[go: up one dir, main page]

CN1799492A - Quasi-lossless image compression and decompression method of wireless endoscope system - Google Patents

Quasi-lossless image compression and decompression method of wireless endoscope system Download PDF

Info

Publication number
CN1799492A
CN1799492A CN 200510126255 CN200510126255A CN1799492A CN 1799492 A CN1799492 A CN 1799492A CN 200510126255 CN200510126255 CN 200510126255 CN 200510126255 A CN200510126255 A CN 200510126255A CN 1799492 A CN1799492 A CN 1799492A
Authority
CN
China
Prior art keywords
image data
compression
reconstruction
filtering
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510126255
Other languages
Chinese (zh)
Other versions
CN100394883C (en
Inventor
谢翔
李国林
李晓雯
王志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2005101262553A priority Critical patent/CN100394883C/en
Publication of CN1799492A publication Critical patent/CN1799492A/en
Application granted granted Critical
Publication of CN100394883C publication Critical patent/CN100394883C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Endoscopes (AREA)

Abstract

本发明属于医学数字图像压缩技术领域,其特征在于它是一种基于先缩后彩色插值的图像压缩及解压缩方法,在压缩前用低通滤波器去除图像的高频成分,用质量控制因子来控制被滤波像素点占整个图像的百分比,以改进图像质量,用感兴趣区来确定无须压缩后直接进入编码的像素点区以保证所感兴趣区的图像质量。无损压缩采用JPEG-LS无损压缩编码。相应地提供了硬件框图。在对标准图像数据库中的7幅自然图像进行压缩试验,它可以实现信噪比从46.37dB到无穷大范围内连续可调,相应的压缩码率从3.3比特/像素点到6.9比特/像素点范围变化;在对无线内窥镜图像进行压缩时,可以获得平均图像压缩码率2.18比特/像素点,且PSNR大于47.57dB。

Figure 200510126255

The invention belongs to the technical field of medical digital image compression, and is characterized in that it is an image compression and decompression method based on first shrinkage and then color interpolation. To control the percentage of the filtered pixels in the entire image to improve the image quality, use the region of interest to determine the pixel point area that does not need to be compressed and directly enter the encoding to ensure the image quality of the region of interest. Lossless compression adopts JPEG-LS lossless compression coding. A hardware block diagram is provided accordingly. In the compression test of 7 natural images in the standard image database, it can realize the continuous adjustment of the signal-to-noise ratio from 46.37dB to infinity, and the corresponding compression rate ranges from 3.3 bits/pixel to 6.9 bits/pixel Change; when compressing the wireless endoscope image, the average image compression bit rate can be obtained at 2.18 bits/pixel, and the PSNR is greater than 47.57dB.

Figure 200510126255

Description

无线内窥镜系统的准无损图像压缩和解压缩方法Quasi-lossless image compression and decompression method for wireless endoscope system

技术领域technical field

无线内窥镜系统的无损和准无损图像压缩方法及装置属于医学数字图像压缩技术领域,尤其涉及从数字图像传感器输出的具有类似Bayer彩色图像阵列格式的高质量数字图像压缩的技术领域。在本发明中准无损图像压缩的定义如下:压缩后图像的峰值信噪比(PSNR)大于46.37dB,且任一像素压缩前后的误差值不超过2。The lossless and quasi-lossless image compression method and device of a wireless endoscope system belong to the technical field of medical digital image compression, and in particular relate to the technical field of high-quality digital image compression output from a digital image sensor with a format similar to a Bayer color image array. The definition of quasi-lossless image compression in the present invention is as follows: the peak signal-to-noise ratio (PSNR) of the compressed image is greater than 46.37dB, and the error value of any pixel before and after compression does not exceed 2.

背景技术Background technique

彩色数字图像传感器已被广泛应用在各种高端和低端的视频领域。但由于彩色图像的数据量大,因此对彩色图像数据的压缩显得非常重要。一般在低端消费类图像产品中主要采用的是有损压缩;而在高端彩色图像传感器的应用领域,特别是医学图像领域,图像质量是第一位的,因此高效率的准无损和无损图像压缩研究在高端彩色图像传感器的应用领域显得尤为重要。Color digital image sensors have been widely used in various high-end and low-end video fields. However, due to the large amount of color image data, the compression of color image data is very important. Generally, lossy compression is mainly used in low-end consumer image products; in the application field of high-end color image sensors, especially in the field of medical images, image quality is the first, so high-efficiency quasi-lossless and lossless images Compression research is particularly important in the application field of high-end color image sensors.

在无线内窥镜系统中,为了减小通信带宽和节省图像数据的发射功耗(在无图像压缩时,胶囊内图像发射功耗占整个胶囊内总功耗的90%),一种低复杂度、高质量的图像压缩算法的应用是非常必要的。如图1显示了无线内窥镜胶囊内系统中简化的图像采集、压缩和无线传输系统的方框图。在无线内窥镜系统中,彩色图像传感器采集的BAYER格式的内窥镜图像数据在进行彩色插值前将直接被压缩,再通过信道编码由无线收发器发送到体外。Bayer彩色阵列格式是在数字图像传感器中最普遍采用的一种格式,图2是该格式图。而体外接收机把接收的图像数据经过解压缩后再进行彩色插值,最后提供给医生作为最后的诊断图像。由于胶囊内采用两节氧化银电池进行供电,因此要求该图像压缩系统具有低复杂性,以保证硬件开销低和低功耗。In the wireless endoscope system, in order to reduce the communication bandwidth and save the transmission power consumption of image data (when there is no image compression, the image transmission power consumption in the capsule accounts for 90% of the total power consumption in the capsule), a low-complexity The application of high-precision, high-quality image compression algorithms is very necessary. Figure 1 shows the block diagram of the simplified image acquisition, compression and wireless transmission system in the wireless endoscopic capsule system. In the wireless endoscope system, the endoscope image data in BAYER format collected by the color image sensor will be directly compressed before color interpolation, and then sent to the body by the wireless transceiver through channel coding. The Bayer color array format is the most commonly used format in digital image sensors, and Figure 2 is a diagram of the format. The external receiver decompresses the received image data and then performs color interpolation, and finally provides it to the doctor as the final diagnostic image. Since the capsule is powered by two silver oxide batteries, the image compression system is required to have low complexity to ensure low hardware overhead and low power consumption.

在大多数传统数字图像传感器的应用中,均是先对从数字图像传感器输出的具有类似Bayer彩色图像阵列的数字图像进行插值处理,获得全彩色的RGB数据,然后再对插值后的全彩色数据进行压缩处理,最后把这些压缩后的数据在本地进行存储,或者通过无线或有线的通信方式把压缩的数据发送出去,该方法可示于图3中。然而这种传统的方法(先彩色插值再压缩的方法)是在图像压缩前先对图像传感器输出的Bayer格式的原始数据进行全彩色插值,但这使得在图像压缩前引入了新的数据冗余,这非常不利于图像的压缩。目前人们已经开始提出新的用于图像传感器的先压缩后插值的方法,如图4所示。这种压缩方法是通过对图像传感器输出的类似Bayer彩色格式图像数据直接进行压缩,避免了彩色插值引入的不必要数据冗余,因此这种图像压缩方法能够提高压缩的性能。但这些新提出的各种先压缩后插值的方法主要是针对有损图像压缩提出的,不合适有高质量图像要求的应用,特别是对无线内窥镜等医学图像的应用领域等。In the application of most traditional digital image sensors, the digital image output from the digital image sensor with a Bayer-like color image array is first interpolated to obtain full-color RGB data, and then the interpolated full-color data Perform compression processing, and finally store the compressed data locally, or send the compressed data through wireless or wired communication. This method can be shown in FIG. 3 . However, this traditional method (the method of color interpolation first and then compression) is to perform full-color interpolation on the original data in Bayer format output by the image sensor before image compression, which introduces new data redundancy before image compression. , which is very unfavorable for image compression. At present, people have begun to propose a new method of compressing first and then interpolating for image sensors, as shown in FIG. 4 . This compression method directly compresses the image data similar to the Bayer color format output by the image sensor, avoiding unnecessary data redundancy introduced by color interpolation, so this image compression method can improve the compression performance. However, these newly proposed methods of compression first and then interpolation are mainly proposed for lossy image compression, and are not suitable for applications requiring high-quality images, especially for medical image applications such as wireless endoscopes.

发明内容Contents of the invention

本发明目的在于提供一种用于无线内窥镜系统的高效、低复杂度、基于类似Bayer彩色图像阵列的无损和准无损图像压缩/解压缩方法及装置,其结构如图5和6所示。The purpose of the present invention is to provide a high-efficiency, low-complexity, lossless and quasi-lossless image compression/decompression method and device based on a Bayer-like color image array for a wireless endoscope system, the structure of which is shown in Figures 5 and 6 .

本发明所述的方法的特征在于:该方法是一种用于无线内窥镜系统的基于先压缩后彩色插值的图像压缩、解压缩方法,所述方法由压缩方法及解压缩方法依次组成,其中:The method of the present invention is characterized in that: the method is an image compression and decompression method based on first compression and then color interpolation for a wireless endoscope system, and the method is sequentially composed of a compression method and a decompression method, in:

无线内窥镜系统的准无损图像压缩方法是对图像传感器输出的有很多高频分量的Bayer彩色图像阵列数据用低通滤波器对该数字图像数据的三个分量R、B和G分别进行低通滤波,然后再对滤波后所述的三个图像分量数据分别用无损压缩编码进行压缩的一种方法,其中所述Bayer彩色图像阵列中,图像G分量数据呈菱形,数据量占整个Bayer图像数据量的1/2,R和B分量呈矩形,各占整个Bayer图像数据量的1/4,所述无损压缩编码是指JPEG-LS压缩编码;所述压缩方法依次含有以下步骤:The quasi-lossless image compression method of the wireless endoscope system is to use a low-pass filter to separately reduce the three components R, B and G of the digital image data to the Bayer color image array data with many high-frequency components output by the image sensor. Pass filtering, and then a method of compressing the three image component data after filtering with lossless compression coding, wherein in the Bayer color image array, the image G component data is diamond-shaped, and the data volume accounts for the entire Bayer image. 1/2 of the amount of data, the R and B components are rectangular, each accounting for 1/4 of the entire Bayer image data amount, the lossless compression encoding refers to JPEG-LS compression encoding; the compression method contains the following steps in turn:

步骤11:向无线内窥镜胶囊内的JPEG-LS压缩编码控制单元设定以下低通滤波用的输入参数:Step 11: Set the following input parameters for low-pass filtering to the JPEG-LS compression coding control unit in the wireless endoscope capsule:

质量控制因子,即被滤波的像素点占整个图像像素点百分比,用q表示;在所述无线内窥镜胶囊内的低通滤波器中,横向滤波时均匀地选择应该滤波的列;纵向滤波时,均匀地选择应滤波的行;The quality control factor, that is, the filtered pixel points account for the percentage of the entire image pixel point, expressed by q; in the low-pass filter in the wireless endoscope capsule, the columns that should be filtered are evenly selected during horizontal filtering; vertical filtering When , evenly select the rows that should be filtered;

感兴趣区,用ROI表示,该区内包含了不进行滤波以供直接进行无损压缩像素点的位置和形状,该ROI表示进行无损压缩的处理能力;The region of interest is represented by ROI, which contains the position and shape of the pixels for direct lossless compression without filtering, and the ROI represents the processing capability of lossless compression;

步骤12:步骤11中的JPEG-LS压缩编码控制单元在收到q及ROI后,把该数据送往位于所达无线内窥镜胶囊内低通滤波器中的低通滤波控制器并存储;Step 12: After receiving q and ROI, the JPEG-LS compression encoding control unit in step 11 sends the data to the low-pass filter controller located in the low-pass filter in the wireless endoscope capsule and stores it;

步骤13:所述无线内窥镜胶囊内最前端的数字图像传感器采集Bayer阵列彩色数据,并在所述JPEG-LS压缩编码控制单元所发出的同步信号控制下把该Bayer阵列彩色数据送往所述低通滤波器中;Step 13: The foremost digital image sensor in the wireless endoscope capsule collects Bayer array color data, and sends the Bayer array color data to the In the low-pass filter described above;

步骤14:所述低通滤波器内的低通滤波控制单元按照设定的ROI把不需要滤波的数据送往所述低通滤波器中内置的缓存SRAM;对于需要进行滤波的数据,首先对G分量进行菱形到矩形的变换操作,即把所述Bayer格式的彩色图像数据中的菱形G分量的空点去掉,然后把剩下的数据直接组合成一个矩形,所以用同一组滤波器,按照以下步骤对G、B、R分量分别用G分量低通滤波器和B、R分量滤波器滤波后,存入所述相应低通滤波器的内置缓存SRAM中:Step 14: the low-pass filter control unit in the low-pass filter sends the data that does not need to be filtered to the built-in cache SRAM in the low-pass filter according to the ROI set; The G component performs a rhombus-to-rectangle conversion operation, that is, the empty points of the rhombus G component in the color image data in the Bayer format are removed, and then the remaining data are directly combined into a rectangle, so the same set of filters is used according to After the following steps use the G component low-pass filter and the B, R component filter to filter the G, B and R components respectively, store them in the built-in cache SRAM of the corresponding low-pass filter:

