CN1837043A - Rare earth particle/montmorillonite nanocomposite material and preparation method thereof - Google Patents
Rare earth particle/montmorillonite nanocomposite material and preparation method thereof Download PDFInfo
- Publication number
- CN1837043A CN1837043A CN 200610042687 CN200610042687A CN1837043A CN 1837043 A CN1837043 A CN 1837043A CN 200610042687 CN200610042687 CN 200610042687 CN 200610042687 A CN200610042687 A CN 200610042687A CN 1837043 A CN1837043 A CN 1837043A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- montmorillonite
- particle
- nanocomposite material
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 92
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 87
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910052901 montmorillonite Inorganic materials 0.000 title claims abstract description 76
- 239000002245 particle Substances 0.000 title claims abstract description 71
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 47
- 239000000463 material Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 48
- 239000000178 monomer Substances 0.000 claims abstract description 28
- 239000000839 emulsion Substances 0.000 claims abstract description 23
- 239000002105 nanoparticle Substances 0.000 claims abstract description 22
- 239000003999 initiator Substances 0.000 claims abstract description 12
- 238000009830 intercalation Methods 0.000 claims abstract description 10
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 10
- 230000005855 radiation Effects 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 239000006185 dispersion Substances 0.000 claims description 21
- 229910017059 organic montmorillonite Inorganic materials 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 230000002687 intercalation Effects 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002612 dispersion medium Substances 0.000 claims description 7
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- -1 rare earth salt Chemical class 0.000 claims description 5
- 239000003945 anionic surfactant Substances 0.000 claims description 4
- 239000003093 cationic surfactant Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000002736 nonionic surfactant Substances 0.000 claims description 4
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical group [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 3
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical group [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 3
- WHRAZOIDGKIQEA-UHFFFAOYSA-L iron(2+);4-methylbenzenesulfonate Chemical compound [Fe+2].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 WHRAZOIDGKIQEA-UHFFFAOYSA-L 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 3
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 3
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 abstract 2
- 239000012190 activator Substances 0.000 abstract 1
- 239000008346 aqueous phase Substances 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910002249 LaCl3 Inorganic materials 0.000 description 1
- 229910017544 NdCl3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RSEIMSPAXMNYFJ-UHFFFAOYSA-N europium(III) oxide Inorganic materials O=[Eu]O[Eu]=O RSEIMSPAXMNYFJ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- SZEMGTQCPRNXEG-UHFFFAOYSA-M trimethyl(octadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C SZEMGTQCPRNXEG-UHFFFAOYSA-M 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种以蒙脱土为主体的纳米复合材料,特别涉及一种稀土粒子/蒙脱土纳米复合材料;本发明同时还涉及一种利用乳液插层微波法制备稀土粒子/蒙脱土纳米复合材料的方法。The present invention relates to a nanocomposite material with montmorillonite as the main body, in particular to a rare earth particle/montmorillonite nanocomposite material; the present invention also relates to a rare earth particle/montmorillonite nanocomposite prepared by emulsion intercalation microwave method methods for nanocomposites.
背景技术Background technique
蒙脱土由于资源丰富、价廉、有较好的膨胀性、粘接性、吸附性、润滑性和阳离子交换性等性能可作为粘接剂、吸收剂、填充剂、催化剂、洗涤剂、增稠剂等,广泛应用于工农业、医药以及环境治理等领域,被称为“具有千种用途的粘土”、“万能粘土”、“有生命的矿物”。Montmorillonite can be used as adhesives, absorbents, fillers, catalysts, detergents, enhancers, etc. Thickeners, etc., are widely used in the fields of industry, agriculture, medicine, and environmental governance, and are known as "clay with thousands of uses", "universal clay", and "living minerals".
近年来,蒙脱土层间化合物的研究得到了发展,使得蒙脱土具有更高的实用性。由于蒙脱土特殊性被广泛用作阻热聚合物复合材料和导电聚合物复合材料的填料。在一定范围内填料含量越高,复合材料的性能越好,但是材料的力学性能有所下降,特别是材料韧性会明显下降。提高复合材料性能的一个有效途径是将无机粒子以纳米级均匀填充到聚合物中,可以改善其热学性能、电学性能和力学性能,但采用传统的共混方法,难以使填料获得纳米水平上的均匀分散。由于填料与聚合物的化学结构和物理形态相差较大,目前,界面改性技术难以完全改变填料与聚合物基体间的界面能降低界面张力,实现纳米级均匀分散和界面粘接。因此复合材料达不到分子分散水平,而只属于微观混合材料,影响了材料应有的韧性、刚性、耐热性和电学性能的改善。改进的途径是各相均匀分散而形成复合材料。由于蒙脱土片层间存在很强的结合力,容易产生蒙脱±片层聚集,引起复合体系中稀土粒子的不均匀性,超出纳米级,不再是纳米复合材料,从而大大影响复合材料的性能。为了解决现有技术中稀土粒子不能以纳米级均匀分散在蒙脱土片层中而影响复合材料性。在复合材料的聚合过程中,依靠表面活性剂形成微乳液,自发形成的各向同性、热力学稳定、外观透明或半透明的胶体乳液,产生反胶束“水池反应场”,这种“微反应器”空间可以合成纳米级的微粒,无需对无机纳米粒子进行有机改性和在前驱体中再分散,直接插层进行本体原位聚合,然后进行微波辐射制得稀土粒子/MMT纳米复合材料,既克服了稀土粒子在蒙脱土片层中均匀分散的难题,又简化了工艺。只有蒙脱土片层与稀土粒子有强相互作用,并达到纳米尺度的分散,才可能将二者的协同性有效的发挥出来,使之成为完美地结合,获得性能良好纳米复合材料。