CN1902477A - Method of reducing interferences in an electrochemical sensor using two different applied potentials - Google Patents
Method of reducing interferences in an electrochemical sensor using two different applied potentials Download PDFInfo
- Publication number
- CN1902477A CN1902477A CN 200480039526 CN200480039526A CN1902477A CN 1902477 A CN1902477 A CN 1902477A CN 200480039526 CN200480039526 CN 200480039526 CN 200480039526 A CN200480039526 A CN 200480039526A CN 1902477 A CN1902477 A CN 1902477A
- Authority
- CN
- China
- Prior art keywords
- current
- working electrode
- potential
- glucose
- interfering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及降低分析物的测量中干扰化合物的影响的方法,更具体来说,涉及降低系统中干扰化合物的影响的方法,其中测试条(600)使用两个或更多个工作电极(12,14)。在本发明中,给第一个工作电极(12)施加第一个电位(E1),给第二个工作电极(14)施加具有相同极性但是比第一个电位(E1)大的第二个电位(E2)。
The present invention relates to a method of reducing the effect of interfering compounds in the measurement of an analyte, and more particularly, to a method of reducing the effect of interfering compounds in a system wherein the test strip (600) uses two or more working electrodes (12, 14). In the present invention, a first potential (E1) is applied to the first working electrode (12), and a second potential (E1) having the same polarity but greater than the first potential (E1) is applied to the second working electrode (14). potential (E2).
Description
发明背景Background of the Invention
电化学葡萄糖测试条,例如在得自LifeScan,Inc.的OneTouch®Ultra®全血检验试剂盒中使用的那些电化学葡萄糖测试条是设计用来测量糖尿病患者血样中的葡萄糖浓度。葡萄糖的测量是基于黄素酶—葡萄糖氧化酶对葡萄糖的特异性氧化。在此反应期间,该酶被还原了。通过与介体铁氰化物反应,该酶被再氧化,而在该过程或反应期间,铁氰化物自身被还原。这些反应总结如下。Electrochemical glucose test strips, such as those used in the OneTouch® Ultra® Whole Blood Test Kit from LifeScan, Inc., are designed to measure the concentration of glucose in blood samples from diabetic patients. The measurement of glucose is based on the specific oxidation of glucose by flavin enzyme-glucose oxidase. During this reaction, the enzyme is reduced. By reacting with the mediator ferricyanide, the enzyme is reoxidized, while during this process or reaction ferricyanide itself is reduced. These responses are summarized below.
当使用在两个电极之间施加的电位来进行上述反应时,通过在电极表面的还原介体离子(亚铁氰化物)的电化学再氧化,可产生电流。因此,由于在理想环境中,在上述化学反应期间产生的亚铁氰化物的量与置于两个电极之间的样本中葡萄糖的量成正比,所以产生的电流将与样本的葡萄糖含量成正比。氧化还原介体例如铁氰化物是在氧化还原酶例如葡萄糖氧化酶与电极之间交换电子的化合物。当样本中的葡萄糖浓度增加时,形成的还原介体的量也增加,因此,在由还原介体的再氧化所生成的电流与葡萄糖浓度之间具有直接的关联。特别是,越过电界面的电子转移导致电流的流动(2摩尔电子每摩尔被氧化的葡萄糖)。因此,由于葡萄糖的引入而导致的电流称为葡萄糖电流。When the above reaction is carried out using a potential applied between two electrodes, an electric current can be generated by electrochemical reoxidation of reduced mediator ions (ferrocyanide) at the electrode surface. Therefore, since in an ideal environment the amount of ferrocyanide produced during the above chemical reaction is directly proportional to the amount of glucose in the sample placed between the two electrodes, the current generated will be directly proportional to the glucose content of the sample . Redox mediators such as ferricyanide are compounds that exchange electrons between an oxidoreductase such as glucose oxidase and an electrode. As the concentration of glucose in the sample increases, so does the amount of reduced mediator formed, thus there is a direct correlation between the current generated by the reoxidation of the reduced mediator and the glucose concentration. In particular, electron transfer across the electrical interface results in the flow of electrical current (2 moles of electrons per mole of oxidized glucose). Hence, the current due to the introduction of glucose is called glucose current.
因为知道葡萄糖在血液中的浓度,特别是在糖尿病人的血液中的浓度可能是非常重要的,所以已经开发出了使用上述原理以能够在任何时间从平常人中取样,并且测量葡萄糖浓度的测量仪。通过测量仪来监测产生的葡萄糖电流,并且使用预先设置的算法转化成葡萄糖浓度的读数,所述算法通过简单的数学公式将电流与葡萄糖浓度联系起来。一般情况下,测量仪与一次性条带协同工作,除了酶(葡萄糖氧化酶)和介体(铁氰化物)以外,所述条带包括样本室和至少两个置于样本室内的电极。在使用时,使用者竖起他们的手指或者其它方便的部位来引起流血,并且把血样引入样本室,由此开始上述化学反应。Because it may be very important to know the concentration of glucose in the blood, especially in diabetics, a measurement using the above principle to be able to take a sample from a normal person at any time and measure the glucose concentration has been developed. instrument. The resulting glucose current is monitored by the meter and converted to a reading of glucose concentration using a pre-set algorithm that relates current to glucose concentration through a simple mathematical formula. Typically, the meter works with a disposable strip comprising, in addition to the enzyme (glucose oxidase) and mediator (ferricyanide), a sample chamber and at least two electrodes placed within the sample chamber. In use, the user pricks their finger or other convenient location to induce bleeding and introduces a blood sample into the sample chamber, thereby initiating the chemical reaction described above.
在电化学术语中,测量仪的功能是双重的。首先,其提供极化电压(对于OneTouch®Ultra®,大约是0.4V),该极化电压将电界面极化,并且让电流在碳工作电极表面流动。其次,它测量在阳极(工作电极)与阴极(参比电极)之间的外电路中流动的电流。因此,测量仪可以被视为简单的电化学系统,该电化学系统以双电极模式运转,实际中也可以使用第3个、甚至是第4个电极,来帮助在测量仪中测量葡萄糖和/或进行其它功能。In electrochemical terms, the function of the meter is twofold. First, it provides a polarizing voltage (approximately 0.4V for the OneTouch ® Ultra ® ) that polarizes the electrical interface and allows current to flow across the surface of the carbon working electrode. Second, it measures the current flowing in an external circuit between the anode (working electrode) and cathode (reference electrode). The meter can therefore be viewed as a simple electrochemical system that operates in a two-electrode mode, where in practice a 3rd, or even a 4th electrode can also be used to help measure glucose and/or in the meter or perform other functions.
在大多数情况下,上面给出的公式被认为是对在测试条上进行的化学反应的充分近似,并且测量仪的读数是对血样葡萄糖浓度的足够精确的表示。然而,在一些情况下以及对于一些目的,提高测量的精确度是有利的。例如,在电极上测量的一部分电流是由于样本中存在的其它化学物质或化合物所产生的。当存在这样的另外化学物质或化合物时,它们可称为干扰化合物,并且所导致的另外的电流可称为干扰电流。In most cases, the formula given above is considered to be a sufficient approximation of the chemical reaction taking place on the test strip, and the reading of the meter is a sufficiently accurate representation of the glucose concentration of the blood sample. However, in some cases and for some purposes it is advantageous to increase the accuracy of the measurements. For example, a portion of the current measured at the electrodes is due to other chemicals or compounds present in the sample. When such additional chemicals or compounds are present, they may be referred to as interfering compounds, and the resulting additional current may be referred to as an interfering current.
电位干扰性化学物质(也就是在生理流体例如血液中发现的,在电场存在下可产生干扰电流的化合物)包括抗坏血酸盐、尿酸盐和扑热息痛(TylenolTM或Paracetamol)。在用于测量生理流体中分析物的浓度的电化学测量仪(例如葡萄糖测量仪)中,产生干扰电流的一个机制涉及通过酶(例如葡萄糖氧化酶)的还原,一种或多种干扰化合物的氧化。在这样的测量仪中,产生干扰电流的另一个机制涉及通过介体(例如铁氰化物)的还原,一种或多种干扰化合物的氧化。在这样的测量仪中,产生干扰电流的另一个机制涉及在工作电极一种或多种干扰化合物的氧化。因此,在工作电极测量的总电流是由于分析物被氧化而产生的电流和由于干扰化合物被氧化而产生的电流的叠加。干扰化合物的氧化可以是与酶、介体相互作用的结果或者可以在工作电极直接发生。Potential-disturbing chemicals (ie, compounds found in physiological fluids such as blood that produce disturbing electrical currents in the presence of an electric field) include ascorbate, urate, and paracetamol (Tylenol ™ or Paracetamol). In electrochemical meters (such as glucose meters) used to measure the concentration of analytes in physiological fluids, one mechanism for generating interfering currents involves the reduction of one or more interfering compounds by enzymes (such as glucose oxidase). oxidation. In such meters, another mechanism for generating interfering currents involves oxidation of one or more interfering compounds through reduction of a mediator (eg, ferricyanide). In such meters, another mechanism for generating interfering currents involves oxidation of one or more interfering compounds at the working electrode. Therefore, the total current measured at the working electrode is the superposition of the current due to the oxidation of the analyte and the current due to the oxidation of the interfering compound. Oxidation of interfering compounds can be the result of interactions with enzymes, mediators or can occur directly at the working electrode.
一般情况下,电位干扰化合物可以在电极表面氧化和/或通过氧化还原介体而被氧化。干扰化合物在葡萄糖测量系统中的氧化引起所测量的氧化电流既与葡萄糖有关也与干扰化合物有关。因此,如果干扰化合物的浓度以与葡萄糖相同的效率氧化和/或干扰化合物浓度显著高于葡萄糖浓度,其可以影响测量的葡萄糖浓度。In general, potential-interfering compounds can be oxidized at the electrode surface and/or via redox mediators. Oxidation of the interfering compound in the glucose measuring system causes the measured oxidation current to be related both to glucose and to the interfering compound. Therefore, if the concentration of the interfering compound oxidizes with the same efficiency as glucose and/or the concentration of the interfering compound is significantly higher than the glucose concentration, it can affect the measured glucose concentration.
分析物(例如葡萄糖)与干扰化合物的共氧化在以下情况下尤其成问题:干扰化合物的标准电位(即化合物被氧化时的电位)在大小上与氧化还原介体的标准电位类似,导致由于在工作电极上干扰化合物被氧化而产生的干扰电流占相当的比例。由于在工作电极上干扰化合物的氧化而产生的电流可以称为直接干扰电流。因此,降低直接干扰电流对于分析物浓度测量的影响或将该影响最小化将是有利的。以前降低或消除直接干扰电流的方法包括,设计能够防止干扰化合物到达工作电极,由此降低或消除由被消除的化合物产生的直接干扰电流。Co-oxidation of an analyte (e.g., glucose) with an interfering compound is particularly problematic when the standard potential of the interfering compound (i.e., the potential at which the compound is oxidized) is similar in magnitude to that of the redox mediator, resulting in The interference current generated by the oxidation of interfering compounds on the working electrode accounts for a considerable proportion. The current due to the oxidation of the interfering compound at the working electrode can be referred to as the direct interfering current. Therefore, it would be advantageous to reduce or minimize the effect of direct interfering currents on the measurement of analyte concentration. Previous approaches to reducing or eliminating direct interfering currents have involved designing devices that prevent interfering compounds from reaching the working electrode, thereby reducing or eliminating direct interfering currents produced by the eliminated compounds.
降低产生直接干扰电流的干扰化合物的影响的一个策略是将带负电荷的薄膜放置在工作电极的顶部。作为一个实例,可以将磺化氟代聚合物例如NAFIONTM放置在工作电极上面,以排斥所有带负电荷的化学物质。一般情况下,很多干扰化合物,包括抗坏血酸盐和尿酸盐带有负电荷,因此,当工作电极的表面被带负电荷的薄膜覆盖时,这些干扰化合物被排斥从而不被氧化。然而,由于某些干扰化合物例如扑热息痛不带负电荷,并且从而可以通过带负电荷的薄膜,所以使用带负电荷的薄膜将不能消除直接干扰电流。用带负电荷的薄膜覆盖工作电极的另一个缺点是,常用的氧化还原介体例如铁氰化物带负电荷,并且不能通过所述薄膜来与电极交换电子。在工作电极的上面使用带负电荷的薄膜还有一个缺点是,电位减慢了还原的介体扩散到工作电极上,由此增加了测量时间。在工作电极的上面使用带负电荷的薄膜的再一个缺点是,增加了具有带负电荷薄膜的测试条的生产复杂性和成本。One strategy to reduce the influence of interfering compounds that produce direct interfering currents is to place a negatively charged thin film on top of the working electrode. As an example, a sulfonated fluoropolymer such as NAFION ™ can be placed over the working electrode to repel any negatively charged chemicals. In general, many interfering compounds, including ascorbate and urate, are negatively charged, so when the surface of the working electrode is covered with a negatively charged film, these interfering compounds are repelled from oxidation. However, since some interfering compounds such as paracetamol are not negatively charged and thus can pass through negatively charged membranes, the use of negatively charged membranes will not eliminate the direct interfering currents. Another disadvantage of covering the working electrode with a negatively charged film is that commonly used redox mediators such as ferricyanide are negatively charged and cannot exchange electrons with the electrode through the film. A further disadvantage of using a negatively charged film on top of the working electrode is that the potential slows down the diffusion of the reduced mediator to the working electrode, thereby increasing the measurement time. Yet another disadvantage of using a negatively charged film on top of the working electrode is the increased complexity and cost of producing test strips with negatively charged films.
可用于降低直接干扰电流的另一个策略是在工作电极顶部安放一个尺寸选择薄膜。作为一个实例,可以将100道尔顿尺寸排阻薄膜例如乙酸纤维素薄膜放置在工作电极上,以排除分子量大于100道尔顿的化合物。在这个实施方案中,将氧化还原酶例如葡萄糖氧化酶放置在尺寸排阻薄膜上。在葡萄糖和氧存在下,葡萄糖氧化酶产生过氧化氢,产生的过氧化氢的量与葡萄糖浓度成正比。应当注意,葡萄糖和大部分氧化还原介体的分子量大于100道尔顿,并且因此不能通过尺寸选择薄膜。然而,过氧化氢的分子量为34道尔顿,因此能够通过尺寸选择薄膜。一般情况下,大部分化合物的分子量大于100道尔顿,因此被排阻从而不能在电极表面被氧化。因为某些干扰化合物具有较小的分子量,因此能够通过尺寸选择薄膜,所以使用尺寸选择薄膜将不能消除直接干扰电流。在工作电极上面使用尺寸选择薄膜的另一个缺点,增加了具有尺寸选择薄膜的测试条的生产复杂性和成本。Another strategy that can be used to reduce direct interference currents is to place a size-selective membrane on top of the working electrode. As an example, a 100 Dalton size exclusion membrane, such as a cellulose acetate membrane, can be placed on the working electrode to exclude compounds with molecular weights greater than 100 Daltons. In this embodiment, an oxidoreductase, such as glucose oxidase, is placed on a size exclusion membrane. In the presence of glucose and oxygen, glucose oxidase produces hydrogen peroxide in an amount proportional to the concentration of glucose. It should be noted that glucose and most redox mediators have a molecular weight greater than 100 Daltons and thus cannot select films by size. However, hydrogen peroxide has a molecular weight of 34 Daltons, thus enabling film selection by size. In general, most compounds have a molecular weight greater than 100 Daltons and are therefore excluded from being oxidized on the electrode surface. Because some interfering compounds have small molecular weights and are therefore able to pass through the size-selective membrane, the use of a size-selective membrane will not eliminate the direct interfering current. Another disadvantage of using a size selective membrane over the working electrode increases the complexity and cost of manufacturing test strips with the size selective membrane.
可用于降低直接干扰电流的影响的另一个策略是使用具有低氧化还原电位的氧化还原介体,例如氧化还原电位为约-300mV至+100mV(vs饱和甘汞电极)的氧化还原介体。这使得能够给工作电极施加较低的电位,从而降低了干扰化合物被工作电极氧化的速度。具有较低氧化还原电位的氧化还原介体的实例包括锇联吡啶络合物、二茂铁衍生物和醌衍生物。然而,具有较低氧化还原电位的氧化还原介体经常难以合成,较不稳定以及比较不溶。Another strategy that can be used to reduce the impact of direct interfering currents is to use redox mediators with low redox potentials, eg redox mediators with redox potentials of about -300 mV to +100 mV (vs saturated calomel electrodes). This enables a lower potential to be applied to the working electrode, thereby reducing the rate at which interfering compounds are oxidized by the working electrode. Examples of redox mediators having a lower redox potential include osmium bipyridyl complexes, ferrocene derivatives, and quinone derivatives. However, redox mediators with lower redox potentials are often difficult to synthesize, less stable and less soluble.
可用于降低干扰化合物的影响的另一个策略是,联合使用伪电极与工作电极。然后可将在伪电极测量的电流从在工作电极测量的电流中减去,以补偿干扰化合物的影响。如果伪电极是裸露的(也就是没有被酶或介体覆盖),则在伪电极测量的电流将与直接干扰电流成正比,并且将在伪电极测量的电流从在工作电极测量的电流中减去将降低或消除在工作电极上干扰化合物的直接氧化的影响。如果伪电极用氧化还原介体覆盖,则在伪电极测量的电流将是直接干扰电流与由于干扰化合物将氧化还原介体还原而导致的干扰电流的组合。因此,将在用氧化还原介体覆盖的伪电极测量的电流从在工作电极测量的电流中减去将降低或消除干扰化合物的直接氧化的影响以及在工作电极上由于干扰化合物将氧化还原介体还原而产生的干扰的影响。在某些情况下,伪电极也可以用惰性蛋白或失活的氧化还原酶覆盖,以模拟氧化还原介体和酶对扩散的作用。因为测试条优选具有小的样本室从而使糖尿病患者无需给出大的血样,所以相对于没有使用额外电极来测量分析物(例如葡萄糖)时的样本室体积,包括使得样本室体积增加的额外电极可能是不利的。此外,可能难以使得在伪电极测量的电流与在工作电极测量的干扰电流直接相关。最后,因为可以用与用来覆盖工作电极的材料(例如氧化还原介体和酶)不同的材料(例如氧化还原介体)覆盖伪电极,所以在多个工作电极系统中使用伪电极作为降低或消除干扰化合物影响的方法的测试条可能会增加测试条的生产成本和复杂性。Another strategy that can be used to reduce the effect of interfering compounds is to use a dummy electrode in combination with a working electrode. The current measured at the dummy electrode can then be subtracted from the current measured at the working electrode to compensate for the effect of interfering compounds. If the dummy electrode is bare (that is, not covered by enzyme or mediator), the current measured at the dummy electrode will be proportional to the direct interfering current, and the current measured at the dummy electrode will be subtracted from the current measured at the working electrode. Going will reduce or eliminate the effect of direct oxidation of interfering compounds on the working electrode. If the dummy electrode is covered with a redox mediator, the current measured at the dummy electrode will be a combination of the direct interfering current and the interfering current due to the reduction of the redox mediator by the interfering compound. Therefore, subtracting the current measured at the dummy electrode covered with a redox mediator from the current measured at the working electrode will reduce or eliminate the effect of direct oxidation of the interfering compound and the reduction of the redox mediator due to the interfering compound at the working electrode. The effect of interference caused by reduction. In some cases, pseudoelectrodes can also be covered with inert proteins or inactivated redox enzymes to mimic the role of redox mediators and enzymes on diffusion. Since the test strip preferably has a small sample chamber so that the diabetic does not need to give a large blood sample, the inclusion of the additional electrodes results in an increase in the sample chamber volume relative to the sample chamber volume if no additional electrodes were used to measure the analyte (eg glucose) May be disadvantageous. Furthermore, it may be difficult to directly correlate the current measured at the dummy electrode with the interfering current measured at the working electrode. Finally, the use of dummy electrodes in multiple working electrode systems as a means of lowering or Test strips for methods that eliminate the effects of interfering compounds may increase the cost and complexity of test strip production.
使用多个工作电极来测量分析物,例如在OneTouch®Ultra®测量系统中使用的系统的一些测试条设计是有利,这是因为使用了两个工作电极。在这样的系统中,开发出降低或消除干扰化合物的影响的方法将因此是有利的。更特别地,开发出在不使用伪电极、中间薄膜或具有低氧化还原电位的氧化还原介体的情况下降低或消除干扰化合物的影响的方法将是有利的。Using multiple working electrodes to measure an analyte, some test strip designs for systems such as those used in the OneTouch ® Ultra ® measurement system is advantageous because two working electrodes are used. In such systems, it would therefore be advantageous to develop methods to reduce or eliminate the effects of interfering compounds. More particularly, it would be advantageous to develop methods to reduce or eliminate the effect of interfering compounds without the use of dummy electrodes, intermediate films, or redox mediators with low redox potentials.
发明概述Invention Overview
本发明涉及在分析物的测量中降低干扰化合物的影响的方法,更具体来说,涉及在其中测试条使用两个或多个工作电极的系统中降低干扰化合物的影响的方法。在本发明的一个实施方案中,给第一个工作电极施加第一个电位,给第二个工作电极施加第二个电位,所述第二个电位的极性与第一个电位相同,但是其大小比第一个电位大。对于使用还原电流来测量分析物浓度的实施方案,第二个电位的大小也可能比第一个电位小。在一个实施方案中,第一个工作电极和第二个工作电极可以用分析物特异性的酶试剂和氧化还原介体覆盖。选择施加给第一个工作电极的第一个电位,使得其足以以扩散限制方式将被还原的氧化还原介体氧化,而选择第二个电位使其大小(即绝对值)比第一个电位大,从而使得在第二个工作电极上发生效率更高的氧化。在本发明的该实施方案中,在第一个工作电极测量的电流包括分析物电流和干扰化合物电流,而在第二个工作单位测量的电流包括分析物超电位电流和干扰化合物超电位电流。应当注意,分析物电流和分析物超电位电流二者是指与分析物浓度相对应的电流,并且该电流是还原介体被氧化的结果。在本发明的一个实施方案中,在第一个工作电极的电流与在第二个工作电极的电流之间的关系可以通过以下公式定义,The present invention relates to methods of reducing the effect of interfering compounds in the measurement of an analyte, and more particularly, to methods of reducing the effect of interfering compounds in systems in which test strips use two or more working electrodes. In one embodiment of the invention, a first potential is applied to the first working electrode and a second potential is applied to the second working electrode, said second potential having the same polarity as the first potential, but Its magnitude is larger than the first potential. For embodiments where reduction current is used to measure analyte concentration, the second potential may also be smaller in magnitude than the first potential. In one embodiment, the first working electrode and the second working electrode can be covered with an analyte-specific enzymatic reagent and a redox mediator. The first potential applied to the first working electrode is chosen such that it is sufficient to oxidize the reduced redox mediator in a diffusion-limited manner, while the second potential is chosen to be larger (i.e., in absolute value) than the first potential large, allowing more efficient oxidation to occur at the second working electrode. In this embodiment of the invention, the current measured at the first working electrode includes the analyte current and the interfering compound current, and the current measured at the second working unit includes the analyte overpotential current and the interfering compound overpotential current. It should be noted that both the analyte current and the analyte overpotential current refer to the current corresponding to the concentration of the analyte and which is the result of oxidation of the reduced mediator. In one embodiment of the invention, the relationship between the current at the first working electrode and the current at the second working electrode can be defined by the following formula,
其中A1是在第一个工作电极的分析物电流,W1是在第一个工作电极测量的电流,W2是在第二个工作电极测量的电流,X是分析物依赖性电压效应因子,且Y是干扰化合物依赖性电压效应因子。在本发明方法中使用上述公式,能够降低由于存在干扰化合物而带来的氧化电流的影响,以及计算更能代表测试的样本中分析物浓度的校正电流值。where A1 is the analyte current at the first working electrode, W1 is the current measured at the first working electrode, W2 is the current measured at the second working electrode, and X is the analyte-dependent voltage effect factor , and Y is the interfering compound-dependent voltage effect factor. Using the above formula in the method of the present invention can reduce the influence of the oxidation current caused by the presence of interfering compounds, and calculate a corrected current value that is more representative of the concentration of the analyte in the tested sample.
在本发明的一个实施方案中,放置在测试条上的样本中的葡萄糖浓度可以如下所述进行计算:将样本放置在测试条上,所述测试条具有第一个工作电极和第二个工作电极以及参比电极,至少第一个工作电极和第二个工作电极被化合物(例如酶和氧化还原介体)覆盖,当在第一个工作电极与参比电极之间以及第二个工作电极与参比电极之间施加电位时,所述化合物适于促进葡萄糖的氧化以及电子从氧化的葡萄糖转移到第一个工作电极和第二个工作电极上。根据本发明,在第一个工作电极与参比电极之间施加第一个电位,选择第一个电位的大小,使得能够足以保证由于样本中葡萄糖的氧化而产生的电流的大小仅受到除施加电压以外的因素(例如扩散)的限制。根据本发明,在第二个工作电极与参比电极之间施加第二个电位,第二个电位的大小比第一个电位大,并且在本发明的一个实施方案中,选择第二个电位以增加在第二个工作电极上干扰化合物的氧化。在本发明的另一个实施方案中,可使用以下公式来降低由于干扰化合物的存在而产生的氧化电流对于用来计算样本中葡萄糖浓度的电流的影响。特别是,可使用计算的电流A1G来推导出葡萄糖浓度,其中In one embodiment of the invention, the glucose concentration in a sample placed on a test strip can be calculated as follows: The sample is placed on a test strip having a first working electrode and a second working electrode. Electrodes and reference electrodes, at least the first working electrode and the second working electrode are covered with compounds (such as enzymes and redox mediators), when between the first working electrode and the reference electrode and the second working electrode The compound is adapted to promote the oxidation of glucose and the transfer of electrons from oxidized glucose to the first working electrode and the second working electrode when a potential is applied between the reference electrode. According to the present invention, a first potential is applied between the first working electrode and the reference electrode, the size of the first potential is selected so that it is sufficient to ensure that the magnitude of the current due to the oxidation of glucose in the sample is only affected by the applied Limitations by factors other than voltage, such as diffusion. According to the invention, a second potential is applied between the second working electrode and the reference electrode, the magnitude of the second potential is greater than the first potential, and in one embodiment of the invention, the second potential is selected to increase the oxidation of interfering compounds at the second working electrode. In another embodiment of the present invention, the following formula can be used to reduce the effect of the oxidation current due to the presence of interfering compounds on the current used to calculate the glucose concentration in the sample. In particular, the glucose concentration can be derived using the calculated current A 1G , where
其中A1G是葡萄糖电流,W1是在第一个工作电极上测量的电流,W2是在第二个工作电极上测量的电流,XG是葡萄糖依赖性电压效应因子,且Y是干扰化合物依赖性电压效应因子。where A1G is the glucose current, W1 is the current measured at the first working electrode, W2 is the current measured at the second working electrode, XG is the glucose-dependent voltage effect factor, and Y is the interfering compound Dependent voltage effect factor.
附图简述Brief description of attached drawings
本发明的新特征尤其在权利要求书中给出。通过下面给出示例性实施方案的详细描述,可以更好地了解本发明的特征和优点,其中使用了本发明的原理以及附图:The novel features of the invention are given especially in the claims. A better understanding of the features and advantages of the present invention may be obtained from the following detailed description of exemplary embodiments, using the principles of the invention and the accompanying drawings:
图1是用于本发明的测试条实施方案的部件分解透视图。Figure 1 is an exploded perspective view of an embodiment of a test strip useful in the present invention.
图2是用于本发明的测量仪和测试条的图解图。Figure 2 is a diagrammatic view of the meter and test strip used in the present invention.
图3是表明施加的电压与测量的电流之间的依赖性的流体动力伏安图。Figure 3 is a hydrodynamic voltammogram showing the dependence between applied voltage and measured current.
发明详述 Invention Details
虽然本发明特别适于测量血液中的葡萄糖浓度,但是对于本领域技术人员显而易见的是,本发明中描述的方法可适于提高用于生理流体中分析物的电化学测量的其它系统的选择性。可适于使用本发明方法来提高选择性的系统的实例包括用于测量生理流体中乳酸盐、酒精、胆固醇、氨基酸、胆碱和果糖胺的浓度的电化学传感器。可含有这样的分析物的生理流体的实例包括血液、血浆、血清、尿和间隙液。应当进一步理解,虽然本发明方法是在其中所测量的电流是通过氧化而产生的电化学系统中描述的,但是本发明同样适用于其中所测量的电流是通过还原而产生的系统。While the present invention is particularly suited for measuring glucose concentrations in blood, it will be apparent to those skilled in the art that the methods described in this invention may be adapted to improve the selectivity of other systems for electrochemical measurement of analytes in physiological fluids . Examples of systems that may be adapted to enhance selectivity using the methods of the present invention include electrochemical sensors for measuring the concentrations of lactate, alcohol, cholesterol, amino acids, choline, and fructosamine in physiological fluids. Examples of physiological fluids that may contain such analytes include blood, plasma, serum, urine, and interstitial fluid. It should be further understood that although the method of the present invention is described in the context of an electrochemical system in which the measured current is generated by oxidation, the invention is equally applicable to systems in which the measured current is generated by reduction.
本发明涉及提高电化学测量系统的选择性的方法,所述方法特别适用于血糖测量系统。更具体来说,本发明涉及通过部分或完全校正直接干扰电流的影响来提高血糖测量系统的选择性的方法。在这样的系统中,选择性是该系统精确地测量生理流体样本中葡萄糖浓度的能力,所述生理流体包括一种或多种能产生干扰电流的化合物。因此,选择性的提高会降低由于存在干扰化合物(即氧化以产生干扰电流的除葡萄糖以外的化合物)而在工作电极产生的电流,并且使得测量的电流更能代表葡萄糖浓度。特别是,测量的电流可以是在生理流体中通常发现的干扰化合物的氧化的功能,所述干扰化合物是例如扑热息痛(TylenolTM或Paracetamol)、抗坏血酸、胆红素、多巴胺、龙胆酸、谷胱甘肽、左旋多巴、甲基多巴、妥拉磺脲、甲苯磺丁脲和尿酸。这样的干扰化合物可以通过例如与氧化还原介体进行化学反应而被氧化,或者通过在电极表面上氧化而被氧化。The invention relates to a method of increasing the selectivity of an electrochemical measurement system, which method is particularly suitable for blood glucose measurement systems. More specifically, the present invention relates to a method of improving the selectivity of a blood glucose measurement system by partially or completely correcting for the effects of directly interfering currents. In such systems, selectivity is the ability of the system to accurately measure the concentration of glucose in a sample of physiological fluid that includes one or more compounds that generate interfering currents. Thus, increased selectivity reduces the current generated at the working electrode due to the presence of interfering compounds (ie, compounds other than glucose that oxidize to produce interfering currents) and makes the measured current more representative of the glucose concentration. In particular, the measured current may be a function of the oxidation of interfering compounds commonly found in physiological fluids such as acetaminophen (Tylenol ™ or Paracetamol), ascorbic acid, bilirubin, dopamine, gentisic acid, glutathione Glycine, Levodopa, Methyldopa, Tolazamide, Tolbutamide, and Uric Acid. Such interfering compounds can be oxidized, for example by chemical reaction with redox mediators, or by oxidation on the electrode surface.
在完全选择性的系统中,将没有通过任何干扰化合物产生的氧化电流,并且全部氧化电流将是通过葡萄糖氧化而产生的。然而,如果干扰化合物的氧化以及所产生的氧化电流不能避免,本发明描述了消除干扰化合物的某些或全部影响的方法,这是通过定量确定由干扰化合物产生的氧化电流占全部氧化电流的比例,并且将该电流量从全部氧化电流中减去来实现的。特别是,在本发明方法中,使用包括第一个工作电极和第二个工作电极的测试条,施加两个不同电位,并且测量在每个工作电极上产生的氧化电流来估计葡萄糖和干扰化合物各自所占的氧化电流比例。In a fully selective system, there would be no oxidation current generated by any interfering compound, and the entire oxidation current would be generated by oxidation of glucose. However, if the oxidation of the interfering compound and the resulting oxidation current cannot be avoided, the present invention describes methods of eliminating some or all of the effects of the interfering compound by quantitatively determining the proportion of the oxidation current generated by the interfering compound to the total oxidation current , and this current is subtracted from the total oxidation current. In particular, in the method of the invention, glucose and interfering compounds are estimated using a test strip comprising a first working electrode and a second working electrode, applying two different potentials, and measuring the oxidation current generated at each working electrode. The respective proportions of the oxidation current.
在本发明方法的一个实施方案中,所使用的测试条包括样本室,所述样本室包含第一个工作电极、第二个工作电极和参比电极。第一个工作电极、第二个工作电极和参比电极被葡萄糖氧化酶(酶)和铁氰化物(氧化还原介体)覆盖。当把血样(生理流体)被放置在样本室中时,葡萄糖氧化酶被血样中的葡萄糖还原,产生葡糖酸。然后通过铁氰化物还原为亚铁氰化物,葡糖酸被氧化,产生了其浓度与葡萄糖浓度成正比的还原的氧化还原介体。可适用于本发明方法的测试条的实例是由LifeScan,Inc.of Milpitas,California销售的OneTouch®Ultra®测试条。其它测试条描述在国际公开WO 01/67099A1和WO01/73124A2中。In one embodiment of the method of the invention, the test strip used comprises a sample chamber comprising a first working electrode, a second working electrode and a reference electrode. The first working electrode, the second working electrode and the reference electrode are covered with glucose oxidase (enzyme) and ferricyanide (redox mediator). When a blood sample (physiological fluid) is placed in the sample chamber, glucose oxidase is reduced by glucose in the blood sample to produce gluconic acid. Gluconic acid is then oxidized by reduction of ferricyanide to ferrocyanide, producing a reduced redox mediator whose concentration is proportional to the glucose concentration. An example of a test strip that may be suitable for use in the methods of the invention is the OneTouch® Ultra® test strip sold by LifeScan, Inc. of Milpitas, California. Other test strips are described in International Publications WO 01/67099A1 and WO 01/73124A2.
在本发明方法的一个实施方案中,给第一个工作电极施加第一个电位,给第二个工作电极施加第二个电位。在该实施方案中,选择第一个电位的大小,使得葡萄糖电流反应对于施加的电位相对不灵敏,从而在第一个工作电极上的葡萄糖电流大小受扩散到第一个工作电极上的还原的氧化还原介体的量的限制。应当注意,在工作电极上葡萄糖不是被直接氧化,而是通过使用氧化还原酶和氧化还原介体被间接氧化。在本发明的说明书中,葡萄糖电流是指与葡萄糖浓度相关的还原的氧化还原介体的氧化。在本发明的实施方案中,当铁氰化物/亚铁氰化物是氧化还原介体,并且碳是工作电极时,第一个电位可以为约0毫伏-约500毫伏,更优选为约385毫伏-约415毫伏,甚至更优选为约395-405mV。给第二个工作电极施加第二个电位,使得第二个电位大于第一个电位。其中所施加的电位大于氧化葡萄糖所需的电位。在本发明的一个实施方案中,当铁氰化物/亚铁氰化物是氧化还原介体,并且碳是工作电极时,第二个电位可以为约50毫伏-约1000毫伏,更优选为约420毫伏-约1000毫伏,甚至更优选为约395-405mV。In one embodiment of the method of the invention, a first potential is applied to the first working electrode and a second potential is applied to the second working electrode. In this embodiment, the magnitude of the first potential is chosen such that the glucose current response is relatively insensitive to the applied potential such that the magnitude of the glucose current at the first working electrode is determined by the reduced Limitation of the amount of redox mediators. It should be noted that glucose was not directly oxidized at the working electrode, but was indirectly oxidized by using redox enzymes and redox mediators. In the context of the present invention, glucose current refers to the oxidation of reduced redox mediators in relation to glucose concentration. In embodiments of the invention, when ferricyanide/ferrocyanide is the redox mediator and carbon is the working electrode, the first potential can be from about 0 millivolts to about 500 millivolts, more preferably about 385 millivolts to about 415 millivolts, even more preferably about 395-405 mV. Apply a second potential to the second working electrode such that the second potential is greater than the first potential. Wherein the applied potential is greater than that required to oxidize glucose. In one embodiment of the invention, when ferricyanide/ferrocyanide is the redox mediator and carbon is the working electrode, the second potential can be from about 50 millivolts to about 1000 millivolts, more preferably From about 420 mV to about 1000 mV, even more preferably from about 395-405 mV.
因为随着电位的增加葡萄糖电流不增加或者仅最小程度地增加,所以在第二个工作电极上的葡萄糖电流应当与在第一个工作电极上的葡萄糖电流基本上相等,即使在第二个工作电极上的电位大于在第一个工作电极上的电位。因此,在第二个工作电极上测量的任何附加的电流可归因于干扰化合物的氧化。换句话说,在第二个工作电极上的较高电位应当引起在第二个工作电极上测量的葡萄糖超电位电流在大小上等于或基本上等于在第一个工作电极上的葡萄糖电流,因为第一个和电位和第二个电位是在限制的葡萄糖电流范围中,该范围的葡萄糖电流对于施加电位的改变不敏感。然而,在实际中,其它参数可能会影响测量的电流,例如,当给第二个工作电极施加较高的电位时,作为IR位降或电容影响的结果,在第二个工作电极上的总电流经常会稍微增加。当系统中存在IR位降(既未补偿的电阻)时,较高的施加电位引起测量的电流增加。IR位降的实例可以是第一个工作电极、第二个工作电极、参比电极、工作电极与参比电极之间的生理流体的标称电阻。此外,施加较高的电位导致形成较大的离子双层,该离子双层是在电极/液体界面形成的,增加在第一个工作电极或第二个工作电极上的离子电容和所形成的电流。Since the glucose current does not increase or only minimally increases with increasing potential, the glucose current at the second working electrode should be substantially equal to the glucose current at the first working electrode, even at the second working electrode. The potential on the electrode is greater than the potential on the first working electrode. Therefore, any additional current measured at the second working electrode can be attributed to the oxidation of interfering compounds. In other words, the higher potential on the second working electrode should cause the glucose overpotential current measured on the second working electrode to be equal or substantially equal in magnitude to the glucose current on the first working electrode because The first sum potential and the second potential are in the restricted glucose current range, which is insensitive to changes in the applied potential. In practice, however, other parameters may affect the measured current, for example, when a higher potential is applied to the second working electrode, the total The current will often increase slightly. When there is an IR drop (ie uncompensated resistance) in the system, a higher applied potential causes an increase in the measured current. Examples of IR drop can be the first working electrode, the second working electrode, the reference electrode, the nominal resistance of the physiological fluid between the working electrode and the reference electrode. In addition, applying a higher potential results in the formation of a larger ionic double layer that forms at the electrode/liquid interface, increasing the ionic capacitance at either the first working electrode or the second working electrode and the resulting current.
为了确定在第一个工作电极上测量的葡萄糖电流与在第二个工作电极上测量的葡萄糖电流之间的实际关系,必须开发出合适的公式。应当注意,在第二个工作电极上的葡萄糖电流也可以称为葡萄糖超电位电流。葡萄糖电流与葡萄糖超电位电流之间的正比关系可以通过以下公式来描述。In order to determine the actual relationship between the glucose current measured at the first working electrode and the glucose current measured at the second working electrode, a suitable formula must be developed. It should be noted that the glucose current at the second working electrode may also be referred to as the glucose overpotential current. The proportional relationship between the glucose current and the glucose overpotential current can be described by the following formula.
XG×A1G=A2G (公式1)X G ×A 1G =A 2G (Formula 1)
其中XG是葡萄糖依赖性电压效应因子,A1G是在第一个工作电极上的葡萄糖电流,A2G是在第二个工作电极上的葡萄糖电流。where X G is the glucose-dependent voltage effect factor, A 1G is the glucose current at the first working electrode, and A 2G is the glucose current at the second working electrode.
在本发明的一个实施方案中,当铁氰化物/亚铁氰化物是氧化还原介体,并且碳是工作电极时,对于葡萄糖,电压效应因子可预计为约0.95至约1.1。在本发明的该实施方案中,较高的电位对于葡萄糖氧化电流没有显著影响,因为与工作电极之间,氧化还原介体(亚铁氰化物)具有快速的电子转移动力学和可逆电子转移特征。因为在一定点之后随着电位的增加葡萄糖电流不增加,所以可以说葡萄糖电流是饱和的或者在扩散限制的情况中。In one embodiment of the invention, when ferricyanide/ferrocyanide is the redox mediator and carbon is the working electrode, the voltage effect factor can be expected to be from about 0.95 to about 1.1 for glucose. In this embodiment of the invention, the higher potential has no significant effect on the glucose oxidation current because the redox mediator (ferrocyanide) has fast electron transfer kinetics and reversible electron transfer characteristics with the working electrode . Since the glucose current does not increase with increasing potential after a certain point, it can be said that the glucose current is saturated or in a diffusion-limited situation.
在上述本发明的实施方案中,葡萄糖是通过在工作电极上氧化亚铁氰化物而间接测量的,并且亚铁氰化物浓度与葡萄糖浓度成正比。对于具体的电化学化合物,标准电位(E°)值是该化合物与其它化合物交换电子的能力的度量标准。在本发明方法中,选择在第一个工作电极上的电位,使其大于氧化还原介体的标准电位(E°)。因为选择第一个电位,使去足够大于氧化还原对的E°值,所以随着施加电位的增加,氧化速度不显著增加。因此,在第二个工作电极上施加较大的电位将不会增加在第二个工作电极上的氧化,并且在较高电位的电极上测量的任何增加的电流必须是由于其它因素例如干扰化合物的氧化。In the embodiments of the invention described above, glucose is measured indirectly by oxidation of ferrocyanide at the working electrode, and the concentration of ferrocyanide is directly proportional to the concentration of glucose. For a particular electrochemical compound, the standard potential (E°) value is a measure of the compound's ability to exchange electrons with other compounds. In the method of the invention, the potential at the first working electrode is chosen such that it is greater than the standard potential (E°) of the redox mediator. Because the first potential is chosen such that it is sufficiently larger than the E° value of the redox pair, the oxidation rate does not increase significantly with increasing applied potential. Therefore, applying a larger potential at the second working electrode will not increase oxidation at the second working electrode, and any increased current measured at the higher potential electrode must be due to other factors such as interfering compounds Oxidation.
图3是表明施加的电压与测量的电流之间的依赖性的流体动力伏安图,其中铁氰化物/亚铁氰化物是氧化还原介体,并且碳是工作电极。在该图上的每一个数据点代表至少一个实验,其中电流是在工作电极与参比电极之间施加电压后5秒钟测量的。图3表明,在约400mV,电流形成了平台区域的开始,因为该施加的电压足够大于亚铁氰化物的E°值。因此,如图3所示,在电位达到约400mV时,葡萄糖电流变得饱和,这是因为亚铁氰化物的氧化是扩散限制的(亚铁氰化物向工作电极的扩散限制了测量的电流的大小,并且不受亚铁氰化物与电极之间的电子转移速度的限制)。Figure 3 is a hydrodynamic voltammogram showing the dependence between applied voltage and measured current, where ferricyanide/ferrocyanide is the redox mediator and carbon is the working electrode. Each data point on the graph represents at least one experiment in which the current was measured 5 seconds after the voltage was applied between the working and reference electrodes. Figure 3 shows that at about 400 mV, the current forms the onset of a plateau region because the applied voltage is sufficiently greater than the E° value of ferrocyanide. Therefore, as shown in Figure 3, the glucose current becomes saturated when the potential reaches about 400 mV, because the oxidation of ferrocyanide is diffusion-limited (diffusion of ferrocyanide to the working electrode limits the measured current size, and is not limited by the electron transfer rate between the ferrocyanide and the electrode).
通常,通过干扰化合物的氧化而产生的电流不会因为施加电压的增加而饱和,并且与通过亚铁氰化物的氧化而产生的电流相比(亚铁氰化物已经通过葡萄糖与酶以及酶与亚铁氰化物的相互作用而产生),表现出强很多的对施加电位的依赖性。干扰化合物通常具有比氧化还原介体(即亚铁氰化物)慢的电子转移动力学。这种差别的原因是以下事实,大部分干扰化合物经历内球电子转移途径,而亚铁氰化物经历更快的外球电子转移途径。典型的内球电子转移途径在转移电子之前需要发生化学反应,例如氢化物转移。与之不同,外球电子转移途径在转移电子之前不需要化学反应。因此,内球电子转移速度通常比外球电子转移慢,因为他们需要附加的化学反应步骤。将抗坏血酸氧化成脱氢抗坏血酸是内球氧化的一个实例,其需要释放两个氢化物部分。铁氰化物氧化成亚铁氰化物是外球电子转移的一个实例。因此,当在较高电位测试时,由干扰化合物产生的电流通常会增加。In general, the current generated by the oxidation of interfering compounds does not saturate with an increase in the applied voltage, and compared to the current generated by the oxidation of ferrocyanide (ferrocyanide has passed through glucose and enzyme and enzyme and ferrous produced by the interaction of ferricyanide), showing a much stronger dependence on the applied potential. Interfering compounds generally have slower electron transfer kinetics than redox mediators (ie, ferrocyanides). The reason for this difference is the fact that most interfering compounds undergo the inner-sphere electron transfer route, whereas ferrocyanides undergo the faster outer-sphere electron transfer route. Typical inner-sphere electron transfer pathways require chemical reactions, such as hydride transfer, to occur before transferring electrons. In contrast, the exosphere electron transfer pathway does not require chemical reactions before transferring electrons. Therefore, inner-sphere electron transfers are generally slower than outer-sphere electron transfers because they require additional chemical reaction steps. Oxidation of ascorbic acid to dehydroascorbic acid is an example of endosphere oxidation, which requires the release of two hydride moieties. The oxidation of ferricyanide to ferrocyanide is an example of outer-sphere electron transfer. Therefore, the current generated by interfering compounds generally increases when tested at higher potentials.
在第一个工作电极上的干扰化合物电流与在第二个工作电极上的干扰化合物超电位电流之间的关系可通过以下公式来描述,The relationship between the interfering compound current at the first working electrode and the interfering compound overpotential current at the second working electrode can be described by the following equation,
Y×I1=I2 (公式2)Y×I 1 =I 2 (Formula 2)
其中Y是干扰化合物依赖性电压效应因子,I1是干扰化合物电流,且I2是干扰化合物超电位电流。因为干扰化合物依赖性电压效应因子Y依赖于多种因素,包括具体的干扰化合物以及工作电极所有的材料,所以对于具体的系统、测试条、分析物和干扰化合物,具体干扰化合物依赖性电压效应因子的计算可能需要实验来优化对于这些标准的电压效应因子。或者,在一些条件下,可以通过数学方法来推导或描述合适的电压效应因子。where Y is the interfering compound-dependent voltage effect factor, I1 is the interfering compound current, and I2 is the interfering compound overpotential current. Because the interfering compound-dependent voltage effect factor Y depends on many factors, including the specific interfering compound and the material of the working electrode, for a specific system, test strip, analyte, and interfering compound, the specific interfering compound-dependent voltage effect factor The calculations may require experiments to optimize the voltage effect factors for these standards. Alternatively, under some conditions, an appropriate voltage effect factor can be derived or described mathematically.
在其中铁氰化物/亚铁氰化物是氧化还原介体,并且碳是工作电极的一个本发明实施方案中,干扰化合物依赖性电压效应因子Y可以使用关于I1和I2的Tafel公式来用数学手段描述,In an embodiment of the invention where ferricyanide/ferrocyanide is the redox mediator and carbon is the working electrode, the interfering compound-dependent voltage effect factor Y can be calculated using Tafel's formula for I1 and I2 mathematical means to describe,
其中η1=E1-E°,η2=E2-E°,b′取决于具体电活性干扰化合物的常数,E1是第一个电位,且E2是第二个电位。E°的值(具体干扰化合物的标准电位)是不重要的,因为在Δη的计算中其被抵消了。可以将公式2、2a、2b合起来,并且重排,得到以下公式,where η 1 =E 1 -E°, η 2 =E 2 -E°, b' is a constant depending on the specific electroactivity interfering compound, E 1 is the first potential, and E 2 is the second potential. The value of E° (the standard potential of the particular interfering compound) is not important since it is canceled out in the calculation of Δη.
其中Δη=E1-E2。公式2c提供了描述Δη(即第一个电位与第二个电位之间的差值)与干扰化合物依赖性电压效应因子Y之间的关系的数学关系。在本发明的一个实施方案中,Y可以为约1-约100,更优选为约1-10。在本发明的一个实施方案中,对于具体干扰化合物或干扰化合物的组合,干扰化合物依赖性电压效应因子Y可以通过实验确定。应当注意,对于干扰化合物,干扰化合物依赖性电压效应因子Y通常大于葡萄糖的电压效应因子XG。如下面的章节所述,a)干扰化合物电流I1与干扰化合物超电位电流I2之间的数学关系;以及b)葡萄糖电流A1G与葡萄糖超电位电流A2G之间的数学关系使得能够提出葡萄糖算法,该算法降低了干扰化合物对于葡萄糖测量的影响。where Δη=E 1 -E 2 . Equation 2c provides a mathematical relationship describing the relationship between Δη (ie, the difference between the first potential and the second potential) and the interfering compound-dependent voltage effect factor Y. In one embodiment of the present invention, Y may range from about 1 to about 100, more preferably from about 1-10. In one embodiment of the invention, for a particular interfering compound or combination of interfering compounds, the interfering compound-dependent voltage effect factor Y can be determined experimentally. It should be noted that for interfering compounds, the interfering compound-dependent voltage response factor Y is generally greater than the voltage response factor X G for glucose. As described in the following sections, a) the mathematical relationship between the interfering compound current I 1 and the interfering compound overpotential current I 2 ; and b) the mathematical relationship between the glucose current A 1G and the glucose overpotential current A 2G enables to propose A glucose algorithm that reduces the effect of interfering compounds on glucose measurements.
在本发明的一个实施方案中,开发出算法来计算不受干扰物影响的校正葡萄糖电流(即A1G和A2G)。把样本加到测试条上后,给第一个工作电极施加第一个电位,给第二个工作电极施加第二个电位。在第一个工作电极,测量第一个电流,其可通过以下公式来描述,In one embodiment of the invention, an algorithm was developed to calculate corrected glucose currents (ie A 1G and A 2G ) that are not affected by interferents. After the sample is applied to the test strip, a first potential is applied to the first working electrode and a second potential is applied to the second working electrode. At the first working electrode, the first current is measured, which can be described by the following formula,
W1=A1G+I1 (公式3)W 1 =A 1G +I 1 (Formula 3)
其中W1是在第一个工作电极上的第一个电流。换句话说,第一个电流包括葡萄糖电流A1G与干扰化合物电流I1的叠加。更具体来说,干扰化合物电流可以是上面描述过的直接干扰电流。在第二个工作电极,测量在第二个电位或超电位的第二个电流,其可通过以下公式来描述,where W1 is the first current at the first working electrode. In other words, the first current consists of the superposition of the glucose current A 1G and the interfering compound current I 1 . More specifically, the interfering compound current may be the direct interfering current described above. At the second working electrode, measure the second current at the second potential or superpotential, which can be described by the following formula,
W2=A2G+I2 (公式4)W 2 =A 2G +I 2 (Formula 4)
其中W2是在第二个工作电极上的第二个电流,A2G是在第二个电位测量的葡萄糖超电位电流,I2是在第二个电位测量的干扰化合物超电位电流。更具体来说,干扰化合物超电位电流可以是上面描述过的直接干扰化合物电流。使用包括4个未知量(A1G、A2G、I1和I2)的上面描述的4个公式(公式1-4),能够计算不受干扰化合物影响的校正葡萄糖电流公式。where W2 is the second current at the second working electrode, A2G is the glucose overpotential current measured at the second potential, and I2 is the interfering compound overpotential current measured at the second potential. More specifically, the interfering compound overpotential current may be the direct interfering compound current described above. Using the 4 equations described above (Equations 1-4) including the 4 unknowns (A 1G , A 2G , I 1 and I 2 ), a corrected glucose current equation unaffected by interfering compounds can be calculated.
作为推导中的第一个步骤,可以将来自公式1的A2G和来自公式2的I2替代到公式4中,得到以下公式5。As a first step in the derivation, A2G from
W2=XGA1G+YI1 (公式5)W 2 =X G A 1G +YI 1 (Formula 5)
接下来,把公式3乘以干扰化合物的干扰化合物依赖性电压效应因子Y,得到公式6。Next, Equation 3 is multiplied by the interfering compound-dependent voltage effect factor Y for the interfering compound to obtain
YW1=YA1G+TI1 (公式6)YW 1 =YA 1G +TI 1 (Formula 6)
将公式5减去公式6,得到如公式7所示的以下形式Subtracting
W2-YW1=XGA1G-YA1G (公式7)W 2 -YW 1 =X G A 1G -YA 1G (Formula 7)
将公式7重排以求解在第一个电位测量的校正葡萄糖电流A1G,如公式8所示。Equation 7 is rearranged to solve for the corrected glucose current A 1G measured at the first potential, as shown in
通过公式8得到了校正葡萄糖电流A1G,其消除了干扰的影响,这仅需要第一个工作电极和第二个工作电极的输出电流(例如W1和W2)、葡萄糖依赖性电压效应因子XG和干扰化合物的干扰化合物依赖性电压效应因子Y。The corrected glucose current A 1G is obtained by
将包含电子部件的葡萄糖测量仪与葡萄糖测试条进行电连接以从W1和W2测量电流。在本发明的一个实施方案中,可以将XG和Y程序化到葡萄糖测量仪内,这样仅读取存储器。在本发明的另一个实施方案中,可以通过校正码芯片将Y传递给测量仪。校正码芯片在其存储器中具有一组特定的关于XG和Y的值,对于很多具体的测试条,可以对这些值进行校正。这可以解释可能在XG和Y中发生的测试条批量间差异。A glucose meter containing electronics is electrically connected to the glucose test strip to measure current from W1 and W2 . In one embodiment of the invention, XG and Y can be programmed into the glucose meter so that only the memory is read. In another embodiment of the present invention, Y can be communicated to the meter through a calibration code chip. The calibration code chip has in its memory a specific set of values for XG and Y that can be corrected for many specific test strips. This could explain the lot-to-lot variance of test strips that might have occurred in X G and Y.
在本发明的另一个实施方案中,只有当超过一些阈值时,公式8中的校正葡萄糖电流才可以被测量仪使用。例如,如果W2比W1大出10%或10%以上,则测量仪将使用公式8来校正输出电流。然而,如果W2比W1大出10%或10%以下,则干扰化合物浓度很低,因此测量仪可简单地取W1与W2之间的平均电流值,来提高测量的准确度和精确度。为了代替简单地将电流W1和W2平均,更准确的方法可以是使用W2/XG来平均W1,其中考虑了葡萄糖依赖性电压效应因子XG(注意,当I2很低时,根据公式1和4,W2/XG约等于A1G)。只有在一些其中样本中存在显著水平的干扰化合物的情况下使用公式8的策略减轻了测量的葡萄糖电流校正过度的危险。应当注意,当W2比W1足够大时(例如大出约100%或更多)时,这是具有非常高浓度的干扰化合物的指示。在这样的情况下,可能希望输出错误信息而不是葡萄糖值,因为非常高水平的干扰化合物可引起公式8准确度的打破。In another embodiment of the invention, the corrected glucose current in
下面的章节将描述可以与公式8所示本发明提出的算法一起使用的可能的测试条实施方案。图1是测试条600的部件分解透视图,其包括布置在衬底5上的6个层。这6个层是导电层50、绝缘层16、试剂层22、粘合层60、亲水层70和顶层80。测试条600可以在一系列步骤中制造,其中使用例如筛网印制方法将导电层50、绝缘层16、试剂层22、粘合层60布置在衬底5上。亲水层70和顶层80可以从卷材(roll stock)中取出和层压到衬底5上。完全装配的测试条形成可接收血样从而使得血样可以分析的样本接收室。The following sections will describe possible test strip embodiments that can be used with the proposed algorithm of the present invention shown in
导电层50包括参比电极10、第一个工作电极12、第二个工作电极14、第一个接触点(contact)13、第二个接触点15、参比接触点11和测试条检测板17。可用于形成导电层的合适的材料是Au、Pd、Ir、Pt、Rh、不锈钢、掺杂的氧化锡、碳等。优选地,用于导电层的材料可以是碳墨(carbon ink)例如在US5653918中描述的那些。The
绝缘层16包括切口(cutout)18,其暴露了可以被液体样本润湿的一部分参比电极10、第一个工作电极12和第二个工作电极14。作为非限制性实例,绝缘层(16或160)可以是可购自Ercon,Inc的Ercon E6110-116 Jet Black Insulayer Ink。The insulating
试剂层22可以布置在一部分导电层50和绝缘层16上。在一个本发明实施方案中,试剂层22可以包括选择性地与葡萄糖反应的化学物质例如氧化还原酶和氧化还原介体。在该反应期间,可以产生一定比例量的还原的氧化还原介体,可以用电化学手段对其测量,从而可以计算葡萄糖浓度。适用于本发明的试剂制剂或墨水的实例可参见US专利5,708,247和6,046,051;出版的国际申请WO01/67099和WO01/73124,它们都引入本文以供参考。
粘合层60包括第一个粘合垫24、第二个粘合垫26和第三个粘合垫28。与试剂层22相邻的第一个粘合垫24和第二个粘合垫26的侧边缘分别限定了样本接收室的壁。在一个本发明实施方案中,粘合层可以包含水基丙烯酸共聚物压敏粘合剂,该粘合剂可从TapeSpecialties LTD in Tring,Herts,United Kingdom (part & num;A6435)商购获得。
亲水层70包括远侧的亲水垫32和近侧的亲水垫34。作为非限制性实例,亲水层70可以是具有一个亲水表面例如防雾涂层的聚酯,其可从3M商购获得。应当注意,远侧的亲水膜32和近侧的亲水膜34都是透明的,从而使得使用者能够观察填充样本接收室的液体样本。The
顶层80包括透明部分36和不透明部分38。顶层80布置在亲水层70上并且与其粘合。作为非限制性实例,顶层40可以是聚酯。应当注意,透明部分36与近侧亲水垫32基本上重叠,这使得使用者能够在视觉上证实样本接收室足够填充满。不透明部分38帮助使用者观察样本接收室内的带色流体例如血液与顶膜的不透明区域之间的高度对比。
图2是表明与测试条600连接的测量仪500的简单图解图。测量仪500具有3个电接触点,这3个电接触点形成与第一个工作电极12、第二个工作电极14和参比电极10的电连接。特别是,连接器101连接电压源103与第一个工作电极12,连接器102连接电压源104与第二个工作电极14,共用连接器100将电压源103和104与参比电极10连接。当进行测试时,测量仪500中的电压源103在第一个工作电极12与参比电极10之间施加第一个电位E1,电压源104在第二个工作电极14与参比电极10之间施加第二个电位E2。施加血样,这样第一个工作电极12、第二个工作电极14和参比电极10被血液覆盖。这引起试剂层22水合,产生其量与样本中存在的葡萄糖和/或干扰化合物浓度成正比的亚铁氰化物。施加样本后5秒钟,测量仪500测量第一个工作电极12和第二个工作电极14的氧化电流。FIG. 2 is a simplified diagrammatic
在上述第一个和第二个测试条实施方案中,第一个工作电极12和第二个工作电极14具有相同面积。应当注意,本发明不限于具有相同面积的测试条。对于其中面积不同的上述测试条的实施方案,必须将每一工作电极的输出电流对面积进行归化。因为输出电流与面积成正比,所以公式1-8中的术语可以用安培的电位(电流)或每电位面积中的安培(即电流密度)来表示。In the first and second test strip embodiments described above, the first working
应当认识到,对于本文中举例说明和描述的结构,可以替代同等结构,并且所描述的本发明实施方案不是可以在本发明中使用的唯一结构。此外,应当理解,上述每一个结构具有功能,并且这样的结构可称为实施该功能的手段。虽然已经表示和描述了本发明的优选实施方案,但是对于本领域技术人员来说显而易见的是,提供这样的实施方案仅是为了举例说明。对于本领域技术人员来说,在不背离本发明的情况下,可以做很多改变、变化和替代。应当理解,本文所述本发明实施方案的多种替代方案可用于实施本发明。下面的权利要求书限定本发明的范围,并且在这些权利要求范围内的方法和结构及其等同吸收应当包括在这些权利要求范围内。It should be appreciated that for structures illustrated and described herein, equivalent structures may be substituted and that the described embodiments of the invention are not the only structures that may be used in the present invention. In addition, it should be understood that each structure described above has a function, and such a structure can be referred to as a means for performing that function. While preferred embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that such embodiments are provided by way of illustration only. Many changes, changes and substitutions will occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be included therein.
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51625203P | 2003-10-31 | 2003-10-31 | |
US60/516,252 | 2003-10-31 | ||
US60/558,424 | 2004-03-31 | ||
US60/558,728 | 2004-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910007080 Division CN101493466B (en) | 2003-10-31 | 2004-10-29 | Method for reducing interference in electrochemical sensor using two different applied potentials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1902477A true CN1902477A (en) | 2007-01-24 |
CN100473982C CN100473982C (en) | 2009-04-01 |
Family
ID=37657575
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200480039541 Pending CN1902479A (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct and mediated interference current |
CN 200910007080 Expired - Fee Related CN101493466B (en) | 2003-10-31 | 2004-10-29 | Method for reducing interference in electrochemical sensor using two different applied potentials |
CN 200480039546 Pending CN1902481A (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct and mediated interference current in an electrochemical test strip |
CN200480039527XA Expired - Fee Related CN101163963B (en) | 2003-10-31 | 2004-10-29 | A measurer of reducing interferences in an electrochemical sensor using two different applied potentials |
CN 200480039544 Pending CN1902480A (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct interference current |
CNB2004800395265A Expired - Fee Related CN100473982C (en) | 2003-10-31 | 2004-10-29 | Method for reducing interferences in an electrochemical sensor using two different applied potentials |
CN 200910002047 Expired - Fee Related CN101533007B (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct interference current in an electrochemical test strip |
CNB2004800395335A Expired - Fee Related CN100473983C (en) | 2003-10-31 | 2004-10-29 | Method for reducing the effect of direct interference current in an electrochemical test strip |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200480039541 Pending CN1902479A (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct and mediated interference current |
CN 200910007080 Expired - Fee Related CN101493466B (en) | 2003-10-31 | 2004-10-29 | Method for reducing interference in electrochemical sensor using two different applied potentials |
CN 200480039546 Pending CN1902481A (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct and mediated interference current in an electrochemical test strip |
CN200480039527XA Expired - Fee Related CN101163963B (en) | 2003-10-31 | 2004-10-29 | A measurer of reducing interferences in an electrochemical sensor using two different applied potentials |
CN 200480039544 Pending CN1902480A (en) | 2003-10-31 | 2004-10-29 | Electrochemical test strip for reducing the effect of direct interference current |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910002047 Expired - Fee Related CN101533007B (en) | 2003-10-31 | 2004-10-29 | Method of reducing the effect of direct interference current in an electrochemical test strip |
CNB2004800395335A Expired - Fee Related CN100473983C (en) | 2003-10-31 | 2004-10-29 | Method for reducing the effect of direct interference current in an electrochemical test strip |
Country Status (1)
Country | Link |
---|---|
CN (8) | CN1902479A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101918822A (en) * | 2008-03-27 | 2010-12-15 | 松下电器产业株式会社 | Measuring device, measuring system and concentration measuring method |
CN104569102A (en) * | 2015-02-04 | 2015-04-29 | 苏州市玮琪生物科技有限公司 | Biosensing electrode for detecting micro signal in blood and method |
CN104603281A (en) * | 2012-09-07 | 2015-05-06 | 生命扫描苏格兰有限公司 | Electrochemical-based analytical test strip with bare interferent electrodes |
CN105203613A (en) * | 2014-06-25 | 2015-12-30 | 达尔生技股份有限公司 | Correction method for blood glucose level of blood sample |
CN105556299A (en) * | 2013-09-11 | 2016-05-04 | 西拉格国际有限责任公司 | Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer |
CN107478695A (en) * | 2017-07-13 | 2017-12-15 | 信阳师范学院 | Electrode based on the modification of nano-copper sulfide multi-walled carbon nanotube compound and its preparation method and application |
CN108132284A (en) * | 2017-12-26 | 2018-06-08 | 三诺生物传感股份有限公司 | A kind of test method of electrochemical sensor |
CN110940713A (en) * | 2019-12-31 | 2020-03-31 | 郑州信德医疗科技有限公司 | Double-sided blood glucose test paper and double-numerical-value display glucometer |
CN111387993A (en) * | 2020-04-09 | 2020-07-10 | 浙江大学 | Sensor and detection system for minimally invasive detection of levodopa |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100219085A1 (en) * | 2009-02-27 | 2010-09-02 | Edwards Lifesciences Corporation | Analyte Sensor Offset Normalization |
EP2405264B1 (en) * | 2009-05-29 | 2015-09-02 | Panasonic Healthcare Holdings Co., Ltd. | Biosensor system and method for measuring concentration of analyte |
US20110186428A1 (en) * | 2010-01-29 | 2011-08-04 | Roche Diagnostics Operations, Inc. | Electrode arrangements for biosensors |
US8940141B2 (en) * | 2010-05-19 | 2015-01-27 | Lifescan Scotland Limited | Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution |
CN104007150A (en) * | 2013-12-04 | 2014-08-27 | 西南大学 | Conductive polymer-based all-print biological and environmental sensor and making method thereof |
CN204142671U (en) * | 2014-09-22 | 2015-02-04 | 英科新创(厦门)科技有限公司 | Electric pole type blood sugar examination bar |
CN104535627B (en) * | 2014-12-17 | 2017-01-04 | 浙江大学 | glucose sensing system |
MX2017008652A (en) * | 2014-12-31 | 2018-05-22 | Trividia Health Inc | Glucose test strip with interference correction. |
GB2549281A (en) * | 2016-04-11 | 2017-10-18 | Palintest Ltd | Electrochemical sensor |
JP6778058B2 (en) * | 2016-08-31 | 2020-10-28 | シスメックス株式会社 | Sensor assembly, test substance monitoring system and test substance monitoring method |
US20180217079A1 (en) * | 2017-01-31 | 2018-08-02 | Cilag Gmbh International | Determining an analyte concentration of a physiological fluid having an interferent |
CN109164148B (en) * | 2018-09-04 | 2019-04-30 | 山东省科学院生物研究所 | Anti-interference determination method of enzyme electrode biosensor |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4655880A (en) * | 1983-08-01 | 1987-04-07 | Case Western Reserve University | Apparatus and method for sensing species, substances and substrates using oxidase |
JPH02501162A (en) * | 1987-08-28 | 1990-04-19 | ベツクマン・インダストリアル・コーポレーシヨン | Electrochemical cell noise reduction method |
DE4136779A1 (en) * | 1991-11-08 | 1993-05-13 | Bayer Ag | DEVICE FOR SIMULTANEOUS DETECTION OF DIFFERENT GAS COMPONENTS |
ZA938555B (en) * | 1992-11-23 | 1994-08-02 | Lilly Co Eli | Technique to improve the performance of electrochemical sensors |
CN1097468A (en) * | 1993-06-30 | 1995-01-18 | 中国科学院武汉病毒研究所 | Measure the double-electrode complex enzyme sensor for ditermining of dextrose plus saccharose simultaneously |
DE4424355C2 (en) * | 1994-07-11 | 1996-07-18 | Fraunhofer Ges Forschung | Electrochemical analysis method |
US6046051A (en) * | 1997-06-27 | 2000-04-04 | Hemosense, Inc. | Method and device for measuring blood coagulation or lysis by viscosity changes |
GB2337122B (en) * | 1998-05-08 | 2002-11-13 | Medisense Inc | Test strip |
US6287451B1 (en) * | 1999-06-02 | 2001-09-11 | Handani Winarta | Disposable sensor and method of making |
US6258229B1 (en) * | 1999-06-02 | 2001-07-10 | Handani Winarta | Disposable sub-microliter volume sensor and method of making |
CN1432130A (en) * | 2000-03-08 | 2003-07-23 | 糖尿病诊断公司 | Rapid response glucose sensor |
-
2004
- 2004-10-29 CN CN 200480039541 patent/CN1902479A/en active Pending
- 2004-10-29 CN CN 200910007080 patent/CN101493466B/en not_active Expired - Fee Related
- 2004-10-29 CN CN 200480039546 patent/CN1902481A/en active Pending
- 2004-10-29 CN CN200480039527XA patent/CN101163963B/en not_active Expired - Fee Related
- 2004-10-29 CN CN 200480039544 patent/CN1902480A/en active Pending
- 2004-10-29 CN CNB2004800395265A patent/CN100473982C/en not_active Expired - Fee Related
- 2004-10-29 CN CN 200910002047 patent/CN101533007B/en not_active Expired - Fee Related
- 2004-10-29 CN CNB2004800395335A patent/CN100473983C/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101918822B (en) * | 2008-03-27 | 2013-04-03 | 松下电器产业株式会社 | Measurement device, measurement system, and concentration measurement method |
CN101918822A (en) * | 2008-03-27 | 2010-12-15 | 松下电器产业株式会社 | Measuring device, measuring system and concentration measuring method |
CN104603281A (en) * | 2012-09-07 | 2015-05-06 | 生命扫描苏格兰有限公司 | Electrochemical-based analytical test strip with bare interferent electrodes |
CN105556299A (en) * | 2013-09-11 | 2016-05-04 | 西拉格国际有限责任公司 | Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer |
CN105203613B (en) * | 2014-06-25 | 2018-03-02 | 达尔生技股份有限公司 | Method for correcting blood sugar level of blood sample |
CN105203613A (en) * | 2014-06-25 | 2015-12-30 | 达尔生技股份有限公司 | Correction method for blood glucose level of blood sample |
CN104569102A (en) * | 2015-02-04 | 2015-04-29 | 苏州市玮琪生物科技有限公司 | Biosensing electrode for detecting micro signal in blood and method |
CN107478695A (en) * | 2017-07-13 | 2017-12-15 | 信阳师范学院 | Electrode based on the modification of nano-copper sulfide multi-walled carbon nanotube compound and its preparation method and application |
CN107478695B (en) * | 2017-07-13 | 2020-01-07 | 信阳师范学院 | Electrode modified by nano-copper sulfide-multi-walled carbon nanotube composite and its preparation method and application |
CN108132284A (en) * | 2017-12-26 | 2018-06-08 | 三诺生物传感股份有限公司 | A kind of test method of electrochemical sensor |
CN108132284B (en) * | 2017-12-26 | 2019-11-29 | 三诺生物传感股份有限公司 | A kind of test method of electrochemical sensor |
CN110940713A (en) * | 2019-12-31 | 2020-03-31 | 郑州信德医疗科技有限公司 | Double-sided blood glucose test paper and double-numerical-value display glucometer |
CN111387993A (en) * | 2020-04-09 | 2020-07-10 | 浙江大学 | Sensor and detection system for minimally invasive detection of levodopa |
Also Published As
Publication number | Publication date |
---|---|
CN100473983C (en) | 2009-04-01 |
CN101493466B (en) | 2013-11-06 |
CN101163963B (en) | 2011-05-04 |
CN1902479A (en) | 2007-01-24 |
CN101533007A (en) | 2009-09-16 |
CN1902478A (en) | 2007-01-24 |
CN1902480A (en) | 2007-01-24 |
CN101163963A (en) | 2008-04-16 |
CN101493466A (en) | 2009-07-29 |
CN101533007B (en) | 2013-01-02 |
CN100473982C (en) | 2009-04-01 |
CN1902481A (en) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2543797C (en) | A method of reducing interferences in an electrochemical sensor using two different applied potentials | |
US7655119B2 (en) | Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials | |
JP5044655B2 (en) | Reagent formulations using ruthenium hexamine as a transmitter for electrochemical test strips | |
CN101163963B (en) | A measurer of reducing interferences in an electrochemical sensor using two different applied potentials | |
EP2565638B1 (en) | Electrochemical analyte measurement system and method | |
EP2083674B1 (en) | Transient decay amperometry | |
US8460537B2 (en) | Methods for determining an analyte concentration using signal processing algorithms | |
RU2602170C2 (en) | Method of measuring analyte and system with hematocrit compensation | |
CN105181776B (en) | Analyte testing method and system with error capture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090401 Termination date: 20201029 |