第I步:横向滤波,以消弱原始图像中水平方向的高频成分,所述横向滤波按列由左至右依次顺序进行,

Figure A20051012625500071
表示向下取整操作,即
Figure A20051012625500072
Step 1: horizontal filtering, to weaken the high-frequency components in the horizontal direction in the original image, the horizontal filtering is performed sequentially from left to right in columns,
Figure A20051012625500071
Indicates the rounding down operation, that is,
Figure A20051012625500072

滤波后第1列图像数据=原第1列图像数据,The image data of the first column after filtering = the original image data of the first column,

                       ·    ·    ·· · · ·

第II步:对所述第I步得到的新数据进行纵向滤波,以平滑纵向的高频成分,所述纵向滤波按行有上至下依下述顺序进行,

Figure A20051012625500076
表示向上取整,即
Figure A20051012625500077
Step II: perform longitudinal filtering on the new data obtained in the first step to smooth the vertical high-frequency components, and the longitudinal filtering is performed in the following order from top to bottom according to the row,
Figure A20051012625500076
Indicates rounding up, that is,
Figure A20051012625500077

滤波后第1行图像数据=原第1行列图像数据,Image data of the first row after filtering = original image data of the first row and column,

Figure A20051012625500078
Figure A20051012625500078

                       ·    ·    ·· · · ·

步骤15:所述JPEG-LS压缩编码控制单元把所述低通滤波器内置的SRAM中所存储的滤波后的图像数据送往位于所述无线内窥镜胶囊内的SRAM中待全部图像数据滤波后,把所述于滤波后的图像数据送往一个内置于所述无线内窥镜胶囊中的JPEG-LS编码器中;Step 15: The JPEG-LS compression encoding control unit sends the filtered image data stored in the SRAM built in the low-pass filter to the SRAM located in the wireless endoscope capsule to be filtered for all image data Finally, the filtered image data is sent to a JPEG-LS encoder built in the wireless endoscope capsule;

步骤16:所述JPEG-LS编码器在JPEG-LS压缩编码控制单元的控制下对所收到的全部滤波后的图像数据按JPEG-LS无损压缩编码进行无损压缩。Step 16: The JPEG-LS encoder performs lossless compression on all received filtered image data according to JPEG-LS lossless compression encoding under the control of the JPEG-LS compression encoding control unit.

步骤17:待步骤16所述的压缩操作完成后,所述JPEG-LS编码器把压缩后的图像数据存储到所述SRAM中并送至信道编码单元,进行编码后输出到位于所述无线内窥镜胶囊内的无线收发器,以无线方式发送到体外;Step 17: After the compression operation described in step 16 is completed, the JPEG-LS encoder stores the compressed image data in the SRAM and sends it to the channel encoding unit, and outputs it to the channel located in the wireless channel after encoding. The wireless transceiver in the speculum capsule wirelessly transmits to the outside of the body;

无线内窥镜系统的无损和准无损图像解压缩方法且在体外的JPEG-LS无损解码的控制单元控制下按以下步骤进行的:The lossless and quasi-lossless image decompression method of the wireless endoscope system is carried out according to the following steps under the control of the JPEG-LS lossless decoding control unit outside the body:

步骤21:体外无线收发装置接收所述无线内窥镜胶囊中的相应装置发来的依次经过滤波、压缩数据后,所述数据送往一个JPEG-LS解码器进行解码;Step 21: After the in vitro wireless transceiver device receives the filtered and compressed data from the corresponding device in the wireless endoscope capsule, the data is sent to a JPEG-LS decoder for decoding;

步骤22:所述JPEG-LS解码器对步骤21中的压缩数据解码后,分别把G分量以及B、R分量送往G分量重构滤波器和B、R分量重构滤波器进行重构滤波;Step 22: After the JPEG-LS decoder decodes the compressed data in step 21, send the G component and the B and R components to the G component reconstruction filter and the B and R component reconstruction filter respectively for reconstruction filtering ;

步骤23:步骤22中所述重构滤波器依次按以下步骤对所述G分量和B、R分量分别进行重构滤波:Step 23: The reconstruction filter described in step 22 performs reconstruction filtering on the G component and the B and R components respectively according to the following steps:

第I步:所述重构滤波器把设定的ROI区域内不需要重构滤波的数据送往该重构滤波器中内置的缓存SRAM中;对于需要重构滤波的数据按照设定的q值依次按以下所述纵向重构滤波和横向重构滤波进行;Step 1: the reconstruction filter sends data that does not need reconstruction filtering in the set ROI region to the built-in cache SRAM in the reconstruction filter; for data that needs reconstruction filtering, according to the set q The value is followed by the following vertical reconstruction filtering and horizontal reconstruction filtering;

第II步:纵向重构滤波:按以下公式顺次逐行由下至上进行,已恢复纵向原始数据;Step II: vertical reconstruction filtering: carry out sequentially from bottom to top according to the following formula, and restore the vertical original data;

重构后第m行图像数据值=2*原第m行图像数据值-原第m-1行图像数据值,重构后第m-1行图像数据值=2*原第m-1行图像数据值-原第m-2行图像数据值,Image data value of line m after reconstruction=2*original image data value of line m-original image data value of line m-1, image data value of line m-1 after reconstruction=2*original line m-1 Image data value - original m-2 line image data value,

                         ·    ·   ·· · · ·

重构后第2行图像数据值=2*原第2行图像数据值-原第1行图像数据值,Image data value of the second row after reconstruction=2*original image data value of the second row-original image data value of the first row,

重构后第1行图像数据值=原第1行图像数据值,Image data value of the first line after reconstruction = original image data value of the first line,

第III步:横向重构滤波:对第II步得到得新数据按以下公式顺次逐列从右至左进行,以完成水平方向数据的恢复;The third step: horizontal reconstruction filtering: the new data obtained in the second step is carried out from right to left in sequence according to the following formula, to complete the recovery of the horizontal direction data;

重构后第m列图像数据值=2*原第m列图像数据值-原第m-1列图像数据值,重构后第m-1列图像数据值=2*原第m-1列图像数据值-原第m-2列图像数据值,Image data value of column m after reconstruction = 2* original image data value of column m - original image data value of column m-1, image data value of column m-1 after reconstruction = 2* original column m-1 Image data value - the image data value of the original m-2th column,

                         ·    ·   ·· · · ·

重构后第2列图像数据值=2*原第2列图像数据值-原第1列图像数据值,Image data value of the second column after reconstruction = 2* original image data value of the second column - original image data value of the first column,

重构后第1列图像数据值=原第1列图像数据值;Image data value of column 1 after reconstruction = original image data value of column 1;

第IV步:把重构滤波后的图像数据送往所述内置的SRAM中;Step IV: send the image data after reconstruction filtering to the built-in SRAM;

步骤24:所述重构滤波器把经过重构滤波的G分量数据送往菱形到矩形变换器中进行变换;Step 24: the reconstruction filter sends the G component data after reconstruction filtering to a rhombus-to-rectangular converter for transformation;

步骤25:把步骤23得到的重构滤波后的B、R分量数据以及步骤24得到的重构滤波后又经过变换的G分量数据送往一个加法器相加后得到已恢复的原始Bayer彩色图像数据;Step 25: Send the reconstructed and filtered B and R component data obtained in step 23 and the transformed G component data obtained in step 24 to an adder for addition to obtain the restored original Bayer color image data;

步骤26:把步骤25得到的数据送往一个彩色插值处理器按拉普拉斯方法插值后得到全彩色图像数据。Step 26: send the data obtained in step 25 to a color interpolation processor to interpolate according to the Laplace method to obtain full-color image data.

所述的无损压缩编码可以是JPEG-LS,JPEG2000无损压缩部分以及FELICS算法(P.G.Howard and J.S.Vitter,Fast and Efficient Lossless Image Compression[A],IEEE DataCompression Conference[C],USA,1993:351-360.)中的任何一种。Described lossless compression encoding can be JPEG-LS, JPEG2000 lossless compression part and FELICS algorithm (P.G.Howard and J.S.Vitter, Fast and Efficient Lossless Image Compression [A], IEEE DataCompression Conference [C], USA, 1993: 351-360 .) in any one.

本发明用以下装置实现:所述装置是一个位于体内的无线内窥镜胶囊内,它包括:The present invention is realized with the following devices: said device is a wireless endoscope capsule located in the body, which includes:

内部的ASIC芯片含有:菱形到矩形变换单元、G分量图像数据低通滤波单元、B、R分量低通滤波单元、JPEG-LS无损压缩单元以及JPEG-LS无损压缩的控制单元,其中:The internal ASIC chip contains: rhombus-to-rectangular transformation unit, G component image data low-pass filter unit, B, R component low-pass filter unit, JPEG-LS lossless compression unit and JPEG-LS lossless compression control unit, of which:

菱形到矩形的变换单元,该单元的输入端与一个可以输出Bayer彩色图像数据的图像传感器相连,以把菱形的G分量数据中的空白点去掉,再把剩下的数据直接组合成一个矩形后再输出;A rhombus-to-rectangular conversion unit, the input of which is connected to an image sensor that can output Bayer color image data, to remove the blank points in the G component data of the rhombus, and then combine the remaining data directly into a rectangle before output;

低通滤波器,含有G分量以及B、R分量的低通滤波单元,所述低通滤波器含有:低通滤波控制器、行计数器、列计数器、输入同步提取电路、缓存两行图像数据的SRAM、G、B、R分量寄存器、数据选择器A、数据选择器B以及滤波运算器,其中:A low-pass filter, including a G component and a low-pass filter unit of B and R components, the low-pass filter includes: a low-pass filter controller, a row counter, a column counter, an input synchronous extraction circuit, and a buffer for two rows of image data SRAM, G, B, R component registers, data selector A, data selector B and filter operator, where:

低通滤波控制器,设有:质量控制因子q值输入端,所述q是指:被滤波的像素点占整个图像像素点的百分比;感兴趣区ROI值输入端,所述ROI值是指包含不进行滤波以供直接进行无损压缩像素点的位置和形状;A low-pass filter controller is provided with: a quality control factor q value input terminal, said q refers to: the filtered pixel points account for the percentage of the entire image pixel point; an ROI value input terminal of a region of interest, said ROI value refers to Contains the position and shape of pixels without filtering for direct lossless compression;

行计数器和列计数器,其输出端分别和所述低通滤波控制器的相应输入端相连;A row counter and a column counter, the output terminals of which are respectively connected to the corresponding input terminals of the low-pass filter controller;

输入同步提取器,设有:Bayer图像数据输入端,该输入端与图像传感器单元的相应输出端相连;包括行/场同步信号以及每个像素点的同步时钟在内的同步信号输入端,该输入端与图像传感单元的相应输出端相连;输入同步提取器把提取出的相应行和列信息分别送往行和列计数器单元;该输入同步提取器在所述的同步信号控制下逐行或逐列第输出8位当前行列的Bayer图像数据数据;The input synchronous extractor is provided with: a Bayer image data input terminal, which is connected to the corresponding output terminal of the image sensor unit; a synchronous signal input terminal including a line/field synchronous signal and a synchronous clock of each pixel point, which is connected to the synchronous signal input terminal. The input terminal is connected with the corresponding output terminal of the image sensor unit; the input synchronous extractor sends the extracted corresponding row and column information to the row and column counter unit respectively; the input synchronous extractor is controlled row by row under the control of the synchronous signal Or output the 8-bit Bayer image data of the current row and column column by column;

缓存SRAM,设有地址信号输入端,该输入端与所述低通滤波控制器的相应输出端相连,还设有前一行或列的数据输入端和输出端;The cache SRAM is provided with an address signal input terminal, which is connected to the corresponding output terminal of the low-pass filter controller, and is also provided with a data input terminal and an output terminal of the previous row or column;

G分量寄存器、B分量寄存器以及R分量寄存器,各设有选通信号输入端,该输入端与所述低通滤波控制器的相应输出端相连;设有前一行或列的数据输入端,该输入端与所述缓存SRAM的相应输出端相连;还设有当前行或列的数据输入端,该输入端与所述输入同步提取单元的相应输出端相连;The G component register, the B component register and the R component register are each provided with a strobe signal input terminal, and the input terminal is connected to the corresponding output terminal of the low-pass filter controller; the data input terminal of the previous row or column is provided, and the The input end is connected to the corresponding output end of the buffer SRAM; a data input end of the current row or column is also provided, and the input end is connected to the corresponding output end of the input synchronous extraction unit;

数据选择器A,设有与所述G、B、R分量寄存器的当前行或列、前一行或列的输出数据相应的输入端;The data selector A is provided with an input terminal corresponding to the output data of the current row or column and the previous row or column of the G, B, R component registers;

运算器数据输入端和所述数据选择器A的相应的数据输出端相连,按照下述运算方式依次对输入的各分量的图像数据进行横向滤波和纵向滤波:The data input terminal of the arithmetic unit is connected to the corresponding data output terminal of the data selector A, and the image data of each input component is sequentially filtered horizontally and vertically according to the following operation method:

第I步:横向滤波,以消弱原始图像中水平方向的高频成分,所述横向滤波按列由左至右依次顺序进行, 表示向下取整操作,即

Figure A20051012625500092
Step 1: horizontal filtering, to weaken the high-frequency components in the horizontal direction in the original image, the horizontal filtering is performed sequentially from left to right in columns, Indicates the rounding down operation, that is,
Figure A20051012625500092

滤波后第1列图像数据=原第1列图像数据,The image data of the first column after filtering = the original image data of the first column,

                      ·    ·    ·· · · ·

Figure A20051012625500103
Figure A20051012625500103

第II步:对所述第I步得到的新数据进行纵向滤波,以平滑纵向的高频成分,所述纵向滤波按行有上至下依下述顺序进行, 表示向上取整,即

Figure A20051012625500105
Step II: perform longitudinal filtering on the new data obtained in the first step to smooth the vertical high-frequency components, and the longitudinal filtering is performed in the following order from top to bottom according to the row, Indicates rounding up, that is,
Figure A20051012625500105

滤波后第1行图像数据=原第1行列图像数据,Image data of the first row after filtering = original image data of the first row and column,

                      ·    ·    ·· · · ·

数据选择器B,设有选通信号输入端,该输入端与所述低通滤波控制器的相应输出端相连,以便分别输入不必滤波的以及已经滤波的图像数据的输入;设有ROI区内的数据输入端,该输入端与所述输入同步提取器的当前行或列的Bayer彩色图像数据输出端相连,还设有滤波数据输入端,该输入端与所述运算器的相应数据输出端相连;另外还有一个前一行或列的已经滤过波的图像数据输出端,该输出端与所述缓存SRAM的前一行或列的图像数据输入端相连,所述前一行或列的图像数据输出端还是一个经过所述低通滤波器处理后的Bayer彩色图像数据输出端;Data selector B is provided with a strobe signal input terminal, which is connected to the corresponding output terminal of the low-pass filter controller, so as to input the input of image data that does not need to be filtered and has been filtered; A data input terminal, which is connected to the Bayer color image data output terminal of the current row or column of the input synchronous extractor, and is also provided with a filtering data input terminal, which is connected to the corresponding data output terminal of the arithmetic unit connected; in addition, there is a filtered image data output terminal of the previous row or column, which is connected to the image data input terminal of the previous row or column of the cache SRAM, and the image data of the previous row or column The output terminal is also a Bayer color image data output terminal processed by the low-pass filter;

SRAM,设有Bayer彩色图像数据输入端,该输入端与所述低通滤波器的相应数据输出端相连;还设有一个控制信号输入端,该输入端与所述JPEG-LS无损编码的控制单元的相应输出端相连;SRAM is provided with a Bayer color image data input terminal, which is connected to the corresponding data output terminal of the low-pass filter; a control signal input terminal is also provided, and the input terminal is connected to the control of the JPEG-LS lossless encoding The corresponding output terminals of the unit are connected;

JPEG-LS无损压缩编码器,按JEPG-LS无损压缩标准文件编码,该编码器含有:JPEG-LS lossless compression encoder, encoded according to the JEPG-LS lossless compression standard file, the encoder contains:

四个参数A、B、C、N的缓存存储器,各输入端与所述SRAM内设定的四个参数A、B、C、N的相应的输出端相连,所述四个参数都与一个上下文条件相对应,A指当前上下文条件下地累积绝对误差值,C是指平均误差值,N是指当前上下文出现的总次数,B参数是为了简化计算而引入的中间量,A、B、C、N参数是供图像的自身内容进行自适应调整用的,用于减少预测值的误差;The cache memory of four parameters A, B, C, N, each input end is connected with the corresponding output end of the four parameters A, B, C, N set in the SRAM, and the four parameters are all connected to a Corresponding to the context conditions, A refers to the cumulative absolute error value under the current context conditions, C refers to the average error value, N refers to the total number of occurrences of the current context, and the B parameter is an intermediate quantity introduced to simplify the calculation, A, B, C , The N parameter is used for self-adaptive adjustment of the image's own content, and is used to reduce the error of the predicted value;

游程扫描和游程编码电路,该电路的游程模式设定端与所述SRAM缓存的游程模式值的输出端相连;A run-length scanning and run-length encoding circuit, the run-length mode setting end of the circuit is connected to the output end of the run-length mode value of the SRAM cache;

上下文决策电路,该电路与所述JPEG-LS无损压缩编码的控制单元互连,并有输入端与SRAM的数据输出端相连。该决策电路根据被压缩点的上下文内容来进行本地梯度的计算和量化,以及对量化后梯度的融合与压缩模式的选择;所述本地梯度,指待压缩像素点周围四点形成的三个梯度值(即两像素点间差值),本地梯度包含三个梯度分量,分别对应待压缩像素点右上与正上、正上与左上的两个水平梯度,及左上与正左的一个垂直梯度;A context decision circuit, which is interconnected with the control unit of the JPEG-LS lossless compression coding, and has an input end connected with the data output end of the SRAM. The decision circuit calculates and quantizes the local gradient according to the context content of the compressed point, as well as the fusion of the quantized gradient and the selection of the compression mode; the local gradient refers to the three gradients formed by four points around the pixel to be compressed Value (that is, the difference between two pixels), the local gradient contains three gradient components, which correspond to two horizontal gradients of the upper right and upper, upper left and upper left of the pixel to be compressed, and a vertical gradient of upper left and upper left of the pixel to be compressed;

误差预测电路,该电路的控制信号数据端与所述JPEG-LS无损压缩编码的控制单元相应输出端相连,并有输入端与SRAM的数据输出端相连,另一输口与参数计算单元相连,以进行A、B、C、N参数的读取和更新回写,误差预测电路根据本地梯度及周围四点的值进行粗预测,并且根据当前像素的上下文值对应的A、B、C、N参数对预测初值进行微调,从而最终确定预测值,然后更新A、B、C、N参数;An error prediction circuit, the control signal data end of the circuit is connected to the corresponding output end of the control unit of the JPEG-LS lossless compression encoding, and the input end is connected to the data output end of the SRAM, and the other output port is connected to the parameter calculation unit, To read and update the A, B, C, N parameters, the error prediction circuit performs rough prediction according to the local gradient and the values of the surrounding four points, and according to the context value of the current pixel corresponding to A, B, C, N The parameters fine-tune the initial value of the forecast to finally determine the forecast value, and then update the A, B, C, and N parameters;

参数A、B、C和N的计算单元:设有四个数据端口,所述端口与所述四个参数A、B、C、N缓存区单元的相应输出端相连;设有一个误差输入端口,所述端口和误差预测电路相连;该单元完成把从误差电路输入的误差预测值和从参数A、B、C、N缓存区单元读入的相应值进行运算,把运算所得到的结果送回参数A、B、C、N缓存区单元以及误差预测单元存储;The calculation unit of parameters A, B, C and N: there are four data ports, and the ports are connected to the corresponding output terminals of the four parameters A, B, C, N buffer units; an error input port is provided , the port is connected to the error prediction circuit; this unit completes the operation of the error prediction value input from the error circuit and the corresponding value read from the parameter A, B, C, N buffer area unit, and sends the result obtained by the operation to Back to parameter A, B, C, N buffer unit and error prediction unit storage;

JEPG-LS无损压缩编码的控制单元,设有所述q、ROI值的输出端,该输出端与所述低通滤波器中的低通滤波控制器的相应输出端相连;同时,该JPEG-LS无损压缩编码的控制单元又与所述低通滤波器、SRAM以及JPEG-LS压缩编码器中的上下文决策电路、误差控制电路及游程扫描和编码电路相连。The control unit of JEPG-LS lossless compression coding is provided with the output end of described q, ROI value, and this output end is connected with the corresponding output end of the low-pass filter controller in the described low-pass filter; Meanwhile, this JPEG-LS The control unit of the LS lossless compression coding is connected with the low-pass filter, the SRAM and the context decision circuit, the error control circuit and the run-length scanning and coding circuit in the JPEG-LS compression coder.

发明效果如下:Invention effect is as follows:

1)该压缩方法提供了一种用于无线内窥镜系统的高效、低复杂度、基于类似Bayer彩色图像阵列的无损和准无损图像压缩。为了证明该压缩方法的有效性,Bayer彩色格式图像数据一部分是从标准图像库中的‘lena’,‘baboon’,‘airplane’,‘house’,‘lake’,‘peppers’和‘splash’等7幅标准图像中通过抽样操作获得;另一部分图像是来自采集到的6幅无线内窥镜图像。1) This compression method provides an efficient, low-complexity, Bayer-like color image array-based lossless and quasi-lossless image compression for wireless endoscopy systems. In order to demonstrate the effectiveness of the compression method, the Bayer color format image data is partly obtained from the standard image library of 'lena', 'baboon', 'airplane', 'house', 'lake', 'peppers' and 'splash', etc. The 7 standard images are obtained by sampling operation; the other part of the images is from the 6 collected wireless endoscopic images.

对标准图像库中自然图像采用该压缩方法,当质量控制因子q=1时,彩色图像的平均压缩码率为3.35比特/像素点、图像的峰值信号噪声比(PSNR)>=46.37dB;对无线内窥镜图像采用该压缩方法能提供彩色图像的平均压缩码率为2.18比特/像素点、图像的峰值信号噪声比(PSNR)>=47.57dB。Adopt this compression method to natural image in the standard image storehouse, when quality control factor q=1, the average compression code rate of color image is 3.35 bits/pixel, the peak signal-to-noise ratio (PSNR) of image>=46.37dB; The wireless endoscope image compression method can provide an average compression code rate of 2.18 bits/pixel for the color image, and a peak signal-to-noise ratio (PSNR) of the image>=47.57dB.

2)该方法中涉及的低通滤波器的实现复杂度非常低,只需要加法和移位运算即可实现。2) The implementation complexity of the low-pass filter involved in this method is very low, and it can be realized only by addition and shift operations.

3)由于本发明提出的压缩方法是在彩色插值之前进行压缩,与常规的先彩色插值后压缩的方法比较,需要压缩的G分量数据只有常规方法G分量数据量的一半,而R和B分量均只有常规方法的四分之一,因此该方法大大降低了压缩的数据量,降低了硬件实现的复杂性和存储量。3) because the compression method that the present invention proposes is to compress before color interpolation, compares with the conventional method of first color interpolation and then compression, the G component data that needs to be compressed has only half of the conventional method G component data volume, and R and B component Both are only a quarter of the conventional method, so the method greatly reduces the amount of compressed data, and reduces the complexity and storage capacity of hardware implementation.

4)能提供信噪比在一定范围内连续变化的准无损压缩或无损压缩的图像数据。在对标准图像库中的图像进行压缩的结果表明:通过对低通滤波器的输入参数质量因子的控制可以获得信噪比从大约46.37dB到无穷大范围内连续变化的准无损压缩、无损压缩的图像数据,相应压缩比从平均3.35比特/像素点~6.9比特/像素点变化。4) It can provide quasi-lossless compression or lossless compressed image data whose signal-to-noise ratio changes continuously within a certain range. The results of compressing images in the standard image library show that quasi-lossless compression and lossless compression can be obtained by controlling the quality factor of the input parameter of the low-pass filter. For image data, the corresponding compression ratio varies from an average of 3.35 bits/pixel to 6.9 bits/pixel.

5)能提供对指定感兴趣区ROI区域实现无损压缩等功能,即支持兴趣区(ROI)处理功能。通过对感兴趣区(ROI)压缩控制端口。ROI的形状可以任意比如:矩形,圆,椭圆以及任意形状等。5) It can provide functions such as lossless compression for the specified region of interest ROI area, that is, it supports the region of interest (ROI) processing function. Control ports by compressing the region of interest (ROI). The shape of the ROI can be arbitrary, such as: rectangle, circle, ellipse, and any shape.

为了验证算法的有效性,表1列出了论文提出的算法和下列几种算法进行比较的结果。In order to verify the effectiveness of the algorithm, Table 1 lists the results of comparing the proposed algorithm with the following algorithms.

a)‘本发明的压缩方法(q=1),无损压缩编码JPEG-LS’:本发明提出的压缩方法,其中的无损压缩编码部分采用JPEG-LS压缩编码,低通滤波器的质量控制因子q=100%。a) 'compression method of the present invention (q=1), lossless compression encoding JPEG-LS': the compression method proposed by the present invention, wherein the lossless compression encoding part adopts JPEG-LS compression encoding, and the quality control factor of the low-pass filter q=100%.

b)‘本发明的压缩方法(q=1),无损压缩编码JPEG2000’:本发明提出的压缩方法,其中的无损压缩编码部分采用JPEG2000压缩编码,低通滤波器的质量控制因子q=100%。b) 'compression method of the present invention (q=1), lossless compression coding JPEG2000': the compression method proposed by the present invention, wherein the lossless compression coding part adopts JPEG2000 compression coding, and the quality control factor q=100% of the low-pass filter .

c)‘本发明的压缩方法(q=1),无损压缩编码FELICS’:本发明提出的缩方法,其中的无损压缩编码部分采用FELICS压缩编码,低通滤波器的质量控制因子q=100%。c) 'compression method of the present invention (q=1), lossless compression coding FELICS': the compression method proposed by the present invention, wherein the lossless compression coding part adopts FELICS compression coding, and the quality control factor q=100% of the low-pass filter .

d)‘JPEG-LS的准无损压缩(near参数是2)’:BAYER数据直接被JPEG-LS准无损压缩编码器压缩,其中near参数是2,即压缩后图像的每个像素点的误差值不大于2。d) 'JPEG-LS quasi-lossless compression (near parameter is 2)': BAYER data is directly compressed by the JPEG-LS quasi-lossless compression encoder, where the near parameter is 2, which is the error value of each pixel of the compressed image Not greater than 2.

e)‘本发明压缩方法(q=0.25),无损压缩编码JPEG-LS’:本发明提出的压缩方法,其中的无损压缩编码部分采用JPEG-LS压缩编码,低通滤波器的质量控制因子q=25%。e) 'compression method of the present invention (q=0.25), lossless compression coding JPEG-LS': the compression method proposed by the present invention, wherein the lossless compression coding part adopts JPEG-LS compression coding, and the quality control factor q of the low-pass filter = 25%.

f)‘参考文献中的结构转换方法(Chin Chye Koh,Jayanta Mukherjee and Sanjit K.Mitra,New Efficient Methods of Image Compression in Digital Cameras with Color Filter Array[J](用于彩色滤波阵列图像数据输出的数字相机的高效图像压缩方法),IEEE Trans.ConsumerElectronics,Nov 2003,49(4):1448-1456.)’:BAYER数据通过文献中的结构转换滤波器滤波后再经过JPEG-LS进行无损压缩编码。f)' Structure conversion method in reference (Chin Chye Koh, Jayanta Mukherjee and Sanjit K.Mitra, New Efficient Methods of Image Compression in Digital Cameras with Color Filter Array[J] (digital for color filter array image data output High-efficiency image compression method for cameras), IEEE Trans.ConsumerElectronics, Nov 2003, 49(4): 1448-1456.)': BAYER data is filtered by the structural conversion filter in the literature and then losslessly compressed and encoded by JPEG-LS.

g)‘JPEG-LS直接压缩的方法’:采用JPEG-LS直接对Bayer彩色格式的图像数据进行压缩。g) 'JPEG-LS direct compression method': image data in Bayer color format is directly compressed using JPEG-LS.

f)‘JPEG2000直接压缩’:采用JPEG2000直接对Bayer彩色格式的图像数据进行压缩。f) 'JPEG2000 direct compression': JPEG2000 is used to directly compress image data in Bayer color format.

表1是对准图像库中7幅标图像进行压缩的结果,它表明:本发明提出的压缩方法(q=1)的平均压缩码率达3.35比特/像素点,平均PSNR值达到46.43dB,且压缩后每个像素点值误差不会大于2,因此该算法保证了压缩图像的质量;本发明提出的压缩方法所获得的压缩码率(q=1)要大大低于采用JPEG-LS和JPEG2000无损编码器对Bayer彩色格式图像数据直接压缩情况下的压缩码率,而且恢复后图像仍保持很高的信噪比(大于46.37dB);表中的压缩结果也表明了在本发明提出的压缩方法中的无损压缩编码采用JPEG-LS要比采用JPEG2000以及FELICS有更好的压缩性能;在q=0.25时,本发明提出的压缩方法的压缩性能要高于参考文献中的“结构转换”算法;在q=1时,本发明提出的压缩方法的压缩性能要高于JPEG-LS的准无损压缩(near参数是2)。Table 1 is the result of compressing 7 standard images in the image bank, and it shows: the average compression code rate of the compression method (q=1) proposed by the present invention reaches 3.35 bits/pixel, and the average PSNR value reaches 46.43dB, And the error of each pixel point value after compression can not be greater than 2, so this algorithm has guaranteed the quality of compressed image; The compression code rate (q=1) that the compression method that the present invention proposes obtains will be lower than adopting JPEG-LS and JPEG-LS and JPEG2000 lossless coder is to the compression code rate under the direct compression situation of Bayer color format image data, and image still keeps very high signal-to-noise ratio (greater than 46.37dB) after restoring; Lossless compression coding in the compression method adopts JPEG-LS to have better compression performance than adopting JPEG2000 and FELICS; When q=0.25, the compression performance of the compression method proposed by the present invention will be higher than "structure conversion" in the reference Algorithm; when q=1, the compression performance of the compression method proposed by the present invention is higher than that of the quasi-lossless compression of JPEG-LS (near parameter is 2).

表2是对六幅典型的无线内窥镜图像进行压缩的试验结果。结果同样表明了本发明提出的压缩算法有着比JPEG-LS准无损压缩(near参数是2)以及参考文献中的“结构转换”算法更高的压缩性能。Table 2 is the experimental results of compressing six typical wireless endoscope images. The results also show that the compression algorithm proposed by the present invention has higher compression performance than the JPEG-LS quasi-lossless compression (near parameter is 2) and the "structure conversion" algorithm in the reference.

试验结果表明从压缩性能和硬件实现复杂性的角度考虑,本发明提出的压缩方法是最合适直接对Bayer彩色阵列图像数据进行准无损压缩的算法,也因此合适于无线内窥镜胶囊系统对低复杂度、低功耗的要求。Experimental results show that from the perspective of compression performance and hardware implementation complexity, the compression method proposed by the present invention is the most suitable algorithm for directly performing quasi-lossless compression on Bayer color array image data, and is therefore suitable for wireless endoscope capsule systems for low Complexity, low power requirements.

                 表1对标准图像库中7幅图像压缩的实验结果与比较   图像(512*512) airplane baboon house lake lena peppers splash 本发明压缩方法(q=1),无损压缩编码JPEG-LS   PSNR(dB)   46.4160   46.3914   46.4328   46.4011   46.4099   46.5528   46.5374   CR(bpp)   2.8963   4.6882   3.3301   3.7741   3.1440   3.2130   2.4590 本发明压缩方法(q=1),无损压缩编码JPEG2000   PSNR(dB)   46.4160   46.3914   46.4328   46.4011   46.4099   46.5528   46.5374   CR(bpp)   4.7924   6.6782   5.0576   5.7585   5.0936   5.1689   4.2871 本发明压缩方法(q=1),无损压缩编码FELICS   PSNR(db)   46.4160   46.3914   46.4328   46.4011   46.4099   46.5528   46.5374   CR(bpp)   4.1916   5.6328   5.4711   5.5309   6.5132   7.0018   6.8462 JPEG-LS准无损参数等于2的压缩   PSNR(dB)   45.1718   45.3809   45.1541   45.1337   45.1239   45.2419   45.2670   CR(bpp)   3.0123   6.6121   3.9325   4.4080   4.8955   5.2372   4.8723 本发明压缩方法(q=0.25),无损压缩编码JPEG-LS   PSNR(db)   52.4090   52.3816   52.4528   52.3953   52.4134   525909   52.6665   CR(bpp)   4.3952   6.3473   5.2241   5.6612   4.7357   4.7772   3.7493 参考文献错误!未找到引用源。中的结构转换方法 PSNR(db)   52.4083   52.3809   52.3770   52.3889   52.3387   525615   52.5792   CR(bpp)   4.5939   6.6935   5.8489   5.8734   5.1658   4.9416   4.1000 JPEG-LS直接压缩   PSNR(dB)   ∞   ∞   ∞   ∞   ∞   ∞   ∞   CR(bpp)   5.2069   7.5596   6.2539   6.8519   7.4460   7.6901   7.4404 JPEG2000直接压缩   PSNR(dB)   ∞   ∞   ∞   ∞   ∞   ∞   ∞   CR(bpp)   4.5739   5.7557   5.2302   5.8539   5.4564   5.6753   5.0229 Table 1. Experimental results and comparison of 7 images compressed in the standard image library Image (512*512) airplane baboon house the lake lena peppers splash Compression method (q=1) of the present invention, lossless compression coding JPEG-LS PSNR(dB) 46.4160 46.3914 46.4328 46.4011 46.4099 46.5528 46.5374 CR(bpp) 2.8963 4.6882 3.3301 3.7741 3.1440 3.2130 2.4590 Compression method (q=1) of the present invention, lossless compression coding JPEG2000 PSNR(dB) 46.4160 46.3914 46.4328 46.4011 46.4099 46.5528 46.5374 CR(bpp) 4.7924 6.6782 5.0576 5.7585 5.0936 5.1689 4.2871 Compression method (q=1) of the present invention, lossless compression coding FELICS PSNR(db) 46.4160 46.3914 46.4328 46.4011 46.4099 46.5528 46.5374 CR(bpp) 4.1916 5.6328 5.4711 5.5309 6.5132 7.0018 6.8462 JPEG-LS quasi-lossless compression equal to 2 PSNR(dB) 45.1718 45.3809 45.1541 45.1337 45.1239 45.2419 45.2670 CR(bpp) 3.0123 6.6121 3.9325 4.4080 4.8955 5.2372 4.8723 Compression method (q=0.25) of the present invention, lossless compression coding JPEG-LS PSNR(db) 52.4090 52.3816 52.4528 52.3953 52.4134 525909 52.6665 CR(bpp) 4.3952 6.3473 5.2241 5.6612 4.7357 4.7772 3.7493 Wrong reference! Reference source not found. Struct transformation methods in PSNR(db) 52.4083 52.3809 52.3770 52.3889 52.3387 525615 52.5792 CR(bpp) 4.5939 6.6935 5.8489 5.8734 5.1658 4.9416 4.1000 JPEG-LS direct compression PSNR(dB) CR(bpp) 5.2069 7.5596 6.2539 6.8519 7.4460 7.6901 7.4404 JPEG2000 direct compression PSNR(dB) CR(bpp) 4.5739 5.7557 5.2302 5.8539 5.4564 5.6753 5.0229

CR表示压缩码率,∝表示无穷大CR means compression code rate, ∝ means infinity

            表2几种图像压缩算法的比较(6幅典型的无线内窥镜图像)   图像(256×256) (a) (b) (c) (d) (e) (f)   本发明压缩方法(q=1),无损压缩编码JPEG-LS   PSNR(db)CR(bit/pixel)   46.8911.962   46.8822.176   46.9212.223   46.8752.256   46.9042.081   46.9132.411   本发明压缩方法(q=0.25),无损压缩编码JPEG-LS   PSNR(db)CR(bit/pixel)   52.8153.095   52.7983.331   53.0063.581   52.9623.636   52.9913.209   53.0173.752   JPEG-LS的准无损压缩(near参数是2)   PSNR(db)CR(bits/pixel)   45.3872.168   45.7342.412   45.7362.228   45.2192.6311   45.5812.174   45.5922.415   参考文献中的结构转换方法   PSNR(db)CR(bits/pixel)   51.7313.815   51.6984.022   51.8124.206   51.2964.318   51.7994.031   51.8254.527 Table 2 Comparison of several image compression algorithms (6 typical wireless endoscopic images) Image (256×256) (a) (b) (c) (d) (e) (f) Compression method (q=1) of the present invention, lossless compression coding JPEG-LS PSNR(db)CR(bit/pixel) 46.8911.962 46.8822.176 46.9212.223 46.8752.256 46.9042.081 46.9132.411 Compression method (q=0.25) of the present invention, lossless compression coding JPEG-LS PSNR(db)CR(bit/pixel) 52.8153.095 52.7983.331 53.0063.581 52.9623.636 52.9913.209 53.0173.752 Quasi-lossless compression of JPEG-LS (near parameter is 2) PSNR(db)CR(bits/pixel) 45.3872.168 45.7342.412 45.7362.228 45.2192.6311 45.5812.174 45.5922.415 Structural Transformation Methods in References PSNR(db)CR(bits/pixel) 51.7313.815 51.6984.022 51.8124.206 51.2964.318 51.7994.031 51.8254.527

本发明提出的压缩方法除了具有低复杂性和高压缩性能外,还具有压缩图像质量可调整和对ROI进行无损压缩的功能。图15显示了三幅图像(baboon,lena和airplane)的可调整的图像质量PSNR与压缩码率的关系,图像质量PSNR从46.37dB至无穷大连续可调整的功能,相应平均压缩码率从3.35比特/像素点到6.9比特/像素点范围变化。In addition to low complexity and high compression performance, the compression method proposed by the invention also has the functions of adjustable compressed image quality and lossless compression of ROI. Figure 15 shows the relationship between the adjustable image quality PSNR and the compression bit rate of the three images (baboon, lena and airplane), the image quality PSNR is continuously adjustable from 46.37dB to infinity, and the corresponding average compression bit rate is from 3.35 bits /pixel to 6.9 bits/pixel range change.

附图说明Description of drawings

图1无线内窥镜中简化的图像压缩系统模型;Fig. 1 Simplified image compression system model in wireless endoscope;

图2BAYER彩色阵列格式图;Figure 2 BAYER color array format diagram;

图3传统基于数字图像传感器的图像采集、压缩和传输系统(先彩色插值后压缩方法);Fig. 3 traditional image acquisition, compression and transmission system based on digital image sensor (compression method after first color interpolation);

图4新的基于数字图像传感器的图像采集、压缩和传输系统(先压缩后彩色插值方法);Fig. 4 new image acquisition, compression and transmission system based on digital image sensor (color interpolation method after compression first);

图5本发明提出的一种用于无线内窥镜系统的基于先压缩后彩色插值方法的压缩结构框图;Fig. 5 is a block diagram of a compression structure based on a color interpolation method after compression for a wireless endoscope system proposed by the present invention;

图6本发明提出的一种用于无线内窥镜系统的基于先压缩后彩色插值方法的解压缩结构框图;Fig. 6 is a block diagram of decompression structure based on first compression and then color interpolation method for wireless endoscope system proposed by the present invention;

图7Bayer彩色格式图像数据的G分量从菱形到矩形的变换图;The transformation diagram of the G component of the image data in Bayer color format from rhombus to rectangle in Fig. 7;

图8基于类似Bayer彩色图像阵列的数字图像无损和准无损图像压缩/解压缩方法及装置实例图;Figure 8 is based on a digital image lossless and quasi-lossless image compression/decompression method and device example diagram of a similar Bayer color image array;

图9a横向滤波;Figure 9a Transverse filtering;

图9b纵向滤波;Figure 9b longitudinal filtering;

图9c纵向重构滤波;Figure 9c longitudinal reconstruction filtering;

图9d横向重构滤波;Figure 9d horizontal reconstruction filtering;

图10(a)q=50%时,横向滤波器选择的被滤波行数;(b)当q=25%时,纵向滤波器选择的被滤波的列数;When Fig. 10 (a) q=50%, the number of filtered rows selected by horizontal filter; (b) when q=25%, the number of columns filtered by vertical filter;

图11图像质量调整时的算法流程图;Algorithm flow chart during image quality adjustment in Fig. 11;

图12虚线框内是选择的ROI;Figure 12 is the selected ROI in the dotted box;

图13图像压缩方法的VLSI结构;The VLSI structure of Fig. 13 image compression method;

图14图像压缩算法中低通滤波器的硬件实现结构;The hardware realization structure of low-pass filter in Fig. 14 image compression algorithm;

图15调整图像压缩的质量控制因子时压缩码率和压缩比的关系;The relationship between the compression code rate and the compression ratio when Fig. 15 adjusts the quality control factor of image compression;

图16本发明提出的压缩方法的程序流程图;The program flowchart of the compression method that Fig. 16 present invention proposes;

图17本发明提出的解压缩方法的程序流程图;The program flowchart of the decompression method proposed by the present invention in Fig. 17;

具体实施方式:Detailed ways:

图1是无线内窥镜胶囊内系统简化的图像采集、压缩和无线传输系统的方框图。无线内窥镜胶囊内的图像传感器输出的Bayer彩色格式图像数据直接被压缩,然后送至信道编码单元,进行信道编码后输出到无线收发器,以无线电波的形式发送到体外。胶囊也可通过无线收发器接收来自外部的控制命令数据,然后送到信道解码单元,解码后的数据输出到控制单元,由控制单元根据接收到的控制命令来控制胶囊内电路的下一步动作。Fig. 1 is a block diagram of the simplified image acquisition, compression and wireless transmission system of the wireless endoscopic capsule system. The Bayer color format image data output by the image sensor in the wireless endoscope capsule is directly compressed, and then sent to the channel coding unit, after channel coding, it is output to the wireless transceiver, and sent to the body in the form of radio waves. The capsule can also receive control command data from the outside through the wireless transceiver, and then send it to the channel decoding unit, and the decoded data is output to the control unit, and the control unit controls the next step of the circuit in the capsule according to the received control command.

图2是图像传感器输出的BAYER格式彩色图像阵列。其中图像G分量数据呈菱形,数据量占整个Bayer图像数据量的1/2,R和B分量呈矩形,各占整个Bayer图像数据量的1/4。Figure 2 is a BAYER format color image array output by the image sensor. Among them, the G component data of the image is diamond-shaped, and the data volume accounts for 1/2 of the entire Bayer image data volume, and the R and B components are rectangular, each accounting for 1/4 of the entire Bayer image data volume.

图3是传统先彩色插值后压缩的方法。图像传感器输出Bayer格式的彩色图像数据首先经过彩色插值处理后形成全彩色的RGB图像数据,然后对该全彩色的图像数据进行数据压缩,压缩后的数据在本地存储或通过有线或无线的通讯方式发送出去,最后对存储在本地或通过有线或无线方式获得的压缩数据进行解压缩后即可得到恢复后的全彩色的图像数据。Figure 3 is the traditional method of color interpolation first and then compression. The color image data output by the image sensor in Bayer format is first processed by color interpolation to form full-color RGB image data, and then the full-color image data is compressed, and the compressed data is stored locally or through wired or wireless communication. Send it out, and finally decompress the compressed data stored locally or obtained through wired or wireless means to get the restored full-color image data.

图4新的基于先压缩后彩色插值的压缩方法。图像传感器输出的Bayer彩色格式图像数据直接被压缩,压缩后的数据将在本地存储或通过有线或无线的通讯方式发送出去,最后对存储在本地或通过有线或无线接收方式获得的压缩数据进行解压缩,最后对解压缩后的Bayer彩色格式图像数据进行彩色插值处理后形成全彩色的RGB图像数据,恢复为全彩色的RGB图像数据。Figure 4. New compression method based on color interpolation after compression. The Bayer color format image data output by the image sensor is directly compressed, the compressed data will be stored locally or sent out through wired or wireless communication, and finally the compressed data stored locally or obtained through wired or wireless reception is decompressed Compress, and finally perform color interpolation processing on the decompressed Bayer color format image data to form full-color RGB image data, and restore it to full-color RGB image data.

图5是本发明提出的用于无线内窥镜系统的基于先压缩后彩色插值的压缩结构。图像传感器输出Bayer格式的彩色图像数据,数据中的G分量首先通过菱形到矩形的转换后,送入到低通滤波器中进行平滑滤波,最后送入无损压缩模块进行无损压缩,其中R和B分量原本就是矩形,因此将分别直接通过低通滤波器进行低通滤波,最后送入无损压缩模块进行无损压缩,平滑滤波器有两个控制参数:质量控制因子和感兴趣区(ROI)参数。Fig. 5 is a compression structure based on first compression and then color interpolation for the wireless endoscope system proposed by the present invention. The image sensor outputs color image data in Bayer format. The G component in the data is first converted from a rhombus to a rectangle, then sent to a low-pass filter for smoothing, and finally sent to a lossless compression module for lossless compression, where R and B The components are originally rectangular, so they will be low-pass filtered directly through the low-pass filter, and finally sent to the lossless compression module for lossless compression. The smoothing filter has two control parameters: quality control factor and region of interest (ROI) parameter.

图6中是对图5中输出的压缩数据进行解压缩,然后对解压缩输出的G分量通过矩形到菱形的变换,再送入重构滤波器进行重构,而对解压缩输出的R和B分量则分别直接送入重构滤波器进行重构,重构滤波器有两个与压缩部分的低通滤波器相同的输入控制参数:质量控制因子和感兴趣区(ROI)参数,对两个重构滤波器输出的G、R和B分量由加法器重新组合成Bayer格式的彩色图像数据输出到彩色插值处理单元进行彩色插值,最后获得全彩色RGB的数据输出。In Figure 6, the compressed data output in Figure 5 is decompressed, and then the G component of the decompressed output is transformed from a rectangle to a rhombus, and then sent to the reconstruction filter for reconstruction, while the R and B components of the decompressed output The components are directly sent to the reconstruction filter for reconstruction. The reconstruction filter has two input control parameters that are the same as the low-pass filter of the compression part: the quality control factor and the region of interest (ROI) parameter. For the two The G, R and B components output by the reconstruction filter are recombined by the adder into Bayer format color image data and output to the color interpolation processing unit for color interpolation, and finally obtain full-color RGB data output.

图7是把Bayer格式的彩色图像数据中的菱形G分量的空点去掉,然后把剩下的数据点直接组合成一个矩形。Figure 7 removes the empty points of the rhombus G component in the color image data in Bayer format, and then directly combines the remaining data points into a rectangle.

图8所示是本发明涉及的用于无线内窥镜系统的高效、低复杂度、基于类似Bayer彩色图像阵列的无损和准无损图像压缩/解压缩方法的具体实施装置。无线内窥镜胶囊内包括数据采集、本发明提出的压缩装置(包括菱形到矩形的变换单元、低通滤波器、JPEG-LS编码器)以及无线收发射装置A;在无线胶囊外包括本发明提出的数据解压缩和恢复装置,以及无线收发射装置B组。胶囊内的数据采集、压缩装置主要完成对Bayer彩色格式图像数据的采集和压缩的过程,该装置的最前端为CCD/CMOS数字图像传感器,它完成图像采集后输出Bayer彩色格式图像数据。由于Bayer彩色格式数据具有很多高频分量的特点,未加处理的原始数据不适合直接压缩,因而需对原始数据进行低通平滑滤波处理。Bayer彩色格式图像数据中G分量的像素点排列呈菱形,在对G分量滤波前需要进行由菱形到矩形的变换,然后进行低通滤波,R和B分量则可直接进行低通滤波,最后滤波后的三个分量将被分别送入无损压缩单元进行压缩,压缩单元采用JPEG-LS的无损压缩编码。该压缩装置采用专用集成电路(ASIC)实现。经压缩后的数据将通过无线收发射装置A以无线电波形式发射到胶囊外。FIG. 8 is a specific implementation device of the high-efficiency, low-complexity, lossless and quasi-lossless image compression/decompression method based on a Bayer-like color image array for a wireless endoscope system according to the present invention. The wireless endoscope capsule includes data acquisition, the compression device proposed by the present invention (including a rhombus-to-rectangular transformation unit, a low-pass filter, and a JPEG-LS encoder) and a wireless transmitting and receiving device A; the wireless capsule includes the present invention The proposed data decompression and recovery device, and the wireless receiving and transmitting device B group. The data collection and compression device in the capsule mainly completes the process of collecting and compressing image data in Bayer color format. The front end of the device is a CCD/CMOS digital image sensor, which outputs image data in Bayer color format after image collection. Because the Bayer color format data has many high-frequency components, the unprocessed original data is not suitable for direct compression, so the original data needs to be processed by low-pass smoothing filter. The pixel points of the G component in the Bayer color format image data are arranged in a diamond shape. Before filtering the G component, it needs to be transformed from a diamond shape to a rectangle, and then perform low-pass filtering. The R and B components can be directly low-pass filtered, and finally filtered. The last three components will be respectively sent to the lossless compression unit for compression, and the compression unit adopts JPEG-LS lossless compression coding. The compression device is implemented using an application-specific integrated circuit (ASIC). The compressed data will be transmitted out of the capsule in the form of radio waves through the wireless receiving and transmitting device A.

胶囊外的无线收发射装置B接收来自胶囊内发射的压缩图像数据,该数据由本发明提出的解压缩方法进行数据解压缩,解压缩后的数据最后通过彩色插值处理恢复成全彩色的RGB图像数据。解压缩装置包括重构滤波器、菱形到矩形的变换单元、加法器以及JPEG-LS解码器。解压缩部分在具体实例中由软件实现。The wireless transmitting and receiving device B outside the capsule receives the compressed image data transmitted from the capsule, and the data is decompressed by the decompression method proposed by the present invention, and the decompressed data is finally restored to full-color RGB image data through color interpolation processing. The decompression means includes a reconstruction filter, a diamond-to-rectangular transformation unit, an adder, and a JPEG-LS decoder. The decompression part is implemented by software in a specific example.

首先定义一个客观的图像压缩的比较标准,见下面公式(1):First define an objective comparison standard for image compression, see the following formula (1):

PSNRPSNR == 1010 loglog 1010 (( 255255 22 11 Hh ×× WW ΣΣ xx == 11 WW ΣΣ ythe y == 11 Hh (( II 11 (( xx ,, ythe y )) -- II 22 (( xx ,, ythe y )) )) 22 )) .. .. .. (( 11 ))

低通滤波器设计:Low pass filter design:

首先对G分量先进行如图7的菱形到矩形的变换操作,然后对G、B、R分别滤波,并采用相同的一组滤波器。该组滤波器分两个部分:横向滤波见图9a和纵向滤波见图9b。图中所示为4×4的bayer数据。图9a中,‘●’代表首列的原始数据,

Figure A20051012625500171
代表第m列滤波后数据, 代表第m列未滤波原始数据,在横向滤波过程中,除第一列数据外的其它数据都要经过滤波处理,具体操作可由公式(2)来表达,其中
Figure A20051012625500173
表示取整操作,有 Firstly, the G component is transformed from a rhombus to a rectangle as shown in Figure 7, and then G, B, and R are filtered separately, and the same set of filters is used. The set of filters is divided into two parts: horizontal filtering see Fig. 9a and vertical filtering see Fig. 9b. The figure shows 4×4 bayer data. In Figure 9a, '●' represents the original data in the first column,
Figure A20051012625500171
Represents the mth column filtered data, Represents the unfiltered original data in the mth column. In the process of horizontal filtering, all data except the first column of data must be filtered. The specific operation can be expressed by formula (2), where
Figure A20051012625500173
Indicates the rounding operation, there is

滤波操作的顺序是由左至右。The order of filtering operations is from left to right.

滤波后第1列图像数据=原第1列图像数据,The image data of the first column after filtering = the original image data of the first column,

Figure A20051012625500175
Figure A20051012625500175

Figure A20051012625500176
Figure A20051012625500176

                          ·    ·    ·· · · ·

经过横向滤波后,原始图像中水平方向的高频成分大大减少,为了进一步平滑纵向的高频成分,滤波输出数据接入一个纵向滤波器,滤波过程如图9b。图9b中,‘●’代表首行原始数据,

Figure A20051012625500178
代表第m行滤波后数据,
Figure A20051012625500179
代表第m行未滤波原始数据,具体操作可用公式(3)表示。其中 是取整操作,但 滤波过程按照从上到下的顺序。After horizontal filtering, the high-frequency components in the horizontal direction in the original image are greatly reduced. In order to further smooth the high-frequency components in the vertical direction, the filtered output data is connected to a vertical filter. The filtering process is shown in Figure 9b. In Figure 9b, '●' represents the first row of original data,
Figure A20051012625500178
Represents the filtered data of the mth row,
Figure A20051012625500179
Represents the unfiltered raw data of the mth row, and the specific operation can be expressed by formula (3). in is a rounding operation, but The filtering process follows the order from top to bottom.

滤波后第1行图像数据=原第1行列图像数据Image data of the first row after filtering = original image data of the first row and column

Figure A200510126255001712
Figure A200510126255001712

                        ·    ·    ·· · · ·

重构滤波器设计:Reconstruction filter design:

重构滤波器组也包含两个滤波器:纵向重构滤波器和横向重构滤波器,这两部分重构滤波分别于前面的纵向滤波和横向滤波相对应。纵向重构滤波目的在于恢复纵向原始数据,滤波操作过程见图9c,重构过程按行进行,按照由下至上顺序,逐个恢复上一行数据值直至首行为止,具体滤波过程可由公式4来表达。纵向重构时,公式中的序号表示行的序号。The reconstruction filter bank also includes two filters: a vertical reconstruction filter and a horizontal reconstruction filter. These two parts of the reconstruction filter correspond to the previous vertical filtering and horizontal filtering respectively. The purpose of vertical reconstruction filtering is to restore the original vertical data. The filtering operation process is shown in Figure 9c. The reconstruction process is carried out row by row, and the data values of the previous row are restored one by one in the order from bottom to top until the first row. The specific filtering process can be expressed by formula 4 . During vertical reconstruction, the serial number in the formula represents the serial number of the row.

重构后第m行图像数据值=2*原第m行图像数据值-原第m-1行图像数据值Image data value of line m after reconstruction=2*original image data value of line m-original image data value of line m-1

重构后第m-1行图像数据值=2*原第m-1行图像数据值-原第m-2行图像数据值Image data value of line m-1 after reconstruction=2*original image data value of line m-1-original image data value of line m-2

                        ·    ·    ·· · · ·

重构后第2行图像数据值=2*原第2行图像数据值-原第1行图像数据值Image data value of the second row after reconstruction = 2* original image data value of the second row - original image data value of the first row

重构后第1行图像数据值=原第1行图像数据值                   (4)Image data value of line 1 after reconstruction = original image data value of line 1 (4)

横向重构滤波器完成水平方向数据恢复的功能,重构过程按行进行,按照从右至左的顺序,逐个恢复前一列数据直至首列为止,过程也可用公式(4)描述,但公式中的序号表示列的序号,其滤波操作过程见图9d。The horizontal reconstruction filter completes the function of data recovery in the horizontal direction. The reconstruction process is carried out by row, and the data in the previous column is restored one by one until the first column in the order from right to left. The process can also be described by formula (4), but in the formula The serial number of represents the serial number of the column, and its filtering operation process is shown in Figure 9d.

误差分析:Error Analysis:

提出算法的误差产生根源是在低通滤波器中的横向和纵向滤波操作,也即公式(2)和(3)中的取整操作。在实际无线内窥镜系统中采用的是8比特/像素点的精度。横向滤波公式(2)导致的误差eH可以用公式(5)表达,公式中x是表示滤波过程中相邻两个像素点值的和,是一个8比特的整数。从该公式可知:eH=0或1。The source of the error in the proposed algorithm is the horizontal and vertical filtering operations in the low-pass filter, that is, the rounding operations in formulas (2) and (3). The precision of 8 bits/pixel is adopted in the actual wireless endoscope system. The error e H caused by the horizontal filtering formula (2) can be expressed by the formula (5). In the formula, x represents the sum of the values of two adjacent pixels during the filtering process, and is an 8-bit integer. It can be known from this formula: e H =0 or 1.

同样纵向滤波公式(3)导致的误差eV可以用公式(6)表达。从该公式可知:eV=0或-1。Similarly, the error e V caused by the longitudinal filtering formula (3) can be expressed by formula (6). It can be known from this formula: e V =0 or -1.

Figure A20051012625500182
Figure A20051012625500182

因此通过横向和纵向滤波后,总的误差可用下面公式(7)描述。其中公式中的Therefore, after horizontal and vertical filtering, the total error can be described by the following formula (7). where in the formula

Figure A20051012625500183
部分是由于纵向滤波引入误差再通过横向重构滤波器扩大后的最终误差,而
Figure A20051012625500184
则是由于横向滤波引入的误差。因此通过公式(6)可知低通滤波器总的引入误差将不会大于2。
Figure A20051012625500183
Partly due to the error introduced by the vertical filter and then the final error enlarged by the horizontal reconstruction filter, while
Figure A20051012625500184
It is the error introduced by transverse filtering. Therefore, it can be seen from formula (6) that the total error introduced by the low-pass filter will not be greater than 2.

通过对大量图像进行统计的结果,可以得到公式(8)所示关于横向滤器和纵向滤波器所分别引入误差的概率分布。Through the statistical results of a large number of images, the probability distribution of the errors introduced by the horizontal filter and the vertical filter as shown in the formula (8) can be obtained.

pp Hh (( 00 )) == pp Hh (( 11 )) == pp vv (( 00 )) == pp vv (( -- 11 )) == 11 22 .. .. .. (( 88 ))

结合低通滤波器的误差公式(7)和横向和纵向滤波引入误差的概率分布,可以得出低通滤波器总得引入误差值的概率分布见下面公式(9)。Combining the error formula (7) of the low-pass filter and the probability distribution of errors introduced by horizontal and vertical filtering, it can be obtained that the probability distribution of the error value introduced by the low-pass filter is shown in the following formula (9).

pp Hh ++ VV (( 00 )) == pp VV (( 00 )) ×× pp VV (( 00 )) ×× pp Hh (( 00 )) ++ pp VV (( -- 11 )) ×× pp Hh (( 11 )) == 11 44 pp Hh ++ VV (( 11 )) == pp VV (( 00 )) ×× pp VV (( 00 )) ×× pp Hh (( 11 )) ++ pp VV (( -- 11 )) ×× pp Hh (( 00 )) ++ pp VV (( -- 11 )) ×× pp VV (( -- 11 )) ×× pp Hh (( 00 )) ++ pp VV (( -- 11 )) ×× pp VV (( 00 )) ×× pp Hh (( 11 )) == 11 22 pp Hh ++ VV (( 22 )) == pp VV (( -- 11 )) ×× pp VV (( 00 )) ×× pp Hh (( 00 )) ++ pp VV (( -- 11 )) ×× pp VV (( -- 11 )) ×× pp Hh (( 11 )) == 11 44 .. .. .. (( 99 ))

因此根据低通滤波器的误差概率分布公式(8)以及PSNR的定义(1),可以得出解压缩后的重构图像数据的理论上的PSNR值将是46.37dB,见公式(10)。因此论文提出的准无损压缩算法在理论上不仅仅保证了解压缩重构后的每个像素点的误差值不超过2,同时也保证了解压缩重构后的图像PSNR大于46.37dB。Therefore, according to the error probability distribution formula (8) of the low-pass filter and the definition of PSNR (1), it can be concluded that the theoretical PSNR value of the decompressed reconstructed image data will be 46.37dB, see formula (10). Therefore, the quasi-lossless compression algorithm proposed in this paper theoretically not only ensures that the error value of each pixel after decompression and reconstruction does not exceed 2, but also ensures that the PSNR of the decompression and reconstruction image is greater than 46.37dB.

PSNRPSNR == 1010 loglog 1010 (( 255255 22 11 Hh ×× WW ×× [[ pp (( 11 )) ×× (( Hh ×× WW )) ×× 11 22 ++ pp (( 22 )) ×× (( Hh ×× WW )) ×× 22 22 ]] )) 1010 loglog 1010 (( 255255 22 pp (( 11 )) ++ pp (( 22 )) ×× 22 22 )) == 46.3746.37 dBdB .. .. .. (( 1010 ))

算法中可以通过控制滤波器的质量因子来选择要被滤波的像素点个数的多少来调整压缩后图像的质量和压缩比。在算法中被滤波的像素点占整个图像像素点的百分比,将被作为低通滤波器的输入参数,即质量控制因子。如果把质量因子引入公式(1),可以得出可调整图像质量的公式(11)。公式中q表示质量因子,q≤1。当q=0时,表示无损压缩,PSNR趋于无穷大,当q=1时,表示所有像素点将全部被滤波,此时PSNR=46.37dB。因此该算法可以提供了PSNR从46.37dB左右到无穷大的调整。In the algorithm, the quality factor of the filter can be controlled to select the number of pixels to be filtered to adjust the quality and compression ratio of the compressed image. The percentage of filtered pixels in the algorithm to the entire image pixels will be used as the input parameter of the low-pass filter, that is, the quality control factor. If the quality factor is introduced into formula (1), formula (11) for adjustable image quality can be obtained. In the formula, q represents the quality factor, and q≤1. When q=0, it means lossless compression, and PSNR tends to infinity; when q=1, it means that all pixels will be filtered, and PSNR=46.37dB at this time. Therefore, the algorithm can provide PSNR adjustment from about 46.37dB to infinity.

PSNRPSNR == 1010 loglog 1010 (( 255255 22 11 Hh ×× WW [[ pp (( 11 )) ×× (( Hh ×× WW ×× xx )) ×× 11 22 ++ pp (( 22 )) ×× (( Hh ×× WW ×× qq )) ×× 22 22 ]] )) == 46.3746.37 -- 1010 loglog 1010 qq .. .. .. (( 1111 ))

在实际的应用中为了简化被滤波点的选择,本发明给出了一个简单方法来进行滤波点选择。通过对滤波点的选择改为对滤波行或列的选择来调整压缩图像的质量。在横向滤波时根据质量因子,均匀地选择该滤波的列;在纵向滤波时,则尽量均匀地选择该滤波的行。图10显示了当q=25%时,纵向与横向滤波器选择的被滤波的行数与列数。进行图像质量调整时算法过程可见图11的流程。In order to simplify the selection of the filtered points in practical applications, the present invention provides a simple method to select the filtered points. Adjust the quality of the compressed image by changing the selection of the filter point to the selection of the filter row or column. During horizontal filtering, select the filtered columns evenly according to the quality factor; during vertical filtering, select the filtered rows as uniformly as possible. Figure 10 shows the number of filtered rows and columns selected by the vertical and horizontal filters when q=25%. The algorithm process when performing image quality adjustment can be seen in the flow chart in Figure 11.

为了能够保证感兴趣区(ROI)图像数据的质量,算法提供了能够对ROI进行无损压缩的处理能力。算法根据滤波器的输入ROI参数中包含的ROI位置和形状等信息对ROI内的点不进行滤波来实现对ROI的无损压缩。如图12给出了对一个2×2虚框所示ROI进行无损压缩的例子,其中G44,R45,B54和G55四个点将不被滤波。In order to ensure the quality of ROI image data, the algorithm provides the ability to compress ROI losslessly. According to the ROI position and shape information contained in the input ROI parameters of the filter, the algorithm does not filter the points in the ROI to achieve lossless compression of the ROI. Figure 12 shows an example of lossless compression for a ROI shown in a 2×2 virtual frame, where the four points G44, R45, B54 and G55 will not be filtered.

图像压缩电路的大规模集成电路(VLSI)结构见图13。从图像传感器输出的Bayer阵列彩色图像数据以及各种同步信号首先将通过一个低通滤波器对G、B和R分量分别进行低通平滑滤波,然后存入SRAM中,直到所有像素点滤波完毕,再由JPEG-LS模块把滤波后的数据从SRAM中读出进行无损压缩,压缩后的数据将再次存回SRAM,以提供无线收发射装置能以不同码率发射到胶囊外部。JPEG-LS的硬件实现部分主要包括如下几部分:The VLSI structure of the image compression circuit is shown in Figure 13. The Bayer array color image data output from the image sensor and various synchronous signals will firstly be low-pass smoothed by a low-pass filter on the G, B and R components, and then stored in the SRAM until all pixels are filtered. Then the JPEG-LS module reads the filtered data from the SRAM for lossless compression, and the compressed data will be stored back in the SRAM again, so that the wireless transmitting and receiving device can transmit to the outside of the capsule at different code rates. The hardware implementation of JPEG-LS mainly includes the following parts:

a)JPEG-LS的控制单元a) Control unit for JPEG-LS

主要实现对输入的Bayer图像数据的滤波和数据存储的控制,以及数据的压缩,并对上下文的决策单元的输出结果判断当前压缩点应该进入的编码模式,它还控制着整个JPEG-LS压缩模块的时钟管理。It mainly implements the filtering and data storage control of the input Bayer image data, as well as data compression, and judges the encoding mode that the current compression point should enter based on the output of the context decision-making unit. It also controls the entire JPEG-LS compression module. clock management.

b)上下文决策单元b) Context Decision Unit

该模块是根据当前被压缩点的上下文内容来进行本地梯度的计算和量化,以及对量化后梯度的融合与压缩模式的选择,决策的结果将送回控制单元,所述本地梯度,指待压缩像素点周围四点形成的三个梯度值(即两像素点间差值),本地梯度包含三个梯度分量,分别对应待压缩像素点右上与正上、正上与左上的两个水平梯度,及左上与正左的一个垂直梯度。。This module calculates and quantizes the local gradient according to the context content of the current compressed point, and selects the fusion of the quantized gradient and the compression mode. The result of the decision will be sent back to the control unit. The local gradient refers to the The three gradient values formed by the four points around the pixel (that is, the difference between two pixels), the local gradient contains three gradient components, corresponding to the two horizontal gradients of the upper right and upper, upper left and upper left of the pixel to be compressed, and a vertical gradient from top left to right left. .

c)误差预测c) Error prediction

该单元首先完成对被压缩点的中值边缘检测,也即对被压缩点值的固定预测,并对固定预测值进行自适应校正,然后计算预测值的误差,以及对误差值的归类与映射。This unit first completes the median edge detection of the compressed point, that is, the fixed prediction of the compressed point value, and performs adaptive correction on the fixed predicted value, then calculates the error of the predicted value, and classifies and compares the error value. map.

d)参数A、B、C和N的计算单元d) Calculation unit for parameters A, B, C and N

在误差预测和计算中,需要用到四组参数A、B、C和N,所述参数A指当前上下文条件下地累积绝对误差值,C是指平均误差值,N是指当前上下文出现的总次数,B参数是为了简化计算而引入的中间量,这四组参数A、B、C、N是供图像根据自身内容进行自适应调整用的,用于减少预测值的误差,该单元完成把从误差电路输入的误差预测值和从参数A、B、C、N缓存区单元读入的相应值进行运算,把运算所得到的结果送回参数A、B、C、N缓存区单元存储这四组预测参数被存储在各自参数的缓存区中和误差预测单元,所需内存大小=368×16(参数A)+368×6(参数B)+368×8(参数C)+368×6(参数N)=13248比特。In error prediction and calculation, four sets of parameters A, B, C, and N are needed. The parameter A refers to the cumulative absolute error value under the current context, C refers to the average error value, and N refers to the total error value in the current context. The number of times, the B parameter is an intermediate quantity introduced to simplify the calculation. These four groups of parameters A, B, C, and N are used for adaptive adjustment of the image according to its own content, and are used to reduce the error of the predicted value. This unit completes the The error prediction value input from the error circuit and the corresponding value read from the parameter A, B, C, N buffer area units are operated, and the results obtained by the operation are sent back to the parameter A, B, C, N buffer area units to store them. Four groups of prediction parameters are stored in the buffer area of the respective parameters and the error prediction unit, the required memory size=368×16 (parameter A)+368×6 (parameter B)+368×8 (parameter C)+368×6 (parameter N) = 13248 bits.

e)Golomb编码e) Golomb coding

JPEG-LS的正常编码模式下,对预测误差值进行限定码字长度的Golomb编码。In the normal coding mode of JPEG-LS, Golomb coding with a limited codeword length is performed on the prediction error value.

f)游程扫描和游程编码f) Run-length scanning and run-length encoding

对进入游程编码模式的压缩点进行游程扫描,并对扫描的游程长度进行Golomb编码。因此图像压缩部分总的内存开销是322×288×8+13248=755136比特。Perform a run-length scan on the compression point that enters the run-length encoding mode, and perform Golomb encoding on the scanned run length. Therefore, the total memory overhead of the image compression part is 322×288×8+13248=755136 bits.

其中核心的滤波器部分的硬件结构见图14所示,实现非常的简单。输入的同步信号主要包括:行/场同步信号,以及每个像素点输出的同步时钟信号等。行场同步信号与同步时钟信号主要用来计算当前输出图像数据所在的行和列,提供滤波控制单元来决策当前的像素点是否要被低通器滤波,并通过数据选择器B的选择,来实现对ROI内的图像数据实现无损压缩。那些已被滤波和ROI中未滤波的数据都将存入SRAM中。滤波过程只需要一个8比特位宽的加法器,加法器的输入选择是通过数据选择器A来实现,即实现选择对G、B和R三路图像分量分别进行滤波。该滤波器的硬件开销非常低,对于每个需滤波的像素点只需要进行两次8比特位宽的加法操作和一次SRAM的写操作,每个彩色分量只需要两个寄存器来存储相邻点的像素点值。The hardware structure of the core filter part is shown in Figure 14, and the implementation is very simple. The input synchronous signal mainly includes: line/field synchronous signal, and the synchronous clock signal output by each pixel, etc. The line and field synchronous signal and the synchronous clock signal are mainly used to calculate the row and column where the current output image data is located, and provide a filter control unit to decide whether the current pixel is to be filtered by the low-pass filter, and through the selection of the data selector B, to Realize the lossless compression of the image data in the ROI. Both the filtered and unfiltered data in the ROI will be stored in SRAM. The filtering process only needs an adder with a width of 8 bits, and the input selection of the adder is realized through the data selector A, that is, the three-way image components of G, B and R are selected to be filtered respectively. The hardware overhead of the filter is very low. For each pixel to be filtered, only two 8-bit wide addition operations and one SRAM write operation are required. Each color component only needs two registers to store adjacent points. pixel value.

Claims (2)

1.无线内窥镜系统的准无损图像压缩和解压缩方法,其特征在于该方法是一种用于无线内窥镜系统的基于先压缩后彩色插值的图像压缩、解压缩方法,所述方法由压缩方法及解压缩方法依次组成,其中:1. The quasi-lossless image compression and decompression method of wireless endoscope system, it is characterized in that the method is a kind of image compression and decompression method based on color interpolation after first compression for wireless endoscope system, described method consists of The compression method and the decompression method are composed in sequence, among which: 无线内窥镜系统的准无损图像压缩方法是对图像传感器输出的有很多高频分量的Bayer彩色图像阵列数据用低通滤波器对该数字图像数据的三个分量R、B和G分别进行低通滤波,然后再对滤波后所述的三个图像分量数据分别用无损压缩编码进行压缩的一种方法,其中所述Bayer彩色图像阵列中,图像G分量数据呈菱形,数据量占整个Bayer图像数据量的1/2,R和B分量呈矩形,各占整个Bayer图像数据量的1/4,所述无损压缩编码是指JPEG-LS压缩编码;所述压缩方法依次含有以下步骤:The quasi-lossless image compression method of the wireless endoscope system is to use a low-pass filter to separately reduce the three components R, B and G of the digital image data to the Bayer color image array data with many high-frequency components output by the image sensor. Pass filtering, and then a method of compressing the three image component data after filtering with lossless compression coding, wherein in the Bayer color image array, the image G component data is diamond-shaped, and the data volume accounts for the entire Bayer image. 1/2 of the amount of data, the R and B components are rectangular, each accounting for 1/4 of the entire Bayer image data amount, the lossless compression encoding refers to JPEG-LS compression encoding; the compression method contains the following steps in turn: 步骤11:向无线内窥镜胶囊内的JPEG-LS压缩编码控制单元设定以下低通滤波用的输入参数:Step 11: Set the following input parameters for low-pass filtering to the JPEG-LS compression coding control unit in the wireless endoscope capsule: 质量控制因子,即被滤波的像素点占整个图像像素点百分比,用q表示;在所述无线内窥镜胶囊内的低通滤波器中,横向滤波时均匀地选择应该滤波的列;纵向滤波时,均匀地选择应滤波的行;The quality control factor, that is, the filtered pixel points account for the percentage of the entire image pixel point, expressed by q; in the low-pass filter in the wireless endoscope capsule, the columns that should be filtered are evenly selected during horizontal filtering; vertical filtering When , evenly select the rows that should be filtered; 感兴趣区,用ROI表示,该区内包含了不进行滤波以供直接进行无损压缩像素点的位置和形状,该ROI表示进行无损压缩的处理能力;The region of interest is represented by ROI, which contains the position and shape of the pixels for direct lossless compression without filtering, and the ROI represents the processing capability of lossless compression; 步骤12:步骤11中的JPEG-LS压缩编码控制单元在收到q及ROI后,把该数据送往位于所达无线内窥镜胶囊内低通滤波器中的低通滤波控制器并存储;Step 12: After receiving q and ROI, the JPEG-LS compression encoding control unit in step 11 sends the data to the low-pass filter controller located in the low-pass filter in the wireless endoscope capsule and stores it; 步骤13:所述无线内窥镜胶囊内最前端的数字图像传感器采集Bayer阵列彩色数据,并在所述JPEG-LS压缩编码控制单元所发出的同步信号控制下把该Bayer阵列彩色数据送往所述低通滤波器中;Step 13: The foremost digital image sensor in the wireless endoscope capsule collects Bayer array color data, and sends the Bayer array color data to the In the low-pass filter described above; 步骤14:所述低通滤波器内的低通滤波控制单元按照设定的ROI把不需要滤波的数据送往所述低通滤波器中内置的缓存SRAM;对于需要进行滤波的数据,首先对G分量进行菱形到矩形的变换操作,即把所述Bayer格式的彩色图像数据中的菱形G分量的空点去掉,然后把剩下的数据直接组合成一个矩形,所以用同一组滤波器,按照以下步骤对G、B、R分量分别用G分量低通滤波器和B、R分量滤波器滤波后,存入所述相应低通滤波器的内置缓存SRAM中:Step 14: the low-pass filter control unit in the low-pass filter sends the data that does not need to be filtered to the built-in cache SRAM in the low-pass filter according to the ROI set; The G component performs a rhombus-to-rectangle conversion operation, that is, the empty points of the rhombus G component in the color image data in the Bayer format are removed, and then the remaining data are directly combined into a rectangle, so the same set of filters is used according to After the following steps use the G component low-pass filter and the B, R component filter to filter the G, B and R components respectively, store them in the built-in cache SRAM of the corresponding low-pass filter: 第I步:横向滤波,以消弱原始图像中水平方向的高频成分,所述横向滤波按列由左至右依次顺序进行,
Figure A2005101262550003C1
表示向下取整操作,即
Figure A2005101262550003C2
Step 1: horizontal filtering, to weaken the high-frequency components in the horizontal direction in the original image, the horizontal filtering is performed sequentially from left to right in columns,
Figure A2005101262550003C1
Indicates the rounding down operation, that is,
Figure A2005101262550003C2
滤波后第1列图像数据=原第1列图像数据,The image data of the first column after filtering = the original image data of the first column, 第II步:对所述第I步得到的新数据进行纵向滤波,以平滑纵向的高频成分,所述纵向滤波按行有上至下依下述顺序进行, 表示向上取整,即
Figure A2005101262550003C7
Step II: perform longitudinal filtering on the new data obtained in the first step to smooth the vertical high-frequency components, and the longitudinal filtering is performed in the following order from top to bottom according to the row, Indicates rounding up, that is,
Figure A2005101262550003C7
滤波后第1行图像数据=原第1行列图像数据,Image data of the first row after filtering = original image data of the first row and column, 步骤15:所述JPEG-LS压缩编码控制单元把所述低通滤波器内置的SRAM中所存储的滤波后的图像数据送往位于所述无线内窥镜胶囊内的SRAM中待全部图像数据滤波后,把所述于滤波后的图像数据送往一个内置于所述无线内窥镜胶囊中的JPEG-LS编码器中;Step 15: The JPEG-LS compression encoding control unit sends the filtered image data stored in the SRAM built in the low-pass filter to the SRAM located in the wireless endoscope capsule to be filtered for all image data Finally, the filtered image data is sent to a JPEG-LS encoder built in the wireless endoscope capsule; 步骤16:所述JPEG-LS编码器在JPEG-LS压缩编码控制单元的控制下对所收到的全部滤波后的图像数据按JPEG-LS无损压缩编码进行无损压缩。Step 16: The JPEG-LS encoder performs lossless compression on all received filtered image data according to JPEG-LS lossless compression encoding under the control of the JPEG-LS compression encoding control unit. 步骤17:待步骤16所述的压缩操作完成后,所述JPEG-LS编码器把压缩后的图像数据存储到所述SRAM中并送至信道编码单元,进行编码后输出到位于所述无线内窥镜胶囊内的无线收发器,以无线方式发送到体外;Step 17: After the compression operation described in step 16 is completed, the JPEG-LS encoder stores the compressed image data in the SRAM and sends it to the channel encoding unit, and outputs it to the channel located in the wireless channel after encoding. The wireless transceiver in the speculum capsule wirelessly transmits to the outside of the body; 无线内窥镜系统的无损和准无损图像解压缩方法且在体外的JPEG-LS无损解码的控制单元控制下按以下步骤进行的:The lossless and quasi-lossless image decompression method of the wireless endoscope system is carried out according to the following steps under the control of the JPEG-LS lossless decoding control unit outside the body: 步骤21:体外无线收发装置接收所述无线内窥镜胶囊中的相应装置发来的依次经过滤波、压缩数据后,所述数据送往一个JPEG-LS解码器进行解码;Step 21: After the in vitro wireless transceiver device receives the filtered and compressed data from the corresponding device in the wireless endoscope capsule, the data is sent to a JPEG-LS decoder for decoding; 步骤22:所述JPEG-LS解码器对步骤21中的压缩数据解码后,分别把G分量以及B、R分量送往G分量重构滤波器和B、R分量重构滤波器进行重构滤波;Step 22: After the JPEG-LS decoder decodes the compressed data in step 21, send the G component and the B and R components to the G component reconstruction filter and the B and R component reconstruction filter respectively for reconstruction filtering ; 步骤23:步骤22中所述重构滤波器依次按以下步骤对所述G分量和B、R分量分别进行重构滤波:Step 23: The reconstruction filter described in step 22 performs reconstruction filtering on the G component and the B and R components respectively according to the following steps: 第I步:所述重构滤波器把设定的ROI区域内不需要重构滤波的数据送往该重构滤波器中内置的缓存SRAM中;对于需要重构滤波的数据按照设定的q值依次按以下所述纵向重构滤波和横向重构滤波进行;Step 1: the reconstruction filter sends data that does not need reconstruction filtering in the set ROI region to the built-in cache SRAM in the reconstruction filter; for data that needs reconstruction filtering, according to the set q The value is followed by the following vertical reconstruction filtering and horizontal reconstruction filtering; 第II步:纵向重构滤波:按以下公式顺次逐行由下至上进行,已恢复纵向原始数据;Step II: vertical reconstruction filtering: carry out sequentially from bottom to top according to the following formula, and restore the vertical original data; 重构后第m行图像数据值=2*原第m行图像数据值-原第m-1行图像数据值,Image data value of line m after reconstruction = 2* original image data value of line m-original image data value of line m-1, 重构后第m-1行图像数据值=2*原第m-1行图像数据值-原第m-2行图像数据值,Image data value of line m-1 after reconstruction=2*original image data value of line m-1-original image data value of line m-2,                              …... 重构后第2行图像数据值=2*原第2行图像数据值-原第1行图像数据值,Image data value of the second row after reconstruction=2*original image data value of the second row-original image data value of the first row, 重构后第1行图像数据值=原第1行图像数据值,Image data value of the first line after reconstruction = original image data value of the first line, 第III步:横向重构滤波:对第II步得到得新数据按以下公式顺次逐列从右至左进行,以完成水平方向数据的恢复;The third step: horizontal reconstruction filtering: the new data obtained in the second step is carried out from right to left in sequence according to the following formula, to complete the recovery of the horizontal direction data; 重构后第m列图像数据值=2*原第m列图像数据值-原第m-1列图像数据值,Image data value of column m after reconstruction = 2* original image data value of column m-original image data value of column m-1, 重构后第m-1列图像数据值=2*原第m-1列图像数据值-原第m-2列图像数据值,Image data value of the m-1th column after reconstruction=2*original image data value of the m-1th column-original image data value of the m-2th column,                           …... 重构后第2列图像数据值=2*原第2列图像数据值-原第1列图像数据值,Image data value of the second column after reconstruction = 2* original image data value of the second column - original image data value of the first column, 重构后第1列图像数据值=原第1列图像数据值;Image data value of column 1 after reconstruction = original image data value of column 1; 第IV步:把重构滤波后的图像数据送往所述内置的SRAM中;Step IV: send the image data after reconstruction filtering to the built-in SRAM; 步骤24:所述重构滤波器把经过重构滤波的G分量数据送往菱形到矩形变换器中进行变换;Step 24: the reconstruction filter sends the G component data after reconstruction filtering to a rhombus-to-rectangular converter for transformation; 步骤25:把步骤23得到的重构滤波后的B、R分量数据以及步骤24得到的重构滤波后又经过变换的G分量数据送往一个加法器相加后得到已恢复的原始Bayer彩色图像数据;Step 25: Send the reconstructed and filtered B and R component data obtained in step 23 and the transformed G component data obtained in step 24 to an adder for addition to obtain the restored original Bayer color image data; 步骤26:把步骤25得到的数据送往一个彩色插值处理器按拉普拉斯方法插值后得到全彩色图像数据。Step 26: send the data obtained in step 25 to a color interpolation processor to interpolate according to the Laplace method to obtain full-color image data.
2.根据权利要求1所述的无线内窥镜系统无损和准无损图像压缩、接压缩方法,其特征在于:所述的无损压缩编码可以是JPEG-LS,JPEG2000无损压缩部分以及FELICS算法中的任何一种。2. The wireless endoscope system lossless and quasi-lossless image compression method according to claim 1, characterized in that: the lossless compression coding can be JPEG-LS, JPEG2000 lossless compression part and FELICS algorithm any type.
CNB2005101262553A 2005-12-02 2005-12-02 Quasi-lossless image compression and decompression method for wireless endoscope system Active CN100394883C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101262553A CN100394883C (en) 2005-12-02 2005-12-02 Quasi-lossless image compression and decompression method for wireless endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101262553A CN100394883C (en) 2005-12-02 2005-12-02 Quasi-lossless image compression and decompression method for wireless endoscope system

Publications (2)

Publication Number Publication Date
CN1799492A true CN1799492A (en) 2006-07-12
CN100394883C CN100394883C (en) 2008-06-18

Family

ID=36809864

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101262553A Active CN100394883C (en) 2005-12-02 2005-12-02 Quasi-lossless image compression and decompression method for wireless endoscope system

Country Status (1)

Country Link
CN (1) CN100394883C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457722A (en) * 2010-10-26 2012-05-16 珠海全志科技股份有限公司 Processing method and device for Bayer image
CN101902650B (en) * 2009-05-27 2012-06-27 中国科学院微电子研究所 Lossless compression method suitable for Bayer image format
CN105163125A (en) * 2015-06-19 2015-12-16 美国掌赢信息科技有限公司 Real-time video coding method and electronic equipment
CN106955084A (en) * 2017-02-24 2017-07-18 重庆金山医疗器械有限公司 A kind of radio capsule medical system
CN108495134A (en) * 2018-03-26 2018-09-04 西安电子科技大学 Bayer image compression method based on JPEG2000 standards
TWI666922B (en) * 2018-03-21 2019-07-21 元智大學 Image dynamic compression system and method thereof
CN110049337A (en) * 2019-05-24 2019-07-23 安翰科技(武汉)股份有限公司 The compression processing method and system of capsule endoscope bayer image
CN110139039A (en) * 2019-05-24 2019-08-16 安翰科技(武汉)股份有限公司 The compression processing method and system of capsule endoscope bayer image
CN110149554A (en) * 2019-05-31 2019-08-20 Oppo广东移动通信有限公司 Video image processing method and device, electronic equipment and storage medium
CN110974138A (en) * 2019-11-20 2020-04-10 西南医科大学附属中医医院 Special wireless transmission type cochlear endoscope device for ear-nose-throat department
CN112805990A (en) * 2018-11-15 2021-05-14 深圳市欢太科技有限公司 Video processing method and device, electronic equipment and computer readable storage medium
CN119110141A (en) * 2024-08-21 2024-12-10 无锡复生智慧医疗科技有限公司 A method for high-definition display of capsule endoscope images

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971065A (en) * 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
US5418565A (en) * 1994-02-15 1995-05-23 Eastman Kodak Company CFA compatible resolution reduction in a single sensor electronic camera
US6229578B1 (en) * 1997-12-08 2001-05-08 Intel Corporation Edge-detection based noise removal algorithm
US6075889A (en) * 1998-06-12 2000-06-13 Eastman Kodak Company Computing color specification (luminance and chrominance) values for images
EP1439715A1 (en) * 2003-01-16 2004-07-21 Dialog Semiconductor GmbH Weighted gradient based colour interpolation for colour filter array
CN1199607C (en) * 2003-04-11 2005-05-04 清华大学 Bidirectional digital radio introscope system and method for operating the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902650B (en) * 2009-05-27 2012-06-27 中国科学院微电子研究所 Lossless compression method suitable for Bayer image format
CN102457722A (en) * 2010-10-26 2012-05-16 珠海全志科技股份有限公司 Processing method and device for Bayer image
CN102457722B (en) * 2010-10-26 2014-01-22 珠海全志科技股份有限公司 Processing method and device for Bayer image
CN105163125A (en) * 2015-06-19 2015-12-16 美国掌赢信息科技有限公司 Real-time video coding method and electronic equipment
CN106955084A (en) * 2017-02-24 2017-07-18 重庆金山医疗器械有限公司 A kind of radio capsule medical system
TWI666922B (en) * 2018-03-21 2019-07-21 元智大學 Image dynamic compression system and method thereof
CN108495134A (en) * 2018-03-26 2018-09-04 西安电子科技大学 Bayer image compression method based on JPEG2000 standards
CN112805990A (en) * 2018-11-15 2021-05-14 深圳市欢太科技有限公司 Video processing method and device, electronic equipment and computer readable storage medium
CN110139039A (en) * 2019-05-24 2019-08-16 安翰科技(武汉)股份有限公司 The compression processing method and system of capsule endoscope bayer image
CN110049337A (en) * 2019-05-24 2019-07-23 安翰科技(武汉)股份有限公司 The compression processing method and system of capsule endoscope bayer image
CN110049337B (en) * 2019-05-24 2021-05-25 安翰科技(武汉)股份有限公司 Compression processing method and system for capsule endoscope bayer image
CN110139039B (en) * 2019-05-24 2021-09-21 安翰科技(武汉)股份有限公司 Compression processing method and system for capsule endoscope bayer image
CN110149554A (en) * 2019-05-31 2019-08-20 Oppo广东移动通信有限公司 Video image processing method and device, electronic equipment and storage medium
CN110149554B (en) * 2019-05-31 2021-06-15 Oppo广东移动通信有限公司 Video image processing method, device, electronic device and storage medium
CN110974138A (en) * 2019-11-20 2020-04-10 西南医科大学附属中医医院 Special wireless transmission type cochlear endoscope device for ear-nose-throat department
CN110974138B (en) * 2019-11-20 2022-01-25 西南医科大学附属中医医院 Special wireless transmission type cochlear endoscope device for ear-nose-throat department
CN114366006A (en) * 2019-11-20 2022-04-19 西南医科大学附属中医医院 Image compression method and decompression method for otorhinolaryngology department and cochlear endoscope device
CN119110141A (en) * 2024-08-21 2024-12-10 无锡复生智慧医疗科技有限公司 A method for high-definition display of capsule endoscope images

Also Published As

Publication number Publication date
CN100394883C (en) 2008-06-18

Similar Documents

Publication Publication Date Title
CN1221927C (en) Image processing device and method
CN101080014A (en) Video decoding method and apparatus
CN1207897C (en) Image processing method and device, computer program and storage medium
CN101031021A (en) Image capturing apparatus, imaging circuit, and image capturing method
CN1076932C (en) Method and apparatus for coding video signal, and method and apparatus for decoding video signal
CN1535027A (en) A Method of Intra-frame Prediction for Video Coding
CN1225126C (en) Space predicting method and apparatus for video encoding
CN1347620A (en) Method and architecture for converting MPE G-2 4:2:2-profile bitstreams into main-profile bitstreams
CN1717058A (en) Image encoding method and device, and image decoding method and device
CN1674665A (en) Image compressing method and image compression apparatus
CN1799492A (en) Quasi-lossless image compression and decompression method of wireless endoscope system
CN1256849C (en) Method and device for 1/4 pixel precision interpolation
CN1428939A (en) Video coder
CN1374789A (en) Digital image compression method
CN1662068A (en) Video coding device and video processing device
CN1655620A (en) Image encoding device, image decoding device, image display device
CN1622598A (en) Image capture apparatus and image capture method in which an image is processed by a plurality of image processing devices
CN1231100A (en) Image encoder and image encoding method, image decoder and image decoding method, and image processor and image processing method
CN1610265A (en) Arithmetic decoding/encoding devices, portable terminals, moving picture photography and recording/reproducing devices
CN1235428A (en) Picture signal processing system, decoder, picture signal processing method, and decoding method
CN1787384A (en) Decoding method and encoding method
CN1197359C (en) Device and method for video signal with lowered resolution ratio of strengthened decode
CN1225919C (en) Image information encoding method and encoder, and image information decoding method decoder
CN1216495C (en) Video image sub-picture-element interpolation method and device
CN1816149A (en) Filtering-wave method of removing blocking-effect in video-frequency picture and loop filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant