CN1621990A - Gas electric hybrid type driving robot for automobile test - Google Patents
Gas electric hybrid type driving robot for automobile test Download PDFInfo
- Publication number
- CN1621990A CN1621990A CN 200410065844 CN200410065844A CN1621990A CN 1621990 A CN1621990 A CN 1621990A CN 200410065844 CN200410065844 CN 200410065844 CN 200410065844 A CN200410065844 A CN 200410065844A CN 1621990 A CN1621990 A CN 1621990A
- Authority
- CN
- China
- Prior art keywords
- mechanical leg
- clutch
- brake
- leg
- mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 88
- 230000033001 locomotion Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 21
- 238000011084 recovery Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
汽车试验用气电混合式驾驶机器人涉及一种能够实现在底盘测功机上代替人类试验人员进行汽车试验的气电混合式驾驶机器人装置,换档机械手控制箱(5)安放在试验汽车驾驶室内的驾驶员座椅上(1),油门机械腿(11)和油门踏板(13)连接,制动机械腿(10)和制动踏板(12)相连接,离合器机械腿(7)和离合器踏板(8)连接,换档机械手(9)和汽车换档变速杆连接,方向盘固定装置(3)用于在试验过程中锁住汽车方向盘(2)的转动,在油门、制动、离合器机械腿和换档机械手上安装有角度传感器,获得各个机械腿/手的位置。本驾驶机器人具有车速跟踪精度高、重复性好,对比试验数据可靠等优点,完全能够代替人类驾驶员完成汽车的各种试验。
The gas-electric hybrid driving robot for automobile testing relates to a gas-electric hybrid driving robot device capable of replacing human test personnel on a chassis dynamometer for automobile testing. The shift manipulator control box (5) is placed in the test vehicle cab On the driver's seat (1), the accelerator mechanical leg (11) is connected with the accelerator pedal (13), the brake mechanical leg (10) is connected with the brake pedal (12), and the clutch mechanical leg (7) is connected with the clutch pedal ( 8) Connection, the gearshift manipulator (9) is connected with the automobile gearshift lever, the steering wheel fixing device (3) is used to lock the rotation of the automobile steering wheel (2) during the test, and the mechanical legs of the accelerator, brake, clutch and An angle sensor is installed on the shifting manipulator to obtain the position of each mechanical leg/hand. The driving robot has the advantages of high speed tracking accuracy, good repeatability, reliable comparison test data, etc., and can completely replace human drivers to complete various tests of cars.
Description
技术领域Technical field
本发明涉及一种能够实现在底盘测功机上代替人类试验人员进行汽车试验的气电混合式驾驶机器人装置,属于汽车试验自动驾驶装置技术领域。The invention relates to a gas-electric hybrid driving robot device capable of replacing human test personnel for automobile tests on a chassis dynamometer, and belongs to the technical field of automatic driving devices for automobile tests.
背景技术 Background technique
汽车试验用驾驶机器人是在底盘测功机上的汽车试验中,代替试验人员进行汽车试验的装置。汽车的性能需要借助于大量的试验来改进设计,在室内底盘测功机(或称为转鼓试验台)上进行的汽车性能试验、可靠性试验和环境试验,汽车排出的废气,设备发出的噪声、环境温度的变化以及长时间的枯燥乏味驾驶,对驾驶员均有一定的伤害,更适合由机器人来操作。此外,汽车保有量的快速增长,使得汽车排放的尾气的污染日益严重,为了保护大气环境,世界各国都制定了日益严格的环境保护法规,严格限制汽车尾气中有害物的含量。要研究提高汽车的燃油经济性从而降低汽车尾气排放量的方法,必须进行大量的汽车试验。试验规范要求被试车辆跟踪预先设定的车速循环,并保证在±2km/h的精度范围内。在试验过程中试验人员驾驶行为的变化,往往导致排放结果不一致,从而降低了排放数据的有效性。因此,需要用机器人驾驶员来替代人类驾驶员在危险条件和恶劣环境下进行汽车试验的驾驶操作,利用驾驶机器人进行试验对于减轻人类劳动强度,降低试验环境对试验员的伤害,提高试验效率,增强试验结果的客观性和准确度,节省试验费用,进而加速汽车研发进度都有重要的意义。The driving robot for automobile test is a device that replaces the test personnel in the automobile test on the chassis dynamometer. The performance of the car needs to improve the design with the help of a large number of tests, the car performance test, reliability test and environmental test carried out on the indoor chassis dynamometer (or called the drum test bench), the exhaust gas emitted by the car, the equipment emitted Noise, changes in ambient temperature, and long-term boring driving will cause some damage to the driver, so it is more suitable for robots to operate. In addition, the rapid increase in the number of automobiles has made the pollution of automobile exhaust more and more serious. In order to protect the atmospheric environment, countries around the world have formulated increasingly strict environmental protection laws and regulations to strictly limit the content of harmful substances in automobile exhaust. To study the method of improving the fuel economy of automobiles and thereby reducing automobile exhaust emissions, a large number of automobile tests must be carried out. The test specification requires the tested vehicle to track the preset speed cycle and ensure the accuracy within ±2km/h. Changes in the driving behavior of the test personnel during the test often lead to inconsistent emission results, thereby reducing the validity of the emission data. Therefore, it is necessary to use a robot driver to replace the human driver in the driving operation of the car test under dangerous conditions and harsh environments. The use of driving robots for testing can reduce human labor intensity, reduce the damage of the test environment to the tester, and improve test efficiency. It is of great significance to enhance the objectivity and accuracy of test results, save test costs, and accelerate the progress of automobile research and development.
为此,国外世界许多公司相继研发了用于试验的汽车驾驶机器人以代替试验人员进行汽车的驾驶,主要有德国STHLE、大众,美国Froude Consine,英国Mira,日本Horiba、Autopilot、Nissan Motor等公司,这些机器人在结构上具有很大的相似,主要都由油门机械腿、制动机械腿、离合器机械腿(对于配备自动变速箱的实验车,离合器机械腿可以省去)和换档机械手组成,驱动方式主要有液压、气动和电动三种。液压驱动方式的缺点在于对油的密封性要求高,机构复杂;气动驱动方式虽然气源获取容易,机构简单,但是由于油门机械腿定位精度要求很高,如果全部采用气压驱动方式的话,执行机构和检测控制系统复杂;For this reason, many foreign companies in the world have successively developed car driving robots for experiments to replace test personnel for car driving, mainly including German STHLE, Volkswagen, American Froude Consine, British Mira, Japanese Horiba, Autopilot, Nissan Motor, etc. Company, these robots are very similar in structure, mainly composed of throttle mechanical legs, brake mechanical legs, clutch mechanical legs (for experimental vehicles equipped with automatic transmissions, clutch mechanical legs can be omitted) and shifting mechanical arms , There are mainly three driving methods: hydraulic, pneumatic and electric. The disadvantage of the hydraulic drive method is that it requires high oil tightness and complicated mechanism; although the air source is easy to obtain and the mechanism is simple in the pneumatic drive method, due to the high positioning accuracy of the throttle mechanical leg, if all the pneumatic drive methods are used, the actuator And the detection and control system is complex;
电动方式一般采用直流或者交流伺服电机驱动,需要增加减速器和涡轮蜗杆等传动机构,成本高,此外要实现离合器的快速分离和快慢接合运动,执行机构的设计十分复杂。目前国内尚没有用于汽车试验的自动驾驶机器人装置,国外的技术则作为公司机密不对外公开。The electric method is generally driven by a DC or AC servo motor, which requires additional transmission mechanisms such as a reducer and a worm gear, which is costly. In addition, the design of the actuator is very complicated to realize the fast separation and fast and slow engagement of the clutch. At present, there is no self-driving robot device for automobile testing in China, and foreign technologies are kept as company secrets and are not disclosed to the public.
发明内容Contents of the invention
技术问题:本发明的目的是提供一种能够实现在底盘测功机上代替人类试验人员进行汽车试验的气电混合式驾驶机器人装置,其能够在不对试验车辆进行改造的基础上,安装在试验车的驾驶室内,适用于不同类型,不同档位分布,不同踏板行程的车辆,并能够根据行驶循环工况协调控制油门机械腿、制动机械腿、离合器机械腿和换档机械手,实现汽车的起动、换档、加速、稳速、减速和怠速等工况,从而跟踪设定的车速。Technical problem: The purpose of the present invention is to provide a gas-electric hybrid driving robot device that can replace human testers on the chassis dynamometer for vehicle testing. It can be installed on the test vehicle without modifying the test vehicle. It is suitable for different types of vehicles with different gear distributions and different pedal strokes, and can coordinately control the throttle mechanical legs, brake mechanical legs, clutch mechanical legs and shifting mechanical arms according to the driving cycle conditions to realize the starting of the car. , gear shifting, acceleration, steady speed, deceleration and idling and other working conditions, so as to track the set vehicle speed.
技术方案:本发明解决其技术问题所采用的技术方案是:Technical scheme: the technical scheme adopted by the present invention to solve its technical problems is:
该驾驶机器人由油门机械腿、制动机械腿、离合器机械腿、换档机械手、方向盘固定装置、驾驶机器人控制计算机、换挡机械手控制箱,机械腿控制箱、数据采集与处理模块和运动控制驱动部分组成;机械腿控制箱有三个,左边的机械腿控制箱与离合器机械腿相连,中间的机械腿控制箱与制动机械腿相连,右边的机械腿控制箱与油门机械腿相连;换挡机械手控制箱与换档机械手相连;方向盘固定装置的一端接汽车方向盘,另一端固定在基座把手上,驾驶机器人控制计算机根据设定的指令协调控制油门、制动、离合和换档,完成循环行驶工况的速度跟踪。驾驶机器人的换挡机械手控制箱安放在试验汽车驾驶室内的驾驶员座椅上,油门机械腿和油门踏板连接,制动机械腿和制动踏板相连接,离合器机械腿和离合器踏板连接,换档机械手和汽车换档变速杆连接。方向盘固定装置用于在试验过程中锁住汽车方向盘的转动。底盘测功机试验台为汽车在室内试验提供模拟环境,保证在试验运行过程中底盘测功机对试验车辆的阻力加载特性和车辆在道路上行驶时的受力情况一致。在油门、制动、离合器机械腿和换档机械手上安装有角度传感器,获得各个机械腿/手的位置。The driving robot is driven by accelerator mechanical legs, brake mechanical legs, clutch mechanical legs, shifting manipulator, steering wheel fixing device, driving robot control computer, shifting manipulator control box, mechanical leg control box, data acquisition and processing module and motion control There are three mechanical leg control boxes, the left mechanical leg control box is connected with the clutch mechanical leg, the middle mechanical leg control box is connected with the brake mechanical leg, and the right mechanical leg control box is connected with the throttle mechanical leg; the shifting manipulator The control box is connected with the shift manipulator; one end of the steering wheel fixing device is connected to the steering wheel of the car, and the other end is fixed on the base handle. The driving robot control computer coordinates and controls the accelerator, brake, clutch and gear shift according to the set instructions to complete the cycle driving. Velocity tracking of the load case. The shift manipulator control box of the driving robot is placed on the driver's seat in the cab of the test car, the accelerator mechanical leg is connected to the accelerator pedal, the brake mechanical leg is connected to the brake pedal, the clutch mechanical leg is connected to the clutch pedal, and the gear is changed. Mechanical hand and car gear shift lever connection. The steering wheel fixing device is used to lock the rotation of the steering wheel of the car during the test. The chassis dynamometer test bench provides a simulated environment for the indoor test of the car, ensuring that the resistance loading characteristics of the chassis dynamometer to the test vehicle during the test run are consistent with the force of the vehicle when driving on the road. Angle sensors are installed on the throttle, brake, clutch mechanical legs and shifting mechanical arms to obtain the position of each mechanical leg/hand.
油门机械腿前部的油门踏板夹板直接套接在试验车辆的油门踏板上,步进电机控制单元的信号输出控制步进电机通过齿轮减速并传递扭矩,驱动油门机械腿二力杆控制汽车油门;油门机械腿中油门机械腿位置传感器通过齿轮啮合的方式和步进电机连接,获得油门机械腿的位置信号。The accelerator pedal splint at the front of the accelerator mechanical leg is directly socketed on the accelerator pedal of the test vehicle, the signal output of the stepping motor control unit controls the stepping motor to decelerate and transmit torque through gears, and drives the two levers of the accelerator mechanical leg to control the vehicle accelerator; The position sensor of the throttle mechanical leg in the throttle mechanical leg is connected with the stepper motor through gear meshing to obtain the position signal of the throttle mechanical leg.
制动机械腿利用制动踏板夹板与制动踏板连接,制动机械腿气缸与制动腿推杆铰接,驱动制动机械腿二力杆运动,由制动器气动控制单元控制制动机械腿气缸的运动力量;制动机械腿中制动机械腿位置传感器通过和制动腿推杆铰接的制动腿拉杆带动,获得制动机械腿的位置。The brake mechanical leg is connected with the brake pedal by the brake pedal splint, the brake mechanical leg cylinder is hinged with the brake leg push rod, drives the movement of the brake mechanical leg two-force rod, and the brake mechanical leg cylinder is controlled by the brake pneumatic control unit Motion force; the brake mechanical leg position sensor in the brake mechanical leg is driven by the brake leg pull rod hinged with the brake leg push rod to obtain the position of the brake mechanical leg.
离合器机械腿利用离合器踏板夹板与离合踏板连接,离合器机械腿气缸与离合器推杆铰接,驱动离合器机械腿二力杆运动,由离合器气动控制单元控制离合器机械腿气缸的运动速度;离合器机械腿中离合器机械腿位置传感器通过和离合器推杆铰接的离合器拉杆带动,获得离合器机械腿的位置。The clutch mechanical leg is connected with the clutch pedal by the clutch pedal splint, and the clutch mechanical leg cylinder is hinged with the clutch push rod to drive the movement of the clutch mechanical leg two-force rod, and the clutch pneumatic control unit controls the movement speed of the clutch mechanical leg cylinder; the clutch in the clutch mechanical leg The mechanical leg position sensor is driven by the clutch pull rod hinged with the clutch push rod to obtain the position of the clutch mechanical leg.
换档机械手由挂档气缸、选档气缸、选档位置传感器、挂档位置传感器、换档手柄套、七连杆换档机械手组成;挂档气缸、选档气缸与七连杆换档机械手铰接,换档手柄套与试验车变速杆套接;换档机械手在七连杆换档机械手的两个固定端都接有通过齿轮啮合的选档位置传感器和挂档位置传感器,用于获得选档气缸和挂档气缸的运动位置。The shifting manipulator is composed of gear shifting cylinder, gear selecting cylinder, gear selecting position sensor, gear shifting position sensor, shifting handle cover, seven-link shifting manipulator; gear shifting cylinder, gear selecting cylinder and seven-link shifting manipulator are hinged , the gear shift handle sleeve is socketed with the gear lever of the test vehicle; the gear shift manipulator is connected with a gear selection position sensor and a gear shift position sensor through gear meshing at both fixed ends of the seven-link gear shift manipulator to obtain gear selection Movement position of cylinder and shift cylinder.
油门机械腿采用步进电机驱动的方式,实现油门的高精度定位控制;制动机械腿采用制动力可调气路控制,通过调节制动力大小以实现对制动减速度的控制;离合器机械腿采用带锁气缸,并采用回收的运动速度可调气路,实现离合器机械腿回收速度的调节,满足起动和换挡过程中的离合器动作的快慢要求;换档机械手采用七连杆双自由度闭链换档机械手,在不需要对汽车换档机构进行改造的前提下,实现选档和挂摘档两个方向运动的机械解耦,适用于不同换档行程、不同档位分布的手动换档变速箱;此外,为了防止试验过程中驱动轮的跑偏,方向盘固定装置锁住汽车方向盘的转动。The throttle mechanical leg is driven by a stepping motor to achieve high-precision positioning control of the throttle; the brake mechanical leg is controlled by an adjustable braking force air circuit, and the braking deceleration can be controlled by adjusting the braking force; the clutch mechanical leg The cylinder with lock is adopted, and the recovery speed adjustable air circuit is adopted to realize the adjustment of the recovery speed of the clutch mechanical leg, which meets the speed requirements of the clutch action during the starting and shifting process; the shifting manipulator adopts a seven-link double-degree-of-freedom closed The chain shift manipulator realizes the mechanical decoupling of the movement in the two directions of gear selection and gear shifting without the need to modify the car gear shifting mechanism. It is suitable for manual gear shifting with different shift strokes and different gear distributions. gearbox; in addition, in order to prevent the deviation of the driving wheels during the test, the steering wheel fixing device locks the rotation of the steering wheel of the car.
有益效果:Beneficial effect:
1.驾驶机器人的换挡机械手控制箱安装在驾驶室的驾驶员座位上,不需要对试验车辆进行改造,实现驾驶机器人的无损安装。1. The shift manipulator control box of the driving robot is installed on the driver's seat of the cab, and there is no need to modify the test vehicle to realize the non-destructive installation of the driving robot.
2.油门机械腿采用步进电机驱动控制的方式,能够满足油门的高精度定位要求,运动控制方便。2. The mechanical leg of the throttle is driven and controlled by a stepping motor, which can meet the high-precision positioning requirements of the throttle, and the motion control is convenient.
3.制动器机械腿、离合器机械腿和换挡机械手采用气压驱动的方式,使得驾驶机器人的动作快速并具有人类驾驶员肌肉的快速性和柔顺性。3. The mechanical legs of the brake, the mechanical legs of the clutch and the shifting manipulator are driven by air pressure, so that the driving robot moves quickly and has the quickness and suppleness of the human driver's muscles.
4.方向盘固定装置锁住试验汽车方向盘的转动,防止试验过程中驱动轮的跑偏,尤其是对于前轮驱动的试验车辆。4. The steering wheel fixing device locks the rotation of the steering wheel of the test vehicle to prevent the deviation of the driving wheel during the test, especially for the test vehicle with front wheel drive.
5.换档机械手连杆长度经过最优化设计,保证在换档运动区域内选档和挂摘档运动过程轨迹的线性度,且选档、挂摘档两个方向运动互不干涉,运动线性度高,机械解耦,控制方便。5. The length of the connecting rod of the gear shifting manipulator is optimized to ensure the linearity of the trajectory of the gear selection and gear shifting movement process in the gear shifting movement area, and the two directions of gear selection, gear shifting and shifting do not interfere with each other, and the motion is linear High precision, mechanical decoupling, easy control.
6.对于不同型号的变速箱以及不同的变速箱档位分布,通过直接示教的方式获取选档和挂摘档的位置,换档机械手适用范围广,而且换档速度和换档力量直接可调,适用于各种变速箱。6. For different types of gearboxes and different distributions of gearbox gears, the position of gear selection and gear shifting can be obtained through direct teaching. The shift manipulator has a wide range of applications, and the shift speed and shift force can be directly controlled. Tuned, suitable for all kinds of gearboxes.
7.驾驶机器人通过自学习利用安装在各个机械腿上的传感器获得不同试验车辆油门、制动和离合器踏板的行程,从而适应不同结构尺寸的车辆。7. The driving robot uses the sensors installed on each mechanical leg to obtain the strokes of the accelerator, brake and clutch pedals of different test vehicles through self-learning, so as to adapt to vehicles of different structural sizes.
8.制动机械腿的制动力可调,从而能够根据设定的减加速度调节制动力,并能够适应不同试验车辆的不同制动特性。8. The braking force of the braking mechanical leg is adjustable, so that the braking force can be adjusted according to the set deceleration, and can adapt to different braking characteristics of different test vehicles.
9.离合器机械腿上安装有位置传感器,能够获取试验车辆离合器的接合区位置,保证汽车起动和换挡过程的平稳性。此外,离合器回收速度动态可调,从而能够实现换挡过程中离合器回收的“快—慢—快”驾驶动作,降低换挡过程的冲击。9. A position sensor is installed on the mechanical leg of the clutch, which can obtain the position of the joint area of the clutch of the test vehicle to ensure the stability of the car starting and shifting process. In addition, the clutch recovery speed can be dynamically adjusted, so that the "fast-slow-fast" driving action of clutch recovery during the shifting process can be realized, and the impact of the shifting process can be reduced.
附图说明Description of drawings
图1是本发明安装在汽车驾驶室内的侧视图。Fig. 1 is a side view of the present invention installed in the cab of a car.
图2是本发明安装在汽车驾驶室内的俯视图。Fig. 2 is a top view of the present invention installed in the cab of a car.
图3是本发明的计算机检测控制系统构成框图。Fig. 3 is a block diagram of the computer detection control system of the present invention.
图4是本发明的换档机械手机械结构图。Fig. 4 is a mechanical structure diagram of the shift manipulator of the present invention.
图5是油门机械腿机械结构图。Fig. 5 is a mechanical structure diagram of the throttle mechanical leg.
图6是制动机械腿机械结构图。Fig. 6 is a diagram of the mechanical structure of the braking mechanical leg.
图7是离合器机械腿机械结构图。Fig. 7 is a mechanical structure diagram of the clutch mechanical leg.
其中有:驾驶员座椅1,汽车方向盘2,方向盘固定装置3,基座把手4,换挡机械手控制箱5,离合器机械腿控制箱6,离合器机械腿7,离合器踏板8,换档机械手9,制动机械腿10,油门机械腿11,制动踏板12,油门踏板13,驾驶机器人控制计算机14,驾驶机器人信号控制输出模块15,信号调理模块16,发动机转速测量模块17,汽车车速测量模块18,控制系统气源19,机械手气动控制单元20,步进电机控制单元21,制动器气动控制单元22,离合器气动控制单元23,挂档气缸24,选档气缸25,选档位置传感器26,挂档位置传感器27,换档手柄套28,七连杆换档机械手29,油门踏板夹板30,油门机械腿二力杆31,齿轮32,油门机械腿位置传感器33,步进电机34,制动机械腿气缸35,制动机械腿位置传感器36,制动腿拉杆37,制动腿推杆38,制动机械腿二力杆39,制动踏板夹板40,离合器机械腿气缸41,离合器机械腿位置传感器42,离合器拉杆43,离合器推杆44,离合器机械腿二力杆45,离合器踏板夹板46。Among them: driver's seat 1, automobile steering wheel 2, steering wheel fixing device 3, base handle 4, shift
具体实施方式 Detailed ways
汽车驾驶机器人是一种在底盘测功机试验台上用于替代人类试验人员进行汽车试验用的气电混合式自动驾驶装置。为了实现道路试验的室内模拟,试验车必须放置在底盘测功机上用于模拟平直的道路情况,从而为汽车试验提供试验环境,并且在试验运行过程中底盘测功机对试验车辆的阻力加载特性和车辆在道路上行驶时的受力情况一致。The car driving robot is a gas-electric hybrid automatic driving device used on the chassis dynamometer test bench to replace human testers for car tests. In order to realize the indoor simulation of the road test, the test car must be placed on the chassis dynamometer to simulate the straight road conditions, thereby providing a test environment for the car test, and the chassis dynamometer is loaded with resistance to the test vehicle during the test run The characteristics are consistent with the force of the vehicle when driving on the road.
在图1、2中整个驾驶机器人由油门机械腿11、制动机械腿10、离合器机械腿7、换档机械手9和方向盘固定装置3组成,换挡机械手控制箱5安放在试验汽车驾驶室内的驾驶员座椅上1,油门机械腿11和油门踏板13连接,制动机械腿10和制动踏板12相连接,离合器机械腿7和离合器踏板8连接,换档机械手9通过换档手柄套28和汽车换档变速杆连接,方向盘固定装置3的一端和换挡机械手控制箱5的基座把手4连接,另一端套接在汽车方向盘2上,防止试验过程中锁住汽车方向盘2的转动。机械腿的控制箱安装在方向盘下方,不需要对试验车辆进行改造,从而实现驾驶机器人的无损安装。In Fig. 1, 2, whole driving robot is made up of accelerator
换档机械手9、制动机械腿10离合器机械腿7采用气压驱动的方式,工作介质是由气源19提供的洁净的压缩空气,具有速度快、可压缩和抗冲击的特性,与人肌肉的弹性和柔顺性比较吻合,保证换档过程快速有力,富有弹性以及离合器的快速分离。油门机械腿采用步进电机驱动控制的方式,能够满足油门的高精度定位要求,运动控制方便。
图4中换档机械手9由挂档气缸24,选档气缸25,选档位置传感器26,挂档位置传感器27,换档手柄套28和七连杆换档机械手29组成。挂档气缸24、选档气缸25和七连杆换档机械手29铰接,换档手柄套28和试验车变速杆套接。换档机械手9中在七连杆换档机械手29的两个固定端都接有通过齿轮啮合的选档位置传感器26和挂档位置传感器27,用于获得选档气缸25和挂档气缸24的运动位置。挂档气缸24和选档气缸25都采用一端固定的方式,另一端可以作自由的旋转运动。连杆长度经过最优化设计,保证在换档运动区域内选档和挂摘档运动过程轨迹的线性度。气缸采用带锁气缸,在两个方向都解锁的情况下,由试验人员进行示教,换到某个档位之后,利用选档位置传感器26和挂档位置传感器27记录档位位置。在换档过程中,气压传动的工作介质是空气,具有速度快、可压缩和抗冲击的特性,与人肌肉的弹性和柔顺性比较吻合,使换档过程快速有力,富有弹性。通过调节挂档气缸的供气压力和气缸排气口的开度,可实现换档力量和换档速度的调节,从而使本换档机械手能够适用于各种规格变速箱的自动换档场合。通过试验人员直接示教,七连杆换档机械手学习变速箱的选档和换档位置,机械手的换档动作直接通过挂档气缸24和选档气缸25的伸长和缩回控制实现,机械解耦,控制方便。
图5中油门机械腿11中油门踏板夹板30直接套接在试验车辆的油门踏板13上,步进电机控制单元21的信号输出控制步进电机34通过齿轮32减速并传递扭矩,驱动油门机械腿二力杆31控制汽车油门。步进电机控制单元21根据驾驶机器人信号控制输出模块15输出的脉冲,转过指令角度,精确地控制油门踏板13。油门机械腿11中油门机械腿位置传感器33通过齿轮啮合的方式和步进电机34连接,在步进电机34的旋转运动过程中获得油门机械腿11的位置。油门机械腿二力杆31的臂长可以调节,从而适应不同油门踏板尺寸的车型。In Fig. 5, the accelerator pedal splint 30 in the accelerator
图6中制动机械腿10中利用制动踏板夹板40和制动踏板12连接,制动机械腿气缸35和制动腿推杆38铰接,驱动制动机械腿二力杆39运动。制动器气动控制单元22的输出气压可以通过控制电压调节控制制动机械腿气缸35的运动力量,改变制动机械腿10的制动力大小,从而改变汽车制动过程中的减速度。制动机械腿10中制动机械腿位置传感器36通过和制动腿推杆38铰接的制动腿拉杆37带动,获得制动机械腿10的位置。制动机械腿二力杆39的臂长可以调节,从而适应不同制动踏板尺寸的车型。Utilize brake pedal splint 40 and brake pedal 12 to connect in the brake
图7中离合器机械腿7中利用离合器踏板夹板46和离合踏板8连接,离合器机械腿气缸41和离合器推杆44铰接,驱动离合器机械腿二力杆45运动。离合器气动控制单元23可调节气缸回收时的气阀开口,控制离合器机械腿气缸41的运动速度从而实现离合器机械腿回收速度的调节,满足起动和换挡过程中的离合器动作的快慢要求,降低换挡过程的冲击。离合器机械腿7中离合器机械腿位置传感器42通过和离合器推杆44铰接的离合器拉杆43带动,获得离合器机械腿7的位置。离合器机械腿二力杆45的臂长可以调节,从而适应不同离合器踏板尺寸的车型。Utilize
发动机转速测量模块17将试验车辆的发动机转速变换成模拟电压,通过信号调理模块16传入控制计算机14,汽车车速测量模块18从安装在底盘测功机的前转鼓的光电传感器得到试验车的速度并传入驾驶机器人控制计算机14。The engine speed measurement module 17 converts the engine speed of the test vehicle into an analog voltage, and transmits it to the control computer 14 through the signal conditioning module 16, and the vehicle speed measurement module 18 obtains the speed of the test vehicle from the photoelectric sensor installed on the front drum of the chassis dynamometer. Speed is also passed into the driving robot control computer 14.
驾驶机器人在试验车上安装固定好之后,驾驶机器人控制计算机14首先利用安装在各个机械腿上的传感器获得不同试验车辆油门、制动和离合器踏板的行程,为运动控制建立基准,从而适应不同结构尺寸的试验车辆。然后通过信号控制输出模块15分别控制油门机械腿11、制动机械腿10、离合器机械腿7下压和回收,并根据试验工况的要求进行换档。在汽车的试验循环工况中规定试验车辆起动、停车、加速、减速、换档、怠速等试验工况,并定义了一系列时间点上的车速,要求车速的跟踪精度±2km/h。驾驶机器人控制计算机14根据试验车的当前车速以及工况协调控制油门、制动、离合和换档,在车速跟踪的升速、减速和稳速阶段根据设定车速和当前车速的偏差控制油门和制动器的回收和下压,保证车速的控制精度在要求范围内,提高试验的准确度和试验数据的有效性。After the driving robot is installed and fixed on the test vehicle, the driving robot control computer 14 first uses the sensors installed on each mechanical leg to obtain the strokes of the accelerator, brake and clutch pedals of different test vehicles, and establishes a benchmark for motion control, thereby adapting to different structures. Dimensions of the test vehicle. Then through the signal control output module 15, respectively control the accelerator
由于在试验过程中,在汽车启动加速度过大或者试验汽车制动过程中驱动轮制动系统制动力分配不均时,会出现试验车跑偏的情况,方向盘固定装置(3)可以在试验过程中锁住汽车方向盘(2),保证试验的顺利进行并保护被试汽车不受损伤。Because during the test, when the starting acceleration of the car is too large or the braking force of the driving wheel brake system is unevenly distributed during the braking process of the test car, the test car will deviate, the steering wheel fixing device (3) can be used during the test. Lock the steering wheel (2) of the car to ensure the smooth progress of the test and protect the car under test from damage.
驾驶机器人采用模块化设计方法,其中离合器机械腿(7)可以安装或者卸除,从而适应自动换档(AT)车和手动换档车(MT)对离合器的不同控制要求,提高驾驶机器人的车型适应能力。The driving robot adopts a modular design method, in which the clutch mechanical leg (7) can be installed or removed, so as to adapt to the different control requirements for the clutch of the automatic shift (AT) car and the manual shift car (MT), and improve the model of the driving robot. adaptability.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410065844 CN1621990A (en) | 2004-12-22 | 2004-12-22 | Gas electric hybrid type driving robot for automobile test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410065844 CN1621990A (en) | 2004-12-22 | 2004-12-22 | Gas electric hybrid type driving robot for automobile test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1621990A true CN1621990A (en) | 2005-06-01 |
Family
ID=34764814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410065844 Pending CN1621990A (en) | 2004-12-22 | 2004-12-22 | Gas electric hybrid type driving robot for automobile test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1621990A (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100523770C (en) * | 2006-01-12 | 2009-08-05 | 中国兵器装备集团摩托车检测技术研究所 | Automatic simulating unmanned motorcycle driving system |
CN101650263B (en) * | 2008-08-13 | 2011-01-19 | 上海电气自动化设计研究所有限公司 | System and method for controlling movement of bus industrial robot |
CN101650264B (en) * | 2008-08-13 | 2011-01-19 | 上海电气自动化设计研究所有限公司 | Simulation testing system for testing fatigue of automobile parts and control method thereof |
CN102346473A (en) * | 2011-09-05 | 2012-02-08 | 北京航空航天大学 | Remote vehicle driving control device |
CN102384850A (en) * | 2011-09-07 | 2012-03-21 | 中国汽车技术研究中心 | Gear shift manipulator used in automobile test |
CN102384851A (en) * | 2011-09-07 | 2012-03-21 | 中国汽车技术研究中心 | Pulley steel wire type mechanical leg execution mechanism for automobile test driving |
CN102393308A (en) * | 2011-09-07 | 2012-03-28 | 中国汽车技术研究中心 | Driving robot used for automobile test |
CN102435442A (en) * | 2011-09-05 | 2012-05-02 | 北京航空航天大学 | Automatic drive robot used in vehicle road tests |
CN102445351A (en) * | 2011-09-07 | 2012-05-09 | 中国汽车技术研究中心 | Pulley wire-type driver robot for vehicle tests |
CN102539143A (en) * | 2011-12-13 | 2012-07-04 | 苏州工业园区高登威科技有限公司 | Operating lever fixing frame of detecting device for automobile gear shifting device |
CN102637058A (en) * | 2011-08-25 | 2012-08-15 | 上海交通大学 | Automatic drive robot |
CN102788702A (en) * | 2011-05-20 | 2012-11-21 | 上海汽车集团股份有限公司 | Road simulation test bed |
CN102963321A (en) * | 2012-12-05 | 2013-03-13 | 北京宝克测试系统有限公司 | Driving assisting method and device for vehicle |
CN103389214A (en) * | 2013-07-24 | 2013-11-13 | 厦门理工学院 | Automobile crash test method adopting driverless technology |
CN103631144A (en) * | 2013-08-19 | 2014-03-12 | 南京理工大学 | Electromagnetically-driven vehicle driving robot |
CN103782068A (en) * | 2011-11-28 | 2014-05-07 | 宝马股份公司 | Operating apparatus for transmission of motor vehicle |
CN103913314A (en) * | 2014-04-28 | 2014-07-09 | 清华大学 | Automatic driving robot of automobile |
CN105068595A (en) * | 2015-09-07 | 2015-11-18 | 南京农业大学 | Force/position hybrid control-based tractor driving robot |
CN105806629A (en) * | 2016-03-24 | 2016-07-27 | 南京理工大学 | Driving robot gear shifting manipulator driven by two-freedom-degree electromagnetic actuator |
CN105865805A (en) * | 2016-05-04 | 2016-08-17 | 南京理工大学 | Electromagnetic drive robot driver for automobile tests |
CN106441926A (en) * | 2016-08-29 | 2017-02-22 | 汽解放柳州特种汽车有限公司 | Self-discharging vehicle whole vehicle lifting reliability testing device and self-discharging vehicle whole vehicle lifting reliability testing method |
CN106482966A (en) * | 2016-12-05 | 2017-03-08 | 天津威衡自动化科技有限公司 | Electric bicycle car load detecting system |
CN106828094A (en) * | 2017-01-17 | 2017-06-13 | 中国科学院重庆绿色智能技术研究院 | A kind of unmanned vehicle autonomous driving device |
TWI588462B (en) * | 2015-11-13 | 2017-06-21 | 財團法人工業技術研究院 | Automatic driving system for manual transmission scooter |
CN106932205A (en) * | 2017-01-20 | 2017-07-07 | 南京理工大学 | It is a kind of that pedipulator is driven based on the Vehicle Driver Robot that linear electric motors drive |
CN107036828A (en) * | 2017-05-10 | 2017-08-11 | 燕山大学 | A kind of vehicle type electric gearshift testing stand |
CN109521674A (en) * | 2018-11-26 | 2019-03-26 | 东南大学 | A kind of electric vehicle drive robot controller parameter self-learning method |
CN109682607A (en) * | 2018-12-05 | 2019-04-26 | 西华大学 | One kind is with motor vehicle environmental protection periodic inspection driving assistance system and control method |
CN110082132A (en) * | 2019-06-05 | 2019-08-02 | 吉林大学 | A kind of pedipulator for autonomous driving vehicle pedal control |
CN111899628A (en) * | 2020-07-23 | 2020-11-06 | 柳州城市职业学院 | Intelligent driving control equipment and control method thereof |
CN111947935A (en) * | 2019-05-14 | 2020-11-17 | 株式会社堀场制作所 | Automatic driving device, vehicle testing system and identification method |
CN112557054A (en) * | 2020-12-03 | 2021-03-26 | 苏州测迅智能汽车科技有限公司 | Pedal driving robot for unmanned driving test |
CN112729822A (en) * | 2021-01-27 | 2021-04-30 | 东风汽车股份有限公司 | Automobile transmission system testing device |
CN113237669A (en) * | 2021-04-08 | 2021-08-10 | 联合汽车电子有限公司 | Automatic driving control system for vehicle hub test |
CN113608463A (en) * | 2021-07-16 | 2021-11-05 | 一汽奔腾轿车有限公司 | Vehicle speed control device and method for whole vehicle test |
CN115014796A (en) * | 2022-04-25 | 2022-09-06 | 襄阳达安汽车检测中心有限公司 | Simulation device for EDR driving operation data test |
CN115452419A (en) * | 2022-11-10 | 2022-12-09 | 磐吉奥科技股份有限公司 | Automobile pedal performance testing device, system and method |
-
2004
- 2004-12-22 CN CN 200410065844 patent/CN1621990A/en active Pending
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100523770C (en) * | 2006-01-12 | 2009-08-05 | 中国兵器装备集团摩托车检测技术研究所 | Automatic simulating unmanned motorcycle driving system |
CN101650263B (en) * | 2008-08-13 | 2011-01-19 | 上海电气自动化设计研究所有限公司 | System and method for controlling movement of bus industrial robot |
CN101650264B (en) * | 2008-08-13 | 2011-01-19 | 上海电气自动化设计研究所有限公司 | Simulation testing system for testing fatigue of automobile parts and control method thereof |
CN102788702A (en) * | 2011-05-20 | 2012-11-21 | 上海汽车集团股份有限公司 | Road simulation test bed |
CN102637058A (en) * | 2011-08-25 | 2012-08-15 | 上海交通大学 | Automatic drive robot |
CN102637058B (en) * | 2011-08-25 | 2014-04-16 | 上海交通大学 | Automatic drive robot |
CN102346473A (en) * | 2011-09-05 | 2012-02-08 | 北京航空航天大学 | Remote vehicle driving control device |
CN102435442B (en) * | 2011-09-05 | 2013-11-13 | 北京航空航天大学 | Automatic drive robot used in vehicle road tests |
CN102435442A (en) * | 2011-09-05 | 2012-05-02 | 北京航空航天大学 | Automatic drive robot used in vehicle road tests |
CN102346473B (en) * | 2011-09-05 | 2012-12-19 | 北京航空航天大学 | Remote vehicle driving control device |
CN102384851A (en) * | 2011-09-07 | 2012-03-21 | 中国汽车技术研究中心 | Pulley steel wire type mechanical leg execution mechanism for automobile test driving |
CN102445351A (en) * | 2011-09-07 | 2012-05-09 | 中国汽车技术研究中心 | Pulley wire-type driver robot for vehicle tests |
CN102393308A (en) * | 2011-09-07 | 2012-03-28 | 中国汽车技术研究中心 | Driving robot used for automobile test |
CN102393308B (en) * | 2011-09-07 | 2013-12-25 | 中国汽车技术研究中心 | Driving robot used for automobile test |
CN102384850B (en) * | 2011-09-07 | 2013-12-25 | 中国汽车技术研究中心 | Gear shift manipulator used in automobile test |
CN102384850A (en) * | 2011-09-07 | 2012-03-21 | 中国汽车技术研究中心 | Gear shift manipulator used in automobile test |
CN103782068B (en) * | 2011-11-28 | 2016-08-17 | 宝马股份公司 | Operation device for vehicle transmission |
CN103782068A (en) * | 2011-11-28 | 2014-05-07 | 宝马股份公司 | Operating apparatus for transmission of motor vehicle |
CN102539143A (en) * | 2011-12-13 | 2012-07-04 | 苏州工业园区高登威科技有限公司 | Operating lever fixing frame of detecting device for automobile gear shifting device |
CN102963321A (en) * | 2012-12-05 | 2013-03-13 | 北京宝克测试系统有限公司 | Driving assisting method and device for vehicle |
CN102963321B (en) * | 2012-12-05 | 2015-02-25 | 北京宝克测试系统有限公司 | Driving assisting method and device for vehicle |
CN103389214A (en) * | 2013-07-24 | 2013-11-13 | 厦门理工学院 | Automobile crash test method adopting driverless technology |
CN103389214B (en) * | 2013-07-24 | 2016-01-20 | 厦门理工学院 | Utilize the automobile crash test method of unmanned technology |
CN103631144B (en) * | 2013-08-19 | 2016-04-20 | 南京理工大学 | Electromagnetic Drive Vehicle Driver Robot |
CN103631144A (en) * | 2013-08-19 | 2014-03-12 | 南京理工大学 | Electromagnetically-driven vehicle driving robot |
CN103913314A (en) * | 2014-04-28 | 2014-07-09 | 清华大学 | Automatic driving robot of automobile |
CN105068595A (en) * | 2015-09-07 | 2015-11-18 | 南京农业大学 | Force/position hybrid control-based tractor driving robot |
TWI588462B (en) * | 2015-11-13 | 2017-06-21 | 財團法人工業技術研究院 | Automatic driving system for manual transmission scooter |
CN105806629A (en) * | 2016-03-24 | 2016-07-27 | 南京理工大学 | Driving robot gear shifting manipulator driven by two-freedom-degree electromagnetic actuator |
CN105865805B (en) * | 2016-05-04 | 2018-11-13 | 南京理工大学 | A kind of electromagnetic drive drive robot for automobile test |
CN105865805A (en) * | 2016-05-04 | 2016-08-17 | 南京理工大学 | Electromagnetic drive robot driver for automobile tests |
CN106441926A (en) * | 2016-08-29 | 2017-02-22 | 汽解放柳州特种汽车有限公司 | Self-discharging vehicle whole vehicle lifting reliability testing device and self-discharging vehicle whole vehicle lifting reliability testing method |
CN106441926B (en) * | 2016-08-29 | 2019-06-11 | 一汽解放柳州特种汽车有限公司 | A kind of dump truck vehicle lifting reliability test and method |
CN106482966A (en) * | 2016-12-05 | 2017-03-08 | 天津威衡自动化科技有限公司 | Electric bicycle car load detecting system |
CN106828094A (en) * | 2017-01-17 | 2017-06-13 | 中国科学院重庆绿色智能技术研究院 | A kind of unmanned vehicle autonomous driving device |
CN106932205A (en) * | 2017-01-20 | 2017-07-07 | 南京理工大学 | It is a kind of that pedipulator is driven based on the Vehicle Driver Robot that linear electric motors drive |
CN107036828A (en) * | 2017-05-10 | 2017-08-11 | 燕山大学 | A kind of vehicle type electric gearshift testing stand |
CN107036828B (en) * | 2017-05-10 | 2019-08-23 | 燕山大学 | A vehicle-mounted electric shift test bench |
CN109521674A (en) * | 2018-11-26 | 2019-03-26 | 东南大学 | A kind of electric vehicle drive robot controller parameter self-learning method |
CN109682607A (en) * | 2018-12-05 | 2019-04-26 | 西华大学 | One kind is with motor vehicle environmental protection periodic inspection driving assistance system and control method |
CN111947935A (en) * | 2019-05-14 | 2020-11-17 | 株式会社堀场制作所 | Automatic driving device, vehicle testing system and identification method |
CN111947935B (en) * | 2019-05-14 | 2024-06-07 | 株式会社堀场制作所 | Automatic driving device, vehicle testing system and identification method |
CN110082132A (en) * | 2019-06-05 | 2019-08-02 | 吉林大学 | A kind of pedipulator for autonomous driving vehicle pedal control |
CN110082132B (en) * | 2019-06-05 | 2024-03-29 | 吉林大学 | Mechanical leg for pedal control of automatic driving automobile |
CN111899628A (en) * | 2020-07-23 | 2020-11-06 | 柳州城市职业学院 | Intelligent driving control equipment and control method thereof |
CN112557054A (en) * | 2020-12-03 | 2021-03-26 | 苏州测迅智能汽车科技有限公司 | Pedal driving robot for unmanned driving test |
CN112729822A (en) * | 2021-01-27 | 2021-04-30 | 东风汽车股份有限公司 | Automobile transmission system testing device |
CN113237669A (en) * | 2021-04-08 | 2021-08-10 | 联合汽车电子有限公司 | Automatic driving control system for vehicle hub test |
CN113608463A (en) * | 2021-07-16 | 2021-11-05 | 一汽奔腾轿车有限公司 | Vehicle speed control device and method for whole vehicle test |
CN115014796A (en) * | 2022-04-25 | 2022-09-06 | 襄阳达安汽车检测中心有限公司 | Simulation device for EDR driving operation data test |
CN115452419A (en) * | 2022-11-10 | 2022-12-09 | 磐吉奥科技股份有限公司 | Automobile pedal performance testing device, system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1621990A (en) | Gas electric hybrid type driving robot for automobile test | |
CN102393308B (en) | Driving robot used for automobile test | |
CN103631144B (en) | Electromagnetic Drive Vehicle Driver Robot | |
CN105865805B (en) | A kind of electromagnetic drive drive robot for automobile test | |
CN104181924B (en) | Automatic driving device | |
CN105136477B (en) | A kind of pedal assembly performance test stand | |
CN110455553B (en) | Driving robot capable of realizing intervention of driver at any time | |
CN108032305B (en) | Unmanned robot for automobile | |
CN101696908A (en) | Device for testing performance of automotive steering system | |
CN106863304B (en) | A scalable car driving robot | |
Chen et al. | Digital prototyping design of electromagnetic unmanned robot applied to automotive test | |
CN201527343U (en) | Automobile steering system performance test device | |
CN103217285A (en) | Testing device and testing method for automobile gear shifting system performance | |
CN2743097Y (en) | Seven link lever bifreedom closed chain gear shift mechanical hand | |
CN106932205A (en) | It is a kind of that pedipulator is driven based on the Vehicle Driver Robot that linear electric motors drive | |
CN205719571U (en) | A kind of Electromagnetic Drive drive robot for automobile test | |
CN105068595B (en) | A Tractor Driving Robot Based on Force/Position Hybrid Control | |
CN104897411A (en) | Test clamp of automobile electronic throttle pedal | |
CN102445351A (en) | Pulley wire-type driver robot for vehicle tests | |
CN202267606U (en) | Wire-coil car test drive robot | |
CN102384850B (en) | Gear shift manipulator used in automobile test | |
CN202255893U (en) | Driving executing mechanism for automobile testing | |
CN201281658Y (en) | Manual gearshift case test stand | |
CN201087829Y (en) | Artificial brake process simulation device for vehicle brake system component detection | |
CN1246679C (en) | Bench testing method for operating circulation and dynamic circulation of vehicle drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |