CN1587425A - Magnesium alloy smelting method using difluoromethane as protective atmosphere - Google Patents
Magnesium alloy smelting method using difluoromethane as protective atmosphere Download PDFInfo
- Publication number
- CN1587425A CN1587425A CN 200410052617 CN200410052617A CN1587425A CN 1587425 A CN1587425 A CN 1587425A CN 200410052617 CN200410052617 CN 200410052617 CN 200410052617 A CN200410052617 A CN 200410052617A CN 1587425 A CN1587425 A CN 1587425A
- Authority
- CN
- China
- Prior art keywords
- gas
- magnesium
- magnesium alloy
- difluoromethane
- protective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 40
- 238000003723 Smelting Methods 0.000 title claims abstract description 30
- 230000001681 protective effect Effects 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000011777 magnesium Substances 0.000 claims abstract description 52
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 51
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 238000005266 casting Methods 0.000 claims abstract description 6
- 230000005484 gravity Effects 0.000 claims abstract description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 235000011089 carbon dioxide Nutrition 0.000 claims 1
- 238000004925 denaturation Methods 0.000 claims 1
- 230000036425 denaturation Effects 0.000 claims 1
- 238000000280 densification Methods 0.000 claims 1
- 238000004512 die casting Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 abstract description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 21
- 230000000694 effects Effects 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 14
- 239000000155 melt Substances 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 238000002485 combustion reaction Methods 0.000 abstract description 3
- 239000003223 protective agent Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 47
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 23
- 229910018503 SF6 Inorganic materials 0.000 description 22
- 229960000909 sulfur hexafluoride Drugs 0.000 description 22
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000013019 agitation Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 238000010309 melting process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种采用二氟甲烷为保护气氛的镁合金熔炼方法,将体积含量为0.05~5%的二氟甲烷与干燥空气或/和二氧化碳在混气装置中混合后作为镁熔体的气氛保护剂,将纯镁或镁合金置于封闭坩埚中加热升温后将混合气体通入坩埚,通入的混合气体每分钟流量是封闭气体容积的0.05-10%,使气体覆盖在镁熔体表面形成一层致密的氧化保护膜,继续加热升温并在气体保护下进行精炼变质,静置后进行重力浇注或压力铸造。本发明采用的保护气体可有效防止镁合金在熔炼过程中的氧化和燃烧,具有良好的保护效果、低廉的价格和较低的温室效应。A magnesium alloy smelting method using difluoromethane as a protective atmosphere, mixing difluoromethane with a volume content of 0.05-5% with dry air or/and carbon dioxide in a gas mixing device as an atmosphere protective agent for magnesium melts, Put pure magnesium or magnesium alloy in a closed crucible and heat up, then pass the mixed gas into the crucible, the flow rate of the mixed gas per minute is 0.05-10% of the volume of the closed gas, so that the gas covers the surface of the magnesium melt to form a layer Dense oxide protective film, continue to heat up and refine and deteriorate under gas protection, then gravity pour or pressure casting after standing still. The protection gas adopted in the invention can effectively prevent the oxidation and combustion of the magnesium alloy during the smelting process, and has good protection effect, low price and low greenhouse effect.
Description
技术领域technical field
本发明涉及一种纯镁或常规镁合金熔炼过程中的高温氧化及燃烧防护技术,具体涉及采用含二氟甲烷(它的商品名称是R32)的混合气为保护气氛的纯镁或镁合金的熔炼方法,属于材料冶金技术领域。The invention relates to a high-temperature oxidation and combustion protection technology in the smelting process of pure magnesium or conventional magnesium alloys, in particular to the protection of pure magnesium or magnesium alloys using a mixed gas containing difluoromethane (its trade name is R32) as the protective atmosphere The smelting method belongs to the technical field of material metallurgy.
背景技术Background technique
由于金属镁的亲氧性,纯镁或镁合金在空气中极易氧化,由于其氧化产物—氧化镁的致密度系数小于1,这种自然生成的氧化膜不能构成有效的阻挡层来阻止内部金属的进一步氧化,在高温下纯镁或镁合金还易发生燃烧。因此,工业上一般常采用含六氟化硫的混合气为保护气氛进行镁合金熔炼及生产,这是目前最有效的镁合金熔炼保护方法之一。近年来,随着镁工业的迅速发展,纯镁或镁合金熔炼和生产时所需的六氟化硫等保护气体用量越来越大。然而,六氟化硫的全球变暖潜能值(GWP)达到23900(二氧化碳的GWP值为1),而且大气寿命长达3200年,是一种长效高温室效应气体,来自环境保护组织的禁用压力越来越大,是被国际环境保护组织列为需要减少排放的物质,在第5次联合国气候变化框架公约会议上签署的《京都议定书》要求工业界在未来10年内在尽量减少六氟化硫气体的排放,到2015年要实现六氟化硫的零排放(U.S.EPA,2003b)。因此,国际镁协(IMA)要求通过提高使用效率来减少六氟化硫的用量,并确定镁工业界在2015年前实现六氟化硫的零排放。Due to the oxophilicity of metal magnesium, pure magnesium or magnesium alloys are easily oxidized in the air. Since the density coefficient of its oxidation product, magnesium oxide, is less than 1, this naturally occurring oxide film cannot constitute an effective barrier to prevent the internal Further oxidation of the metal, pure magnesium or magnesium alloys are also prone to combustion at high temperatures. Therefore, in the industry, the mixed gas containing sulfur hexafluoride is generally used as the protective atmosphere for magnesium alloy smelting and production, which is one of the most effective protection methods for magnesium alloy smelting. In recent years, with the rapid development of the magnesium industry, the amount of protective gases such as sulfur hexafluoride required for the smelting and production of pure magnesium or magnesium alloys is increasing. However, the global warming potential (GWP) of sulfur hexafluoride reaches 23900 (the GWP value of carbon dioxide is 1), and the atmospheric life is as long as 3200 years. The pressure is increasing, and it is listed as a substance that needs to be reduced by the international environmental protection organization. The "Kyoto Protocol" signed at the 5th United Nations Framework Convention on Climate Change requires the industry to minimize hexafluoride in the next 10 years. Sulfur gas emissions, to achieve zero emissions of sulfur hexafluoride by 2015 (U.S.EPA, 2003b). Therefore, the International Magnesium Association (IMA) requires that the use of sulfur hexafluoride be reduced by improving the efficiency of use, and that the magnesium industry should achieve zero emission of sulfur hexafluoride before 2015.
为实现以上目标同时又不影响镁工业的发展,国际上正在努力寻找六氟化硫的替代品并开发纯镁或镁合金的熔炼保护工艺。对新型低环境影响的保护气氛进行的调研结果发现,目前只有少数几种替代气氛被提出来,最典型的代表是正被国际镁协评估其保护效果及环境负荷的三种替代物:AMCoverTM(HFC-134a),HFE7100(C4F9-O-CH3)和NovecTM612(C3F7COC2F5)。前者由澳大利亚CAST研究中心发明,后两者由3M公司发明。尽管这三种气体及熔炼保护工艺已被初步证实对纯镁或镁合金是有效的,而且它们温室效应的影响只有六氟化硫的 比六氟化硫对环境更加友好,但这三种气体的GWP值仍然较高,均超过1000,而且后两种气体的保护效果还在评价当中,目前还未得到确认;同时,HFE7100和NovecTM612的价格较高,国内尚无生产,明显将限制其工业应用的可行性。因此继续寻找价格更低廉,环境影响更小的替代气体及其熔炼保护工艺一直是镁工业的目标。In order to achieve the above goals without affecting the development of the magnesium industry, international efforts are being made to find a substitute for sulfur hexafluoride and to develop a melting protection process for pure magnesium or magnesium alloys. The results of the survey on the new protective atmosphere with low environmental impact found that only a few alternative atmospheres have been proposed. The most typical representatives are three alternatives that are being evaluated by the International Magnesium Association for their protective effects and environmental loads: AMCover TM ( HFC-134a), HFE7100 (C 4 F 9 -O-CH 3 ) and Novec ™ 612 (C 3 F 7 COC 2 F 5 ). The former was invented by the Australian CAST Research Center, and the latter two were invented by 3M. Although these three gases and smelting protection processes have been initially confirmed to be effective for pure magnesium or magnesium alloys, and their greenhouse effect is only as strong as that of sulfur hexafluoride. It is more environmentally friendly than sulfur hexafluoride, but the GWP values of these three gases are still high, all exceeding 1000, and the protective effects of the latter two gases are still under evaluation and have not yet been confirmed; meanwhile, HFE7100 and Novec The price of TM 612 is relatively high, and there is no domestic production, which will obviously limit the feasibility of its industrial application. Therefore, it has always been the goal of the magnesium industry to continue to look for alternative gases with lower prices and less environmental impact and their smelting protection processes.