In recent years, the research on interlayer compounds of montmorillonite has been developed, which makes montmorillonite more practical. Due to the particularity of montmorillonite, it is widely used as a filler for heat-resistant polymer composites and conductive polymer composites. The higher the filler content within a certain range, the better the performance of the composite material, but the mechanical properties of the material will decrease, especially the toughness of the material will decrease significantly. An effective way to improve the performance of composite materials is to uniformly fill inorganic particles into polymers at the nanometer level, which can improve their thermal, electrical and mechanical properties. However, it is difficult to obtain fillers at the nanometer level by traditional blending methods Disperse evenly. Due to the large difference in chemical structure and physical form between fillers and polymers, at present, it is difficult for interface modification technology to completely change the interfacial energy between fillers and polymer matrix to reduce interfacial tension and achieve nanoscale uniform dispersion and interfacial bonding. Therefore, the composite material cannot reach the level of molecular dispersion, but only belongs to the microscopic mixed material, which affects the improvement of the toughness, rigidity, heat resistance and electrical properties of the material. The way to improve is to uniformly disperse the phases to form a composite material. Due to the strong binding force between the montmorillonite sheets, it is easy to produce montmorillonite sheet aggregation, which causes the inhomogeneity of the rare earth particles in the composite system, beyond the nanometer level, and is no longer a nanocomposite material, which greatly affects the composite material. performance. In order to solve the problem that the rare earth particles in the prior art cannot be uniformly dispersed in the montmorillonite layer at the nanometer level and affect the properties of the composite material. During the polymerization process of composite materials, relying on surfactants to form microemulsions, spontaneously formed isotropic, thermodynamically stable, transparent or translucent colloidal emulsions, resulting in reverse micelles "pool reaction field", this "microreaction Nano-scale particles can be synthesized in the "device" space, without organic modification of inorganic nanoparticles and redispersion in the precursor, direct intercalation for bulk in-situ polymerization, and then microwave radiation to prepare rare earth particles/MMT nanocomposites. It not only overcomes the difficult problem of uniform dispersion of rare earth particles in the montmorillonite sheet, but also simplifies the process. Only when the montmorillonite sheet has a strong interaction with the rare earth particles and achieves nanoscale dispersion, can the synergy between the two be effectively brought into play, making it a perfect combination and obtaining a nanocomposite material with good performance.
发明内容Contents of the invention
本发明的目的是提供一种稀土粒子/蒙脱土纳米复合材料;The object of the present invention is to provide a kind of rare earth particle/montmorillonite nanocomposite material;
本发明的另一目的是提供一种利用乳液插层微波技术制备稀土粒子/蒙脱土纳米复合材料的方法。Another object of the present invention is to provide a method for preparing rare earth particle/montmorillonite nanocomposite material by using emulsion intercalation microwave technology.
本发明的稀土粒子/蒙脱土纳米复合材料,是稀土粒子与蒙脱土片层均匀分散、紧密结合;其中稀土粒子的粒径为20~30nm,蒙脱土片层的厚度为30~50nm。The rare earth particle/montmorillonite nanocomposite material of the present invention is that the rare earth particle and the montmorillonite sheet are evenly dispersed and closely combined; wherein the particle diameter of the rare earth particle is 20-30 nm, and the thickness of the montmorillonite sheet is 30-50 nm .
所述稀土粒子与蒙脱土的质量比份为:稀土纳米粒子1~20份,蒙脱土1~30份。The mass ratio of the rare earth particles to the montmorillonite is: 1-20 parts of the rare earth nanoparticles and 1-30 parts of the montmorillonite.
所述稀土纳米粒子为稀土氧化物粒子。The rare earth nanoparticles are rare earth oxide particles.
本发明稀土粒子/蒙脱土纳米复合材料的制备方法,是将一定量的聚合物单体溶于溶有表面活性剂的分散剂中,再向其中加入一定量的稀土盐水溶液搅拌,在室温下超声分散30~60分钟,形成反胶束乳液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到60~80℃,磁力搅拌分散插层2~3小时,随后加入适量引发剂使聚合物单体引发聚合,反应15~30小时后加入适量沉淀剂使稀土粒子完全沉淀,过滤、洗涤,真空烘干;然后用频率为2000~2500MHz的微波辐射0.2~1.5小时,使聚合物分解成CO2和H2O,微波辐射对稀土粒子结晶影响不明显,耐高温的蒙脱土保持不变,制得稀土粒子/蒙脱土纳米复合材料。The preparation method of the rare earth particle/montmorillonite nano-composite material of the present invention is to dissolve a certain amount of polymer monomer in a dispersant that is dissolved with a surfactant, then add a certain amount of rare earth salt solution to it and stir, and Ultrasonic dispersion for 30-60 minutes to form a reverse micellar emulsion; then add the reverse micellar emulsion to the organic montmorillonite aqueous dispersion drop by drop under the protection of N2 , adjust the temperature to 60-80 °C, and magnetically stir to disperse and insert Layer for 2 to 3 hours, then add an appropriate amount of initiator to initiate polymerization of the polymer monomer, add an appropriate amount of precipitant to completely precipitate the rare earth particles after 15 to 30 hours of reaction, filter, wash, and vacuum dry; then use a frequency of 2000 to 2500MHz Microwave radiation for 0.2 to 1.5 hours decomposes the polymer into CO 2 and H 2 O. The effect of microwave radiation on the crystallization of rare earth particles is not obvious, and the high temperature resistant montmorillonite remains unchanged, and the rare earth particle/montmorillonite nanocomposite is prepared Material.
本方法采用的聚合物单体为苯胺、甲基丙烯酸甲酯、丙烯酸甲酯、吡咯或邻苯二胺中的任何一种。The polymer monomer used in the method is any one of aniline, methyl methacrylate, methyl acrylate, pyrrole or o-phenylenediamine.
本方法采用的表面活性剂为阴离子表面活性剂、阳离子表面活性剂或非离子表面活性剂;其中阴离子表面活性剂为十二烷基硫酸钠、硬脂酸钠或硬脂酸;阳离子表面活性剂为十六烷基三甲基氯化铵;非离子表面活性剂为烷基酚聚氧乙烯醚。表面活性剂的加入量为聚合物单体重量的15~25%。The surfactant that this method adopts is anionic surfactant, cationic surfactant or nonionic surfactant; Wherein anionic surfactant is sodium lauryl sulfate, sodium stearate or stearic acid; Cationic surfactant It is cetyltrimethylammonium chloride; the nonionic surfactant is alkylphenol polyoxyethylene ether. The added amount of the surfactant is 15-25% of the weight of the polymer monomer.
表面活性剂的存在一方面在自组装形成反胶束微乳液制备分散均匀稀土纳米粒子起着重要的作用,又作为蒙脱土和稀土纳米粒子的表面修饰剂,提高了油相和水相的的相容性及亲和力。乳液是依靠表面活性剂自发形成的各向同性、热力学稳定、外观半透明的胶体分散体系。乳液中的“水池反应场”为纳米级,尺寸小且分布均匀,有效地限制了纳米粒子的生长空间,使得水相与油相在反应过程中分散均匀,当聚合物单体发生聚合时水相中的稀土粒子就被牵制于聚合物中而保持原来均匀分散的状态,然后进行微波辐射制得稀土粒子/MMT纳米复合材料,有效地解决了纳米粒子的团聚问题,并达到纳米尺度的均匀分散,使纳米复合材料具有许多采用传统方法难以达到的优良性能。On the one hand, the presence of surfactants plays an important role in self-assembly to form reverse micellar microemulsions to prepare uniformly dispersed rare earth nanoparticles, and as a surface modifier for montmorillonite and rare earth nanoparticles, it improves the oil phase and water phase. compatibility and affinity. Emulsion is an isotropic, thermodynamically stable, translucent colloidal dispersion system formed spontaneously by surfactants. The "water pool reaction field" in the emulsion is nano-scale, small in size and evenly distributed, effectively limiting the growth space of nanoparticles, making the water phase and oil phase evenly dispersed during the reaction process, and when the polymer monomers are polymerized, the water The rare earth particles in the phase are pinned down in the polymer to maintain the original uniformly dispersed state, and then the rare earth particles/MMT nanocomposite material is prepared by microwave radiation, which effectively solves the problem of nanoparticle agglomeration and achieves nanoscale uniformity. Dispersion enables nanocomposites to have many excellent properties that are difficult to achieve by traditional methods.
本发明采用的分散介质为三氯甲烷、水或乙醇。分散介质的量为聚合物单体质量的4~10倍。分散介质的作用是促进蒙脱土在聚合物单体中的分散。分散介质根据单体、稀土粒子、引发剂而定。好的分散介质应使蒙脱土和稀土纳米粒子容易分散并与单体和引发剂具有良好的溶混性,制备出的复合材料性能良好。The dispersion medium used in the present invention is chloroform, water or ethanol. The amount of the dispersion medium is 4-10 times of the mass of the polymer monomer. The role of the dispersion medium is to promote the dispersion of montmorillonite in the polymer monomer. The dispersion medium depends on the monomer, rare earth particles and initiator. A good dispersion medium should make the montmorillonite and rare earth nanoparticles easy to disperse and have good miscibility with the monomer and initiator, and the prepared composite material has good performance.
本发明采用的稀土盐为可溶性稀土的硝酸盐或氯化物;其中稀土盐的加入量为聚合物单体质量的1~20%。The rare earth salt used in the invention is nitrate or chloride of soluble rare earth; wherein the added amount of the rare earth salt is 1-20% of the mass of the polymer monomer.
本发明采用的有机蒙脱土是以十六烷基三甲基溴化铵、十二烷基三甲基氯化铵或十八烷基三甲基溴化铵为有机改性剂,将天然蒙脱土进行有机改性而得;有机蒙脱土的加入量为聚合物单体质量的1~30%。The organic montmorillonite that the present invention adopts is to take hexadecyltrimethylammonium bromide, dodecyltrimethylammonium chloride or octadecyltrimethylammonium bromide as an organic modifier, and the natural The montmorillonite is obtained through organic modification; the addition amount of the organic montmorillonite is 1-30% of the mass of the polymer monomer.
有机蒙脱土的改性方法是:将一定量的改性剂置于水中,加适量盐酸调节形成质子化溶液;再将适量已提纯的蒙脱土置于水中,在40~60℃的恒温水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液,然后将上述质子化溶液逐滴加入到蒙脱土水分散液中,并用超声波震动3~4小时,再经抽滤并用水洗涤止无溴离子和氯离子,最后在70~90℃下,经真空干燥、研磨、过筛后,所的产物为有机蒙脱土。该有机蒙脱土的片层较均匀地分散在有机改性剂基体中,片层的厚度为40~50nm,片层间距为3~15nm,有机蒙脱土这种特殊的结构,为制备稀土粒子/蒙脱土纳米复合材料的纳米特征提供了根据。The modification method of organic montmorillonite is: put a certain amount of modifier in water, add an appropriate amount of hydrochloric acid to adjust to form a protonated solution; Stir and heat in a water bath for 30-60 minutes and then let stand to form a montmorillonite aqueous dispersion, then add the above-mentioned protonated solution to the montmorillonite aqueous dispersion drop by drop, and vibrate with ultrasonic waves for 3-4 hours, then filter and remove Wash with water to remove bromide ions and chloride ions, and finally vacuum-dry, grind and sieve at 70-90°C, and the obtained product is organic montmorillonite. The sheets of the organic montmorillonite are more uniformly dispersed in the organic modifier matrix, the thickness of the sheets is 40-50nm, and the interlamellar distance is 3-15nm. The special structure of the organic montmorillonite is suitable for the preparation of rare earth The nano-characteristics of the particle/montmorillonite nanocomposites are provided.
本发明采用的引发剂为偶氮二异丁腈、过硫酸铵或对甲基苯磺酸铁;引发剂的加入量为聚合物单体质量的0.1~320%,根据聚合物单体决定。The initiator used in the present invention is azobisisobutyronitrile, ammonium persulfate or iron p-toluenesulfonate; the added amount of the initiator is 0.1-320% of the mass of the polymer monomer, which is determined according to the polymer monomer.
本发明采用的沉淀剂为氢氧化钠。The precipitation agent that the present invention adopts is sodium hydroxide.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明的稀土粒子/蒙脱土纳米复合材料,使蒙脱土片层的厚度大约为30~50nm,可以明显的看出膨胀之后的蒙脱土在保持原有的层状结构基础上有剥离现象,形成了规整的纳米复合材料,稀土纳米粒子的平均粒径为25nm左右,具有非常大的界面面积,稀土粒子与蒙脱土基体界面具有理想的粘接性能,可消除两物质热膨胀系数不匹配和不相溶问题,使得复合材料的理化性能得到很好的改善。1. In the rare earth particle/montmorillonite nanocomposite material of the present invention, the thickness of the montmorillonite sheet is about 30 to 50 nm, and it can be clearly seen that the montmorillonite after expansion maintains the original layered structure. There is a peeling phenomenon, forming a regular nanocomposite material. The average particle size of the rare earth nanoparticles is about 25nm, which has a very large interface area. The interface between the rare earth particles and the montmorillonite matrix has ideal bonding performance, which can eliminate the thermal expansion of the two substances. The coefficient mismatch and incompatibility problems make the physical and chemical properties of the composite materials improved very well.
2、本发明的制备方法以表面活性剂为模板,使稀土纳米粒子的形成与复合材料的制备同步进行,且水相与油相在反应过程中分散均匀,当乳液中单体发生聚合时稀土粒子就被牵制于聚合物中而保持原来均匀分散的状态,然后进行微波辐射一段时间,在微波中聚合物分解CO2和H2O,微波辐射对稀土粒子结晶影响不明显,耐高温的蒙脱土保持不变,有效地解决了纳米粒子的团聚问题,并达到纳米尺度的均匀分散,从而有效的简化了复合材料制备程序,缩短了制备时间。本发明的方法操作简单,生产效率高,成本低,且便于工业化生产。2. The preparation method of the present invention uses a surfactant as a template, so that the formation of rare earth nanoparticles and the preparation of composite materials are carried out simultaneously, and the water phase and the oil phase are uniformly dispersed during the reaction process. When the monomers in the emulsion are polymerized, the rare earth The particles are held in the polymer to maintain the original uniformly dispersed state, and then microwave radiation is carried out for a period of time, and the polymer decomposes CO 2 and H 2 O in the microwave. The effect of microwave radiation on the crystallization of rare earth particles is not obvious. The desoil remains unchanged, effectively solves the problem of nanoparticle agglomeration, and achieves uniform dispersion at the nanometer scale, thereby effectively simplifying the preparation procedure of the composite material and shortening the preparation time. The method of the invention is simple in operation, high in production efficiency, low in cost and convenient for industrialized production.
附图说明Description of drawings
图1为本发明稀土粒子/蒙脱土纳米复合材料形成示意图Fig. 1 is the formation schematic diagram of rare earth particle/montmorillonite nanocomposite material of the present invention
图2为本发明稀土粒子/蒙脱土纳米复合材料SEM照片Fig. 2 is the SEM photograph of the rare earth particle/montmorillonite nanocomposite material of the present invention
图3为本发明稀土粒子/蒙脱土纳米复合材料的XRD图Fig. 3 is the XRD figure of rare earth particle/montmorillonite nanocomposite material of the present invention
图2中(a)是复合材料放大6.2×104的SEM照片,可以清楚地看到蒙脱土的结构和片层上分散的稀土纳米粒子;(b)是其中一个片层的SEM照片图,同样可以清晰地看到蒙脱土片层上均匀的分散了稀土纳米粒子。从图(a)可以估算出蒙脱土片层的厚度大约为30~50nm,要比原MMT片层的厚度大,这是因为蒙脱土片层上聚合物分解时产生的CO2和H2O导致蒙脱土的膨状。由图(a)可以明显的看出蒙脱土片层基本保持了它原有的层状结构,稀土粒子均插入了它的层间,形成规整的稀土粒子/MMT纳米复合材料,可以看出稀土粒子与蒙脱土片层结合紧密,它们之间应存在吸附作用。由图(b)可以明显的看到稀土纳米粒子在蒙脱土片层之间的分布比较均匀,而且粒径较小,平均粒径在25nm左右,由此可以认为复合材料的纳米粒子是在反胶束微乳液“水池反应场”中进行,乳液“微反应器”尺寸小且分布均匀,使得水相相与油相在反应过程中分散均匀,当有机体发生聚合时无机相稀土纳米离子就被牵制于有机体中而保持原来均匀分散的状态,限制了纳米粒子的团聚和生长。而在微波中聚合物分解CO2和H2O,耐高温的稀土粒子和蒙脱土保持不变,有效的解决了纳米粒子的团聚问题,制得稀土粒子/MMT纳米复合材料。Figure 2 (a) is the SEM photo of the composite material enlarged at 6.2×10 4 , and the structure of montmorillonite and rare earth nanoparticles dispersed on the sheet can be clearly seen; (b) is the SEM photo of one of the sheets , it can also be clearly seen that rare earth nanoparticles are uniformly dispersed on the montmorillonite sheet. From the figure (a), it can be estimated that the thickness of the montmorillonite layer is about 30-50nm, which is larger than that of the original MMT layer. This is because the CO 2 and H 2 O causes swelling of montmorillonite. From Figure (a), it can be clearly seen that the montmorillonite layer basically maintains its original layered structure, and the rare earth particles are inserted between its layers to form a regular rare earth particle/MMT nanocomposite material. It can be seen that Rare earth particles are closely combined with montmorillonite sheets, and there should be adsorption between them. From Figure (b), it can be clearly seen that the distribution of rare earth nanoparticles between montmorillonite sheets is relatively uniform, and the particle size is small, with an average particle size of about 25nm. Therefore, it can be considered that the nanoparticles of the composite material are in the The reverse micellar microemulsion is carried out in the "water pool reaction field". The emulsion "microreactor" is small in size and evenly distributed, so that the water phase and the oil phase are evenly dispersed during the reaction process. Being pinned in the organism to maintain the original uniformly dispersed state, limiting the aggregation and growth of nanoparticles. In the microwave, the polymer decomposes CO 2 and H 2 O, and the high temperature-resistant rare earth particles and montmorillonite remain unchanged, which effectively solves the problem of agglomeration of nanoparticles, and prepares rare earth particles/MMT nanocomposites.
图3中,(a)为MMT的XRD图,(b)为Pr2O3/MMT纳米复合材料的XRD图,(c)为聚合物/稀土粒子/MMT纳米复合材料的XRD图。根据Bragg方程2dsinθ=nλ可知,衍射峰对应的角度减小,蒙脱土的层间距增大。图3中(c)与(a)相比可知,聚合物/稀土粒子/MMT纳米复合材料在2θ=7.2°处所对应的衍射峰相对于单纯的MMT的衍射峰消失,而在2θ=2.1°处出现了衍射峰这说明蒙脱土片层间距进一步增大,聚合物插入了蒙脱土的层间。图3中(a)、(b)与(c)相比可知,(b)在2θ=2.6°处出现了衍射峰,表明稀土粒子/MMT纳米复合材料层间距小于聚合物/稀土粒子/MMT纳米复合材料的层间距,而大于MMT的层间距,与(a)相比(b)和(c)在2θ=12.5°和2θ=27.6°处均出现了新的衍射峰,说明蒙脱土中同时插入了稀土粒子,衍射峰的强度较强说,明该复合材料中的稀土粒子结晶较好。以上分析说明在微波中聚合物分解CO2和H2O使得层间距有所减小,微波辐射对稀土粒子结晶影响不明显,耐高温的蒙脱土保持不变,稀土粒子插入了蒙脱土层间,有效的解决了纳米粒子的团聚问题,制得稀土粒子/MMT纳米复合材料。In Fig. 3, (a) is the XRD pattern of MMT, (b) is the XRD pattern of Pr 2 O 3 /MMT nanocomposite material, and (c) is the XRD pattern of polymer/rare earth particle/MMT nanocomposite material. According to the Bragg equation 2dsinθ=nλ, it can be known that the angle corresponding to the diffraction peak decreases, and the layer spacing of montmorillonite increases. Comparing (c) and (a) in Figure 3, it can be seen that the diffraction peak corresponding to the polymer/rare earth particle/MMT nanocomposite at 2θ=7.2° disappears relative to the diffraction peak of pure MMT, while at 2θ=2.1° Diffraction peaks appeared at , which indicated that the distance between the layers of montmorillonite was further increased, and the polymer was inserted into the interlayer of montmorillonite. In Figure 3 (a), (b) compared with (c), it can be seen that (b) has a diffraction peak at 2θ=2.6°, indicating that the interlayer spacing of rare earth particles/MMT nanocomposites is smaller than that of polymer/rare earth particles/MMT The layer spacing of the nanocomposite material is larger than that of MMT. Compared with (a), (b) and (c) have new diffraction peaks at 2θ=12.5° and 2θ=27.6°, indicating that montmorillonite The rare earth particles are inserted in the composite material at the same time, and the intensity of the diffraction peak is stronger, indicating that the rare earth particles in the composite material crystallize better. The above analysis shows that the polymer decomposes CO 2 and H 2 O in the microwave, which reduces the interlayer distance, microwave radiation has no obvious effect on the crystallization of rare earth particles, and the high temperature resistant montmorillonite remains unchanged, and the rare earth particles are inserted into the montmorillonite Between the layers, the problem of agglomeration of nanoparticles is effectively solved, and the rare earth particle/MMT nanocomposite material is prepared.
具体实施方式Detailed ways
实施例1、将100份苯胺、15份十二烷基硫酸钠加入到400份的水中搅拌均匀;将20份的稀土Nd2O3溶于溶于盐酸配制成0.1mol/L的NdCl3水溶液,并加入到上述混合溶液中,在室温下超声分散30分钟,形成反胶束乳液。将1分重量的经提纯、有机改性的蒙脱土置于水中,于40~60℃恒温的水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到60℃,磁力搅拌分散插层2小时。随后降温,将反应物移至2℃左右的冰水浴中逐滴加入100份硫酸铵引发剂,使聚合物单体引发聚合,反应15小时后,加入0.3mol/L的NaOH溶液,使稀土粒子完全沉淀,过滤、洗涤,真空烘干;然后用频率为2000MHz的微波辐射0.2小时,使聚合物分解成CO2和H2O,制得Nd2O3/MMT纳米复合材料。Example 1. Add 100 parts of aniline and 15 parts of sodium lauryl sulfate to 400 parts of water and stir evenly; dissolve 20 parts of rare earth Nd2O3 in hydrochloric acid to prepare a 0.1mol/L NdCl3 aqueous solution , and added to the above mixed solution, and ultrasonically dispersed at room temperature for 30 minutes to form a reverse micellar emulsion. Put 1 weight of purified and organically modified montmorillonite in water, stir and heat it in a water bath at a constant temperature of 40-60°C for 30-60 minutes, and then let it stand to form an aqueous dispersion of montmorillonite; then protect it under N2 The reverse micellar emulsion was added dropwise to the organic montmorillonite aqueous dispersion, the temperature was adjusted to 60° C., and magnetic stirring was performed to disperse the intercalation for 2 hours. Then lower the temperature, move the reactant to an ice-water bath at about 2°C, and add 100 parts of ammonium sulfate initiator dropwise to initiate polymerization of the polymer monomer. After 15 hours of reaction, add 0.3mol/L NaOH solution to make the rare earth particles Precipitate completely, filter, wash, and dry in vacuum; then irradiate the polymer with a frequency of 2000MHz for 0.2 hours to decompose the polymer into CO 2 and H 2 O, and obtain Nd 2 O 3 /MMT nanocomposite material.
实施例2、将100份甲基丙烯酸甲酯、18份硬脂酸钠加入到500份的三氯甲烷中搅拌均匀;将15份的稀土Nd2O3溶于溶于盐酸配制成0.1mol/L的EuCl3水溶液,并加入到上述混合溶液中,在室温下超声分散35分钟,形成反胶束乳液;将6份经提纯、有机改性的蒙脱土置于水中,于40~60℃恒温的水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到65℃,磁力搅拌分散插层2.5小时,随后加入0.001份偶氮二异丁腈,使聚合物单体引发聚合,反应18小时后加入加入0.3mol/L的NaOH溶液,使稀土粒子完全沉淀,过滤、洗涤,真空烘干;然后用频率为2200MHz的微波辐射0.5小时,使聚合物分解成CO2和H2O,制得Nd2O3/蒙脱土纳米复合材料。Example 2, 100 parts of methyl methacrylate and 18 parts of sodium stearate were added to 500 parts of chloroform and stirred evenly; 15 parts of rare earth Nd 2 O 3 were dissolved in hydrochloric acid to prepare 0.1mol/ L of EuCl 3 aqueous solution, and added to the above mixed solution, ultrasonically dispersed at room temperature for 35 minutes to form a reverse micellar emulsion; put 6 parts of purified and organically modified montmorillonite in water, at 40 ~ 60 ° C Stir and heat in a constant temperature water bath for 30-60 minutes and then let it stand to form a montmorillonite aqueous dispersion; then add the reverse micellar emulsion dropwise to the organic montmorillonite aqueous dispersion under the protection of N2 , and adjust the temperature to 65°C , magnetically stirred to disperse the intercalation for 2.5 hours, then added 0.001 part of azobisisobutyronitrile to initiate polymerization of the polymer monomer, and added 0.3mol/L NaOH solution after 18 hours of reaction to completely precipitate the rare earth particles, filtered, Washing and drying in vacuum; then irradiating the polymer with a frequency of 2200MHz for 0.5 hours to decompose the polymer into CO 2 and H 2 O to prepare the Nd 2 O 3 /montmorillonite nanocomposite.
实施例3、将100份丙烯酸甲酯、20份硬脂酸加入到700份的乙醇中搅拌均匀;将10份的稀土La2O3溶于溶于盐酸配制成0.1mol/L的LaCl3水溶液,并加入到上述混合溶液中,在室温下超声分散40分钟,形成反胶束乳液;将12份经提纯并进行有机改性的蒙脱土置于水中,于40~60℃恒温的水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到70℃,磁力搅拌分散插层3小时,随后加入1份偶氮二异丁腈为引发剂,使聚合物单体引发聚合,反应20小时后加入加入0.3mol/L的NaOH溶液,使稀土粒子完全沉淀,过滤、洗涤,真空烘干;然后用频率为2100MHz的微波辐射0.7小时,使聚合物分解成CO2和H2O,制得La2O3/蒙脱土纳米复合材料。Example 3, 100 parts of methyl acrylate and 20 parts of stearic acid were added to 700 parts of ethanol and stirred evenly; 10 parts of rare earth La2O3 was dissolved in hydrochloric acid to prepare a 0.1mol/L LaCl3 aqueous solution , and added to the above mixed solution, and ultrasonically dispersed at room temperature for 40 minutes to form a reverse micellar emulsion; 12 parts of purified and organically modified montmorillonite were placed in water and placed in a water bath at a constant temperature of 40-60°C Stir and heat for 30 to 60 minutes and then stand still to form a montmorillonite aqueous dispersion; then add the reverse micellar emulsion to the organic montmorillonite aqueous dispersion drop by drop under the protection of N2 , adjust the temperature to 70°C, and magnetically stir to disperse Intercalation for 3 hours, then add 1 part of azobisisobutyronitrile as an initiator to initiate polymerization of polymer monomers, after 20 hours of reaction, add 0.3mol/L NaOH solution to completely precipitate rare earth particles, filter and wash , dried in vacuum; and then irradiated with microwaves at a frequency of 2100MHz for 0.7 hours to decompose the polymer into CO 2 and H 2 O to obtain La 2 O 3 /montmorillonite nanocomposites.
实施例4、将100份吡咯、22份十六烷基三甲基氯化铵加入到900份的三氯甲烷中搅拌均匀;将5份的稀土盐Pr2(CO3)3溶于硝酸配制成0.1mol/LPr(NO3)3的水溶液,并加入到上述混合溶液中,在室温下超声分散45分钟,形成反胶束乳液;将25份经提纯并进行有机改性的蒙脱土置于水中,于40~60℃恒温的水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到75℃,磁力搅拌分散插层2.5小时。随后降温,将反应物移至2℃左右的冰水浴中,逐滴加入150份对甲基苯磺酸铁引发剂,使聚合物单体引发聚合,反应25小时后加入50重量份的NaOH沉淀剂,过滤、洗涤,真空烘干;然后用频率为2300MHz的微波辐射1小时,使聚合物分解成CO2和H2O,制得Pr2O3/蒙脱土纳米复合材料。Example 4. Add 100 parts of pyrrole and 22 parts of cetyltrimethylammonium chloride to 900 parts of chloroform and stir evenly; dissolve 5 parts of rare earth salt Pr 2 (CO 3 ) 3 in nitric acid to prepare 0.1mol/LPr(NO 3 ) 3 aqueous solution, and added to the above mixed solution, ultrasonically dispersed at room temperature for 45 minutes to form a reverse micellar emulsion; 25 parts of purified and organically modified montmorillonite In water, stir and heat in a water bath at a constant temperature of 40-60°C for 30-60 minutes and then stand still to form a montmorillonite aqueous dispersion; then add the reverse micellar emulsion dropwise to the organic montmorillonite water dispersion under the protection of N2 solution, adjust the temperature to 75°C, and disperse the intercalation with magnetic stirring for 2.5 hours. Then lower the temperature, move the reactant to an ice-water bath at about 2°C, add 150 parts of iron p-toluenesulfonate initiator dropwise to initiate polymerization of the polymer monomer, and add 50 parts by weight of NaOH to precipitate after 25 hours of reaction agent, filtered, washed, and dried in vacuum; then irradiated by microwaves with a frequency of 2300MHz for 1 hour to decompose the polymer into CO 2 and H 2 O, and obtain Pr 2 O 3 /montmorillonite nanocomposites.
实施例5、将100份邻苯二胺、25份烷基酚聚氧乙烯醚加入到1000份的乙醇中搅拌均匀;将1份的稀土Eu2O3溶于盐酸配制成0.1mol/L的水溶液,并加入到上述混合溶液中,在室温下超声分散30分钟,形成反胶束乳液;将30经提纯并进行有机改性的蒙脱土置于水中,于40~60℃恒温的水浴中搅拌加热30~60min后静置,形成蒙脱土水分散液;然后在N2保护下将反胶束乳液逐滴加入到有机蒙脱土水分散液中,调节温度到60℃,磁力搅拌分散插层2小时。随后降温,将反应物移至2℃左右的冰水浴中逐滴加入100份过硫酸铵为引发剂,使聚合物单体引发聚合,反应15小时后加入加入0.3mol/L的NaOH溶液,使稀土粒子完全沉淀,过滤、洗涤,真空烘干;然后用频率为2500MHz的微波辐射1.5小时,使聚合物分解成CO2和H2O,制得Eu2O3/MMT纳米复合材料。Example 5. Add 100 parts of o-phenylenediamine and 25 parts of alkylphenol polyoxyethylene ether to 1000 parts of ethanol and stir evenly ; dissolve 1 part of rare earth Eu2O3 in hydrochloric acid to prepare 0.1mol/L aqueous solution, and added to the above mixed solution, ultrasonically dispersed at room temperature for 30 minutes to form a reverse micellar emulsion; 30% of the purified and organically modified montmorillonite was placed in water, and placed in a water bath with a constant temperature of 40-60°C Stir and heat for 30-60 minutes and then let it stand to form a montmorillonite aqueous dispersion; then add the reverse micellar emulsion to the organic montmorillonite aqueous dispersion drop by drop under the protection of N2 , adjust the temperature to 60°C, and magnetically stir to disperse Intercalation for 2 hours. Then lower the temperature, move the reactant to an ice-water bath at about 2°C, and add 100 parts of ammonium persulfate dropwise as an initiator to initiate polymerization of the polymer monomer. After reacting for 15 hours, add 0.3 mol/L NaOH solution to make The rare earth particles were completely precipitated, filtered, washed, and vacuum-dried; then irradiated with microwaves at a frequency of 2500 MHz for 1.5 hours to decompose the polymer into CO 2 and H 2 O to obtain Eu 2 O 3 /MMT nanocomposites.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100426870A CN100427392C (en) | 2006-04-14 | 2006-04-14 | Rare earth particle/montmorillonite nanocomposite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100426870A CN100427392C (en) | 2006-04-14 | 2006-04-14 | Rare earth particle/montmorillonite nanocomposite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1837043A true CN1837043A (en) | 2006-09-27 |
CN100427392C CN100427392C (en) | 2008-10-22 |
Family
ID=37014579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100426870A Expired - Fee Related CN100427392C (en) | 2006-04-14 | 2006-04-14 | Rare earth particle/montmorillonite nanocomposite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100427392C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456972B (en) * | 2008-12-30 | 2011-07-20 | 南京师范大学 | Montmorillonite/rare-earth stabilizer for PVC and preparation method thereof |
CN102249255A (en) * | 2011-05-10 | 2011-11-23 | 中国地质大学(北京) | Anionic-nonionic composite organic montmorillonite and its preparation method |
CN102337083A (en) * | 2011-07-19 | 2012-02-01 | 上海华明高纳稀土新材料有限公司 | Precision rare-earth polishing powder and preparation method thereof |
CN101735817B (en) * | 2009-12-16 | 2013-03-06 | 内蒙古大学 | Preparation method of nano fluorescent powder for extracting imprinting |
CN104014802A (en) * | 2014-03-14 | 2014-09-03 | 常州大学 | Method for preparing single-crystal nano-particles through assistance of aerosol |
CN104785226A (en) * | 2015-04-15 | 2015-07-22 | 陕西科技大学 | Glass powder enhanced Zr modification montmorillonite honeycomb block chromium sorbent and preparation method thereof |
CN108164902A (en) * | 2018-01-26 | 2018-06-15 | 中山职业技术学院 | Modified montmorillonite used dispersion liquid, 3D printing dusty material and preparation method thereof |
CN108752632A (en) * | 2018-06-20 | 2018-11-06 | 江苏海明斯新材料科技有限公司 | A kind of preparation method of the quaternary ammonium salt-modified nanometer organic montmorillonite of easily disperse |
CN109908399A (en) * | 2019-03-07 | 2019-06-21 | 中山职业技术学院 | A kind of preparation method of high-performance biomedicine four calcium 3D printing material of modified phosphate |
CN111592737A (en) * | 2020-05-27 | 2020-08-28 | 北京化工大学 | A microwave-assisted and efficient construction method for high-strength interfaces of carbon-based reinforcement/resin composites |
CN113838589A (en) * | 2021-10-15 | 2021-12-24 | 四川长晏科技有限公司 | Inorganic radiation protection material and preparation method and application thereof |
CN116891596A (en) * | 2023-07-25 | 2023-10-17 | 铨盛聚碳科技股份有限公司 | Flame retardant containing rare earth sulfonate intercalation inorganic matter and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4271043A (en) * | 1979-09-04 | 1981-06-02 | W. R. Grace & Co. | Pillared interlayered clay products |
US4510257A (en) * | 1983-12-08 | 1985-04-09 | Shell Oil Company | Silica-clay complexes |
US5059568A (en) * | 1987-03-05 | 1991-10-22 | Uop | Intercalated clay having large interlayer spacing |
CN1229429C (en) * | 2002-09-28 | 2005-11-30 | 广东炜林纳功能材料有限公司 | Rare earth modified polyolefin/montmorillonite composite material and its preparation method |
CN100369668C (en) * | 2005-07-06 | 2008-02-20 | 河北工业大学 | Inorganic clay composite material and its preparation method and use |
-
2006
- 2006-04-14 CN CNB2006100426870A patent/CN100427392C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101456972B (en) * | 2008-12-30 | 2011-07-20 | 南京师范大学 | Montmorillonite/rare-earth stabilizer for PVC and preparation method thereof |
CN101735817B (en) * | 2009-12-16 | 2013-03-06 | 内蒙古大学 | Preparation method of nano fluorescent powder for extracting imprinting |
CN102249255A (en) * | 2011-05-10 | 2011-11-23 | 中国地质大学(北京) | Anionic-nonionic composite organic montmorillonite and its preparation method |
CN102249255B (en) * | 2011-05-10 | 2013-06-19 | 中国地质大学(北京) | Anionic-nonionic composite organic montmorillonite and preparation method thereof |
CN102337083A (en) * | 2011-07-19 | 2012-02-01 | 上海华明高纳稀土新材料有限公司 | Precision rare-earth polishing powder and preparation method thereof |
CN104014802A (en) * | 2014-03-14 | 2014-09-03 | 常州大学 | Method for preparing single-crystal nano-particles through assistance of aerosol |
CN104785226A (en) * | 2015-04-15 | 2015-07-22 | 陕西科技大学 | Glass powder enhanced Zr modification montmorillonite honeycomb block chromium sorbent and preparation method thereof |
CN104785226B (en) * | 2015-04-15 | 2017-04-26 | 陕西科技大学 | Glass powder enhanced Zr modification montmorillonite honeycomb block chromium sorbent and preparation method thereof |
CN108164902A (en) * | 2018-01-26 | 2018-06-15 | 中山职业技术学院 | Modified montmorillonite used dispersion liquid, 3D printing dusty material and preparation method thereof |
CN108752632A (en) * | 2018-06-20 | 2018-11-06 | 江苏海明斯新材料科技有限公司 | A kind of preparation method of the quaternary ammonium salt-modified nanometer organic montmorillonite of easily disperse |
CN109908399A (en) * | 2019-03-07 | 2019-06-21 | 中山职业技术学院 | A kind of preparation method of high-performance biomedicine four calcium 3D printing material of modified phosphate |
CN111592737A (en) * | 2020-05-27 | 2020-08-28 | 北京化工大学 | A microwave-assisted and efficient construction method for high-strength interfaces of carbon-based reinforcement/resin composites |
CN111592737B (en) * | 2020-05-27 | 2021-03-26 | 北京化工大学 | Preparation method of carbon-based reinforcement/resin composite material |
CN113838589A (en) * | 2021-10-15 | 2021-12-24 | 四川长晏科技有限公司 | Inorganic radiation protection material and preparation method and application thereof |
CN116891596A (en) * | 2023-07-25 | 2023-10-17 | 铨盛聚碳科技股份有限公司 | Flame retardant containing rare earth sulfonate intercalation inorganic matter and preparation method thereof |
CN116891596B (en) * | 2023-07-25 | 2024-04-05 | 铨盛聚碳科技股份有限公司 | Flame retardant containing rare earth sulfonate intercalation inorganic matter and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100427392C (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100427392C (en) | Rare earth particle/montmorillonite nanocomposite material and preparation method thereof | |
Cherifi et al. | Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization | |
CN1164620C (en) | Polymer/carbon nanotube composite emulsion and preparation method thereof in situ emulsion polymerization | |
CN102614871B (en) | A kind of method that liquid phase method prepares graphene/silver nanoparticle composite material | |
Haroun et al. | Synthesis and electrical conductivity evaluation of novel hybrid poly (methyl methacrylate)/titanium dioxide nanowires | |
CN102502519B (en) | Method for preparing peeled layered material/ carbon nano tube complex in aqueous solution | |
CN102716734A (en) | Preparation method for cerium oxide/graphene oxide nanocomposite | |
CN107033266A (en) | A kind of preparation method of high-dispersibility carbon nanotube/polystyrene nano composite material | |
CN1410454A (en) | Preparation method of polymer/carbon nano pipe composite material and its in situ mass polymerization | |
CN1821315A (en) | Polyaniline-coated nano-TiO2 and polyaniline-coated TiO2 whiskers and preparation method thereof | |
CN1314749C (en) | Nano composite resin materials and method for preparing same | |
CN1800025A (en) | Process for preparing nano calcium hydroxide | |
Zeng et al. | Cationic polyelectrolyte-assisted synthesis of silica nanochains for enhancing mechanical properties of sodium alginate composite films | |
CN1230472C (en) | Method for preparing nano iron oxide red | |
CN101050304A (en) | Hybridization material of Nano fiber of titanium oxide / polyaniline, and preparation method | |
CN1241977C (en) | Method for manufacturing nanometer magnesium hydroxide fire retardant | |
CN105480999A (en) | Preparation method of multilevel-structure nano cerium oxide octahedron | |
CN101041470A (en) | Method for synthesizing block-shaped alpha-ferric oxide nanostructure | |
CN101041456A (en) | Method for preparing monodispersed copper-protoxide hollow microsphere by aqueous phase cluster soft mold plates process | |
CN104610575B (en) | A kind of zinc-aluminium-layered double-hydroxide enveloping carbon nanotube composite powder and preparation method thereof | |
CN101348258A (en) | A kind of preparation method of superfine nano kaolin | |
CN110589896A (en) | A green and efficient preparation method of aqueous nano-iron oxide particles | |
CN1775850A (en) | Montmorillonite/rare earth particle/polymer ternary nanocomposite material and preparation method thereof | |
CN1114634C (en) | Ultrasonic radiation process for preparing composite-material of polymer and nm-class inorganic particles | |
CN111620381A (en) | beta-FeOOH nano rod and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081022 Termination date: 20100414 |