interference current
CNB2004800395265A Expired - Fee Related CN100473982C (en) 2003-10-31 2004-10-29 Method for reducing interferences in an electrochemical sensor using two different applied potentials
CN 200910002047 Expired - Fee Related CN101533007B (en) 2003-10-31 2004-10-29 Method of reducing the effect of direct interference current in an electrochemical test strip

Country Status (1)

Country Link
CN (8) CN1902479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535627A (en) * 2014-12-17 2015-04-22 浙江大学 Glucose sensing system
CN107250792A (en) * 2014-12-31 2017-10-13 三伟达保健公司 Glucose test strip with interference correction

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261646B1 (en) * 2008-03-27 2015-07-29 Panasonic Healthcare Holdings Co., Ltd. Measurement device, measurement system, and concentration measurement method
US20100219085A1 (en) * 2009-02-27 2010-09-02 Edwards Lifesciences Corporation Analyte Sensor Offset Normalization
EP2405264B1 (en) * 2009-05-29 2015-09-02 Panasonic Healthcare Holdings Co., Ltd. Biosensor system and method for measuring concentration of analyte
US20110186428A1 (en) * 2010-01-29 2011-08-04 Roche Diagnostics Operations, Inc. Electrode arrangements for biosensors
US8940141B2 (en) * 2010-05-19 2015-01-27 Lifescan Scotland Limited Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
GB2505694B (en) * 2012-09-07 2017-03-22 Lifescan Scotland Ltd Electrochemical-based analytical test strip with bare interferent electrodes
GB2518165B (en) * 2013-09-11 2016-04-27 Cilag Gmbh Int Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer
CN104007150A (en) * 2013-12-04 2014-08-27 西南大学 Conductive polymer-based all-print biological and environmental sensor and making method thereof
CN105203613B (en) * 2014-06-25 2018-03-02 达尔生技股份有限公司 Method for correcting blood sugar level of blood sample
CN204142671U (en) * 2014-09-22 2015-02-04 英科新创(厦门)科技有限公司 Electric pole type blood sugar examination bar
CN104569102B (en) * 2015-02-04 2018-04-06 苏州市玮琪生物科技有限公司 Detect the bio-sensing electrode and method of Blood Trace signal
GB2549281A (en) * 2016-04-11 2017-10-18 Palintest Ltd Electrochemical sensor
JP6778058B2 (en) * 2016-08-31 2020-10-28 シスメックス株式会社 Sensor assembly, test substance monitoring system and test substance monitoring method
US20180217079A1 (en) * 2017-01-31 2018-08-02 Cilag Gmbh International Determining an analyte concentration of a physiological fluid having an interferent
CN107478695B (en) * 2017-07-13 2020-01-07 信阳师范学院 Electrode modified by nano-copper sulfide-multi-walled carbon nanotube composite and its preparation method and application
CN108132284B (en) * 2017-12-26 2019-11-29 三诺生物传感股份有限公司 A kind of test method of electrochemical sensor
CN109164148B (en) * 2018-09-04 2019-04-30 山东省科学院生物研究所 Anti-interference determination method of enzyme electrode biosensor
CN110940713A (en) * 2019-12-31 2020-03-31 郑州信德医疗科技有限公司 Double-sided blood glucose test paper and double-numerical-value display glucometer
CN111387993B (en) * 2020-04-09 2023-07-07 浙江大学 Sensor and detection system for minimally invasive detection of levodopa

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
JPH02501162A (en) * 1987-08-28 1990-04-19 ベツクマン・インダストリアル・コーポレーシヨン Electrochemical cell noise reduction method
DE4136779A1 (en) * 1991-11-08 1993-05-13 Bayer Ag DEVICE FOR SIMULTANEOUS DETECTION OF DIFFERENT GAS COMPONENTS
ZA938555B (en) * 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
CN1097468A (en) * 1993-06-30 1995-01-18 中国科学院武汉病毒研究所 Measure the double-electrode complex enzyme sensor for ditermining of dextrose plus saccharose simultaneously
DE4424355C2 (en) * 1994-07-11 1996-07-18 Fraunhofer Ges Forschung Electrochemical analysis method
US6046051A (en) * 1997-06-27 2000-04-04 Hemosense, Inc. Method and device for measuring blood coagulation or lysis by viscosity changes
GB2337122B (en) * 1998-05-08 2002-11-13 Medisense Inc Test strip
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
CN1432130A (en) * 2000-03-08 2003-07-23 糖尿病诊断公司 Rapid response glucose sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535627A (en) * 2014-12-17 2015-04-22 浙江大学 Glucose sensing system
CN107250792A (en) * 2014-12-31 2017-10-13 三伟达保健公司 Glucose test strip with interference correction

Also Published As

Publication number Publication date
CN100473983C (en) 2009-04-01
CN101493466B (en) 2013-11-06
CN101163963B (en) 2011-05-04
CN1902477A (en) 2007-01-24
CN1902479A (en) 2007-01-24
CN101533007A (en) 2009-09-16
CN1902480A (en) 2007-01-24
CN101163963A (en) 2008-04-16
CN101493466A (en) 2009-07-29
CN101533007B (en) 2013-01-02
CN100473982C (en) 2009-04-01
CN1902481A (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4611313B2 (en) A method to mitigate the effects of direct interference currents in electrochemical test strips
CN100473983C (en) Method for reducing the effect of direct interference current in an electrochemical test strip
US7655119B2 (en) Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials
KR20070022195A (en) Electrochemical test strips to reduce the effects of direct interference currents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090401

Termination date: 20201029