发明内容Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种镁合金熔炼方法,采用一种对镁熔体的保护效果与六氟化硫相当,而环境保护效果优于六氟化硫的物质来代替六氟化硫作为镁熔体的气氛保护剂,降低工艺成本,熔炼保护效果良好,对环境不会造成污染。The object of the present invention is to address the deficiencies of the prior art, to provide a magnesium alloy smelting method, using a material whose protective effect on the magnesium melt is equivalent to that of sulfur hexafluoride, and whose environmental protection effect is better than that of sulfur hexafluoride. It replaces sulfur hexafluoride as an atmosphere protective agent for magnesium melt, reduces process cost, has good smelting protection effect, and does not cause pollution to the environment.
为实现这样的目的,本发明采用二氟甲烷来代替六氟化硫作为镁熔体的气氛保护剂,熔炼工艺主要包括以下步骤:In order to achieve such purpose, the present invention adopts difluoromethane to replace sulfur hexafluoride as the atmosphere protective agent of magnesium melt, and the smelting process mainly includes the following steps:
1、将二氟甲烷(它的商品名称是R32)与辅助稀释气体在混气装置中混合,二氟甲烷在混合气体中的体积含量为0.05-5%。其中辅助稀释气体可以是干燥空气、干燥二氧化碳或其它惰性气体,也可以是它们的混合物。1. Mix difluoromethane (its trade name is R32) and auxiliary diluent gas in a gas mixing device, and the volume content of difluoromethane in the mixed gas is 0.05-5%. The auxiliary diluting gas may be dry air, dry carbon dioxide or other inert gases, or a mixture thereof.
2、将纯镁或镁合金置于封闭坩埚中加热升温。2. Put pure magnesium or magnesium alloy in a closed crucible and heat up.
3、当纯镁或镁合金温度达到400℃时,开始将混合气体通入坩埚,使气体覆盖在纯镁或镁合金表面,通入的混合气体每分钟流量是封闭气体容积的0.05-10%。3. When the temperature of pure magnesium or magnesium alloy reaches 400°C, start to pass the mixed gas into the crucible so that the gas covers the surface of pure magnesium or magnesium alloy. The flow rate of the mixed gas per minute is 0.05-10% of the volume of the closed gas .
4、继续加热升温至纯镁或镁合金熔化,使保护气体在熔体表面迅速形成一层致密的、有良好保护性的氧化膜。4. Continue heating until the pure magnesium or magnesium alloy melts, so that the protective gas quickly forms a dense and protective oxide film on the surface of the melt.
5、当纯镁或镁合金熔体升温至700~850℃时,在气体保护下进行精炼变质,然后静置30~40分钟后,进行重力浇注或压力铸造。5. When the temperature of the pure magnesium or magnesium alloy melt is raised to 700-850°C, it is refined and modified under gas protection, and then it is left to stand for 30-40 minutes before gravity pouring or pressure casting.
在整个纯镁或镁合金的熔炼浇注过程中,含二氟甲烷的混合气与熔化的新鲜镁液表面发生复杂的化学反应,改善了自然氧化膜的结构,使表面膜变得致密、完整、有弹性,与熔体金属紧密结合在一起,并完全覆盖在熔体表面,将镁熔体与空气隔开,大大减小镁熔体的氧化或燃烧速度,使纯镁或镁合金在熔炼时得到保护。当熔炼或浇注过程中除去旧的氧化膜,熔体表面将迅速形成一层致密的保护性新氧化膜,重新覆盖于镁熔体表面,继续有效地保护镁熔体不被氧化或燃烧。During the entire melting and pouring process of pure magnesium or magnesium alloy, the mixed gas containing difluoromethane undergoes a complex chemical reaction with the surface of the molten fresh magnesium liquid, which improves the structure of the natural oxide film and makes the surface film dense, complete and It is elastic, closely combined with the molten metal, and completely covers the surface of the melt, separating the magnesium melt from the air, greatly reducing the oxidation or burning speed of the magnesium melt, so that pure magnesium or magnesium alloys can be melted during smelting be protected. When the old oxide film is removed during smelting or pouring, a dense protective new oxide film will quickly form on the surface of the melt, covering the surface of the magnesium melt again, and continue to effectively protect the magnesium melt from being oxidized or burned.
本发明的特点是:(1)含二氟甲烷气氛对镁熔体的保护效果与含六氟化硫气氛相当,在整个熔炼温度范围内,二氟甲烷的含量在0.05-5%(体积)时即对镁熔体有很好的保护效果。(2)在优化条件下,形成的表面膜的致密度、光洁度、厚度与含六氟化硫气氛所形成的表面膜非常类似,对镁熔体的保护效果亦几乎一样。(3)二氟甲烷在常温下都是稳定、无毒、无腐蚀性的物质,在高温下会分解,其分解产物可以与镁发生化学反应而消耗,排放气不会对环境和操作人员产生危害;(4)二氟甲烷的全球变暖潜能值(GWP)约650(约为六氟化硫的 ),大气寿命仅为5年,即使在镁合金熔炼过程中向大气中排放二氟甲烷,其温室效应的影响也远远低于六氟化硫。(5)二氟甲烷国内已实现工业化生产,容易购得,价格低廉,其市场价格约是六氟化硫的 与六氟化硫相比,前者在镁熔炼时的用量和效率几乎一样,而且熔炼保护工艺简单。因此,用二氟甲烷代替六氟化硫作为纯镁或镁合金的保护气氛的经济效应是十分可观的。The characteristics of the present invention are: (1) the protection effect of the atmosphere containing difluoromethane on the magnesium melt is equivalent to that of the atmosphere containing sulfur hexafluoride, and the content of difluoromethane is 0.05-5% (volume) in the whole melting temperature range It has a good protective effect on magnesium melt immediately. (2) Under optimized conditions, the density, smoothness, and thickness of the formed surface film are very similar to those formed by the atmosphere containing sulfur hexafluoride, and the protective effect on the magnesium melt is almost the same. (3) Difluoromethane is a stable, non-toxic, and non-corrosive substance at room temperature. It will decompose at high temperature, and its decomposition products can be consumed by chemical reaction with magnesium. The exhaust gas will not cause harm to the environment and operators. Hazard; (4) The global warming potential (GWP) of difluoromethane is about 650 (about that of sulfur hexafluoride ), the atmospheric life is only 5 years, even if difluoromethane is emitted into the atmosphere during the magnesium alloy smelting process, its greenhouse effect is far lower than that of sulfur hexafluoride. (5) Difluoromethane has been industrialized in China, and it is easy to buy and cheap. Its market price is about that of sulfur hexafluoride. Compared with sulfur hexafluoride, the amount and efficiency of the former in magnesium smelting are almost the same, and the smelting protection process is simple. Therefore, the economic effect of replacing sulfur hexafluoride with difluoromethane as the protective atmosphere of pure magnesium or magnesium alloy is very considerable.
具体实施方式Detailed ways
参照以下具体实施方案叙述,可以清楚地了解本发明的技术方案和诸多优点。With reference to the description of the following specific embodiments, the technical solutions and advantages of the present invention can be clearly understood.
实施例1:二氟甲烷对AM60镁合金的保护性熔炼Embodiment 1: Protective smelting of AM60 magnesium alloy by difluoromethane
实施步骤为:(1)将二氟甲烷与干燥空气或二氧化碳在混气装置中按表1中给出的各种混合比进行混合;(2)将3公斤干净AM60镁合金在5公斤电阻坩埚炉中加热升温;(3)当合金温度超过400℃时,开始将混合气体通入坩埚,将混合气按表1给出的流量参数通入坩埚,使气体覆盖在合金表面;(4)镁合金继续加热升温至熔化后,使保护气体在熔体表面迅速形成一层致密的、有良好保护性的氧化膜;(5)镁合金熔体升温至70~850℃,并在该气体保护下进行精炼变质,然后静置30~40分钟后,进行重力浇注或压力铸造。The implementation steps are: (1) difluoromethane is mixed with dry air or carbon dioxide in the gas mixing device according to the various mixing ratios given in Table 1; (2) 3 kg of clean AM60 magnesium alloy is mixed in a 5 kg resistance crucible Heating in the furnace; (3) When the temperature of the alloy exceeds 400°C, start to feed the mixed gas into the crucible, and feed the mixed gas into the crucible according to the flow parameters given in Table 1, so that the gas covers the surface of the alloy; (4) Magnesium After the alloy continues to heat up to melting, the protective gas quickly forms a layer of dense and well-protected oxide film on the surface of the melt; (5) The magnesium alloy melt is heated to 70-850 ° C, and under the protection of the gas Carry out refining and metamorphism, then after standing still for 30 to 40 minutes, carry out gravity pouring or pressure casting.
在整个熔炼过程中不断观察各种熔炼工艺参数时的保护效果,并将观察结果也记录在表1中。从表1中可见,AM60镁合金在含二氟甲烷混合气氛保护下进行熔炼时,在表1中所设定的各个熔炼温度、各种吹气流量和保持时间下,即使发生表面搅动,都能较快地形成致密的、不燃烧的表面保护层。During the whole melting process, the protection effect of various melting process parameters was continuously observed, and the observation results were also recorded in Table 1. It can be seen from Table 1 that when AM60 magnesium alloy is smelted under the protection of a mixed atmosphere containing difluoromethane, under the various smelting temperatures, various blowing flow rates and holding times set in Table 1, even if surface agitation occurs, all Can quickly form a dense, non-combustible surface protection layer.
表1
实施例2:二氟甲烷对AZ91镁合金的保护性熔炼Embodiment 2: Protective melting of difluoromethane to AZ91 magnesium alloy
实施步骤为:(1)将二氟甲烷与干燥空气或二氧化碳在混气装置中按表2中给出的各种混合比进行混合;(2)将3公斤干净AZ91镁合金在5公斤电阻坩埚炉中加热升温;(3)当合金温度超过400℃时,开始将混合气体通入坩埚,将混合气按表2给出的流量参数通入坩埚,使气体覆盖在合金表面;(4)镁合金继续加热升温至熔化后,使保护气体在熔体表面迅速形成一层致密的、有良好保护性的氧化膜;(5)镁合金熔体升温至700~850℃,并在该气体保护下进行精炼变质,然后静置30~40分钟后,进行重力浇注或压力铸造。The implementation steps are: (1) difluoromethane is mixed with dry air or carbon dioxide in the gas mixing device according to the various mixing ratios given in Table 2; (2) 3 kg of clean AZ91 magnesium alloy is mixed in a 5 kg resistance crucible Heating in the furnace; (3) When the temperature of the alloy exceeds 400°C, start to feed the mixed gas into the crucible, and feed the mixed gas into the crucible according to the flow parameters given in Table 2, so that the gas covers the surface of the alloy; (4) Magnesium After the alloy continues to heat up to melting, the protective gas quickly forms a dense and well-protected oxide film on the surface of the melt; (5) The magnesium alloy melt is heated to 700-850 ° C, and under the protection of the gas Carry out refining and metamorphism, then after standing still for 30 to 40 minutes, carry out gravity pouring or pressure casting.
在整个熔炼过程中不断观察各种熔炼工艺参数时的保护效果,并将观察结果也记录在表2中。从表2中可见,AZ91镁合金在含二氟甲烷混合气氛保护下进行熔炼时,在表2中所设定的各个熔炼温度、各种吹气流量和保持时间下,即使发生表面搅动,都能较快地形成致密的、不燃烧的表面保护层。The protection effect of various melting process parameters was continuously observed during the whole melting process, and the observation results were also recorded in Table 2. It can be seen from Table 2 that when the AZ91 magnesium alloy is smelted under the protection of a mixed atmosphere containing difluoromethane, under the various smelting temperatures, various blowing flow rates and holding times set in Table 2, even if surface agitation occurs, all Can quickly form a dense, non-combustible surface protection layer.
表2
实施例3:二氟甲烷对纯镁的保护性熔炼Embodiment 3: the protective smelting of difluoromethane to pure magnesium
实施步骤:(1)将二氟甲烷与干燥空气或二氧化碳在混气装置中按表3中给出的各种混合比进行混合;(2)将3公斤干净纯镁在5公斤电阻坩埚炉中加热升温;(3)当纯镁的温度超过400℃时,开始将混合气体通入坩埚,将混合气按表3给出的流量参数通入坩埚,使气体覆盖在镁的表面;(4)纯镁继续加热升温至熔化后,使保护气体在熔体表面迅速形成一层致密的、有良好保护性的氧化膜;(5)镁熔体升温至700~850℃,并在该气体保护下进行精炼变质,然后静置30~40分钟后,进行重力浇注或压力铸造。Implementation steps: (1) difluoromethane is mixed with dry air or carbon dioxide in the gas mixing device according to the various mixing ratios given in Table 3; (2) 3 kg of clean pure magnesium is mixed in a 5 kg resistance crucible furnace Heating to raise the temperature; (3) when the temperature of pure magnesium exceeds 400°C, begin to feed the mixed gas into the crucible, and feed the mixed gas into the crucible according to the flow parameters given in Table 3, so that the gas is covered on the surface of the magnesium; (4) After the pure magnesium continues to heat up to melting, the protective gas quickly forms a dense and well-protected oxide film on the surface of the melt; Carry out refining and metamorphism, then after standing still for 30 to 40 minutes, carry out gravity pouring or pressure casting.
在整个熔炼过程中不断观察各种熔炼工艺参数时的保护效果,并将观察结果也记录在表3中。从表3中可见,纯镁在含二氟甲烷混合气氛保护下进行熔炼时,在表3中所设定的各个熔炼温度、各种吹气流量和保持时间下,即使发生表面搅动,都能较快地形成致密的、不燃烧的表面保护层。The protection effect of various melting process parameters was continuously observed during the whole melting process, and the observation results were also recorded in Table 3. It can be seen from Table 3 that when pure magnesium is smelted under the protection of a mixed atmosphere containing difluoromethane, under the various smelting temperatures, various blowing flow rates and holding times set in Table 3, even if surface agitation occurs, the Forms a dense, non-combustible surface protection layer relatively quickly.
表3
以上实施例说明,采用含二氟甲烷混合气为保护气氛对纯镁或镁合金熔体进行熔炼操作,在其熔炼的整个温度范围内都有很好的保护效果,与六氟化硫的保护效果相当,而且熔炼工艺简单,比六氟化硫更具有环保和经济优势。The above examples illustrate that using a mixed gas containing difluoromethane as a protective atmosphere to smelt pure magnesium or magnesium alloy melts has a good protective effect in the entire temperature range of its smelting, which is comparable to the protection of sulfur hexafluoride. The effect is equivalent, and the smelting process is simple, and it has more environmental protection and economic advantages than sulfur hexafluoride.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410052617 CN1587425A (en) | 2004-07-08 | 2004-07-08 | Magnesium alloy smelting method using difluoromethane as protective atmosphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410052617 CN1587425A (en) | 2004-07-08 | 2004-07-08 | Magnesium alloy smelting method using difluoromethane as protective atmosphere |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1587425A true CN1587425A (en) | 2005-03-02 |
Family
ID=34602531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410052617 Pending CN1587425A (en) | 2004-07-08 | 2004-07-08 | Magnesium alloy smelting method using difluoromethane as protective atmosphere |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1587425A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101142043B (en) * | 2005-04-27 | 2010-05-19 | 中央硝子株式会社 | Protective gas composition for preventing melt magnesium or magnesium alloy from quickly oxidation or combustion and the method therefor |
CN101135005B (en) * | 2006-08-28 | 2011-03-23 | 贵州世纪天元矿业有限公司 | Method for generating metal vacuum smelting protective gas |
CN103820653A (en) * | 2014-02-19 | 2014-05-28 | 上海交通大学 | Magnesium alloy melt gas protection method |
-
2004
- 2004-07-08 CN CN 200410052617 patent/CN1587425A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101142043B (en) * | 2005-04-27 | 2010-05-19 | 中央硝子株式会社 | Protective gas composition for preventing melt magnesium or magnesium alloy from quickly oxidation or combustion and the method therefor |
CN101135005B (en) * | 2006-08-28 | 2011-03-23 | 贵州世纪天元矿业有限公司 | Method for generating metal vacuum smelting protective gas |
CN103820653A (en) * | 2014-02-19 | 2014-05-28 | 上海交通大学 | Magnesium alloy melt gas protection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104032155B (en) | Useless ash metal covering agent for smelting and application thereof | |
CN101948959A (en) | Slag-forming agent for fusion casting of environment-friendly zinc and zinc alloy | |
CN104775042A (en) | Low-metal-loss smelting method of copper alloy | |
CN101376933B (en) | Flux for smelting rare earth-containing magnesium alloy and production method thereof | |
CN101787473B (en) | A kind of strong and tough flame-retardant magnesium alloy and preparation method thereof | |
CN1164777C (en) | Magnesium alloy refining agent and production method | |
CN1241641A (en) | Fireproof cast magnesium alloy and its smelting and casting process | |
CN1587425A (en) | Magnesium alloy smelting method using difluoromethane as protective atmosphere | |
CN1587424A (en) | Magnesium alloy smelting method using 1,1-difluoroethane as protective atmosphere | |
CN1540016A (en) | Cast Flame Retardant Magnesium Alloy | |
CN106834880A (en) | A kind of preparation method of ferro-titanium | |
CN106191503A (en) | A kind of reduce the method for bi content in pyrite | |
CN1390965A (en) | Flux for removing iron from Mg alloy and its preparing process | |
CN1102667C (en) | Pressure-cast fireproof magnesium alloy and its smelting and pressure casting process | |
CN1208489C (en) | Complex flame-retarding and modifying process for Mg alloy | |
CN1156592C (en) | Strong-toughness fire-resisting magnesium alloy | |
CN103820653A (en) | Magnesium alloy melt gas protection method | |
CN1314819C (en) | Magnesium alloy flame retardant additive and preparation method of flame retardant magnesium alloy | |
Lee et al. | Protective properties of SF6 under various carrier gases for the protection of molten Mg | |
CN114367784A (en) | Casting process of aluminum profile | |
CN206523056U (en) | A kind of obturator | |
CN101974696A (en) | Zinc ash reducing agent for hot-dip galvanizing | |
CN101629261B (en) | A kind of rare earth flame-retardant magnesium alloy and preparation method thereof | |
KR100566895B1 (en) | Impurity Removal Method in Copper Alloy Molten Metal | |
CN108048720A (en) | A kind of antiflaming magnesium alloy for adding yttrium, calcium and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |