CN1847816A - Optical anisotropy parameter measurement method and measurement device - Google Patents
Optical anisotropy parameter measurement method and measurement device Download PDFInfo
- Publication number
- CN1847816A CN1847816A CNA2006100840315A CN200610084031A CN1847816A CN 1847816 A CN1847816 A CN 1847816A CN A2006100840315 A CNA2006100840315 A CN A2006100840315A CN 200610084031 A CN200610084031 A CN 200610084031A CN 1847816 A CN1847816 A CN 1847816A
- Authority
- CN
- China
- Prior art keywords
- maximum
- incident
- light
- peak
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 117
- 238000005259 measurement Methods 0.000 title claims abstract description 97
- 238000000691 measurement method Methods 0.000 title 1
- 239000010408 film Substances 0.000 claims description 56
- 238000012360 testing method Methods 0.000 claims description 25
- 239000010409 thin film Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 230000010287 polarization Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 abstract 2
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920005575 poly(amic acid) Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05D—HINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
- E05D15/00—Suspension arrangements for wings
- E05D15/02—Suspension arrangements for wings for revolving wings
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C17/00—Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
- E05C17/02—Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
- E05C17/46—Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means in which the wing or a member fixed thereon is engaged by a movable fastening member in a fixed position; in which a movable fastening member mounted on the wing engages a stationary member
- E05C17/48—Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means in which the wing or a member fixed thereon is engaged by a movable fastening member in a fixed position; in which a movable fastening member mounted on the wing engages a stationary member comprising a sliding securing member
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C19/00—Other devices specially designed for securing wings, e.g. with suction cups
- E05C19/003—Locking bars, cross bars, security bars
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/10—Application of doors, windows, wings or fittings thereof for buildings or parts thereof
- E05Y2900/13—Type of wing
- E05Y2900/148—Windows
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种可以测定薄膜试件光学轴各向异性的光学各向异性参数测定方法及测定装置,特别适用于液晶取向膜的检查等。The invention relates to an optical anisotropy parameter measuring method and a measuring device capable of measuring the optical axis anisotropy of a film test piece, and is particularly suitable for inspection of liquid crystal alignment films and the like.
背景技术Background technique
液晶显示器是通过将表面叠层有透明电极和取向膜的背侧玻璃基板和表面叠层有彩色滤光器、透明电极和取向膜的表面侧玻璃基板隔着间隔件将取向膜相互面对,在该取向膜的间隙中封入液晶的状态下进行密封的同时,在其表面和背面两侧上叠层偏振光滤光器而形成的构造。In liquid crystal displays, the rear glass substrate on which transparent electrodes and alignment films are laminated on the surface and the front side glass substrate on which color filters, transparent electrodes, and alignment films are laminated on the surface face the alignment films through a spacer. It is a structure in which polarizing filters are stacked on both the front and back sides of the alignment film while liquid crystal is sealed in the gap.
在此,为使液晶显示器正常操作,需要将液晶分子均匀地排列在同一方向上,取向膜决定了液晶分子的方向性。Here, in order to make the liquid crystal display operate normally, it is necessary to arrange the liquid crystal molecules uniformly in the same direction, and the alignment film determines the directionality of the liquid crystal molecules.
该取向膜可使液晶分子定向的原因是由于具有单轴性光学各向异性。如果取向膜在其整个表面都具有均匀的单轴性光学各向异性的话,则液晶显示器不容易产生缺陷,如果存在光学各向异性不均匀的部分的话,液晶分子的方向混乱,因此液晶显示器成为次品。The reason why this alignment film can align liquid crystal molecules is that it has uniaxial optical anisotropy. If the alignment film has uniform uniaxial optical anisotropy over the entire surface, the liquid crystal display is less prone to defects, and if there is a portion with non-uniform optical anisotropy, the direction of the liquid crystal molecules is disordered, so the liquid crystal display becomes defective product.
即,取向膜本身的品质会影响液晶显示器的品质。取向膜的缺陷使液晶分子的方向性混乱,导致液晶显示器也将产生缺陷。That is, the quality of the alignment film itself will affect the quality of the liquid crystal display. Defects in the alignment film make the directionality of the liquid crystal molecules disordered, resulting in defects in the liquid crystal display.
因此,如果在组装液晶显示器时,通过预先检查取向膜是否存在缺陷,仅使用品质稳定的取向膜的话,则可以提高液晶显示器的成品率,提高生产效率。Therefore, if only an alignment film with stable quality is used by pre-checking whether there is a defect in the alignment film when assembling the liquid crystal display, the yield of the liquid crystal display can be improved and the production efficiency can be improved.
因此,迄今以来已经提出了对于取向膜测定作为各向异性参数的光学轴的方位角方向、极角方向、膜厚等,通过评价该取向膜的光学各向异性,来检查是否存在缺陷的方法。Therefore, it has been proposed to measure the azimuth direction of the optical axis, the polar angle direction, the film thickness, etc. as an anisotropy parameter for the alignment film, and to check whether there is a defect by evaluating the optical anisotropy of the alignment film. .
最一般的方法是使用椭偏仪的方法,可相当准确地进行测定,但是每一测定点的测定时间需要2分钟左右的长度,在对一张取向膜的各向异性进行评价时,要测定100×100的总计1万点的话,单计算就需要花费大约2周时间,因此装载在生产线上进行全部检查最终是不可能的。The most general method is to use the method of ellipsometer, which can be measured quite accurately, but the measurement time of each measurement point needs about 2 minutes. When evaluating the anisotropy of an alignment film, it is necessary to measure A total of 10,000 points of 100×100 will take about 2 weeks for calculation alone, so it is ultimately impossible to load and inspect all of them on the production line.
还有一种方法,是以从薄膜试件的测定点向上的法线作为中心,从以预定角度间隔设定的多个入射方向,相对上述测定点使P偏振光或S偏振光以预定入射角度照射,测定包含在其反射光中偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度,由此检测出与入射方向相对应的反射光强度变化,由此可计算出作为光学各向异性薄膜参数的方位角方向、极角方向和膜厚。Another method is to use the normal line upward from the measuring point of the film specimen as the center, and from a plurality of incident directions set at predetermined angular intervals, make the P polarized light or the S polarized light at a predetermined incident angle relative to the above measuring point. Irradiate, measure the reflected light intensity of the polarized light component included in the polarized light component in the reflected light, and the polarized light component perpendicular to the polarization direction of the irradiated light, thereby detect the reflected light intensity change corresponding to the incident direction, and thus can The azimuthal direction, the polar direction and the film thickness were calculated as parameters of the optically anisotropic thin film.
专利文献1特开2001-272308Patent Document 1 Japanese Patent Laid-Open No. 2001-272308
但是,根据该方法在求得光学各向异性薄膜参数时,该方法需要在所有的方位上进行测定,因此存在花费时间的问题。However, according to this method, when obtaining the parameters of an optically anisotropic thin film, it is necessary to perform measurements in all directions, and thus there is a problem that it takes time.
而且,由于需要测定反射光强度的绝对量,由于受光元件灵敏度的线形性、动态范围等外部因素的影响左右着测定精度,误差变大的可能性高,存在难以提高测定精度的问题。Furthermore, since it is necessary to measure the absolute amount of reflected light intensity, the measurement accuracy is affected by external factors such as the linearity of the sensitivity of the light receiving element and the dynamic range, and the possibility of large errors is high, making it difficult to improve the measurement accuracy.
此外,由于需要根据非线性最小二乘法同时计算出主介电常数的轴方向和大小、膜的厚度和规格化常数等不少于6个的参数,因此不仅存在着算出以局部最小值收敛的解的可能性,而且存在着需要庞大计算时间的问题。In addition, since it is necessary to simultaneously calculate not less than 6 parameters such as the axial direction and size of the principal permittivity, the thickness of the film, and the normalization constant based on the nonlinear least square method, there is not only the calculation of the parameters that converge to the local minimum The possibility of solution, and there is a problem that requires huge computing time.
发明内容Contents of the invention
在此,本发明的技术课题是提供可高速、高精度测定光学各向异性薄膜的光学轴的方向和倾角,并可根据二维受光元件进行分布测定的方法和装置。Here, the technical subject of the present invention is to provide a method and an apparatus capable of measuring the direction and inclination of the optical axis of an optically anisotropic film at high speed and with high precision, as well as measuring distribution from a two-dimensional light receiving element.
为解决该课题,本发明是一种光学各向异性参数测定方法,其测定作为薄膜试件各向异性参数的光学轴的方位角方向和极角方向,其特征为以从薄膜试件上的测定点向上的法线作为中心,从以预定角度间隔设定的多个入射方向,相对上述测定点使P偏振光或S偏振光的单色光以预定入射角度照射,对应于入射方向,检测出包含在其反射光中偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度,在所述反射光强度显示出极小值的入射方向中,基于被测定出了作为最大峰的两个极大值夹着的极小值或作为中间峰的两个极大值夹着的极小值的入射方向,确定测定点中光学轴的方位角方向,基于被测定出了作为所述反射光强度最大峰的极大值和与其邻接的中间峰的极大值夹着的极小值的入射方向,或基于被测定出了作为最大峰的极大值的入射方向,确定其测定点中光学轴的极角方向。In order to solve this problem, the present invention is a method for measuring optical anisotropy parameters, which measures the azimuth direction and polar angle direction of the optical axis as the anisotropy parameter of the thin film specimen, and is characterized in that the The upward normal line of the measuring point is taken as the center, from a plurality of incident directions set at predetermined angular intervals, the monochromatic light of P polarized light or S polarized light is irradiated at a predetermined incident angle with respect to the above measuring point, and corresponding to the incident direction, detection The reflected light intensity of the polarized light component included in the polarized light component of the reflected light, which is perpendicular to the polarization direction of the irradiated light, in the incident direction where the reflected light intensity shows a minimum value, based on the measured Determine the incident direction of the minimum value sandwiched between the two maximum values of the largest peak or the minimum value sandwiched between the two maximum values of the middle peak, and determine the azimuth direction of the optical axis in the measurement point, based on the measured The incident direction that is the minimum value sandwiched between the maximum value of the maximum peak of the reflected light intensity and the maximum value of the adjacent intermediate peak, or the incident direction that is measured as the maximum value of the maximum peak , to determine the polar angle direction of the optical axis in its measurement point.
根据本发明,首先,通过以从薄膜试件上的测定点向上的法线作为中心,从以预定角度间隔设定的多个入射方向,相对上述测定点使P偏振光或S偏振光的单色光以预定入射角度照射,测定出包含在其反射光中偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度,检测出对应于入射方向的反射光强度。According to the present invention, first, by taking the normal line upward from the measurement point on the film test piece as the center, from a plurality of incident directions set at predetermined angular intervals, a single unit of P-polarized light or S-polarized light is directed to the above-mentioned measurement point. The colored light is irradiated at a predetermined incident angle, and the reflected light intensity of the polarized light component included in the reflected light and perpendicular to the polarization direction of the irradiated light is measured to detect the reflected light intensity corresponding to the incident direction.
入射方向在0-360°之间变化时,成为具有光学各向异性的薄膜试件的反射光强度的测定值与作为最大峰的两个极大值邻接,同时与作为中间峰的两个极大值邻接,在各个极大值之间具有四个极小值的波形。When the incident direction changes between 0-360°, the measured value of the reflected light intensity of the thin film specimen with optical anisotropy is adjacent to the two maximum values as the maximum peak, and at the same time it is adjacent to the two poles as the middle peak. Contiguous large values, a waveform with four minima between each maximum.
在此,薄膜试件光学轴的方位角方向的角度,即,在测定面内光学轴的朝向与被测定出了作为最大峰的两个极大值夹着的极小值的方向相等,因此将该方向确定为方位角方向,将该角度置于该测定点处方位角方向ΦA=0处。Here, the angle of the azimuth direction of the optical axis of the thin film specimen, that is, the orientation of the optical axis in the measurement plane is equal to the direction in which the minimum value sandwiched between the two maximum values as the maximum peak is measured, so The direction is determined as the azimuth direction, and the angle is placed at the measurement point where the azimuth direction Φ A =0.
此外,由于该方向从被测定出了作为中间峰的两个极大值夹着的极小值的方向偏离180°,因此还可从被测定出了作为中间峰的两个极大值夹着的极小值的方向进行确定。In addition, since this direction deviates by 180° from the direction in which the minimum value sandwiched between the two maximum values as the middle peak was measured, it can also be measured from the direction of the two maximum values sandwiched as the middle peak. Determine the direction of the minimum value of .
此后,薄膜试件光学轴极角方向的角度,即,相对于基板平面的光学轴的倾斜角可由式(2)或式(3)算出。Thereafter, the angle in the polar direction of the optical axis of the film sample, that is, the inclination angle of the optical axis with respect to the plane of the substrate can be calculated by Equation (2) or Equation (3).
在此,式(2)(3)中,极角方向的角度θ以外的变量全部都为已知的或者为测定值,因此,在根据式(2)时,通过检测这样的角度,即被测定出了作为最大峰的极大值和作为中间峰的极大值夹着的极小值的角度,或者在根据式(3)时,通过检测被测定出了作为最大峰的极大值的角度可进行计算。Here, in formulas (2) and (3), all variables other than the angle θ in the polar angle direction are known or are measured values. Therefore, when according to formula (2), by detecting such an angle, it is The angle of the minimum value sandwiched between the maximum value of the largest peak and the maximum value of the intermediate peak is measured, or when according to formula (3), the angle of the maximum value of the maximum peak is measured by detection Angles can be calculated.
式1Formula 1
sinΦA=0 (1)sinΦ A = 0 (1)
ΦA:被测定出了作为最大峰的两个极大值夹着的极小值的入射方向(=方位角方向=0)Φ A : The incident direction where the minimum value sandwiched between the two maximum values as the maximum peak was measured (= azimuth angle direction = 0)
ΦB:被测定出了作为最大峰的极大值和作为中间峰的极大值夹着的极小值的入射方向Φ B : The direction of incidence where the maximum value as the maximum peak and the minimum value sandwiched between the maximum value as the middle peak are measured
ΦC:被测定出了作为最大峰的极大值的入射方向Φ C : The direction of incidence where the maximum value was measured as the maximum peak
ΦD:被测定出了作为最大峰的极大值的入射方向Φ D : The direction of incidence where the maximum value was measured as the maximum peak
θ:从基板平面开始的光学轴极角方向的角度(倾斜角)θ: Angle in the polar direction of the optical axis from the substrate plane (tilt angle)
μ:+/-(相对于S偏振光入射的P偏振光的反射强度为“+”,相对于P偏振光入射的S偏振光的反射强度为“-”)μ: +/- (The reflection intensity of P-polarized light incident on S-polarized light is "+", and the reflection intensity of S-polarized light incident on P-polarized light is "-")
Φ0:向薄膜的入射角度Φ 0 : Incident angle to the film
Φ2:离开基板时光的角度Φ 2 : Angle of light leaving the substrate
N2:基板的折射率N 2 : Refractive index of the substrate
ε0:薄膜试件的寻常光介电常数ε 0 : Ordinary photopermittivity of the film specimen
进一步地,通过相对薄膜试件上任意的测定区域,使P偏振光或S偏振光的单色光以预定的入射角度进行照射,检测出其反射光中所含偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度二维分布,通过相对于测定区域内存在的各个测定点对应于入射方向检测出反射光强度,可算出对于多个测定点的个别方位角方向和极角方向。Further, by irradiating the monochromatic light of P polarized light or S polarized light at a predetermined incident angle with respect to any measurement area on the film sample, the polarized light component contained in the reflected light and the irradiated light are detected. Two-dimensional distribution of the reflected light intensity of the polarized light component perpendicular to the polarization direction of the light. By detecting the reflected light intensity corresponding to the incident direction for each measurement point existing in the measurement area, the individual azimuth angles for multiple measurement points can be calculated. direction and polar direction.
此外,在例如采用液晶取向膜作为薄膜试件的情况下,通过摩擦使光学轴一致,在该摩擦方向附近以及与其正交的方向附近进行入射时,反射光强度存在着作为最小的极值。In addition, when a liquid crystal aligning film is used as a thin film sample, the optical axes are aligned by rubbing, and the reflected light intensity has a minimum extreme value when incident near the rubbing direction and near the direction perpendicular thereto.
此外,反射光强度存在着作为最大峰或中间峰的极大值的角度(方向)依赖于极角方向,在制造液晶取向膜的情况下,通过摩擦强度(压力)经验地控制大概的极角方向,基于该极角方向可由式(3)进行确定。In addition, the angle (direction) of the maximum value of the reflected light intensity, which is the largest peak or the middle peak, depends on the direction of the polar angle. In the case of manufacturing a liquid crystal alignment film, the approximate polar angle is empirically controlled by the rubbing intensity (pressure) direction, based on the polar angle direction can be determined by formula (3).
因此,通过将与摩擦方向和与其正交的方向为中心,使光在例如预定的角度范围内入射,或者将摩擦方向和反射光强度存在作为最大峰的极大值时所预想的角度(方向)为中心,使光在预定的角度范围内入射,可以缩小测定范围。Therefore, by centering on the rubbing direction and the direction perpendicular to it, the light is incident within a predetermined angle range, or the angle expected when the rubbing direction and the reflected light intensity have a maximum value as the maximum peak (direction ) as the center, so that the light is incident within a predetermined angle range, and the measurement range can be narrowed.
而该角度范围在液晶取向膜的生产线等中是基于经验测定的方位角方向等的统计上的偏差,偏差小的话,则限定在±20°左右足矣,偏差大的话,则可扩展到±45°左右的范围内。However, this angle range is based on the statistical deviation of the azimuth direction measured empirically in the production line of the liquid crystal alignment film. If the deviation is small, it is sufficient to limit it to about ±20°. If the deviation is large, it can be extended to ± within the range of about 45°.
由此,只要按照反射光的极小值、极大值的入射方向,就可确定光学轴的方位角方向和极角方向,而且对于这些值已知的测定点,测定薄膜试件的各向异性层的膜厚t、寻常光介电常数ε0、异常光介电常数εe时,从2个或3个方向采用椭偏仪或反射器测量仪进行测量就足够,可以用极短的时间并且准确地测定出这些光学各向异性参数。Therefore, as long as the incident direction of the minimum value and maximum value of the reflected light is used, the azimuth direction and polar angle direction of the optical axis can be determined, and for the measurement point where these values are known, the direction of the film specimen can be measured. When the film thickness t, ordinary optical permittivity ε 0 , and extraordinary optical permittivity ε e of the anisotropic layer are measured, it is sufficient to use an ellipsometer or a reflector measuring instrument from two or three directions, and an extremely short time and accurately determine these optical anisotropy parameters.
附图说明Description of drawings
图1是显示本发明光学各向异性参数测定装置的一个实例的说明图。Fig. 1 is an explanatory diagram showing an example of an optical anisotropy parameter measuring device of the present invention.
图2是表示了显示光学轴方位角方向和极角方向之间的关系的示意图。FIG. 2 is a schematic diagram showing the relationship between the azimuth direction of the optical axis and the polar angle direction.
图3是显示其测定结果的曲线图。Fig. 3 is a graph showing the measurement results thereof.
图4是显示其他光学各向异性参数测定装置的说明图。Fig. 4 is an explanatory view showing another optical anisotropy parameter measuring device.
图5是显示随着薄膜试件的旋转的各个测定点位置的推移的说明图。Fig. 5 is an explanatory view showing the transition of the position of each measurement point according to the rotation of the thin film sample.
图6是显示极角分布的说明图。Fig. 6 is an explanatory diagram showing polar angle distribution.
图7是进一步显示了其他光学各向异性参数测定装置的说明图。Fig. 7 is an explanatory diagram further showing another optical anisotropy parameter measuring device.
图8是显示其测定结果的曲线图。Fig. 8 is a graph showing the measurement results.
图9是显示其测定结果的曲线图。Fig. 9 is a graph showing the measurement results.
具体实施方式Detailed ways
本发明为达到高速、高精度地测量光学各向异性薄膜的光学轴的方向和倾角的目的,以从薄膜试件上的测定点向上的法线作为中心,从以预定角度间隔设定的多个入射方向,相对上述测定点使P偏振光或S偏振光的单色光以预定入射角度照射,对应于入射方向,检测出包含在其反射光中的偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度,在所述反射光强度显示出极小值的入射方向中,基于被测定出了作为最大峰的两个极大值夹着的极小值的入射方向,确定测定点处光学轴的方位角方向,基于被测定出了作为所述反射光强度最大峰的极大值和与其邻接的作为中间峰的极大值夹着的极小值的入射方向,确定其测定点处光学轴的极角方向。In order to achieve the purpose of measuring the direction and inclination angle of the optical axis of an optically anisotropic film at high speed and with high precision, the present invention takes the normal line upward from the measuring point on the film sample as the center, and measures the direction and inclination angle from multiple points set at predetermined angular intervals. For each incident direction, the monochromatic light of P polarized light or S polarized light is irradiated at a predetermined incident angle with respect to the above-mentioned measurement point, and the difference between the polarized light component contained in the reflected light and the irradiated light is detected corresponding to the incident direction. The reflected light intensity of the polarized light components whose polarization directions are perpendicular to each other is based on the measured minimum value sandwiched between two maximum values as the maximum peak in the incident direction in which the reflected light intensity shows a minimum value. The direction of incidence is to determine the azimuth direction of the optical axis at the measurement point, based on the incident direction of the minimum value sandwiched between the maximum value of the maximum peak of the reflected light intensity and the minimum value of the adjacent maximum value of the intermediate peak. Direction, which determines the polar angle direction of the optical axis at its measurement point.
图1是显示本发明光学各向异性参数测定装置的一个实例的说明图,图2是表示了反射光强度显示出最小值的入射方向以及光学轴方位角方向和极角方向之间的关系的示意图,图3是显示反射光强度测定结果的曲线图,图4是显示其他光学各向异性参数测定装置的说明图,图5是显示随着薄膜试件的旋转的各个测定点位置的推移的说明图,图6是显示倾斜角分布的测定结果的说明图,图7是进一步显示了其他光学各向异性参数测定装置的说明图,图8和图9是显示其测定结果的曲线图。Fig. 1 is an explanatory diagram showing an example of an optical anisotropy parameter measuring device of the present invention, and Fig. 2 is a graph showing the incident direction in which the intensity of reflected light shows a minimum value, and the relationship between the azimuth direction of the optical axis and the direction of the polar angle Schematic diagram, Fig. 3 is a graph showing the measurement results of reflected light intensity, Fig. 4 is an explanatory diagram showing other optical anisotropy parameter measurement devices, and Fig. 5 is a graph showing the transition of each measurement point position along with the rotation of the film sample Explanatory diagrams, FIG. 6 is an explanatory diagram showing the measurement results of the inclination angle distribution, FIG. 7 is an explanatory diagram further showing other optical anisotropy parameter measurement devices, and FIGS. 8 and 9 are graphs showing the measurement results.
实旋例1Example 1
在图1和图2中示出的光学各向异性参数测定装置1是用于测定装载在载台2上的薄膜试件3的作为各向异性参数的光学轴OX的方位角方向ΦA和极角方向θ的测定装置,该装置具有以从薄膜试件3上的测定点M向上的法线Z作为中心,从以预定角度间隔设定的多个入射方向,相对上述测定点M使P偏振光或S偏振光的单色光以预定入射角度照射的发光光学系统4;对应于入射方向,检测出包含在其反射光中的偏振光成分内的、与照射光的偏振方向正交的偏振光成分的反射光强度的受光光学系统5;以及基于该测定结果确定测定点M处光学轴的极角方向的运算处理装置6。The optical anisotropy parameter measuring device 1 shown in Fig. 1 and Fig. 2 is for measuring the azimuth direction Φ A and A measuring device for the polar angle direction θ, which has a normal line Z upward from the measuring point M on the thin
载台2在底座11上具有使载台2升降的升降台12,使载台2旋转的旋转台13,相对于旋转台13的旋转中心Z使载台2在XY方向水平移动的XY台14,以及旋转台13在旋转时调整载台2的摆动的摆动调整台15。The
而且在载台2的上方,配设有光学地测定载台2的摆动量的自准直仪7,基于其测定结果,对摆动量进行调整。Further, above the
发光光学系统4是这样构成的,波长为632.8nm、光强度为25mW的He-Ne激光器21朝向旋转台13的旋转中心Z,以配置成测定精度更佳的布鲁斯特角附近的入射角(在本例子中为60°),沿着其照射光轴LIR,配置偏振光镜22、22,该偏振光镜由使P偏振光透过的2个格兰-汤姆森棱镜(消光比10-6)形成,由此形成仅照射纯粹的P偏振光的结构。The light-emitting
受光光学系统5是这样形成的,其配设有沿着从上述激光器21照射出、被薄膜试件3反射的反射光轴LRF,消去从试件3的背面反射的光的针孔狭缝23;由使S偏振光透过的2个格兰-汤姆森棱镜(消光比10-6)形成的检测光子24、24;波长选择滤光器25和光电倍增管26,光电倍增管26的检测信号输出至运算处理装置6。The light-receiving
此外,通过使用2个检测光子24,可采用光电倍增管26仅检测出纯粹的S偏振光。In addition, by using two
在运算处理装置6中,在旋转台13每旋转预定角度时,输入从光电倍增管26输出的检测信号,存储该旋转角度(入射方向)和反射光强度的关系。In the
对于具有光学各向异性的薄膜试件3,在使入射方向从0变化至360°时,检测出的反射光强度变化一般如图3的曲线图G1所示,成为具有形成为最大峰的2个极大值∧1、∧2,形成为中间峰的2个极大值∧3、∧4,以及在它们之间的四个极小值V1-V4的波形。For a
这样,如图2所示,从平面图看,在从光学轴OX的纵向方向入射时测定最小值V1、V2,在包含光学轴OX的纵切面中从与光学轴相对的正交方向入射时,测定极小值V3、V4。In this way, as shown in Figure 2, from a plan view, the minimum values V1 and V2 are measured when incident from the longitudinal direction of the optical axis OX. , measure the minimum value V 3 , V 4 .
由此,在反射光强度显示出极小值的入射方向v1-v4中,基于被测定出了由形成为最大峰的2个极大值∧1、∧2夹着的极小值V1的入射方向v1,确定测定点处光学轴的方位角方向ΦA。也即将入射方向v1定为方位角方向ΦA=0。Therefore, in the incident directions v 1 -v 4 where the intensity of reflected light shows a minimum value, the minimum value V sandwiched between the two maximum values ∧ 1 and ∧ 2 forming the maximum peak is measured. The incident direction v 1 of 1 determines the azimuth direction Φ A of the optical axis at the measuring point. That is, the incident direction v 1 is set as the azimuth direction Φ A =0.
此外,基于被测定出了反射光强度形成为最大峰的极大值∧1和与其相邻的形成为中间峰的极大值∧3夹着的极小值V3的入射方向v3、被测定出了反射光强度形成为最大峰的极大值∧2和与其相邻的形成为中间峰的极大值∧4夹着的极小值V4的入射方向v4,或者被测定出了形成为最大峰极大值∧1或∧2的入射方向λ1或λ2,确定该测定点处光学轴的极角方向θ。In addition, based on the incident direction v3 of the minimum value V3 sandwiched between the maximum value ∧ 1 forming the maximum peak of the reflected light intensity and the minimum value V 3 forming the adjacent intermediate peak ∧ 3 , the incident direction v 3 is determined. The
在该情况下,基于式(2)算出的情况下最好使In this case, it is better to use the formula (2) to calculate
ΦB=v3-v1=v4-v1 Φ B =v 3 -v 1 =v 4 -v 1
基于式(3)算出的情况下,最好使In the case of calculation based on formula (3), it is better to use
|ΦC|=|ΦD|=|λ1-λ2|/2=|λ3-λ4|/2|Φ C |=|Φ D |=|λ 1 -λ 2 |/2=|λ 3 -λ 4 |/2
以上是本发明装置的一个构成实例,以下对本发明的方法进行说明。The above is an example of the configuration of the device of the present invention, and the method of the present invention will be described below.
此后,由于薄膜试件3的光学轴OX的方位角方向ΦA、极角方向θ已知,因此从任意2个方向采用椭偏仪或反射器测量仪进行测量的话,便可以求出薄膜试件的主介电常数的大小和厚度。Since then, since the azimuth direction Φ A and the polar angle direction θ of the optical axis OX of the
作为薄膜试件3,这样进行准备,在玻璃基板8上通过旋涂机旋转涂布上聚酰胺酸(日产化学制造PI-C)后,在260℃下进行烧结,采用抛光布进行摩擦。The
摩擦前薄膜的膜厚T=80nm,介电常数ε=3.00。The film thickness T of the thin film before rubbing was 80nm, and the dielectric constant ε=3.00.
摩擦后的试件3采用现有的公知方式预先进行测定后,摩擦方向为0°时,光学轴OX的方位角方向v1=0.7°,极角方向θ=24.2°,寻常光介电常数ε0=2.83、异常光介电常数εe=3.43、各向异性层的膜厚t=12nm。此时的测定时间为一个测定点花费60秒。After the rubbed
将薄膜试件3装载在载台2上,采用自准直仪7检测出试件的摆动量,采用摆动调整台15将试件3调整为水平。进一步由升降台12将试件3的高度调整为最优化,使来自试件3的反射光进入受光元件。The
试件3的摆动、高度调整完后,使旋转台13旋转,测定出相对入射方向的S偏振光的反射光强度。After the swing and height adjustment of the
摩擦过的薄膜试件3的方位角方向ΦA可预想为与该摩擦方向(X方向)大致平行,极角方向θ可预想为处于与其大致正交的位置上,因此在本例子中,在以摩擦方向为中心的±20°、与其正交的方向(Y方向)为中心的±20°的范围内,以2°的间隔测定反射光强度。The azimuth direction Φ A of the rubbed thin
而该测定范围,通过勘测光学轴的可预想的方位角方向和经验测定出的实际方位角方向的偏差,最好设定在例如±45°、±30°等的任意角度范围内。The measurement range is preferably set within an arbitrary angle range such as ±45°, ±30°, etc., by surveying the deviation between the expected azimuth direction of the optical axis and the actual azimuth direction measured empirically.
图3的放大曲线图G2、G3是以X方向和Y方向为中心的各个测定范围中的反射光强度变化。The enlarged graphs G 2 and G 3 in FIG. 3 represent changes in reflected light intensity in respective measurement ranges centered on the X direction and the Y direction.
从该测定数据可求出光学轴OX的方位角方向ΦA、极角方向θ。From the measurement data, the azimuth direction Φ A and the polar angle direction θ of the optical axis OX can be obtained.
在求倾斜角θ时,式(2)的寻常光介电常数设定为摩擦前聚酰亚胺膜的介电常数ε0=3.00。When calculating the inclination angle θ, the ordinary optical dielectric constant in the formula (2) is set to the dielectric constant ε 0 =3.00 of the polyimide film before rubbing.
对于曲线图G2的测定结果进行拟合计算,在计算受光强度形成为极小的方位v1时,v1=0.4°。因此可知,光学轴OX的方位角方向ΦA由Y轴倾斜0.4°。Fitting calculation is performed on the measurement results of graph G 2 , and v 1 =0.4° when calculating the orientation v 1 where the received light intensity is extremely small. Therefore, it can be seen that the azimuth direction Φ A of the optical axis OX is inclined by 0.4° from the Y axis.
此外,相对于曲线图G3的测定结果进行拟合计算,在计算受光强度形成为极小的方位v3时,作为ΦB=v3-v1,寻常光介电常数ε0=3.00(摩擦前的聚酰亚胺膜的介电常数),基于式(2)算出倾斜角θ时,θ=22.5°。In addition, when fitting calculations were carried out with respect to the measurement results of graph G 3 , when calculating the orientation v 3 where the received light intensity becomes extremely small, as Φ B =v 3 -v 1 , the ordinary light permittivity ε 0 =3.00( Dielectric constant of the polyimide film before rubbing), when the inclination angle θ is calculated based on the formula (2), θ=22.5°.
而此时一个测定点的测定时间为约2秒。In this case, the measurement time for one measurement point is about 2 seconds.
基于该结果,在试件的光学轴的方位角方向和与其正交的方向的2个方向上,采用椭偏仪进行测定时,可知寻常光介电常数ε0=2.79,异常光介电常数εe=3.44、各向异性层的膜厚t=11nm。从该寻常光介电常数ε0的值再计算倾斜角θ时,θ值为24.5°。Based on this result, in the two directions of the azimuth direction of the optical axis of the test piece and the direction perpendicular to it, when using an ellipsometer to measure, it can be known that the ordinary light permittivity ε 0 = 2.79, and the extraordinary light permittivity ε e = 3.44, and the film thickness t of the anisotropic layer = 11 nm. When the inclination angle θ is recalculated from the value of the ordinary optical permittivity ε 0 , the value of θ is 24.5°.
此时,即使加上椭偏仪测定的时间,测定时间为每一测定点为约4秒,可以高速测出与现有方法一样的结果。In this case, even if the measurement time of the ellipsometer is added, the measurement time is about 4 seconds per measurement point, and the same result as the conventional method can be measured at high speed.
实施例2Example 2
图4显示了光学各向异性参数测定装置的其他实施形式,与图1相同的部分附加相同的符号,因此省略其详细说明。FIG. 4 shows another embodiment of the optical anisotropy parameter measuring device, and the same parts as in FIG. 1 are denoted by the same reference numerals, so detailed description thereof will be omitted.
在本例子的光学各向异性参数测定装置31中,发光光学系统4设置有氙灯32,沿着其照射光轴LIR,在反射镜33的聚光点处设置针孔狭缝34、使其透过光平行化的准直透镜35、干涉滤光镜36、使P偏振光透过的偏振光镜22。In the optical anisotropy
此时,干涉滤光镜35这样设定,其中心波长选定为450nm,半值全宽选定为2nm、照射在薄膜试件3上的光束直径设定为10mm2,入射角度设定为作为布鲁斯特角附近的60°。At this time, the
此外,受光光学系统5沿着其反射光轴LRF,设置使S偏振光透过的检测光子24、波长选择滤光器37、二维CCD相机38。In addition, the light-receiving
由此,可同时测定来自照射在试件3上的10mm2的测定区域A中的多个测定点Mij的反射光强度。Thus, the intensity of reflected light from a plurality of measurement points Mij in the measurement area A of 10 mm 2 irradiated on the
试件3这样进行准备,在Si基板上旋转涂布聚酰胺酸(日产化学制造PI-C),在260℃下进行烧结,采用抛光布进行摩擦形成。在摩擦时,由试件3的左侧向右侧以较大的摩擦强度进行摩擦。
采用现有的方法以10×10=100点测定该试件3的倾斜角θ时,右侧的分布为30-34°,左侧的分布为27-29°。When using the existing method to measure the inclination angle θ of the
此外,测定时间为100个点约100分钟。In addition, the measurement time is about 100 minutes for 100 points.
将试件3设置在载台2上,调整摆动角、高度后,使旋转台13旋转,相对于入射方向测量反射光强度的2元分布。Set the
图5(a)显示了旋转前测定区域A内的测定点Mij(i,j=1-10)。Fig. 5(a) shows measurement points Mij (i, j=1-10) in measurement area A before rotation.
图5(b)显示了随着旋转台13旋转的旋转图像,各测定点Mij以极坐标Mij=(rn,αm)表示的话,旋转台13以角度γ旋转时,Mij的位置采用Mij=(rn,αm+γ)表示。Fig. 5(b) shows the rotation image as the
因此,可在与Mij=(rn,αm+γ)对应的CCD相机39的象素区域内测定反射光强度。Therefore, the reflected light intensity can be measured in the pixel area of the CCD camera 39 corresponding to Mij=( rn , αm +γ).
由此,对于总计100个点的各测定点Mij,与实施例1一样,以摩擦方向(X方向)为中心的±20°,以及与之正交的方向(Y方向)为中心的±20°的范围中,以2°的间隔测定反射光强度,采用式(7)求出倾斜角θ的分布。此时100个点的测定点的测定时间为2秒。Thus, for each measuring point Mij of a total of 100 points, as in Example 1, ±20° centered on the rubbing direction (X direction) and ±20° centered on the direction perpendicular thereto (Y direction) In the range of 2°, the reflected light intensity was measured at intervals of 2°, and the distribution of the inclination angle θ was obtained using the formula (7). At this time, the measurement time for 100 measurement points was 2 seconds.
基于该结果,对于试件的各测定点Mij,在光学轴OX的方位角方向ΦA和与其正交的方向的2个方向,采用椭偏仪进行测定,测定寻常光介电常数ε0、异常光介电常数εe、各向异性层的膜厚t。Based on this result, for each measuring point Mij of the test piece, in two directions of the azimuth angle direction Φ A of the optical axis OX and the direction perpendicular to it, the measurement is carried out using an ellipsometer, and the ordinary optical permittivity ε 0 , Abnormal photopermittivity ε e , film thickness t of the anisotropic layer.
图6是从测定出的寻常光介电常数ε0的值再计算出的倾斜角θ的分布。FIG. 6 shows the distribution of the inclination angle θ recalculated from the measured value of the ordinary optical permittivity ε 0 .
由此,右侧为30-34°的分布,左侧为27-29°的分布,获得与采用现有方法测定出的同样的结果。Thus, the right side is a distribution of 30-34°, and the left side is a distribution of 27-29°, and the same results as those measured by the conventional method are obtained.
此时,即使加上椭偏仪测定的时间,100个点的测定点的测定时间为约6秒,可以极高速测出与现有方法一样的结果。In this case, even if the measurement time of the ellipsometer is added, the measurement time for 100 measurement points is about 6 seconds, and the same result as the conventional method can be measured at an extremely high speed.
实施例3Example 3
图7显示了光学各向异性参数测定装置的其他实施形式,与图1相同的部分采用同一符号表示,省略了其详细说明。Fig. 7 shows another embodiment of the optical anisotropy parameter measuring device, the same parts as in Fig. 1 are denoted by the same symbols, and the detailed description thereof is omitted.
本例子的光学各向异性参数测定装置41不使试件3旋转来测定光学各向异性参数。The optical anisotropy
发光光学系统4在以摩擦方向(X方向)为中心的±20°、以与其正交的Y方向为中心的±20°的范围内,以5°的间隔设定多个照射光轴LIR,该光轴使得在布鲁斯特角附近的入射角(在本例子中为60°)处向测定点M照射光。The light emitting
在各照射光轴LIR处,设置波长为780nm,光强度为20mW的半导体激光器42,使P偏振光透过的偏振光镜22。A
受光光学系统5是这样形成的,其配设有沿着从备激光器42照射出、被薄膜试件3反射的各反射光轴LRF,消去从试件3的背面反射的光的针孔狭缝23;使S偏振光透过的检测光子24;波长选择滤光器25和光电倍增管26,各光电倍增管26的检测信号输出至运算处理装置6。The light-receiving
试件3这样进行准备,在玻璃基板(白板玻璃)上采用旋转涂布机旋转涂布聚酰胺酸(日产化学制造PI-C)后,在260℃下进行烧结,采用抛光布进行摩擦形成。
摩擦前薄膜的膜厚T=93nm,介电常数ε=2.98。The film thickness T of the thin film before rubbing was 93nm, and the dielectric constant ε=2.98.
摩擦后的试件3采用现有的公知方式预先进行测定时,摩擦方向为0°时,光学轴OX的方位角方向v1=1.5°,极角方向θ=20.4°,寻常光介电常数ε0=2.78、异常光介电常数εe=3.32、各向异性层的膜厚t=12nm。此时的测定时间为一个测定点花费60秒。When the rubbed
调整薄膜试件3的摆动角、高度后,测定从各激光器42输出的光的反射光强度。After adjusting the swing angle and height of the
图8和图9为分别以X方向(180°)和Y方向(90°)为中心的±20°角度范围中的测定数据。Fig. 8 and Fig. 9 are the measured data in the angle range of ±20° centered on the X direction (180°) and the Y direction (90°) respectively.
相对于图8的测定结果进行拟合计算,在计算受光强度极小的方位v1时,v1=1.8°。因此可知,光学轴OX的方位角方向ΦA从Y轴倾斜1.8°。Fitting calculation was performed with respect to the measurement results in FIG. 8 , and v 1 =1.8° when calculating the orientation v 1 where the received light intensity is extremely small. Therefore, it can be seen that the azimuth direction Φ A of the optical axis OX is inclined by 1.8° from the Y axis.
此外,相对于图9的测定结果进行拟合计算时,计算受光强度极小的方位v3,作为ΦB=v3-v1、寻常光介电常数ε0=2.98(摩擦前的聚酰亚胺膜介电常数),基于式(2)计算倾斜角θ时,θ=19.0°。In addition, when performing fitting calculations with respect to the measurement results in FIG. 9 , the orientation v 3 where the received light intensity is extremely small is calculated as Φ B =v 3 -v 1 , ordinary photopermittivity ε 0 =2.98 (polyamide before rubbing) imine film dielectric constant), when calculating the inclination angle θ based on formula (2), θ=19.0°.
而此时一个测定点的测定时间为约0.5秒。In this case, the measurement time for one measurement point is about 0.5 seconds.
基于该结果,采用椭偏仪在试件的光学轴的方位角方向和与其正交的方向的2个方向进行测量后,寻常光介电常数ε0=2.76、异常光介电常数εe=3.38、各向异性层的膜厚t=16nm。从该寻常光介电常数ε0的值再计算出倾斜角θ时,θ=20.5°。Based on this result, after using the ellipsometer to measure the azimuth direction of the optical axis of the specimen and the direction perpendicular to it, the ordinary light permittivity ε 0 =2.76, the extraordinary light permittivity ε e = 3.38. The film thickness of the anisotropic layer is t=16nm. When the inclination angle θ is recalculated from the value of the ordinary optical permittivity ε 0 , θ=20.5°.
此时,即使加上椭偏仪测定的时间,测定时间为每一测定点为约2秒,可以高速测出与现有方法一样的结果。In this case, even if the measurement time of the ellipsometer is added, the measurement time is about 2 seconds per measurement point, and the same result as the conventional method can be measured at high speed.
产业上的可利用性Industrial availability
本发明可适用于具有光学各向异性的薄膜制品,特别适用于液晶取向膜的品质检查等。The present invention is applicable to film products with optical anisotropy, and is especially suitable for quality inspection of liquid crystal alignment films and the like.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005015017 | 2005-01-24 | ||
JP2005015017 | 2005-01-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1847816A true CN1847816A (en) | 2006-10-18 |
CN100570310C CN100570310C (en) | 2009-12-16 |
Family
ID=37077460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100840315A Expired - Fee Related CN100570310C (en) | 2005-01-24 | 2006-01-24 | Optical anisotropy parameter measurement method and measurement device |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101280335B1 (en) |
CN (1) | CN100570310C (en) |
TW (1) | TWI384213B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101666926A (en) * | 2008-09-02 | 2010-03-10 | 株式会社茉莉特斯 | Determination method and determination device for optical anisotropic parameters |
CN101846819B (en) * | 2009-03-27 | 2012-05-30 | 比亚迪股份有限公司 | Detection method of screen marks in liquid crystal display manufacturing |
CN103477206A (en) * | 2011-04-11 | 2013-12-25 | 肖特茉丽特株式会社 | Optical anisotropic parameter measurement device, measurement method and measurement program |
CN104280211A (en) * | 2013-07-05 | 2015-01-14 | 肖特茉丽特株式会社 | Optical anisotropic parameter measurement device, measurement method and measurement program |
CN104808586A (en) * | 2015-04-20 | 2015-07-29 | 京东方科技集团股份有限公司 | Coating machine |
CN105842889A (en) * | 2016-06-21 | 2016-08-10 | 京东方科技集团股份有限公司 | Detection device and method of optical alignment substrate |
CN106841228A (en) * | 2015-12-03 | 2017-06-13 | 特铨股份有限公司 | Micronic dust testing agency |
CN107250841A (en) * | 2015-02-19 | 2017-10-13 | 皇家飞利浦有限公司 | Infrared laser light irradiation apparatus |
CN110651177A (en) * | 2017-05-23 | 2020-01-03 | 浜松光子学株式会社 | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
US11243073B2 (en) | 2017-05-23 | 2022-02-08 | Hamamatsu Photonics K.K. | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9612212B1 (en) * | 2015-11-30 | 2017-04-04 | Samsung Electronics Co., Ltd. | Ellipsometer and method of inspecting pattern asymmetry using the same |
CN109342325B (en) * | 2018-10-30 | 2023-12-19 | 南开大学 | A method and device for anisotropic microscopic imaging of low-dimensional materials |
CN112066896B (en) * | 2020-07-22 | 2021-12-10 | 北京量拓科技有限公司 | Method and device for positioning vertex of curved surface sample and ellipsometer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2776333B2 (en) * | 1995-09-20 | 1998-07-16 | 日本電気株式会社 | Liquid crystal alignment film inspection method and inspection apparatus |
JP2000081371A (en) * | 1998-09-07 | 2000-03-21 | Nec Corp | Method and device for evaluating thin-film molecular orientation and storage medium |
JP2000121496A (en) * | 1998-10-14 | 2000-04-28 | Nec Corp | Method and apparatus for evaluating orientation film and recording medium recording orientation film- evaluating program |
JP3447654B2 (en) * | 2000-03-24 | 2003-09-16 | Necエレクトロニクス株式会社 | Anisotropic thin film evaluation method and evaluation device |
JP3425923B2 (en) * | 2000-03-27 | 2003-07-14 | Necエレクトロニクス株式会社 | Evaluation method and evaluation device for anisotropic multilayer thin film structure |
JP4802409B2 (en) * | 2000-07-21 | 2011-10-26 | コニカミノルタホールディングス株式会社 | Optical compensation film, polarizing plate and liquid crystal display device using the same |
JP2002162344A (en) * | 2000-11-22 | 2002-06-07 | Nec Corp | Evaluation method of anisotropic thin film and its equipment |
-
2006
- 2006-01-18 KR KR1020060005145A patent/KR101280335B1/en not_active IP Right Cessation
- 2006-01-19 TW TW095102013A patent/TWI384213B/en not_active IP Right Cessation
- 2006-01-24 CN CNB2006100840315A patent/CN100570310C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101666926B (en) * | 2008-09-02 | 2013-07-31 | 株式会社茉莉特斯 | Determination method and determination device for optical anisotropic parameters |
CN101666926A (en) * | 2008-09-02 | 2010-03-10 | 株式会社茉莉特斯 | Determination method and determination device for optical anisotropic parameters |
CN101846819B (en) * | 2009-03-27 | 2012-05-30 | 比亚迪股份有限公司 | Detection method of screen marks in liquid crystal display manufacturing |
CN103477206B (en) * | 2011-04-11 | 2015-11-25 | 肖特茉丽特株式会社 | Optical anisotropy's parameter measuring apparatus, measuring method and measurement system |
CN103477206A (en) * | 2011-04-11 | 2013-12-25 | 肖特茉丽特株式会社 | Optical anisotropic parameter measurement device, measurement method and measurement program |
CN104280211A (en) * | 2013-07-05 | 2015-01-14 | 肖特茉丽特株式会社 | Optical anisotropic parameter measurement device, measurement method and measurement program |
CN107250841B (en) * | 2015-02-19 | 2021-02-12 | 通快光电器件有限公司 | Infrared laser illumination equipment |
CN107250841A (en) * | 2015-02-19 | 2017-10-13 | 皇家飞利浦有限公司 | Infrared laser light irradiation apparatus |
CN104808586A (en) * | 2015-04-20 | 2015-07-29 | 京东方科技集团股份有限公司 | Coating machine |
CN106841228A (en) * | 2015-12-03 | 2017-06-13 | 特铨股份有限公司 | Micronic dust testing agency |
CN105842889A (en) * | 2016-06-21 | 2016-08-10 | 京东方科技集团股份有限公司 | Detection device and method of optical alignment substrate |
CN105842889B (en) * | 2016-06-21 | 2019-09-06 | 京东方科技集团股份有限公司 | The detection device and method of light alignment substrates |
CN110651177A (en) * | 2017-05-23 | 2020-01-03 | 浜松光子学株式会社 | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
US11243073B2 (en) | 2017-05-23 | 2022-02-08 | Hamamatsu Photonics K.K. | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
CN110651177B (en) * | 2017-05-23 | 2022-07-29 | 浜松光子学株式会社 | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
US11920921B2 (en) | 2017-05-23 | 2024-03-05 | Hamamatsu Photonics K.K. | Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device |
Also Published As
Publication number | Publication date |
---|---|
TWI384213B (en) | 2013-02-01 |
KR20060085574A (en) | 2006-07-27 |
TW200632305A (en) | 2006-09-16 |
KR101280335B1 (en) | 2013-07-01 |
CN100570310C (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1847816A (en) | Optical anisotropy parameter measurement method and measurement device | |
JP4960026B2 (en) | Film defect inspection apparatus and film manufacturing method | |
TWI421486B (en) | Apparatus and method for measuring an optical anisotropic parameter | |
JP2007327915A5 (en) | ||
JP4663529B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
CN1354360A (en) | Method and apparatus for appraising liquid crystal panel | |
WO2012036075A1 (en) | Refractive index measuring device, and refractive index measuring method | |
JP2008058270A (en) | Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus | |
CN1186617C (en) | Method and apparatus for evaluating internal film stress at high lateral resolution | |
WO2007132818A1 (en) | Inspecting system for board subjected to inspection and method for inspecting board subjected to inspection | |
CN1155652A (en) | Method and apparatus for measuring thickness of birefringence layer | |
TW202134636A (en) | Inspection method | |
US20120099106A1 (en) | Sealing inspection device and sealing inspection method of flat panel display apparatus by using the sealing inspection device | |
TW201512736A (en) | Liquid crystal modulator for detecting a defective substrate and inspection apparatus having the same | |
TWI464390B (en) | Surface inspection device and surface inspection method | |
CN1743796A (en) | Method and device for measuring thickness of double-refraction uniaxial crystal wave plate | |
JP3803999B2 (en) | Defect inspection equipment | |
JP4728830B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
KR101711192B1 (en) | Electro-optic modulator, and testing apparatus comprising the electro-optic modulator | |
CN1945281A (en) | Measuring device and its measuring method for circular dichroism | |
CN111721776B (en) | Inspection methods and inspection devices | |
CN1489684A (en) | Method for measuring gap of liquid crystal cell | |
TWI314641B (en) | Apparatus for detecting the orientation of polarization axis and the method thereof | |
KR20080093236A (en) | Method and apparatus for inspecting substrate using high reflection and transmission efficiency and phase delay of transmitted light | |
TW202141083A (en) | Image determination device for metal wire grid polarizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: SCHOTT MORITEX CO., LTD. Free format text: FORMER NAME: MOLIST CO., LTD. |
|
CP03 | Change of name, title or address |
Address after: Saitama Prefecture, Japan Patentee after: Moritex Corp. Address before: Tokyo, Japan Patentee before: Moritex Corp. |
|
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: Saitama Prefecture, Japan Patentee after: Moritex Co. Ltd. Address before: Saitama Prefecture, Japan Patentee before: Moritex Corp. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091216 Termination date: 20190124 |
|
CF01 | Termination of patent right due to non-payment of annual fee |