[go: up one dir, main page]

CN1872877A - Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet - Google Patents

Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet Download PDF

Info

Publication number
CN1872877A
CN1872877A CN 200510073393 CN200510073393A CN1872877A CN 1872877 A CN1872877 A CN 1872877A CN 200510073393 CN200510073393 CN 200510073393 CN 200510073393 A CN200510073393 A CN 200510073393A CN 1872877 A CN1872877 A CN 1872877A
Authority
CN
China
Prior art keywords
tfdp
protein
hca661
liver cancer
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510073393
Other languages
Chinese (zh)
Other versions
CN100348614C (en
Inventor
陈慰峰
乔欢
庞学雯
王俞
田婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CNB200510073393XA priority Critical patent/CN100348614C/en
Publication of CN1872877A publication Critical patent/CN1872877A/en
Application granted granted Critical
Publication of CN100348614C publication Critical patent/CN100348614C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种肝癌-睾丸特异性抗原蛋白质和抗原肽。该肝癌-睾丸特异性抗原蛋白质为具有图1所示的氨基酸序列的蛋白质及其衍生蛋白质。所述的抗原肽的氨基酸序列为在图1所示的序列中起止AA108-AA191。本发明提供的肝癌-睾丸特异性抗原蛋白质和抗原肽在pRB/E2F信号转导中可作为E2F活性阻断剂,对其同源类似物TFDP-1发挥拮抗作用。该蛋白质/肽可作为CT抗原或抗原基因而制成疫苗,这种肿瘤抗原蛋白质通过细胞内分解,能产生与主要组织相容性复合体(MHC)-I类分子相结合的、在结合状态能被T细胞所识别的肽片段,激发免疫反应而达到治疗癌症的目的,从而可以应用于制备治疗癌症,特别是肝癌的药物中。The invention relates to a liver cancer-testis specific antigen protein and antigen peptide. The liver cancer-testis specific antigen protein is a protein having the amino acid sequence shown in FIG. 1 and a derivative protein thereof. The amino acid sequence of the antigenic peptide is AA108-AA191 in the sequence shown in FIG. 1 . The liver cancer-testis specific antigenic protein and antigenic peptide provided by the invention can be used as an E2F activity blocker in pRB/E2F signal transduction, and exert an antagonistic effect on its homologous analogue TFDP-1. The protein/peptide can be used as CT antigen or antigen gene to make a vaccine. This tumor antigen protein can be decomposed in the cell to produce a protein that is combined with the major histocompatibility complex (MHC)-I class molecule and is in a combined state. The peptide fragments that can be recognized by T cells can stimulate the immune response to achieve the purpose of treating cancer, and thus can be used in the preparation of drugs for treating cancer, especially liver cancer.

Description

一种肝癌-睾丸特异性抗原蛋白质和抗原肽A liver cancer-testis specific antigenic protein and antigenic peptide

技术领域technical field

本发明涉及一种肝癌-睾丸特异性抗原蛋白质和抗原肽。The invention relates to a liver cancer-testis specific antigen protein and antigen peptide.

背景技术Background technique

肿瘤-睾丸(cancer-testis,简称CT)抗原蛋白质是目前鉴定的肿瘤抗原中最多的一类,它们编码基因的特点是在很多类型的肿瘤中都有表达,如在黑色素瘤、肺癌、肉瘤和膀胱癌中都有表达,但在除睾丸外的正常组织都不表达,在胎盘、卵巢、胰腺中有一定量的表达。因为睾丸是免疫特许部位,所以这一类抗原在治疗上被认为是肿瘤特异性的抗原,是最有希望用作为肿瘤免疫治疗用途的一类抗原。目前试用于临床上的也主要就是这一类抗原,如MAGE-1和NY-ESO-1即是在一定类型的肿瘤中有高阳性率的表达,又有很好的免疫原性的抗原蛋白质,用于肿瘤的免疫治疗时有很好的前景。Tumor-testis (cancer-testis, referred to as CT) antigen protein is the most identified class of tumor antigens, and their coding genes are characterized by expression in many types of tumors, such as melanoma, lung cancer, sarcoma and It is expressed in bladder cancer, but it is not expressed in normal tissues except testis, and it is expressed in a certain amount in placenta, ovary and pancreas. Because the testis is an immune privileged site, this type of antigen is considered to be a tumor-specific antigen in therapy, and it is the most promising type of antigen for tumor immunotherapy. At present, this type of antigen is mainly used clinically, such as MAGE-1 and NY-ESO-1, which have a high positive rate in certain types of tumors and have good immunogenicity. , has a good prospect when used in tumor immunotherapy.

原发性肝细胞癌是人类原发性肝癌中最常见的一种类型,也是全世界最常发生的恶性肿瘤之一,尤其在东南亚及非洲,它的发病率更高。就中国而言,每年约有110,000人死于肝癌,占全世界每年肝癌死亡人数的四分之一。这种高死亡率,主要是由于早期肝癌缺乏特异临床症状,导致大部分患者就诊迟,而又缺乏有效治疗手段及术后易复发所致。发病率高、恶性度高、诊断迟、治疗方法少、预后差,是肝癌的几大特点。尽管国内外科研人员都对肝癌进行了多方面的研究,但目前肝癌发生发展的分子机理还不太清楚,对肝癌的治疗也主要是采取手术治疗及局部或全身化疗,少数病人辅以肿瘤生物疗法,但术后生存期仍不尽人意。为此,对肝癌发生发展机理的研究成为当前的迫切要求,希望籍此早日阐明肝癌发生发展的分子基础,或与肝癌发生发展密切相关的分子,以便随访高危人群,有效预防、早日诊断、综合治疗、减少复发。Primary hepatocellular carcinoma is the most common type of primary liver cancer in humans and one of the most common malignant tumors in the world, especially in Southeast Asia and Africa, where its incidence is higher. As far as China is concerned, about 110,000 people die from liver cancer every year, accounting for a quarter of the annual liver cancer deaths worldwide. This high mortality rate is mainly due to the lack of specific clinical symptoms of early liver cancer, which leads to the late treatment of most patients, lack of effective treatment methods and easy recurrence after surgery. High incidence, high degree of malignancy, late diagnosis, few treatment methods, and poor prognosis are the major characteristics of liver cancer. Although researchers at home and abroad have conducted various studies on liver cancer, the molecular mechanism of liver cancer development is still not clear. The treatment of liver cancer is mainly surgical treatment and local or systemic chemotherapy, and a small number of patients are supplemented by tumor biological therapy. therapy, but postoperative survival is still unsatisfactory. For this reason, the research on the mechanism of liver cancer development has become an urgent requirement at present. It is hoped that the molecular basis of liver cancer development or the molecules closely related to the development of liver cancer will be clarified as soon as possible, so as to follow up high-risk groups, effectively prevent, diagnose early, and comprehensively treatment to reduce recurrence.

以前的研究表明,肝癌的发生是一个多阶段、多步骤的过程,这一过程中伴随着机体许多的细胞学、遗传学的改变,在细胞内存在的正向调控和负向调控之间的相对平衡被打破,出现多种基因表达异常,包括癌基因的激活和/或抑癌基因灭活,激发异常的信号转导通路,导致细胞周期及细胞凋亡异常,从而使得细胞恶性转化,并随着各种分子异常的累积,肿瘤出现进展、转移。而且,肝癌在分子水平的改变是异质性的,可能存在多个基因,多个途径交叠作用。同时,细胞内在的自我防护机制也可能会诱导产生拮抗性分子。所以,明确这些差异表达的基因,对于肝癌发生发展机制的阐明和对肝癌的临床诊断、治疗都具有重要意义。Previous studies have shown that the occurrence of liver cancer is a multi-stage and multi-step process, which is accompanied by many cytological and genetic changes in the body, and the balance between positive regulation and negative regulation in cells The relative balance is broken, and a variety of gene expression abnormalities appear, including the activation of oncogenes and/or the inactivation of tumor suppressor genes, which stimulate abnormal signal transduction pathways, resulting in abnormal cell cycle and apoptosis, resulting in malignant transformation of cells, and Tumors progress and metastasize as various molecular abnormalities accumulate. Moreover, the changes at the molecular level of liver cancer are heterogeneous, and there may be multiple genes and overlapping pathways. At the same time, the cell's intrinsic self-defense mechanism may also induce the production of antagonistic molecules. Therefore, the identification of these differentially expressed genes is of great significance for the elucidation of the pathogenesis and development mechanism of liver cancer, and for the clinical diagnosis and treatment of liver cancer.

发明内容Contents of the invention

本发明的目的在于提供一种可用于肝癌治疗的肿瘤睾丸特异性抗原蛋白和肿瘤睾丸特异性抗原肽。The purpose of the present invention is to provide a tumor-testis-specific antigen protein and a tumor-testis-specific antigen peptide that can be used in the treatment of liver cancer.

本发明的目的是通过如下的技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:

本发明提供一种肝癌-睾丸特异性抗原蛋白质TFDP-3(HCA661),其具有如下(a)或(b)所述的氨基酸序列:The present invention provides a liver cancer-testis specific antigen protein TFDP-3 (HCA661), which has the following amino acid sequence (a) or (b):

(a)具有图1所示的氨基酸序列;(a) have the amino acid sequence shown in Figure 1;

(b)将(a)中的氨基酸序列经过一个或几个氨基酸残基的取代,缺失或添加突变所产生的衍生蛋白质,且该衍生蛋白质与(a)的蛋白质具有相同或相似的功能。(b) The amino acid sequence in (a) undergoes one or several amino acid residue substitution, deletion or addition mutations to produce a derivative protein, and the derivative protein has the same or similar function as the protein in (a).

本发明提供一种编码上述肝癌-睾丸特异性抗原蛋白质的基因。The present invention provides a gene encoding the above liver cancer-testis specific antigen protein.

本发明所述的基因属于DP家族,其具有图2所示的核苷酸序列,在基因文库中登录号为:AF219119。The gene of the present invention belongs to the DP family, it has the nucleotide sequence shown in Figure 2, and its accession number in the gene library is: AF219119.

本发明提供一种包含上述肝癌-睾丸特异性抗原蛋白质的融合蛋白。The present invention provides a fusion protein comprising the above liver cancer-testis specific antigen protein.

本发明提供一种肝癌-睾丸特异性抗原肽,其具有如下(c)或(d)所述的氨基酸序列:The present invention provides a liver cancer-testis specific antigen peptide, which has the following amino acid sequence (c) or (d):

(c)其为上述肝癌-睾丸特异性抗原蛋白质的特异性DNA结合结构域的含84个氨基酸的肽段,其氨基酸序列为在图1所示的序列中起止AA108-AA191;(c) It is a peptide segment containing 84 amino acids of the specific DNA binding domain of the above-mentioned liver cancer-testis specific antigen protein, and its amino acid sequence is AA108-AA191 in the sequence shown in Figure 1;

(d)将(c)中的氨基酸序列经过一个或几个氨基酸残基的取代,缺失或添加突变所产生的衍生肽,且该衍生肽与(a)的肽具有相同或相似的功能。(d) The amino acid sequence in (c) undergoes one or several amino acid residue substitution, deletion or addition mutations to produce a derivative peptide, and the derivative peptide has the same or similar function as the peptide in (a).

本发明提供一种编码上述肝癌-睾丸特异性抗原肽的基因。The present invention provides a gene encoding the above liver cancer-testis specific antigen peptide.

本发明提供一种包含上述肝癌-睾丸特异性抗原肽的融合蛋白。The present invention provides a fusion protein comprising the above liver cancer-testis specific antigen peptide.

本发明提供的肝癌-睾丸特异性抗原蛋白质、抗原肽、及其们的融合蛋白在pRB/E2F信号转导中可作为E2F活性阻断剂,对其同源类似物TFDP-1发挥拮抗作用。该蛋白质/肽及编码其的DNA可作为CT抗原或抗原基因而制成疫苗,这种肿瘤抗原蛋白质通过细胞内分解,能产生与主要组织相容性复合体(MHC)-I类分子相结合的、在结合状态能被T细胞所识别的肽片段,激发免疫反应而达到治疗癌症的目的,从而可以应用于制备治疗癌症,特别是肝癌的药物中。应用本发明的肿瘤抗原蛋白质可以提供活化抗肿瘤免疫的医药、可提供肿瘤的诊断方法。抗本发明的肿瘤抗原蛋白质的抗体可用于亲和层析、cDNA文库的筛选、免疫学诊断或医药的制备。The liver cancer-testis specific antigenic protein, antigenic peptide, and their fusion protein provided by the present invention can be used as an E2F activity blocker in pRB/E2F signal transduction, and exert an antagonistic effect on its homologous analogue TFDP-1. The protein/peptide and the DNA encoding it can be used as CT antigen or antigen gene to make a vaccine. This tumor antigen protein can be produced and combined with major histocompatibility complex (MHC)-I molecules through intracellular decomposition The peptide fragments that can be recognized by T cells in the combined state can stimulate the immune response to achieve the purpose of treating cancer, so that they can be used in the preparation of drugs for treating cancer, especially liver cancer. Using the tumor antigen protein of the present invention can provide medicines for activating anti-tumor immunity and methods for diagnosing tumors. The antibody against the tumor antigen protein of the present invention can be used in affinity chromatography, screening of cDNA library, immunological diagnosis or preparation of medicine.

本发明克隆的新基因是一个肝癌-睾丸特异性表达的、与肝癌发生相关的基因,对于它的功能的研究,将有助于肝癌发生发展机理的阐明。该基因编码的新蛋白TFDP-3(HCA661)是一个新的CT抗原,在原发性肝细胞性肝癌中,TFDP-3(HCA661)阳性约占1/3,作为肿瘤疫苗具有应用于肝细胞性肝癌治疗的潜在的临床应用价值。同时,与其它CT抗原不同,该蛋白具有明显的功能,是DP家族的新成员,该家族可以与E2F形成异源二聚体,从而增强E2F的转录调节功能,处于pRB/E2F信号通路中的核心位置。pRB蛋白是多种DNA肿瘤病毒立早基因产物作用的靶蛋白,如猴病毒40大T抗原、乳头状瘤病毒E7蛋白、腺病毒E1a蛋白等。这些癌基因产物可以与E2F竞争结合pRB蛋白,破坏E2F与pRB的作用与结合,导致pRB对E2F活性的抑制被消除,激活E2F依赖性靶基因的转录。在多数人类肿瘤中,E2F的调控机制是失调的,而E2F功能的失调往往会伴随着细胞的转化,甚至肿瘤的发生。以前的许多研究都已证明,DP蛋白或E2F蛋白具有原癌基因的特性。TFDP-3(HCA661)的结构分析表明,它具有与TFDP-1相似的结构,即含有一个DNA结合结构域和一个二聚化结构域。功能研究表明,TFDP-3(HCA661)可以与E2F家族的所有具有二聚化结构域的蛋白形成异二聚体,在蛋白相互作用的水平上,TFDP-3(HCA661)具有与TFDP-1完全一致的生物学特性。但在蛋白与DNA相互作用的水平上,TFDP-3(HCA661)与E2F蛋白形成的异二聚体极大地削弱了E2F结合DNA的能力,并可抑制E2F的转录活性,亦可抑制TFDP-1对E2F的别构激活。TFDP-3(HCA661)对E2F功能影响的独特性质使其可望作为当病毒感染或pRB突变导致的pRB/E2F信号通路失控时的拮抗剂,从而弥补pRB的功能,至少是部分弥补。TFDP-3(HCA661)在组织表达的特异性以及它所具有的与pRB相似的抑制E2F活性的特性,可视为肝癌睾丸特异性的抑癌基因,这个基因和蛋白可能为将来发展肝癌特异性治疗提供一个较好的靶点。The new gene cloned in the present invention is a liver cancer-testis-specific expression gene related to the occurrence of liver cancer. The study of its function will help to clarify the mechanism of liver cancer occurrence and development. The new protein TFDP-3 (HCA661) encoded by this gene is a new CT antigen. In primary hepatocellular carcinoma, TFDP-3 (HCA661) positive accounts for about 1/3. As a tumor vaccine, it can be applied to liver cells. Potential clinical application value in the treatment of chronic liver cancer. At the same time, unlike other CT antigens, this protein has obvious functions and is a new member of the DP family. This family can form heterodimers with E2F, thereby enhancing the transcriptional regulation function of E2F. It is in the pRB/E2F signaling pathway. central location. The pRB protein is the target protein of a variety of DNA tumor virus immediate gene products, such as the simian virus 40 large T antigen, papilloma virus E7 protein, adenovirus E1a protein, etc. These oncogene products can compete with E2F for binding to pRB protein, destroy the interaction and binding of E2F and pRB, lead to the elimination of pRB's inhibition of E2F activity, and activate the transcription of E2F-dependent target genes. In most human tumors, the regulatory mechanism of E2F is out of regulation, and the disorder of E2F function is often accompanied by cell transformation and even tumorigenesis. Many previous studies have proved that DP protein or E2F protein has the characteristics of proto-oncogene. Structural analysis of TFDP-3 (HCA661) showed that it has a similar structure to TFDP-1, that is, it contains a DNA-binding domain and a dimerization domain. Functional studies have shown that TFDP-3 (HCA661) can form heterodimers with all proteins of the E2F family that have a dimerization domain. At the level of protein interaction, TFDP-3 (HCA661) has a complete consistent biological properties. However, at the level of protein-DNA interaction, the heterodimer formed by TFDP-3 (HCA661) and E2F protein greatly weakens the ability of E2F to bind DNA, and can inhibit the transcriptional activity of E2F and TFDP-1 Allosteric activation of E2F. The unique nature of TFDP-3(HCA661)'s effect on E2F function makes it promising to act as an antagonist of the unregulated pRB/E2F signaling pathway caused by viral infection or pRB mutation, thereby compensating the function of pRB, at least partially. TFDP-3 (HCA661) can be regarded as a specific tumor suppressor gene for liver cancer testis due to its specificity in tissue expression and its ability to inhibit E2F activity similar to pRB. Treatment provides a better target.

此外,本发明首次将TFDP-3(HCA661)基因鉴定为肿瘤-睾丸特异性抗原基因;在使用免疫方法治疗癌症时,可以用本发明的肿瘤抗原蛋白质诱导机体产生只针对肿瘤细胞的免疫应答反应,从而在不杀伤正常细胞的前提下,特异杀伤体内的肿瘤细胞而达到治疗或者防治肿瘤细胞转移的作用;同时,可以通过对该肿瘤抗原基因或抗体的检测,对肿瘤的发生、发展以及是否有转移进行诊断。In addition, the present invention identifies the TFDP-3 (HCA661) gene as a tumor-testis-specific antigen gene for the first time; when immunotherapy is used to treat cancer, the tumor antigen protein of the present invention can be used to induce the body to produce an immune response that only targets tumor cells , so that on the premise of not killing normal cells, it can specifically kill tumor cells in the body to achieve the effect of treating or preventing tumor cell metastasis; at the same time, through the detection of the tumor antigen gene or antibody, the tumor occurrence, development and whether Diagnosed with metastases.

附图说明Description of drawings

图1为本发明提供的肝癌-睾丸特异性抗原蛋白质的氨基酸序列;Fig. 1 is the amino acid sequence of liver cancer-testis specific antigen protein provided by the present invention;

图2为本发明提供的编码肝癌-睾丸特异性抗原蛋白质的核苷酸序列;Fig. 2 is the nucleotide sequence encoding liver cancer-testis specific antigen protein provided by the present invention;

图3为使用CLUSTAL W(1.82)分析程序对TFDP-3(HCA661)蛋白的氨基酸序列与其DP家族同源类似物TFDP-1的氨基酸序列的对比分析结果;其中,“*”指序列中的氨基酸残基完全一致;“:”指序列中的氨基酸残基属于保守替换;“.”指序列中的氨基酸残基属于半保守替换;Figure 3 is the result of comparative analysis of the amino acid sequence of the TFDP-3 (HCA661) protein and its DP family homolog TFDP-1 using the CLUSTAL W (1.82) analysis program; where "*" refers to the amino acid in the sequence The residues are completely identical; ":" means that the amino acid residues in the sequence are conservative substitutions; "." means that the amino acid residues in the sequence are semi-conservative substitutions;

图4为TFDP-3(HCA661)mRNA在肝细胞性肝癌(HCC)中的Northern blot验证图;其中,Testis为睾丸组织;Adj为邻近非癌组织;HCC为肝细胞性肝癌;Normalliver为正常肝组织;Fig. 4 is a Northern blot verification diagram of TFDP-3 (HCA661) mRNA in hepatocellular carcinoma (HCC); wherein, Testis is testicular tissue; Adj is adjacent non-cancerous tissue; HCC is hepatocellular carcinoma; Normalliver is normal liver organize;

图5为TFDP-3(HCA661)在HCC细胞系中的表达分布;其中,L02为正常肝细胞系,Jurkat为急性T淋巴细胞白血病细胞系,其余为HCC细胞系;Figure 5 is the expression distribution of TFDP-3 (HCA661) in HCC cell lines; wherein, L02 is a normal liver cell line, Jurkat is an acute T lymphocytic leukemia cell line, and the rest are HCC cell lines;

图6为TFDP-3(HCA661)与E2F家族蛋白相互作用的GST Pull-down分析;其中,A图:E2F的可溶性GST融合蛋白在大肠杆菌JM109中诱导和表达,可溶性蛋白的表达水平通过考马斯亮蓝染色评估;箭头所示为可溶性蛋白的特异性迁移带;无融合基因的GST蛋白作为阴性参照。B图:作为阴性参照的GST蛋白和E2F的GST融合蛋白分别与谷胱甘肽-琼脂糖微珠结合,然后与体外转录、翻译的TFDP-3(HCA661)蛋白相互作用,并洗掉未结合的蛋白,剩余的与谷胱甘肽-琼脂糖微珠结合的蛋白通过电泳、放射自显影分析。体外转录、翻译的TFDP-3(HCA661)蛋白作为阳性参照;Figure 6 is the GST Pull-down analysis of the interaction between TFDP-3 (HCA661) and E2F family proteins; among them, Figure A: the soluble GST fusion protein of E2F was induced and expressed in Escherichia coli JM109, and the expression level of the soluble protein was measured by Coomassie Blue staining evaluation; arrows indicate the specific migration band of soluble protein; GST protein without fusion gene was used as negative reference. Panel B: The GST protein used as a negative reference and the GST fusion protein of E2F are bound to glutathione-agarose microbeads, and then interact with the in vitro transcribed and translated TFDP-3 (HCA661) protein, and the unbound protein is washed away The remaining proteins bound to glutathione-agarose beads were analyzed by electrophoresis and autoradiography. The in vitro transcribed and translated TFDP-3 (HCA661) protein was used as a positive reference;

图7为TFDP-3(HCA661)与E2F蛋白相互作用的免疫共沉淀分析;其中,上图为采用抗HA多克隆抗体通过免疫印迹分析从共转染的HeLa细胞中提取的免疫共沉淀蛋白;中图为采用抗HA多克隆抗体通过免疫印迹分析共转染的HeLa细胞裂解物中的E2F蛋白的表达水平;下图为采用抗FLAG M2单克隆抗体通过免疫印迹分析共转染的HeLa细胞裂解物的TFDP-3(HCA661)蛋白的表达水平;箭头所示为TFDP-3(HCA661)或E2F蛋白的特异性迁移带;Figure 7 is the co-immunoprecipitation analysis of the interaction between TFDP-3 (HCA661) and E2F protein; wherein, the upper figure shows the co-immunoprecipitation protein extracted from co-transfected HeLa cells by Western blot analysis using anti-HA polyclonal antibody; The middle panel shows the expression level of E2F protein in co-transfected HeLa cell lysates analyzed by Western blot using anti-HA polyclonal antibody; the lower panel shows the co-transfected HeLa cell lysates analyzed by Western blot using anti-FLAG M2 monoclonal antibody The expression level of the TFDP-3 (HCA661) protein of the object; the arrow shows the specific migration band of TFDP-3 (HCA661) or E2F protein;

图8为TFDP-3(HCA661)与E2F蛋白相互作用形成的异二聚体的DNA结合能力分析(EMSA);Figure 8 is the DNA binding ability analysis (EMSA) of the heterodimer formed by the interaction between TFDP-3 (HCA661) and E2F protein;

图9为TFDP-3(HCA661)亚细胞定位分析;其中,A,E2F或DP蛋白单独转染时的亚细胞定位;B,E2F和DP共转染时的亚细胞定位;所有图像通过配备了CCD的免疫荧光倒置显微镜在放大倍数为480倍的视野下摄取;Figure 9 is the subcellular localization analysis of TFDP-3 (HCA661); wherein, A, the subcellular localization of E2F or DP protein transfection alone; B, the subcellular localization of E2F and DP co-transfection; all images are equipped with Immunofluorescence inverted microscope of CCD was taken under the field of view with a magnification of 480 times;

图10为TFDP-3(HCA661)对E2F转录活性影响的分析;其中,A为TFDP-3(HCA661)抑制E2F的转录活性结果;B为TFDP-3(HCA661)抑制E2F/TFDP-1介导的转录激活结果;C为TFDP-3(HCA661)过表达能抑制内源性E2F活性结果;所显示的数据是三次实验的平均值及其标准差;Figure 10 is the analysis of the influence of TFDP-3 (HCA661) on the transcriptional activity of E2F; wherein, A is the result of TFDP-3 (HCA661) inhibiting the transcriptional activity of E2F; B is the result of TFDP-3 (HCA661) inhibiting the transcriptional activity of E2F/TFDP-1 The transcriptional activation result of ; C is the result of TFDP-3 (HCA661) overexpression can inhibit endogenous E2F activity; the data shown are the average value and standard deviation of three experiments;

图11为TFDP-3(HCA661)突变体的图示;其中,A为两个已知的人DP家族蛋白TFDP-1和TFDP-2的DNA结合结构域与TFDP-3(HCA661)的DNA结合结构域的氨基酸残基的比较;“*”指序列中的氨基酸残基完全一致;“:”指序列中的氨基酸残基属于保守替换;“.”指序列中的氨基酸残基属于半保守替换;序列分析所使用的分析程序为CLUSTAL W(1.82);“Δ”指该氨基酸残基参与了与DNA碱基的相互作用;“▲”指该氨基酸残基参与了与DNA骨架的相互作用;“■”指该氨基酸残基参与了与蛋白质的异二聚化的相互作用;B为从全长TFDP-3(HCA661)和TFDP-1的氨基酸序列中衍生出的替换突变体的图示;TFDP-3(HCA661)和TFDP-1根据结构域的组成可以将氨基酸序列分成4个部分,即N端未知功能区(UNT)、DNA结合结构域(DBD)、异二聚化结构域(HD)和C端未知功能区(UCT);C为TFDP-3(HCA661)和TFDP-1在DNA结合结构域内进行的替换衍生出的突变体的图示;TFDP-3(HCA661)的氨基酸残基用阴影标记;同时在突变体的右侧也简要地标注了该突变体的转录性质;Figure 11 is a diagram of the TFDP-3 (HCA661) mutant; wherein, A is the DNA binding domain of two known human DP family proteins TFDP-1 and TFDP-2 and TFDP-3 (HCA661) Comparison of amino acid residues in the structural domain; "*" means that the amino acid residues in the sequence are completely consistent; ":" means that the amino acid residues in the sequence are conservative substitutions; "." means that the amino acid residues in the sequence are semi-conservative substitutions ; The analysis program used for sequence analysis is CLUSTAL W (1.82); "Δ" means that the amino acid residue participates in the interaction with the DNA base; "▲" means that the amino acid residue participates in the interaction with the DNA backbone; "■" means that the amino acid residue is involved in the interaction with the heterodimerization of the protein; B is a diagram of the substitution mutant derived from the amino acid sequence of full-length TFDP-3 (HCA661) and TFDP-1; The amino acid sequence of TFDP-3 (HCA661) and TFDP-1 can be divided into four parts according to the composition of the structural domain, namely, the N-terminal unknown functional region (UNT), the DNA binding domain (DBD), and the heterodimerization domain (HD ) and the C-terminal unknown domain (UCT); C is a schematic representation of mutants derived from substitutions in the DNA binding domain of TFDP-3(HCA661) and TFDP-1; amino acid residues of TFDP-3(HCA661) Marked by shading; the transcriptional nature of the mutant is also briefly marked on the right side of the mutant;

图12为TFDP-3(HCA661)独特功能产生的分子基础分析;其中,A为TFDP-3(HCA661)和TFDP-1突变体的蛋白表达;B和C为TFDP-3和TFDP-1的替换突变体对E2F-4的转录活性的影响的报告基因评估;所显示的数据是三次实验的平均值及其标准差。Figure 12 is the molecular basis analysis of the unique function of TFDP-3 (HCA661); wherein, A is the protein expression of TFDP-3 (HCA661) and TFDP-1 mutant; B and C are the replacement of TFDP-3 and TFDP-1 Reporter assessment of the effect of mutants on the transcriptional activity of E2F-4; data shown are the mean of three experiments and their standard deviations.

具体实施方式Detailed ways

实施例1.基因分析Example 1. Gene Analysis

TFDP-3(HCA661)是通过SEREX方法从病人的肝癌组织中用血清筛选出的新基因。根据生物信息学分析,TFDP-3(HCA661)基因定位于人基因的X染色体上,是一个单外显子组成的基因。其转录本大小为1,680bp,其中编码框为1,218bp,起止点为90-1,307,共编码405个氨基酸的蛋白(如图1所示)。该蛋白是转录因子DP家族的新成员,与其DP家族同源类似物TFDP-1有高度的相似性(75.2%氨基酸一致性;82.0%氨基酸相似性)。二者的氨基酸序列的对比分析如图3所示,与TFDP-1类似,TFDP-3的氨基酸序列包括一个进化保守的DNA结合结构域(AA108-AA191)和一个进化保守的异二聚化结构域(AA192-AA264),而且,在DNA结合结构域中,也含有一个在E2F家族和DP家族普遍具有的RRXYD DNA识别基序(AA162-AA166)。在已知的E2F和DP家族中,RRXYD DNA识别模序中的第三位氨基酸通常为疏水性的氨基酸(Valine(V)或Isoleucine(I)),但在TFDP-3(HCA661)中,该氨基酸为亲水性的Threonine(T),这种非保守性的氨基酸替换对TFDP-3(HCA661)的DNA结合功能是否有影响尚不清楚。此外,TFDP-3(HCA661)的羧基端的20个氨基酸有15个是酸性氨基酸,而TFDP-1和TFDP-2只有13个和11个酸性氨基酸。这些分析结果强烈地提示TFDP-3(HCA661)是人的DP家族的第三个新成员。TFDP-3 (HCA661) is a new gene screened from the patient's liver cancer tissue with serum by SEREX method. According to bioinformatics analysis, the TFDP-3 (HCA661) gene is located on the X chromosome of the human gene and is a gene consisting of a single exon. The size of the transcript is 1,680bp, the coding frame is 1,218bp, the start and end points are 90-1,307, and it encodes a protein of 405 amino acids (as shown in Figure 1). This protein is a new member of the DP family of transcription factors, and has a high degree of similarity (75.2% amino acid identity; 82.0% amino acid similarity) to its DP family homologue TFDP-1. The comparative analysis of the amino acid sequences of the two is shown in Figure 3. Similar to TFDP-1, the amino acid sequence of TFDP-3 includes an evolutionarily conserved DNA binding domain (AA108-AA191) and an evolutionarily conserved heterodimerization structure domain (AA192-AA264), and, in the DNA-binding domain, also contains a RRXYD DNA recognition motif (AA162-AA166) common in E2F family and DP family. In the known E2F and DP families, the third amino acid in the RRXYD DNA recognition motif is usually a hydrophobic amino acid (Valine (V) or Isoleucine (I)), but in TFDP-3 (HCA661), this The amino acid is hydrophilic Threonine (T), whether this non-conservative amino acid substitution has an effect on the DNA binding function of TFDP-3 (HCA661) is unclear. In addition, 15 of the 20 amino acids at the carboxy-terminal of TFDP-3 (HCA661) are acidic amino acids, while TFDP-1 and TFDP-2 only have 13 and 11 acidic amino acids. The results of these analyzes strongly suggest that TFDP-3 (HCA661) is the third new member of the human DP family.

实施例2.TFDP-3(HCA661)mRNA Northern blot分析Example 2.TFDP-3 (HCA661) mRNA Northern blot analysis

为执行Northern blot分析,从HCC标本和对应的非癌组织标本以及睾丸组织中提取总RNA。RNA的完整性通过电泳分析。电泳时,每孔总RNA的上样量为30mg,然后转膜。用特异性32P标记的cDNA探针与硝酸纤维素膜在65℃杂交过夜。用0.1×SSC/0.1%SDS溶液洗涤三次,每次30分钟,在-70℃放射自显影。全长mRNA的大小通过与28S和18S的核糖体RNA的迁移程度对比得出。For Northern blot analysis, total RNA was extracted from HCC specimens and corresponding noncancerous tissue specimens as well as testicular tissue. RNA integrity was analyzed by electrophoresis. During electrophoresis, the loading amount of total RNA per well was 30 mg, and then transferred to the membrane. Nitrocellulose membranes were hybridized with specific 32 P-labeled cDNA probes overnight at 65°C. Wash three times with 0.1×SSC/0.1% SDS solution, each time for 30 minutes, and perform autoradiography at -70°C. The size of the full-length mRNA is compared with the degree of migration of 28S and 18S ribosomal RNA.

由于核苷酸序的高度相似性,Northern blot杂交结果(如图4所示)显示,在睾丸组织的RNA中出现了两条强带,分别为~1.7kb和2.1kb。在HCC组织的RNA中只出现~1.7kb的带,而非癌组织以及正常肝组织只检测到了2.1kb的带。DNA序列分析表明,2.1kb的基因是TFDP-1,1.7kb的基因是TFDP-3(HCA661)。Due to the high similarity of nucleotide sequences, the results of Northern blot hybridization (as shown in Figure 4) showed that two strong bands appeared in the RNA of testis tissue, which were ~1.7kb and 2.1kb respectively. Only a ~1.7 kb band appeared in the RNA of HCC tissues, while only a 2.1 kb band was detected in noncancerous and normal liver tissues. DNA sequence analysis showed that the 2.1 kb gene was TFDP-1, and the 1.7 kb gene was TFDP-3 (HCA661).

实施例3.TFDP-3(HCA661)在HCC和邻近非癌组织标本中的表达分布Example 3. Expression distribution of TFDP-3 (HCA661) in HCC and adjacent non-cancerous tissue samples

TFDP-3(HCA661)mRNA的表达谱通过RT-PCR分析,结果列于表1。组织包括从Clontech购买的16种正常组织cDNA:脑、心、肾、肝、肺、胰腺、胎盘、骨骼肌、结肠、卵巢、外周血白细胞、前列腺、小肠、脾、睾丸和胸腺,从HCC组织和与之配对的邻近非癌组织提取的总RNA逆转录成cDNA。使用特异性引物对扩增TFDP-3(HCA661)片段。Glyceraldehyde 3-phosphate dehydrogenase(G3PDH)mRNA作为内参。所用引物如下:TFDP-3,forward,5’-TAC ACT CGG CCT GGA AGA ATT G-3’;reverse,5’-TCT TCC TCC TCG ACT GCT G-3’,size,1,244 base pairs(bp)。The expression profile of TFDP-3 (HCA661) mRNA was analyzed by RT-PCR, and the results are listed in Table 1. Tissues included 16 normal tissue cDNAs purchased from Clontech: brain, heart, kidney, liver, lung, pancreas, placenta, skeletal muscle, colon, ovary, peripheral blood leukocytes, prostate, small intestine, spleen, testis, and thymus, from HCC tissue The total RNA extracted from the matched adjacent non-cancerous tissue was reverse transcribed into cDNA. The TFDP-3(HCA661) fragment was amplified using specific primer pairs. Glyceraldehyde 3-phosphate dehydrogenase (G3PDH) mRNA was used as an internal reference. The primers used are as follows: TFDP-3, forward, 5’-TAC ACT CGG CCT GGA AGA ATT G-3’; reverse, 5’-TCT TCC TCC TCG ACT GCT G-3’, size, 1,244 base pairs (bp).

在16种正常组织中,只有睾丸检测到了TFDP-3(HCA661)mRNA的高水平表达,在正常胰腺组织中表达很弱,其余各种正常组织未检测到表达。在HCC组织中,17份HCC组织标本中阳性标本有5份,与17份HCC组织标本相对应的邻近非癌组织中仅有2份标本有微弱的表达,9份正常肝组织无一表达,是一个典型的癌-睾丸(CT)抗原。Among the 16 kinds of normal tissues, only the testis detected the high level expression of TFDP-3(HCA661) mRNA, the expression was very weak in the normal pancreas tissue, and no expression was detected in other normal tissues. In HCC tissue, 5 of the 17 HCC tissue samples were positive, only 2 of the adjacent non-cancerous tissues corresponding to the 17 HCC tissue samples had weak expression, and none of the 9 normal liver tissues expressed. It is a typical cancer-testis (CT) antigen.

表1、TFDP-3(HCA661)在HCC和邻近非癌组织标本中表达的RT-PCR分析   HCC   ADJ   Cirrhosis   Normal liver   Case   17   17   5   9   +ve   5   2   0   0 Table 1. RT-PCR analysis of TFDP-3(HCA661) expression in HCC and adjacent non-cancerous tissue specimens HCC ADJ Cirrhosis Normal liver case 17 17 5 9 +ve 5 2 0 0

实施例4.TFDP-3(HCA661)mRNA在HCC细胞系中的表达Example 4. Expression of TFDP-3 (HCA661) mRNA in HCC cell lines

采用TRIZOL(GIBCO BRL)从L02(人正常肝细胞系),CH-Hep-1,CH-Hep-2,CH-Hep-3,CH-Hep-4,CH-Hep-5,CH-Hep-6,Hep 3B,Bel-7402,Bel-7405,SSMC7721,Hep G2和HLE HCC细胞系,SK-Mel-37和Mel-526黑色素瘤细胞系,Jurkat(人急性T淋巴细胞白血病细胞系)细胞提取总RNA。总RNA逆转录并使用特异性引物对扩增TFDP-1,TFDP-2和TFDP-3(HCA661)片段,G3PDH mRNA作为内参。使用下列参数执行RT-PCR:TFDP-3(HCA661),35个循环,94℃30秒;60℃30秒;72℃90秒,72℃延伸10分钟;TFDP-1,35个循环,94℃30秒;55℃30秒;72℃90秒,72℃延伸10分钟;TFDP-2,35个循环,94℃30秒;55℃30秒;72℃60秒,72℃延伸10分钟;G3PDH,25个循环,94℃15秒;64℃20秒;72℃20秒,72℃延伸10分钟。TFDP-3(HCA661),TFDP-1,TFDP-2和G3PDH引物序列和PCR产物片段长度如下:TFDP-3,forward,5’-TAC ACT CGG CCT GGA AGA ATT G-3’;reverse,5’-TCT TCC TCC TCG ACT GCTG-3’,size,1,244base pairs(bp);TFDP-1,forward,5’-ATG GCA AAA GAT GCC GGTCTA ATT G-3’;reverse 5’-TCG TCC TCG TCA TTC TCG TTG-3’,size,1,229bp;TFDP-2,forward,5’-CCC TGC ACC AGC AAT GGT TAC TCA G-3;reverse,5’-ACTGCT GGA CTG GTG ACT GTT TGG G-3’,size,997bp;G3PDH,forward,5’-ACC ACAGTC CATGCCATCAC-3,reverse,5’-TCC ACC ACC CTG TTG CTG TA-3’,size,452bp。Using TRIZOL (GIBCO BRL) from L02 (human normal liver cell line), CH-Hep-1, CH-Hep-2, CH-Hep-3, CH-Hep-4, CH-Hep-5, CH-Hep- 6. Hep 3B, Bel-7402, Bel-7405, SSMC7721, Hep G2 and HLE HCC cell lines, SK-Mel-37 and Mel-526 melanoma cell lines, Jurkat (human acute lymphoblastic leukemia cell line) cell extraction total RNA. Total RNA was reverse transcribed and TFDP-1, TFDP-2 and TFDP-3 (HCA661) fragments were amplified using specific primer pairs, and G3PDH mRNA was used as an internal reference. RT-PCR was performed using the following parameters: TFDP-3(HCA661), 35 cycles, 94°C for 30 seconds; 60°C for 30 seconds; 72°C for 90 seconds, 72°C extension for 10 minutes; TFDP-1, 35 cycles, 94°C 30 seconds at 55°C; 90 seconds at 72°C, 10 minutes at 72°C; TFDP-2, 35 cycles, 30 seconds at 94°C; 30 seconds at 55°C; 60 seconds at 72°C, 10 minutes at 72°C; G3PDH, 25 cycles, 94°C for 15 seconds; 64°C for 20 seconds; 72°C for 20 seconds, 72°C for 10 minutes. TFDP-3(HCA661), TFDP-1, TFDP-2 and G3PDH primer sequences and PCR product fragment lengths are as follows: TFDP-3, forward, 5'-TAC ACT CGG CCT GGA AGA ATT G-3'; reverse, 5' -TCT TCC TCC TCG ACT GCTG-3', size, 1, 244base pairs(bp); TFDP-1, forward, 5'-ATG GCA AAA GAT GCC GGTCTA ATT G-3'; reverse 5'-TCG TCC TCG TCA TTC TCG TTG-3', size, 1,229bp; TFDP-2, forward, 5'-CCC TGC ACC AGC AAT GGT TAC TCA G-3; reverse, 5'-ACTGCT GGA CTG GTG ACT GTT TGG G-3' , size, 997bp; G3PDH, forward, 5'-ACC ACAGTC CATGCCATCAC-3, reverse, 5'-TCC ACC ACC CTG TTG CTG TA-3', size, 452bp.

我们将DP家族的各个成员TFDP-1、TFDP-2和TFDP-3(HCA661)在肿瘤细胞系尤其在HCC细胞系中的表达水平通过RT-PCR进行分析。使用G3PDH作为内参,评估mRNA的质量。我们检测了TFDP-3(HCA661)在肝癌组织中的表达,在这个实验中,我们设计了如上所示的特异性引物对,分别扩增TFDP-3(HCA661),TFDP-1和TFDP-2基因的片段,检测DP家族各成员在肿瘤细胞系尤其在HCC细胞系中的表达分布。TFDP-1和TFDP-2mRNA表达于所有细胞系的细胞中,而TFDP-3(HCA661)mRNA的表达在不同的细胞系中有很大的差异。在SMMC-7721中表达相对较高的水平,HepG2,HLE和Jurkat中则表达水平较低,其余细胞系未检测到TFDP-3(HCA661)mRNA的表达(如图5中所示),与TFDP-3(HCA661)在肝癌组织中的表达分布相一致。与TFDP-1和TFDP-2的广泛表达不同,TFDP-3(HCA661)的表达具有明显的组织细胞限制性。因此,TFDP-3(HCA661)具有不同于DP家族其它成员的表达谱。We analyzed the expression levels of TFDP-1, TFDP-2 and TFDP-3 (HCA661), members of the DP family, in tumor cell lines, especially in HCC cell lines, by RT-PCR. The quality of mRNA was assessed using G3PDH as an internal reference. We detected the expression of TFDP-3(HCA661) in liver cancer tissues. In this experiment, we designed specific primer pairs as shown above to amplify TFDP-3(HCA661), TFDP-1 and TFDP-2 respectively. Gene fragments, detecting the expression distribution of each member of the DP family in tumor cell lines, especially in HCC cell lines. TFDP-1 and TFDP-2 mRNA were expressed in cells of all cell lines, while the expression of TFDP-3 (HCA661) mRNA was significantly different in different cell lines. It was expressed at a relatively high level in SMMC-7721, while the expression level was low in HepG2, HLE and Jurkat, and the expression of TFDP-3 (HCA661) mRNA was not detected in the remaining cell lines (as shown in Figure 5), and TFDP -3 (HCA661) expression distribution in liver cancer tissues was consistent. Different from the widespread expression of TFDP-1 and TFDP-2, the expression of TFDP-3(HCA661) has obvious histiocyte restriction. Therefore, TFDP-3 (HCA661) has an expression profile different from other members of the DP family.

实施例5.TFDP-3(HCA661)蛋白与E2F蛋白在体外的相互作用Example 5. Interaction between TFDP-3 (HCA661) protein and E2F protein in vitro

为了产生E2F-1~-6的GST融合蛋白以利于蛋白纯化和后续的GST Pull-down分析,E2F基因构建入pGEX-4T2,然后转化Escherichia coli(JM109),通过传统方法获取和纯化大量的GST-E2F融合蛋白(见图6A)。TFDP-3(HCA661)蛋白通过Promega的TNTQuick Coupled Transcription/Translation system试剂盒于50μl反应体系中在放射性35S-methionine存在下体外转录和翻译来获取。体外结合反应中,适宜量的纯化过的GST或GST-E2F融合蛋白先与谷胱苷肽-琼酯糖微珠反应,然后加入含50mM Tris(pH8.0),150mM NaCl,10mg/ml lysozyme,0.5mM phenylmethylsulfonyl fluoride(PMSF),50mg/ml leupeptin,50mg/ml protease inhibitor,50mg/ml aprotinin和50mM dithiothreitol的TFDP-3(HCA661)裂解缓冲液中。于4℃作用2.5小时后,离心并收集沉淀物,用裂解缓冲液洗涤四次,去除未结合的蛋白。加入SDS上样缓冲液,在12.5%的聚丙烯酰氨凝胶上电泳、干胶,放射自显影。体外转录和翻译的TFDP-3(HCA661)蛋白作为阳性参照,非融合的GST蛋白作为阴性参照。结果显示,TFDP-3(HCA661)能与E2F-1~E2F-6相互作用(见图6B,lanes 3 to 8)。TFDP-3(HCA661)与E2F蛋白之间的相互作用是高效率的而且是特异性的,因为TFDP-3(HCA661)与阴性参照GST蛋白之间无相互作用(见图6B,lane2)。这个体外结合数据支持TFDP-3(HCA661)是DP家族的一个新成员。In order to produce the GST fusion protein of E2F-1~-6 to facilitate protein purification and subsequent GST Pull-down analysis, the E2F gene was constructed into pGEX-4T2, and then transformed into Escherichia coli (JM109), and a large amount of GST was obtained and purified by traditional methods - E2F fusion protein (see Figure 6A). TFDP-3 (HCA661) protein was obtained by in vitro transcription and translation in the presence of radioactive 35 S-methionine in a 50 μl reaction system using Promega's TNT (R) Quick Coupled Transcription/Translation system kit. In the in vitro binding reaction, an appropriate amount of purified GST or GST-E2F fusion protein was first reacted with glutathione-agarose microbeads, and then added with 50mM Tris (pH8.0), 150mM NaCl, 10mg/ml lysozyme , 0.5mM phenylmethylsulfonyl fluoride (PMSF), 50mg/ml leupeptin, 50mg/ml protease inhibitor, 50mg/ml aprotinin and 50mM dithiothreitol in TFDP-3 (HCA661) lysis buffer. After 2.5 hours at 4°C, the precipitate was collected by centrifugation and washed four times with lysis buffer to remove unbound protein. Add SDS loading buffer, electrophoresis on 12.5% polyacrylamide gel, dry gel, and autoradiography. The TFDP-3 (HCA661) protein transcribed and translated in vitro was used as a positive reference, and the non-fused GST protein was used as a negative reference. The results showed that TFDP-3 (HCA661) could interact with E2F-1~E2F-6 (see Figure 6B, lanes 3 to 8). The interaction between TFDP-3(HCA661) and E2F protein was efficient and specific, because there was no interaction between TFDP-3(HCA661) and the negative reference GST protein (see Figure 6B, lane2). This in vitro binding data supports that TFDP-3(HCA661) is a new member of the DP family.

实施例6.TFDP-3(HCA661)蛋白与E2F蛋白在体内的相互作用Example 6. Interaction between TFDP-3 (HCA661) protein and E2F protein in vivo

人宫颈癌细胞系HeLa细胞于37℃,5%CO2的细胞培养箱中培养,所用培养基为含100units/ml penicillin、100μg/ml streptomycin和10%新生小牛血清的DMEM培养基。转染前,HeLa细胞用胰酶消化,用无双抗的含10%新生小牛血清的新鲜DMEM培养基将细胞稀释于6孔板中,培养至细胞汇合度达到转染所需的90-95%。转染时,1.4μg的HA-tagged E2F质粒DNA和1.4μgFLAG-tagged DP质粒DNA,或1.4μg的空载体DNA,DNA总量加至2.8μg。LipofectAMINE 2000reagent(Invitrogen)用来将DNA带入细胞内。HeLa细胞转染24-36小时后,按常规方法制备非变性细胞裂解物。这些蛋白的表达水平通过抗HA兔多克隆抗体或抗FLAG M2小鼠单克隆抗体的免疫印迹分析细胞裂解物来监控E2F蛋白(如图7中图)或TFDP-3(HCA661)蛋白(如图7下图)的表达。为了执行免疫共沉淀分析,转染的HeLa细胞先用1×PBS洗涤二次,再加入适量的含20mM Tris(pH7.5),150mM NaCl,1%Triton X-100,1mM EDTA,5μg/ml aprotinin,5μg/ml leupeptin,and 2mM PMSF的裂解缓冲液裂解细胞,制备非变性细胞裂解物。通过Bradford分析总蛋白的浓度。免疫共沉淀时,细胞裂解物在4℃含2μg/ml抗FLAG抗体和25μl的protein A-agarose的细胞裂解缓冲液中至少作用2小时。离心后的沉淀用含500mM NaCl的细胞裂解缓冲液洗涤三次,去除未结合的蛋白。洗涤离心后沉淀物加入上样缓冲液,在12.5%的聚丙烯酰氨凝胶上电泳、转膜。电转后的硝酸纤维膜先用含5%脱脂奶粉的TBS封闭缓冲液封闭1小时,然后用含1μg/ml抗HA抗体的封闭液温育1小时,最后用HRP偶联的抗兔IgG的二抗反应,ECL显色。E2F蛋白在所有转染了E2F DNA的免疫共沉淀物中检测到,但未在只转染空载体DNA或TFDP-3(HCA661)DNA免疫共沉淀物中检测出。这些数据表明TFDP-3(HCA661)能有效率地与E2F家族中含有异二聚化结构域的成员相互作用并形成异二聚体,进一步支持TFDP-3(HCA661)是DP家族新成员的推测。Human cervical cancer cell line HeLa cells were cultured at 37°C in a 5% CO2 incubator, and the medium used was DMEM medium containing 100 units/ml penicillin, 100 μg/ml streptomycin and 10% newborn calf serum. Before transfection, HeLa cells were digested with trypsin, and the cells were diluted in 6-well plates with fresh DMEM medium containing 10% newborn calf serum without double antibody, and cultured until the cell confluency reached 90-95% required for transfection. %. For transfection, add 1.4 μg of HA-tagged E2F plasmid DNA and 1.4 μg of FLAG-tagged DP plasmid DNA, or 1.4 μg of empty vector DNA, to bring the total amount of DNA to 2.8 μg. LipofectAMINE 2000 reagent (Invitrogen) was used to bring DNA into cells. 24-36 hours after transfection of HeLa cells, non-denatured cell lysates were prepared according to conventional methods. The expression levels of these proteins were monitored by Western blot analysis of cell lysates with anti-HA rabbit polyclonal antibody or anti-FLAG M2 mouse monoclonal antibody to monitor E2F protein (Fig. 7 middle panel) or TFDP-3 (HCA661) protein (Fig. 7 below) expression. In order to perform co-immunoprecipitation analysis, the transfected HeLa cells were washed twice with 1×PBS, and then an appropriate amount of 20mM Tris (pH7.5), 150mM NaCl, 1% Triton X-100, 1mM EDTA, 5μg/ml was added Aprotinin, 5μg/ml leupeptin, and 2mM PMSF lysis buffer lysed cells to prepare non-denaturing cell lysates. The concentration of total protein was analyzed by Bradford. For co-immunoprecipitation, the cell lysate was reacted for at least 2 hours at 4°C in cell lysis buffer containing 2 μg/ml anti-FLAG antibody and 25 μl protein A-agarose. The pellet after centrifugation was washed three times with cell lysis buffer containing 500mM NaCl to remove unbound protein. After washing and centrifuging, the precipitate was added to a sample buffer, electrophoresed on a 12.5% polyacrylamide gel, and transferred to a membrane. After electroporation, the nitrocellulose membrane was first blocked with TBS blocking buffer containing 5% skimmed milk powder for 1 hour, then incubated with blocking solution containing 1 μg/ml anti-HA antibody for 1 hour, and finally blocked with HRP-coupled anti-rabbit IgG Anti-reaction, ECL color development. E2F protein was detected in all co-immunoprecipitates transfected with E2F DNA, but not in co-immunoprecipitates transfected only with empty vector DNA or TFDP-3(HCA661) DNA. These data suggest that TFDP-3(HCA661) can efficiently interact with members of the E2F family containing heterodimerization domains and form heterodimers, further supporting the speculation that TFDP-3(HCA661) is a new member of the DP family .

实施例7.TFDP-3(HCA661)与E2F蛋白相互作用形成的异二聚体的DNA结合能力分析(EMSA,electrophoretic mobility shift assay)。Example 7. DNA binding ability analysis (EMSA, electrophoretic mobility shift assay) of the heterodimer formed by the interaction between TFDP-3 (HCA661) and E2F protein.

人宫颈癌细胞系HeLa细胞于37℃,5%CO2的细胞培养箱中培养,所用培养基为含100units/ml penicillin、100μg/ml streptomycin和10%新生小牛血清的DMEM培养基。转染前,HeLa细胞用胰酶消化,用无双抗的含10%新生小牛血清的新鲜DMEM培养基将细胞稀释于6孔板中,培养至细胞汇合度达到转染所需的90-95%。转染时,1.4μg的E2F DNA和1.4μgDP DNA,或1.4μg的空载体DNA,DNA总量加至2.8μg。Human cervical cancer cell line HeLa cells were cultured at 37°C in a 5% CO2 incubator, and the medium used was DMEM medium containing 100 units/ml penicillin, 100 μg/ml streptomycin and 10% newborn calf serum. Before transfection, HeLa cells were digested with trypsin, and the cells were diluted in 6-well plates with fresh DMEM medium containing 10% newborn calf serum without double antibody, and cultured until the cell confluency reached 90-95% required for transfection. %. For transfection, add 1.4 μg of E2F DNA and 1.4 μg of DP DNA, or 1.4 μg of empty vector DNA, to bring the total amount of DNA to 2.8 μg.

ipofectAMINE 2000reagent(Invitrogen)用来将DNA带入细胞内。HeLa细胞转染24-36小时后,按常规方法制备非变性细胞蛋白提取物,等量的HeLa细胞蛋白提取物加入含有10mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid(HEPES;pH7.9),375mM KCl,12.5mM MgCl2,0.5mM EDTA,5mM DTT,15%Ficoll,10mg/ml BSA,and 1mg/ml polydI/dC的EMSA缓冲液中,同时加入0.1ng的放射性32P同位素标记的含有特异性野生型E2F结合位点的寡核苷酸探针(ATTFAAG TTTCGCGCCCTITCCAA)在室温温育10~15分钟。反应混合物然后注入5%非变性聚丙烯酰氨凝胶在4℃恒压180V电泳2.25小时,干胶,在-70℃放射自显影分析4-16小时。为了检测蛋白结合野生型DNA探针的特异性,反应液中加入20倍于野生型探针量的含有E2F突变位点的未标记的双链寡核苷酸探针作为竞争分子(ATTTAAG TTTCGatCCCTITCTCAA)。ipofectAMINE 2000 reagent (Invitrogen) was used to bring DNA into cells. After 24-36 hours of HeLa cell transfection, non-denatured cell protein extracts were prepared according to conventional methods, and an equal amount of HeLa cell protein extracts were added containing 10mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES; pH7. 9), 375mM KCl, 12.5mM MgCl2, 0.5mM EDTA, 5mM DTT, 15% Ficoll, 10mg/ml BSA, and 1mg/ml polydI/dC in the EMSA buffer, while adding 0.1ng of radioactive 32 P isotope-labeled Oligonucleotide probes (ATTFAAG TTTCGCGCCC TITCCAA) containing specific wild-type E2F binding sites were incubated at room temperature for 10-15 minutes. The reaction mixture was then poured into a 5% non-denaturing polyacrylamide gel for 2.25 hours at a constant voltage of 180V at 4°C, and the dried gel was analyzed by autoradiography at -70°C for 4-16 hours. In order to detect the specificity of the protein binding to the wild-type DNA probe, an unlabeled double-stranded oligonucleotide probe containing an E2F mutation site 20 times the amount of the wild-type probe was added to the reaction solution as a competitor molecule (ATTTAAG TTTCGatCCC TITCTCAA ).

如图8所示,因为有内源性E2F基础水平的存在,单个E2F或DP转染时,它们的DNA结合能力仍处在基础水平(显影带2、3、6、9与1比较),表明单独转染E2F或DP并不能提高其DNA结合活性。当TFDP-1与E2F共转染时,E2F/TFDP-1异二聚体结合DNA的能力与单独转染E2F相比显著地增强了(显影带5与3、8与6、11与9相比)。相反,TFDP-3(HCA661)与E2F共转时,E2F/TFDP-3(HCA661)异二聚体的DNA结合能力并没有得到显著地提高(显影带4与3、7与6、10与9相比)。这表明,TFDP-3(HCA661)蛋白中可能存在着破坏DNA结合力的尚未鉴定的基序,从而导致E2F/TFDP-3异二聚体丧失结合E2F DNA识别位点。As shown in Figure 8, because of the existence of the basal level of endogenous E2F, when a single E2F or DP is transfected, their DNA binding ability is still at the basal level (compared with 1 in the development zone 2, 3, 6, 9), It indicated that transfection of E2F or DP alone could not improve its DNA binding activity. When TFDP-1 and E2F were co-transfected, the ability of E2F/TFDP-1 heterodimer to bind DNA was significantly enhanced compared with transfection of E2F alone (developing bands 5 and 3, 8 and 6, 11 and 9 Compare). On the contrary, when TFDP-3(HCA661) was co-transformed with E2F, the DNA binding ability of E2F/TFDP-3(HCA661) heterodimer was not significantly improved (developing bands 4 and 3, 7 and 6, 10 and 9 compared to). This suggests that there may be an unidentified motif in the TFDP-3(HCA661) protein that disrupts DNA binding, resulting in the loss of E2F/TFDP-3 heterodimer binding to the E2F DNA recognition site.

实施例8.TFDP-3(HCA661)的亚细胞定位Example 8. Subcellular localization of TFDP-3 (HCA661)

SV40转化的绿猴肾细胞系COS-7细胞于37℃,5%CO2的细胞培养箱中培养,所用培养基为含100units/ml penicillin、100μg/ml streptomycin和10%新生小牛血清的DMEM培养基。转染前,COS-7细胞用胰酶消化,用无双抗的含10%新生小牛血清的新鲜DMEM培养基将细胞稀释至8×104cells/ml,各加入1ml于24孔板中,培养至细胞汇合度达到转染所需的90-95%。单独转染时,280ng的EGFP-tagged E2F质粒DNA或280ng FLAG-tagged DP质粒DNA与280ng的空载体DNA,DNA总量加至560ng,同时,pEGFP-N1作为阴性参照。共同转染时,280ng的EGFP-tagged E2F质粒DNA和280ng FLAG-tagged DP质粒DNA,DNA总量加至560ng。LipofectAMINE 2000reagent(Invitrogen)用来将DNA带入COS-7细胞内。转染后24小时用1×PBS稍加洗涤,然后加入-70℃预冷的甲醇在-20℃固定20分钟,加入含0.2%Triton X-100的1×PBS通透细胞膜4分钟。用含1%BSA的1×PBS封闭液封闭非特异性抗体结合位点后,固定的COS-7细胞在室温于含1μg/ml抗FLAG M2单克隆抗体和1%BSA的1xPBS中温育1小时,用1xPBS洗涤三次后,加入含1∶100稀释的tetramethylrhodamineisothiocyanate(TRITC)偶联的山羊抗小鼠IgG的二抗和1%BSA的1x PBS于室温反应1小时。COS-7细胞核用10μg/ml Hoechst 33342逆染,E2F采用EGFP标记和检测。通过配备了CCD的荧光显微镜采集免疫荧光图像,所有图像通过Adobe Photoshop7.0.1版处理。SV40-transformed green monkey kidney cell line COS-7 cells were cultured in a cell incubator at 37°C with 5% CO2, and the medium used was DMEM culture containing 100 units/ml penicillin, 100 μg/ml streptomycin and 10% newborn calf serum base. Before transfection, COS-7 cells were digested with trypsin, and the cells were diluted to 8×10 4 cells/ml with fresh DMEM medium containing 10% newborn calf serum without double antibody, and 1 ml of each was added to a 24-well plate. Grow until cells are 90-95% confluent for transfection. When transfected alone, 280ng of EGFP-tagged E2F plasmid DNA or 280ng of FLAG-tagged DP plasmid DNA and 280ng of empty vector DNA were added to the total amount of DNA to 560ng. Meanwhile, pEGFP-N1 was used as a negative reference. For co-transfection, 280ng of EGFP-tagged E2F plasmid DNA and 280ng of FLAG-tagged DP plasmid DNA were added, and the total amount of DNA was added to 560ng. LipofectAMINE 2000 reagent (Invitrogen) was used to bring DNA into COS-7 cells. 24 hours after transfection, wash slightly with 1×PBS, then add -70°C pre-cooled methanol to fix at -20°C for 20 minutes, add 1×PBS containing 0.2% Triton X-100 to permeabilize the cell membrane for 4 minutes. After blocking non-specific antibody binding sites with 1×PBS blocking solution containing 1% BSA, fixed COS-7 cells were incubated in 1×PBS containing 1 μg/ml anti-FLAG M2 monoclonal antibody and 1% BSA for 1 hour at room temperature, After washing three times with 1xPBS, a secondary antibody containing goat anti-mouse IgG conjugated to tetramethylrhodamineisothiocyanate (TRITC) diluted 1:100 and 1% BSA was added in 1xPBS for 1 hour at room temperature. COS-7 nuclei were counterstained with 10 μg/ml Hoechst 33342, and E2F was labeled and detected with EGFP. Immunofluorescence images were collected by a fluorescence microscope equipped with a CCD, and all images were processed by Adobe Photoshop version 7.0.1.

实验结果表明,当单独转染时,TFDP-3(HCA661)和TFDP-1均定位于COS-7细胞的细胞浆内,E2F-1定位于细胞核内,而E2F-4则定位于细胞浆内(见图9A)。E2F-2、E2F-3也定位于细胞核内,而E2F-5定位于细胞浆内(未显示)。The experimental results showed that when transfected alone, both TFDP-3 (HCA661) and TFDP-1 were localized in the cytoplasm of COS-7 cells, E2F-1 was localized in the nucleus, and E2F-4 was localized in the cytoplasm (See Figure 9A). E2F-2, E2F-3 were also localized in the nucleus, while E2F-5 was localized in the cytoplasm (not shown).

要发挥功能,DP家族成员必须与E2F家族成员形成异二聚体。因此,我们分析了蛋白与蛋白之间的相互作用对TFDP-3(HCA661)的亚细胞定位的影响。正如所推测的一样,TFDP-3(HCA661)与E2F-1(见图9B)、E2F-2或E2F-3(未显示)共同转染时,与TFDP-1类似,均定位于细胞核内。与E2F的第一个亚家族的定位相反,当与E2F-4(见图9B)或E2F-5(未显示)共同转染时,TFDP-3(HCA661)和TFDP-1仍然定位于细胞浆内。这些数据表明,TFDP-3(HCA661)的亚细胞定位与TFDP-1相一致。To function, DP family members must form heterodimers with E2F family members. Therefore, we analyzed the effect of protein-protein interactions on the subcellular localization of TFDP-3(HCA661). As speculated, TFDP-3 (HCA661 ), when co-transfected with E2F-1 (see FIG. 9B ), E2F-2 or E2F-3 (not shown), localized in the nucleus similar to TFDP-1. In contrast to the localization of the first subfamily of E2F, TFDP-3 (HCA661) and TFDP-1 remained cytoplasmically localized when co-transfected with E2F-4 (see Figure 9B) or E2F-5 (not shown) Inside. These data suggest that the subcellular localization of TFDP-3 (HCA661) is consistent with that of TFDP-1.

实施例9.TFDP-3(HCA661)的报告基因分析Example 9. Reporter gene analysis of TFDP-3 (HCA661)

人正常肝细胞系L02于37℃,5%CO2的细胞培养箱中培养,所用培养基为含100units/ml penicillin、100μg/ml streptomycin和10%新生小牛血清的DMEM培养基。转染前,L02细胞用胰酶消化,用无双抗的含10%新生小牛血清的新鲜DMEM培养基将细胞稀释至1×105cells/ml于24孔板中各加入1ml,并培养细胞使之汇合度达到转染所需的90-95%。报告基因分析中,DNA总量加至560ng,其中含140ng的报告基因6xE2F-firefly luciferase。执行TFDP-3(HCA661)对E2F/TFDP-1介导的转录激活的抑制效应实验中,DNA总量加至1,120ng。执行TFDP-3(HCA661)或TFDP-1对内源性E2F活性的影响时,DNA总量加至840ng。LipofectAMINE 2000reagent(Invitrogen)用来将DNA带入细胞内。L02细胞转染24小时后先用1xPBS稍加洗涤,将残留的培养基去除,然后加入被动裂解缓冲液(PLB),室温裂解15分钟后,收获裂解液并离心,除去细胞碎片,收获上清,按照厂商提供的操作手册使用双特异性luciferase分析系统分析产物。为了消除转染效率的差异对报告基因6xE2F-firefly luciferase值的影响,每次转染都加入140ng的pRL-SV40Renilla luciferase质粒作为内参。Human normal liver cell line L02 was cultured in a cell incubator at 37°C with 5% CO2, and the medium used was DMEM medium containing 100 units/ml penicillin, 100 μg/ml streptomycin and 10% newborn calf serum. Before transfection, L02 cells were digested with trypsin, and the cells were diluted to 1×10 5 cells/ml with fresh DMEM medium containing 10% newborn calf serum without double antibodies, and 1 ml was added to each 24-well plate, and the cells were cultured Bring to 90-95% confluency required for transfection. In reporter gene analysis, the total amount of DNA was added to 560ng, which contained 140ng of reporter gene 6xE2F-firefly luciferase. In the experiment of the inhibitory effect of TFDP-3 (HCA661) on E2F/TFDP-1-mediated transcriptional activation, the total amount of DNA was increased to 1,120ng. When performing effects of TFDP-3 (HCA661) or TFDP-1 on endogenous E2F activity, the total amount of DNA was added to 840 ng. LipofectAMINE 2000 reagent (Invitrogen) was used to bring DNA into cells. After 24 hours of transfection, L02 cells were washed with 1xPBS to remove the residual medium, then added passive lysis buffer (PLB), and lysed at room temperature for 15 minutes, harvested the lysate and centrifuged to remove cell debris, and harvested the supernatant , analyze the product using the bispecific luciferase analysis system according to the operation manual provided by the manufacturer. In order to eliminate the influence of the difference in transfection efficiency on the value of the reporter gene 6xE2F-firefly luciferase, 140ng of pRL-SV40Renilla luciferase plasmid was added to each transfection as an internal reference.

报告基因分析结果如图10A所示,表明E2F基因和DP基因单独转染时,140ng的TFDP-1对报告基因6xE2F-firefly luciferase产生了大约2倍的转录激活,同样,20ng的E2F-1或E2F-3也分别产生了10倍或30倍的转录激活,70ng的E2F-4或140ngE2F-5也产生了17倍或11倍的转染激活。当E2F与TFDP-1共转染时,别构激活了报告基因6xE2F-firefly luciferase,达到了30至70倍。然而,与TFDP-1形成鲜明对比的是,当E2F与TFDP-3(HCA661)共转染时,观察到了TFDP-3(HCA661)对E2F介导的转录激活产生了显著的抑制效应。同一实验至少重复三次(P<0.01)。The results of the reporter gene analysis are shown in Figure 10A, indicating that when the E2F gene and the DP gene were transfected alone, 140ng of TFDP-1 produced approximately 2-fold transcriptional activation of the reporter gene 6xE2F-firefly luciferase, and similarly, 20ng of E2F-1 or E2F-3 also produced 10-fold or 30-fold transcriptional activation, respectively, and 70 ng of E2F-4 or 140 ng E2F-5 also produced 17-fold or 11-fold transfection activation. When E2F was co-transfected with TFDP-1, the reporter gene 6xE2F-firefly luciferase was allosterically activated by 30- to 70-fold. However, in stark contrast to TFDP-1, when E2F was co-transfected with TFDP-3(HCA661), a significant inhibitory effect of TFDP-3(HCA661) on E2F-mediated transcriptional activation was observed. The same experiment was repeated at least three times (P<0.01).

TFDP-3(HCA661)具有抑制E2F介导的转录激活能力,因此,我们想进一步分析TFDP-3(HCA661)与E2F的相互作用是否能有效地抑制E2F/TFDP-1异二聚体介导的转录激活。实验中,E2F/TFDP-1的各种组合与0、140、280或560ng的TFDP-3(HCA661)共转染L02细胞,采用6xE2F-firefly luciferase报告基因分析系统分析TFDP-3(HCA661)对E2F/TFDP-1异二聚体的作用。TFDP-3(HCA661) has the ability to inhibit E2F-mediated transcriptional activation, therefore, we wanted to further analyze whether the interaction between TFDP-3(HCA661) and E2F could effectively inhibit E2F/TFDP-1 heterodimer-mediated Transcriptional activation. In the experiment, various combinations of E2F/TFDP-1 and 0, 140, 280 or 560ng of TFDP-3 (HCA661) were co-transfected into L02 cells, and the 6xE2F-firefly luciferase reporter gene analysis system was used to analyze the effect of TFDP-3 (HCA661) on Role of E2F/TFDP-1 heterodimers.

如上所述,所有E2F/TFDP-1的组合显著地提高了6xE2F-firefly luciferase报告基因的转录活性。当E2F/TFDP-1组合在TFDP-3(HCA661)存在时,E2F/TFDP-1的转录活性显著地被抑制了,而且是剂量依赖性的。甚至能完全阻断TFDP-1对E2F的别构激活(如图10B所示)。这个发现表明,尽管TFDP-3(HCA661)是DP家族的一个新成员,但它是作为一个抑制因子发挥功能的,抑制E2F依赖性靶基因的转录调节。As mentioned above, all E2F/TFDP-1 combinations significantly increased the transcriptional activity of the 6xE2F-firefly luciferase reporter gene. When the E2F/TFDP-1 combination was present in TFDP-3(HCA661), the transcriptional activity of E2F/TFDP-1 was significantly inhibited in a dose-dependent manner. It can even completely block the allosteric activation of E2F by TFDP-1 (as shown in Figure 10B). This finding suggests that, despite being a novel member of the DP family, TFDP-3 (HCA661) functions as a repressor, repressing the transcriptional regulation of E2F-dependent target genes.

最后,我们也评估了TFDP-3(HCA661)对内源性E2F活性的影响。如期所愿,FLAG-tagged TFDP-1增强了6xE2F-firefly luciferase报告基因的转录活性,而FLAG-tagged TFDP-3(HCA661)则抑制了6xE2F-firefly luciferase报告基因的转录活性,而且是剂量依赖性的(见图10C),这表明,TFDP-3(HCA661)有能力阻断内源性E2F复合物对6xE2F-firefly luciferase报告基因的转录激活。而且,我们也从用E2F的靶基因CyclinA天然调控序列构建的CyclinA-firefly luciferase报告基因中得到了相似的结果(未显示)。Finally, we also assessed the effect of TFDP-3(HCA661) on endogenous E2F activity. As expected, FLAG-tagged TFDP-1 enhanced the transcriptional activity of the 6xE2F-firefly luciferase reporter gene, while FLAG-tagged TFDP-3(HCA661) inhibited the transcriptional activity of the 6xE2F-firefly luciferase reporter gene in a dose-dependent manner (see Figure 10C), suggesting that TFDP-3(HCA661) has the ability to block the transcriptional activation of the 6xE2F-firefly luciferase reporter gene by the endogenous E2F complex. Moreover, we also obtained similar results from the CyclinA-firefly luciferase reporter gene constructed with the natural regulatory sequence of CyclinA, the target gene of E2F (not shown).

TFDP-3(HCA661)对E2F介导的转录的抑制能力与TFDP-3(HCA661)/E2F异二聚体丧失结合特异性E2F DNA结合序列的能力相一致。而且,TFDP-3(HCA661)的抑制效应也表明,TFDP-3(HCA661)可能在TFDP-3(HCA661)和TFDP-1共存时扮演着拮抗TFDP-1的角色。The ability of TFDP-3(HCA661) to suppress E2F-mediated transcription is consistent with the loss of the ability of TFDP-3(HCA661)/E2F heterodimers to bind specific E2F DNA-binding sequences. Moreover, the inhibitory effect of TFDP-3(HCA661) also indicated that TFDP-3(HCA661) may play the role of antagonizing TFDP-1 when TFDP-3(HCA661) and TFDP-1 coexist.

总之,所有上述结果表明,TFDP-3(HCA661)和TFDP-1之间的功能差异可能源于E2F/TFDP-3(HCA661)异二聚体的DNA结合力的丧失,抑制作用的分子基础应该存在于TFDP-3(HCA661)分子中,因为对某一个特定的E2F蛋白而言,其转录活性的高低取决于由E2F蛋白和DP蛋白共同组成的完整的DNA结合结构域的DNA结合能力的强弱。Taken together, all the above results suggest that the functional difference between TFDP-3(HCA661) and TFDP-1 may arise from the loss of DNA binding of the E2F/TFDP-3(HCA661) heterodimer and that the molecular basis for the inhibitory effect should be Exist in TFDP-3 (HCA661) molecule, because for a specific E2F protein, its transcriptional activity depends on the strength of the DNA binding ability of the complete DNA binding domain composed of E2F protein and DP protein weak.

实施例10.TFDP-3(HCA661)独特功能产生的分子基础的探索Example 10. Exploration of the molecular basis of the unique function of TFDP-3 (HCA661)

为了探索TFDP-3(HCA661)与E2F蛋白形成的异二聚体的DNA结合能力的丧失以及TFDP-3(HCA661)对E2F转录活性的抑制的分子基础,我们构建了TFDP-3(HCA661)和TFDP-1的替换突变体,采用6xE2F-luciferase报告基因分析系统分析其突变体的转录性质,间接评估TFDP-3(HCA661)与E2F蛋白形成的异二聚体的DNA结合能力。TFDP-3(HCA661)和TFDP-1的替换突变体以相应质粒为模板,通过PCR方法构建而成。先在替换位点分别设计正向突变引物和反向突变引物,引物内含有相应的需要替换的碱基,分别与TFDP-3(HCA661)或TFDP-1ORF的反向引物(DP3CF-OA或DP1CF-OA)和正向引物(DP3CF-OS或DP1CF-OS)配对,通过PCR合成两条小片段,然后再通过连接PCR将两条小片段连接成一个完整的基因。In order to explore the molecular basis of the loss of DNA-binding ability of the heterodimer formed by TFDP-3(HCA661) and E2F protein and the inhibition of E2F transcriptional activity by TFDP-3(HCA661), we constructed TFDP-3(HCA661) and For the replacement mutants of TFDP-1, the transcriptional properties of the mutants were analyzed using the 6xE2F-luciferase reporter gene analysis system, and the DNA binding ability of the heterodimer formed by TFDP-3 (HCA661) and E2F protein was indirectly evaluated. The replacement mutants of TFDP-3 (HCA661) and TFDP-1 were constructed by PCR using the corresponding plasmids as templates. First, design forward mutation primers and reverse mutation primers at the replacement site. The primers contain the corresponding bases that need to be replaced. -OA) and the forward primer (DP3CF-OS or DP1CF-OS) were paired, two small fragments were synthesized by PCR, and then the two small fragments were connected into a complete gene by ligation PCR.

下列突变体以pCDNA3-TFDP-3-FLAG and pCDNA3-TFDP-1-FLAG为模板,所用的突变引物如下所示:TFDP-3M,forward,5’-CGG CGC gtc TAC GAT GCC TTA AACGTG-3’;reverse,5’-ATC GTA gac GCG CCG TTT TAT GTT TTT C-3’;TFDP-1M,forward,5’-CGG CGC acc TAC GAT GCC TTA AAC GTG-3’;reverse,5’-ATC GTA ggtGCG CCG TCT TAT GTT TTT C-3’;TFDP-3MR,forward,5’-aag ggc cta cgg cat ttc tccatg aag gtc tgc gag aag GTG CAG AGG-3’;reverse,5’-ctt ctc gcagac ctt cat gga gaa atgccg tag gcc ctt GCC ATT CTTC-3’;TFDP-1MR,forward,5’-atg ggc ctg tgc cgt ctt tcc atgaag gtc tgg gag acg GTG CAG AGG-3’;reverse,5’-cgt ctc cca gac ctt cat gga aag acg gcacag gcc cat GCC ATT CTT C-3’.3D-1H,forward,5’-ggt ctg acc acc AAC TCG GCTCAG-3’;reverse,5’-ctg agc cga gtt GGT GGT CAG ACC-3’;1D-3H,forward,5’-ggt ctgccc acc AAC TCG GCT CAG-3’;reverse,5’-ctg agc cga gtt GGT GGG CAG ACC-3’。The following mutants use pCDNA3-TFDP-3-FLAG and pCDNA3-TFDP-1-FLAG as templates, and the mutation primers used are as follows: TFDP-3M, forward, 5'-CGG CGC gtc TAC GAT GCC TTA AACGTG-3' ; reverse, 5'-ATC GTA gac GCG CCG TTT TAT GTT TTT C-3'; TFDP-1M, forward, 5'-CGG CGC acc TAC GAT GCC TTA AAC GTG-3'; reverse, 5'-ATC GTA ggtGCG CCG TCT TAT GTT TTT C-3'; TFDP-3MR, forward, 5'-aag ggc cta cgg cat ttc tccatg aag gtc tgc gag aag GTG CAG AGG-3'; reverse, 5'-ctt ctc gcagac ctt cat gga gaa atgccg tag gcc ctt GCC ATT CTTC-3'; TFDP-1MR, forward, 5'-atg ggc ctg tgc cgt ctt tcc atgaag gtc tgg gag acg GTG CAG AGG-3'; reverse, 5'-cgt ctc cca gac ctt cat gga aag ag g gcacag gcc cat GCC ATT CTT C-3'.3D-1H, forward, 5'-ggt ctg acc acc AAC TCG GCTCAG-3'; reverse, 5'-ctg agc cga gtt GGT GGT CAG ACC-3' ; 1D-3H, forward, 5'-ggt ctgccc acc AAC TCG GCT CAG-3'; reverse, 5'-ctg agc cga gtt GGT GGG CAG ACC-3'.

TFDP-3ΔH和TFDP-3ΔD、TFDP-1ΔH和TFDP-1ΔD的结构域替换突变体以3D-1H and 1D-3H为模板,PCR所用的突变引物如下:TFDP-3ΔH,forward,5’-acc agcaag aag ACC GTC ATC AAC-3’;reverse,5’-gtt gat gac ggt CTT CTT GCT GGT G-3’;TFDP-1ΔH,forward,5’-agt age aag aag ACG GTC ATC GAC-3’;reverse,5’-gtc gat gaccgt CTT CTT GCT AC-3’;TFDP-3ΔD,forward,5’-gga gag aag aat GGC AAG GGC CTAC-3’;reverse,5’-tag gec ctt gcc ATT CTT CTC TCC-3’;TFDP-1ΔD,forward,5’-gga gagaag aat GGC ATG GGC CTG-3’;reverse,5’-cag gcc cat gcc ATT CTT CTC TCC-3’。The domain substitution mutants of TFDP-3ΔH and TFDP-3ΔD, TFDP-1ΔH and TFDP-1ΔD use 3D-1H and 1D-3H as templates, and the mutation primers used in PCR are as follows: TFDP-3ΔH, forward, 5'-acc agcaag aag ACC GTC ATC AAC-3'; reverse, 5'-gtt gat gac ggt CTT CTT GCT GGT G-3'; TFDP-1ΔH, forward, 5'-agt age aag aag ACG GTC ATC GAC-3'; reverse, 5'-gtc gat gaccgt CTT CTT GCT AC-3'; TFDP-3ΔD, forward, 5'-gga gag aag aat GGC AAG GGC CTAC-3'; reverse, 5'-tag gec ctt gcc ATT CTT CTC TCC-3 '; TFDP-1ΔD, forward, 5'-gga gagaag aat GGC ATG GGC CTG-3'; reverse, 5'-cag gcc cat gcc ATT CTT CTC TCC-3'.

TFDP-3ΔDH以TFDP-3ΔD和TFDP-3ΔH为模板,突变引物如下:forward,5’-ggtctg ccc acc AAC TCG GCT CAG-3’;reverse,5’-ctg agc cga gtt GGT GGG CAG ACC-3’.TFDP-1ΔDH以TFDP-1ΔD和TFDP-1ΔH为模板,突变引物如下:forward,5-ggt ctg accacc AAC TCG GCT CAG-3;reverse,5-ctg agc cga gtt GGT GGT CAG ACC-3’。TFDP-3ΔDH uses TFDP-3ΔD and TFDP-3ΔH as templates, and the mutation primers are as follows: forward, 5'-ggtctg ccc acc AAC TCG GCT CAG-3'; reverse, 5'-ctg agc cga gtt GGT GGG CAG ACC-3' .TFDP-1ΔDH uses TFDP-1ΔD and TFDP-1ΔH as templates, and the mutation primers are as follows: forward, 5-ggt ctg accacc AAC TCG GCT CAG-3; reverse, 5-ctg agc cga gtt GGT GGT CAG ACC-3'.

TFDP-3MR2~TFDP-3MR5替换突变体以pCDNA3-TFDP-3-FLAG质粒为模板,突变引物如下:TFDP-3MR2,forward,5’-tac aac gaa gtg gca gac gag ctg gtt gcg gag ttc agtgct gcc gac AACC-3’;reverse,5’-gtc ggc agc act gaa ctc cgc aac cag ctc gtc tgc cac ttc gttgta GGAAG-3’;TFDP-3MR3,forward,5’-atc tta cca aac gag tca gct tat gac cag aaa aac ataaga CGGCGC-3’;reverse,5’-tct tat gtt ttt ctg gtc ata agc tga ctc gtt tgg taa gatGTGGTTG-3’;TFDP-3MR4’,forward,5’-aag gag aag aag gag atc aag tgg att ggt ctg cccACCAACTCG-3’;reverse,5’-ggg cag acc aat cca ctt gat ctc ctt ctt ctc ctt GGAGATG-3’;TFDP-3MR5,forward,5’-gca gac gag ctg gtt gcg gag ttc agt GCT GCC AGC-3’;reverse,5’-act gaa ctc cgc aac cag ctc gtc tgc CACTTC CTG-3’。TFDP-3MR2~TFDP-3MR5 replacement mutants use the pCDNA3-TFDP-3-FLAG plasmid as a template, and the mutation primers are as follows: TFDP-3MR2, forward, 5'-tac aac gaa gtg gca gac gag ctg gtt gcg gag ttc agtgct gcc gac AACC-3'; reverse, 5'-gtc ggc agc act gaa ctc cgc aac cag ctc gtc tgc cac ttc gttgta GGAAG-3'; TFDP-3MR3, forward, 5'-atc tta cca aac gag tca gct tat gac cag aaa aac ataaga CGGCGC-3'; reverse, 5'-tct tat gtt ttt ctg gtc ata agc tga ctc gtt tgg taa gatGTGGTTG-3'; TFDP-3MR4', forward, 5'-aag gag aag aag gag atc aag tgg att ggt ctg cccACCAACTCG-3'; reverse, 5'-ggg cag acc aat cca ctt gat ctc ctt ctt ctc ctt GGAGATG-3'; TFDP-3MR5, forward, 5'-gca gac gag ctg gtt gcg gag ttc agt GCT GCC AGC- 3'; reverse, 5'-act gaa ctc cgc aac cag ctc gtc tgc CACTTC CTG-3'.

下列突变体以pCDNA3-TFDP-3-FLAG质粒为模板,突变引物如下:TFDP-3CY,forward,5’-G ACC ACT TCC tac CAG GAA GTG-3’;reverse,5’-CAC TTC CTG gtaGGAAGT GGT C-3’;TFDP-3QN,forward,5’-C ACT TCC TGC aac GAA GTG GTG-3’;reverse,5’-CAC CAC TTC gtt GCA GGAAGT G-3’;TFDP-3VA,forward,5’-CAG GAAGTG gca GGC GAG CTG-3’;reverse,5’-CAG CTC GCC tgc CAC TTC CTG-3’;TFDP-3GD,forward,5’-GAA GTG GTG gac GAG CTG GTC-3’;reverse,5’-GAC CAGCTC gtc CAC CAC TTC-3’;TFDP-3KE,forward 5’-CTG GTC GCC gag TTC AGAGC-3’;reverse,5’-GC TCT GAA ctc GGC GAC CAG-3’;TFDP-3RS,forward,5’-C AAGTTC agt GCT GCC AGC AAC-3’;reverse,5’-GTT GCT GGC AGC act GAA CTT G-3’;TFDP-3SD,forward,5’-C AGA GCT GCC gac AAC CAC GC-3’;reverse,5’-GC GTGGTT gtc GGCAGC TCT G-3’。The following mutants use the pCDNA3-TFDP-3-FLAG plasmid as a template, and the mutation primers are as follows: TFDP-3CY, forward, 5'-G ACC ACT TCC tac CAG GAA GTG-3'; reverse, 5'-CAC TTC CTG gtaGGAAGT GGT C-3'; TFDP-3QN, forward, 5'-C ACT TCC TGC aac GAA GTG GTG-3'; reverse, 5'-CAC CAC TTC gtt GCA GGAAGT G-3'; TFDP-3VA, forward, 5' -CAG GAAGTG gca GGC GAG CTG-3'; reverse, 5'-CAG CTC GCC tgc CAC TTC CTG-3'; TFDP-3GD, forward, 5'-GAA GTG GTG gac GAG CTG GTC-3'; reverse, 5 '-GAC CAGCTC gtc CAC CAC TTC-3'; TFDP-3KE, forward 5'-CTG GTC GCC gag TTC AGAGC-3'; reverse, 5'-GC TCT GAA ctc GGC GAC CAG-3'; TFDP-3RS, forward, 5'-C AAGTTC agt GCT GCC AGC AAC-3'; reverse, 5'-GTT GCT GGC AGC act GAA CTT G-3'; TFDP-3SD, forward, 5'-C AGA GCT GCC gac AAC CAC GC -3'; reverse, 5'-GC GTGGTT gtc GGCAGC TCT G-3'.

所有突变体测序校正后,经Hind III-BamHI限制性内切酶消化后,克隆进pCDNA3-FLAG表达载体中,图11显示了突变体的氨基酸序列。图12A显示了各个突变体的蛋白表达。通过6xE2F-luciferase报告基因分析系统分析其突变体对E2F-4转录活性的影响,间接评估TFDP-3(HCA661)与E2F蛋白形成的异二聚体的DNA结合能力。具体实验程序与实施例9中所述方法相同。All mutants were sequenced and corrected, digested with Hind III-BamHI restriction endonuclease, and cloned into the pCDNA3-FLAG expression vector. Figure 11 shows the amino acid sequence of the mutants. Figure 12A shows the protein expression of each mutant. The 6xE2F-luciferase reporter gene assay system was used to analyze the effect of its mutants on the transcriptional activity of E2F-4, and indirectly evaluate the DNA-binding ability of the heterodimer formed by TFDP-3 (HCA661) and E2F protein. The specific experimental procedure is the same as the method described in Example 9.

首先,我们根据以前的研究结果分析了TFDP-3(HCA661)与TFDP-1的DNA结合结构域的氨基酸组成的差异,在RRXYD DNA识别模序中对第三个氨基酸进行了单个氨基酸替换,产生两个替换突变体(TFDP-3M:aa164T→V;TFDP-1M:aa169V→T),分析该位氨基酸的非保守性替换是否是导致TFDP-3(HCA661)的独特功能的原因。6xE2F-firefly luciferase报告基因分析表明,该位氨基酸的替换与TFDP-3(HCA661)的功能无关。此外,根据晶体结构,在DNA结合结构域内,另有13个氨基酸参与了与蛋白的异二聚化和DNA磷酸骨架的相互作用。其中,在TFDP-3(HCA661)中,有三个氨基酸与TFDP-1和TFDP-2不同,为此,我们设计了一个13个氨基酸的替换(TFDP-3MR:aa109-121 MGL CRLSMKV WE TKGL RHFSMKV CE K;TFDP-1MR:aa114-126 KGL RHFSMKV CE KMGL CRLSMKV WE T)。然而,这些替换仍然不能逆转TFDP-3(HCA661)的功能。First, we analyzed the differences in the amino acid composition of the DNA-binding domains of TFDP-3 (HCA661) and TFDP-1 based on previous findings, and performed a single amino acid substitution for the third amino acid in the RRXYD DNA recognition motif, yielding Two substitution mutants (TFDP-3M: aa164T→V; TFDP-1M: aa169V→T), to analyze whether the non-conservative substitution of this amino acid is the cause of the unique function of TFDP-3 (HCA661). 6xE2F-firefly luciferase reporter gene analysis showed that the amino acid substitution at this position has nothing to do with the function of TFDP-3(HCA661). Furthermore, within the DNA-binding domain, another 13 amino acids are involved in the heterodimerization of the protein and the interaction with the DNA phosphate backbone, according to the crystal structure. Among them, in TFDP-3 (HCA661), there are three amino acids that are different from TFDP-1 and TFDP-2. Therefore, we designed a 13-amino acid substitution (TFDP-3MR: aa109-121 M GL CRL SMKV W E TK GL RHF SMKV C E K ; TFDP-1MR: aa114-126 K GL RHF SMKV C E KM GL CRL SMKV W E T ). However, these substitutions still cannot reverse the function of TFDP-3(HCA661).

运用类似的序列替换分析,我们分析了TFDP-3(HCA661)和TFDP-1的全长氨基酸序列,根据结构域的组成,将其分成4个组成部分,即氨基端未知功能区(UNT)、DNA结合结构域(DBD)、异二聚化结构域(HD)和羧基端未知功能区(UCT),并构建了3D-1H(含TFDP-3(HCA661)的UNT和DBD和TFDP-1的HD和UCT)和1D-3H(含TFDP-1的UNT和DBD和TFDP-3(HCA661)的HD和UCT),报告基因分析表明,1D-3H产生的E2F介导的转录激活水平相当于野生型TFDP-1产生的水平,不受TFDP-3(HCA661)的AA192-405的影响。相反,3D-1H表现出对E2F介导的转录激活明显的抑制效应。这表明,TFDP-3(HCA661)独特功能产生的分子基础应该位于TFDP-3(HCA661)的前半部分(AA1-191)。Using a similar sequence substitution analysis, we analyzed the full-length amino acid sequences of TFDP-3 (HCA661) and TFDP-1, and divided them into four components according to the composition of the structural domains, namely, the amino-terminal unknown functional region (UNT), DNA-binding domain (DBD), heterodimerization domain (HD) and carboxy-terminal unknown functional domain (UCT), and constructed 3D-1H (containing UNT of TFDP-3 (HCA661) and DBD and TFDP-1 HD and UCT) and 1D-3H (UNT with TFDP-1 and HD and UCT with DBD and TFDP-3 (HCA661)), reporter gene analysis showed that 1D-3H produced levels of E2F-mediated transcriptional activation comparable to wild-type The level produced by type TFDP-1 was not affected by AA192-405 of TFDP-3 (HCA661). In contrast, 3D-1H exhibited a pronounced inhibitory effect on E2F-mediated transcriptional activation. This indicates that the molecular basis for the unique function of TFDP-3(HCA661) should be located in the first half of TFDP-3(HCA661) (AA1-191).

为了进一步分析功能产生的分子基础,我们通过PCR方法从3D-1H and 1D-3H中衍生出了如下的替换突变体:TFDP-3ΔD(含TFDP-1的DBD)、TFDP-1ΔD(含TFDP-3(HCA661)的DBD)、TFDP-3ΔH(含TFDP-1的HD)、TFDP-1ΔH(含TFDP-3(HCA661)的HD)、TFDP-3ΔDH(含TFDP-1的DBD和HD)、TFDP-1ΔDH(含TFDP-3(HCA661)的DBD和HD)。6xE2F-firefly luciferase报告基因结果表明,TFDP-3ΔH和TFDP-1ΔH产生的转录抑制或激活水平分别与它们相应的野生型蛋白相似,相反,随着DNA结合结构域的替换,TFDP-3ΔDH和TFDP-3ΔD产生了类似TFDP-1的对E2F转录的别构激活,而TFDP-1ΔDH和TFDP-1ΔD则产生了类似TFDP-3(HCA661)的对E2F转录的抑制效应。这些数据表明,TFDP-3(HCA661)高效率地抑制E2F介导的转录激活的功能区位于TFDP-3(HCA661)的DNA结合结构域(见图12B)。In order to further analyze the molecular basis of function generation, we derived the following substitution mutants from 3D-1H and 1D-3H by PCR method: TFDP-3ΔD (DBD containing TFDP-1), TFDP-1ΔD (containing TFDP-1 3 (DBD of HCA661), TFDP-3ΔH (HD with TFDP-1), TFDP-1ΔH (HD with TFDP-3 (HCA661)), TFDP-3ΔDH (DBD and HD with TFDP-1), TFDP - 1ΔDH (DBD and HD with TFDP-3 (HCA661 )). The 6xE2F-firefly luciferase reporter gene results indicated that TFDP-3ΔH and TFDP-1ΔH produced similar levels of transcriptional repression or activation, respectively, as their wild-type counterparts, whereas, with replacement of the DNA-binding domain, TFDP-3ΔDH and TFDP- 3ΔD produced TFDP-1-like allosteric activation of E2F transcription, while TFDP-1ΔDH and TFDP-1ΔD produced TFDP-3(HCA661)-like repressive effects on E2F transcription. These data indicate that the functional region where TFDP-3(HCA661) efficiently inhibits E2F-mediated transcriptional activation is located in the DNA-binding domain of TFDP-3(HCA661) (see FIG. 12B ).

接下来,我们采用与TFDP-3MR和TFDP-3M构建方法相同的策略,将TFDP-3(HCA661)的DNA结合结构域中与TFDP-1有差异的其余13个氨基酸划分成三部分,分别用TFDP-1相应氨基酸序列替换TFDP-3(HCA661)序列,产生TFDP-3MR2(AA130-145  CQEV VGELVA KF RAA SYNEV ADELVA EF SAA D),TFDP-3MR3(AA148-161  ASPNESAYD VKNI KILPNESAYD QKNI R)和TFDP-3MR4(AA179-190REKK KIKWIGL TKEKK EIKWIGL P)。报告基因分析显示,TFDP-3MR3和TFDP-3MR4替换突变体没有提高E2F的转录活性,产生了与野生型TFDP-3(HCA661)相似的抑制效应。相反,TFDP-3MR2产生的转录激活水平与单独E2F转染时所产生的转染激活相似。该突变体也具有抑制E2F/TFDP-1转当录激活的能力(未显示)。另一个在TFDP-3MR2内部衍生出的替换突变体TFDP-3MR5(AA134-142VGELVA KF RADELVA EF S)对E2F介导的转录激活具有较弱的抑制作用。因此,TFDP-3(HCA661)DNA结合结构域的AA130-145序列是产生抑制效应所必需的(见图12C)。此外,为了寻找关键性氨基酸,我们在该区域内产生了另一组单个氨基酸替换突变体TFDP-3CY(AA130C→Y),TFDP-3QN(AA131Q→N),TFDP-3VA(AA134V→A),TFDP-3GD(AA135G→D),TFDP-3KE(AA140K→E),TFDP-3RS(AA142R→S)和TFDP-3SD(AA145S→D),但结果表明,TFDP-3(HCA661)功能的产生可能是多个氨基酸共同作用的结果。Next, we used the same strategy as the construction method of TFDP-3MR and TFDP-3M to divide the remaining 13 amino acids in the DNA-binding domain of TFDP-3 (HCA661) that are different from TFDP-1 into three parts, respectively using The corresponding amino acid sequence of TFDP-1 replaces the TFDP-3 (HCA661) sequence to generate TFDP-3MR2 (AA130-145 CQ EV VG ELVA K F R AA SYN EV AD ELVA E F S AAD ), TFDP-3MR3 (AA148- 161 AS PNESAYD V KNI KIL PNESAYD Q KNI R ) and TFDP-3MR4 (AA179-190 R EKK K IKWIGL TK EKK E IKWIGL P ). Reporter gene analysis revealed that the TFDP-3MR3 and TFDP-3MR4 substitution mutants did not increase the transcriptional activity of E2F, producing similar inhibitory effects as wild-type TFDP-3(HCA661). In contrast, TFDP-3MR2 produced a level of transcriptional activation similar to that produced when transfected with E2F alone. This mutant also had the ability to inhibit transcriptional activation of E2F/TFDP-1 (not shown). Another substitution mutant, TFDP-3MR5 (AA134-142 VG ELVA K FRAD ELVA E FS ) derived within TFDP-3MR2, had a weaker inhibitory effect on E2F-mediated transcriptional activation. Thus, the AA130-145 sequence of the DNA binding domain of TFDP-3 (HCA661 ) is required for the inhibitory effect (see Figure 12C). In addition, in order to find key amino acids, we generated another group of single amino acid substitution mutants TFDP-3CY(AA130C→Y), TFDP-3QN(AA131Q→N), TFDP-3VA(AA134V→A), TFDP-3GD(AA135G→D), TFDP-3KE(AA140K→E), TFDP-3RS(AA142R→S) and TFDP-3SD(AA145S→D), but the results suggest that the generation of TFDP-3(HCA661) function may It is the result of the joint action of multiple amino acids.

总之,报告基因分析结果表明,TFDP-3(HCA661)的DNA结合结构域(AA108-AA191)是导致TFDP-3(HCA661)与E2F蛋白形成的异二聚体丧失DNA结合能力的根本原因,从而抑制E2F的转录活性,与蛋白的其余部分的空间结构无关,包括异二聚化结构域。对DNA结合结构域的进一步分析表明,AA130-AA145(CQEVVGELVAKFRAAS)是TFDP-3(HCA661)对E2F的DNA结合产生抑制作用的必要条件。In summary, the results of the reporter gene analysis indicated that the DNA-binding domain (AA108-AA191) of TFDP-3(HCA661) was the root cause of the loss of DNA-binding ability of the heterodimer formed by TFDP-3(HCA661) and E2F protein, thereby Inhibits the transcriptional activity of E2F independently of the spatial structure of the rest of the protein, including the heterodimerization domain. Further analysis of the DNA-binding domain revealed that AA130-AA145 (CQEVVGELVAKFRAAS) is required for the inhibitory effect of TFDP-3 (HCA661) on E2F DNA binding.

                                         sequence-listing.txtSequence-listing.txt

                           SEQUENCE LISTINGSEQUENCE LISTING

 <110>北京大学<110>Peking University

 <120>一种肝癌-睾丸特异性抗原蛋白质和抗原肽<120> A liver cancer-testis specific antigenic protein and antigenic peptide

 <130>FPI05135<130>FPI05135

 <160>2<160>2

 <170>PatentIn version 3.1<170>PatentIn version 3.1

 <210>1<210>1

 <211>405<211>405

 <212>PRT<212>PRT

 <213>Homo sapiens<213>Homo sapiens

 <400>1<400>1

 Met Ala Lys Tyr Val Ser Leu Thr Glu Ala Asn Glu Glu Leu Lys ValMet Ala Lys Tyr Val Ser Leu Thr Glu Ala Asn Glu Glu Leu Lys Val

 1               5                   10                  151 5 10 15

 Leu Met Asp Glu Asn Gln Thr Ser Arg Pro Val Ala Val His Thr SerLeu Met Asp Glu Asn Gln Thr Ser Arg Pro Val Ala Val His Thr Ser

             20                  25                  3020 25 30

 Thr Val Asn Pro Leu Gly Lys Gln Leu Leu Pro Lys Thr Phe Gly GlnThr Val Asn Pro Leu Gly Lys Gln Leu Leu Pro Lys Thr Phe Gly Gln

         35                  40                  4535 40 45

 Ser Ser Val Asn Ile Asp Gln Gln Val Val Ile Gly Met Pro Gln ArgSer Ser Val Asn Ile Asp Gln Gln Val Val Ile Gly Met Pro Gln Arg

     50                  55                  6050 55 60

 Pro Ala Ala Ser Asn Ile Pro Val Val Gly Ser Pro Asn Pro Pro SerPro Ala Ala Ser Asn Ile Pro Val Val Gly Ser Pro Asn Pro Pro Ser

 65                  70                  75                  8065 70 75 80

 Thr His Phe Ala Ser Gln Asn Gln His Ser Tyr Ser Ser Pro Pro TrpThr His Phe Ala Ser Gln Asn Gln His Ser Tyr Ser Ser Pro Pro Trp

                 85                  90                  9585 90 95

 Ala Gly Gln His Asn Arg Lys Gly Glu Lys Asn Gly Met Gly Leu CysAla Gly Gln His Asn Arg Lys Gly Glu Lys Asn Gly Met Gly Leu Cys

             100                 105                 110100 105 110

 Arg Leu Ser Met Lys Val Trp Glu Thr Val Gln Arg Lys Gly Thr ThrArg Leu Ser Met Lys Val Trp Glu Thr Val Gln Arg Lys Gly Thr Thr

         115                 120                 125115 120 125

 Ser Cys Gln Glu Val Val Gly Glu Leu Val Ala Lys Phe Arg Ala AlaSer Cys Gln Glu Val Val Gly Glu Leu Val Ala Lys Phe Arg Ala Ala

     130                 135                 140130 135 140

 Ser Ash His Ala Ser Pro Asn Glu Ser Ala Tyr Asp Val Lys Asn IleSer Ash His Ala Ser Pro Asn Glu Ser Ala Tyr Asp Val Lys Asn Ile

 145                 150                 155                 160145 150 155 160

 Lys Arg Arg Thr Tyr Asp Ala Leu Asn Val Leu Met Ala Met Asn IleLys Arg Arg Thr Tyr Asp Ala Leu Asn Val Leu Met Ala Met Asn Ile

                 165                  170                175165 170 175

 Ile Ser Arg Glu Lys Lys Lys Ile Lys Trp Ile Gly Leu Thr Thr AsnIle Ser Arg Glu Lys Lys Lys Ile Lys Trp Ile Gly Leu Thr Thr Asn

             180                 185                 190180 185 190

 Ser Ala Gln Asn Cys Gln Asn Leu Arg Val G1u Arg Gln Lys Arg LeuSer Ala Gln Asn Cys Gln Asn Leu Arg Val G1u Arg Gln Lys Arg Leu

                               sequence-listing.txtSequence-listing.txt

        195                200                  205195 200 205

Glu Arg Ile Lys Gln Lys Gln Ser Glu Leu Gln Gln Leu Ile Leu GlnGlu Arg Ile Lys Gln Lys Gln Ser Glu Leu Gln Gln Leu Ile Leu Gln

    210                 215                 220210 215 220

Gln Ile Ala Phe Lys Asn Leu Val Leu Arg Ash Gln Tyr Val Glu GluGln Ile Ala Phe Lys Asn Leu Val Leu Arg Ash Gln Tyr Val Glu Glu

225                 230                 235                 240225 230 235 240

Gln Val Ser Gln Arg Pro Leu Pro Asn Ser Val Ile His Val Pro PheGln Val Ser Gln Arg Pro Leu Pro Asn Ser Val Ile His Val Pro Phe

                245                 250                 255245 250 255

Ile Ile Ile Ser Ser Ser Lys Lys Thr Val Ile Asn Cys Ser Ile SerIle Ile Ile Ser Ser Ser Lys Lys Thr Val Ile Asn Cys Ser Ile Ser

            260                 265                 270260 265 270

Asp Asp Lys Ser Glu Tyr Leu Phe Lys Phe Ash Ser Ser Phe Glu IleAsp Asp Lys Ser Glu Tyr Leu Phe Lys Phe Ash Ser Ser Phe Glu Ile

        275                 280                 285275 280 285

His Asp Asp Thr Glu Val Leu Met Trp Met Gly Met Thr Phe Gly LeuHis Asp Asp Thr Glu Val Leu Met Trp Met Gly Met Thr Phe Gly Leu

    290                 295                 300290 295 300

Glu Ser Gly Ser Cys Ser Ala Glu Asp Leu Lys Met Ala Arg Asn LeuGlu Ser Gly Ser Cys Ser Ala Glu Asp Leu Lys Met Ala Arg Asn Leu

305                 310                 315                 320305 310 315 320

Val Pro Lys Ala Leu Glu Pro Tyr Val Thr Glu Met Ala Gln Gly ThrVal Pro Lys Ala Leu Glu Pro Tyr Val Thr Glu Met Ala Gln Gly Thr

                325                 330                 335325 330 335

Phe Gly Gly Val Phe Thr Thr Ala Gly Set Arg Ser Asn Gly Thr TrpPhe Gly Gly Val Phe Thr Thr Ala Gly Set Arg Ser Asn Gly Thr Trp

            340                 345                 350340 345 350

Leu Ser Ala Ser Asp Leu Thr Asn Ile Ala Ile Gly Met Leu Ala ThrLeu Ser Ala Ser Asp Leu Thr Asn Ile Ala Ile Gly Met Leu Ala Thr

       355                 360                 365355 360 365

Ser Ser Gly Gly Ser Gln Tyr Ser Gly Ser Arg Val Glu Thr Pro AlaSer Ser Gly Gly Ser Gln Tyr Ser Gly Ser Arg Val Glu Thr Pro Ala

    370                 375                 380370 375 380

Val Glu Glu Glu Glu Glu Glu Asp Asn Ash Asp Asp Asp Leu Ser GluVal Glu Glu Glu Glu Glu Glu Asp Asn Ash Asp Asp Asp Leu Ser Glu

385                 390                 395                 400385 390 395 400

Asn Asp Glu Asp AspAsn Asp Glu Asp Asp

                405405

<210>2<210>2

<211>1218<211>1218

<212>DNA<212>DNA

<213>Homo sapiens<213>Homo sapiens

<400>2<400>2

atggcaaaat atgtcagtct cactgaagct aacgaagaac tcaaggtctt aatggacgag    60atggcaaaat atgtcagtct cactgaagct aacgaagaac tcaaggtctt aatggacgag 60

aaccagacca gccgccccgt ggccgttcac acctccaccg tgaacccgct cgggaagcag    120aaccagacca gccgccccgt ggccgttcac acctccaccg tgaacccgct cgggaagcag 120

ctcttgccga aaacctttgg acagtccagt gtcaacattg accagcaagt ggtaattggt    180ctcttgccga aaacctttgg acagtccagt gtcaacattg accagcaagt ggtaattggt 180

atgcctcaga gaccagcagc atcaaacatc cctgtggtag gaagcccaaa cccacccagc    240atgcctcaga gaccagcagc atcaaacatc cctgtggtag gaagcccaaa cccacccagc 240

                                        sequence-listing.txtSequence-listing.txt

actcactttg cctctcagaa ccagcattcc tactcctcac ctccttgggc cgggcagcac     300actcactttg cctctcagaa ccagcattcc tactcctcac ctccttgggc cgggcagcac 300

aacaggaaag gagagaagaa tggcatgggc ctgtgccgtc tttccatgaa ggtctgggag     360aacaggaaag gagagaagaa tggcatgggc ctgtgccgtc tttccatgaa ggtctgggag 360

acggtgcaga ggaaagggac cacttcctgc caggaagtgg tgggcgagct ggtcgccaag     420acggtgcaga ggaaagggac cacttcctgc caggaagtgg tgggcgagct ggtcgccaag 420

ttcagagctg ccagcaacca cgcctcacca aacgagtcag cttatgacgt gaaaaacata     480ttcagagctg ccagcaacca cgcctcacca aacgagtcag cttatgacgt gaaaaacata 480

aaacggcgca cctacgatgc cttaaacgtg ctgatggcca tgaatatcat ctccagggag     540aaacggcgca cctacgatgc cttaaacgtg ctgatggcca tgaatatcat ctccaggggag 540

aaaaagaaga tcaagtggat tggtctgacc accaactcgg ctcagaactg tcagaactta     600aaaaagaaga tcaagtggat tggtctgacc accaactcgg ctcagaactg tcagaactta 600

cgggtggaaa gacagaagag acttgaaaga ataaagcaga aacagtctga acttcaacaa     660cgggtggaaa gacagaagag acttgaaaga ataaagcaga aacagtctga acttcaacaa 660

cttattctac agcaaattgc tttcaagaac ctggtgctga gaaaccagta tgtggaggag     720cttattctac agcaaattgc tttcaagaac ctggtgctga gaaaccagta tgtggaggag 720

caggtcagcc agcggccgct gcccaactca gtcatccacg tgcccttcat catcatcagc     780caggtcagcc agcggccgct gcccaactca gtcatccacg tgcccttcat catcatcagc 780

agtagcaaga agaccgtcat caactgcagc atctccgacg acaaatcaga atatctgttt     840agtagcaaga agaccgtcat caactgcagc atctccgacg acaaatcaga atatctgttt 840

aagtttaaca gctcctttga aatccacgat gacacagaag tgctgatgtg gatgggcatg     900aagtttaaca gctcctttga aatccacgat gacacagaag tgctgatgtg gatgggcatg 900

acttttgggc tagagtccgg gagctgctct gccgaagacc ttaaaatggc cagaaatttg     960acttttgggc tagagtccgg gagctgctct gccgaagacc ttaaaatggc cagaaatttg 960

gtcccaaagg ctctggagcc gtacgtgaca gaaatggctc agggaacttt tggaggtgtg    1020gtcccaaagg ctctggagcc gtacgtgaca gaaatggctc agggaacttt tggaggtgtg 1020

ttcacgacgg caggttccag gtctaatggc acgtggcttt ctgccagtga cctgaccaac    1080ttcacgacgg caggttccag gtctaatggc acgtggcttt ctgccagtga cctgaccaac 1080

attgcgattg ggatgctggc cacaagctcc ggtggatctc agtacagtgg ctccagggtg    1140attgcgattg ggatgctggc cacaagctcc ggtggatctc agtacagtgg ctccagggtg 1140

gagaccccag cagtcgagga ggaagaggag gaggacaaca acgatgacga cctcagtgag    1200gagaccccag cagtcgagga ggaagaggag gaggacaaca acgatgacga cctcagtgag 1200

aatgacgagg atgactga                                                  1218aatgacgagg atgactga 1218

Claims (8)

1, a kind of liver cancer orchis pellet specific antigen protein matter, it has following (a) or (b) described aminoacid sequence:
(a) has aminoacid sequence shown in Figure 1;
(b) with the aminoacid sequence in (a) through the replacement of one or several amino-acid residue, disappearance or add the derived protein that sudden change is produced, and this derived protein has same or analogous function with (a) protein.
2, a kind of fusion rotein that comprises the described liver cancer orchis pellet specific antigen protein of claim 1 matter.
3, a kind of claim 1 or the 2 described antigen proteins application in preparation treatment liver-cancer medicine.
4, the gene of the described liver cancer orchis pellet specific antigen protein of a kind of claim 1 of encoding matter.
5, a kind of liver cancer orchis pellet specific antigens peptide, it has following (c) or (d) described aminoacid sequence:
(c) it is 84 the amino acid whose peptide sections that contain of the specific DNA binding domains of above-mentioned liver cancer orchis pellet specific antigen protein matter, and its aminoacid sequence is start-stop AA108-AA191 in sequence shown in Figure 1;
(d) with the aminoacid sequence in (c) through the replacement of one or several amino-acid residue, disappearance or add the derived peptide that sudden change is produced, and this derived peptide has same or analogous function with (a) peptide.
6, a kind of fusion rotein that comprises the described liver cancer orchis pellet specific antigens of claim 5 peptide.
7, a kind of claim 5 or the 6 described antigen peptide application in preparation treatment liver-cancer medicine.
8, the gene of the described liver cancer orchis pellet specific antigens of a kind of claim 5 of encoding peptide.
CNB200510073393XA 2005-06-03 2005-06-03 Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet Expired - Fee Related CN100348614C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200510073393XA CN100348614C (en) 2005-06-03 2005-06-03 Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200510073393XA CN100348614C (en) 2005-06-03 2005-06-03 Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet

Publications (2)

Publication Number Publication Date
CN1872877A true CN1872877A (en) 2006-12-06
CN100348614C CN100348614C (en) 2007-11-14

Family

ID=37483494

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510073393XA Expired - Fee Related CN100348614C (en) 2005-06-03 2005-06-03 Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet

Country Status (1)

Country Link
CN (1) CN100348614C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663315A (en) * 2007-02-21 2010-03-03 肿瘤疗法科学股份有限公司 Peptide vaccines for cancers expressing tumor-associated antigens
US8623829B2 (en) 2007-02-21 2014-01-07 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
US8883966B2 (en) 2008-10-22 2014-11-11 Oncotherapy Science, Inc. RAB6KIFL/KIF20A epitope peptide and vaccines containing the same
CN106243213A (en) * 2016-08-15 2016-12-21 安军 A kind of tumor associated antigen XAGE 1b small peptide and application
CN106279391A (en) * 2016-08-15 2017-01-04 安军 Tumor associated antigen XAGE 1b small peptide and application
CN106279392A (en) * 2016-08-15 2017-01-04 安军 Tumor associated antigen XAGE 1b small peptide and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510040A (en) * 1999-09-24 2003-03-18 コンセホ・スペリオル・デ・インヴェスティガシオンス・シエンティフィカス Wheat DP protein and use thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663315A (en) * 2007-02-21 2010-03-03 肿瘤疗法科学股份有限公司 Peptide vaccines for cancers expressing tumor-associated antigens
US8623829B2 (en) 2007-02-21 2014-01-07 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
US8759481B2 (en) 2007-02-21 2014-06-24 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
CN101663315B (en) * 2007-02-21 2014-10-15 肿瘤疗法科学股份有限公司 Peptide vaccines for cancers expressing tumor-associated antigens
US9067973B2 (en) 2007-02-21 2015-06-30 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
US9284349B2 (en) 2007-02-21 2016-03-15 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
US8883966B2 (en) 2008-10-22 2014-11-11 Oncotherapy Science, Inc. RAB6KIFL/KIF20A epitope peptide and vaccines containing the same
US9132176B2 (en) 2008-10-22 2015-09-15 Oncotherapy Science, Inc. RAB6KIFL/KIF20A epitope peptide and vaccines containing the same
CN106243213A (en) * 2016-08-15 2016-12-21 安军 A kind of tumor associated antigen XAGE 1b small peptide and application
CN106279391A (en) * 2016-08-15 2017-01-04 安军 Tumor associated antigen XAGE 1b small peptide and application
CN106279392A (en) * 2016-08-15 2017-01-04 安军 Tumor associated antigen XAGE 1b small peptide and application thereof

Also Published As

Publication number Publication date
CN100348614C (en) 2007-11-14

Similar Documents

Publication Publication Date Title
CN100343280C (en) CUDR, a marker of cancer course and treatment response
CN1159811A (en) Isolated nucleic acid molecule encoding tumor rejection antigen precursor DAGE and use thereof
JP2002534055A (en) Human gene and gene expression product V
EP1194549A2 (en) Human genes and gene expression products
CA2331769A1 (en) Prostate cancer-associated genes
CN1221345A (en) Isolated nucleic acid molecules encoding GAGE tumor rejection antigens, tumor rejection antigens and uses thereof
CN1872877A (en) Idiosyncratic antigen protein, and antigen peptide of liver cancer orchis pellet
CN1178534A (en) Isolated nucleic acid molecules as members of the Mage-Xp family and uses thereof
CN1227611A (en) Isolated nucleic acid molecules of MAGE-B family members and uses thereof
JP2000511765A (en) Purified SR-p70 protein
CN101550185B (en) Tumor-related gene or protein and application thereof
CN1209369C (en) Cell death inducing protein and its coding sequence and use
JP7091551B2 (en) How to select a subject who can expect the effect of a pharmaceutical composition for treating or preventing cancer
CN1663603A (en) Application of a tumor-placenta antigen protein and its DNA in tumor therapy
JP2004057003A (en) Rb1 gene-induced protein (rb1cc1) and gene
CN1465704A (en) Tumor suppressor gene PINX1 and its application
Fung et al. Identification of genes differentially expressed in nasopharyngeal carcinoma by messenger RNA differential display.
CN1890263A (en) Tumour suppressor protein
CN1352138A (en) Sperm formation relative protein and its coding sequence and use
CA2496048A1 (en) Use of murine genomic regions identified to be involved in tumor development for the development of anti-cancer drugs and diagnosis of cancer
JPWO2003002742A1 (en) Nucleic acid involved in generation of exon 5 defective splicing abnormality in presenilin-2 gene
JP4745583B2 (en) Partner, manufacture and use of PTB1 domain of FEB65
CN1313297A (en) Human protein able to suppress growth of cancer cells and its coding sequence
CN1342713A (en) Human macrobiosis-ensuring protein and its coding sequence and application
CN1869066A (en) Tumour antigen protein and tumour antigen peptide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071114

Termination date: 20110603