CN101629261B - A kind of rare earth flame-retardant magnesium alloy and preparation method thereof - Google Patents
A kind of rare earth flame-retardant magnesium alloy and preparation method thereof Download PDFInfo
- Publication number
- CN101629261B CN101629261B CN2009100701138A CN200910070113A CN101629261B CN 101629261 B CN101629261 B CN 101629261B CN 2009100701138 A CN2009100701138 A CN 2009100701138A CN 200910070113 A CN200910070113 A CN 200910070113A CN 101629261 B CN101629261 B CN 101629261B
- Authority
- CN
- China
- Prior art keywords
- alloy
- flame
- magnesium alloy
- magnesium
- retardant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 91
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000003063 flame retardant Substances 0.000 title claims abstract description 72
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 36
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title abstract description 17
- 239000011777 magnesium Substances 0.000 claims abstract description 65
- 239000000470 constituent Substances 0.000 claims abstract description 16
- XTQLMFDBFITYOZ-UHFFFAOYSA-N [Dy].[Y].[Mg] Chemical group [Dy].[Y].[Mg] XTQLMFDBFITYOZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 68
- 239000000956 alloy Substances 0.000 abstract description 68
- 229910052749 magnesium Inorganic materials 0.000 abstract description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 27
- 238000003723 Smelting Methods 0.000 abstract description 13
- 230000001681 protective effect Effects 0.000 abstract description 11
- 238000005266 casting Methods 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 27
- 239000007789 gas Substances 0.000 description 24
- 239000002994 raw material Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000011575 calcium Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000003841 chloride salts Chemical class 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical class Cl* 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明一种稀土阻燃镁合金及其制备方法,涉及稀土金属作次主要成分的镁基合金,该合金中组成元素的原子百分比是Mg96.0~98.19Y0.31~0.5Dy1.5~3.5,按此组成元素的质量百分比称取的纯镁、含Y的质量百分数为29.05%的Mg-Y中间合金和含Dy的质量百分数为29.025%的Mg-Dy中间合金全三种原料,于温度600~720℃下加热熔炼,在600℃、650℃和720℃附近进行间歇性通入99.5vol.%CO2+0.5vol.%SF6的混合保护气体,然后浇铸制得组成为Mg96.0~98.19Y0.31~0.5Dy1.5~3.5的阻燃镁合金制品。该制品有很高的纯度,阻燃性能提高。
The invention relates to a rare-earth flame-retardant magnesium alloy and a preparation method thereof, and relates to a magnesium-based alloy in which rare-earth metals are used as secondary main components. The atomic percentage of constituent elements in the alloy is Mg 96.0-98.19 Y 0.31-0.5 Dy 1.5-3.5 , according to The mass percentage of the constituent elements is pure magnesium, the Mg-Y master alloy containing 29.05% by mass of Y and the Mg-Dy master alloy containing 29.025% by mass of Dy. Heating and smelting at 600°C, 650°C and 720°C, intermittently feeding a mixed protective gas of 99.5vol.% CO 2 +0.5vol.% SF6, and then casting to obtain a composition of Mg 96.0~98.19 Y 0.31~ 0.5 Dy 1.5 ~ 3.5 flame retardant magnesium alloy products. The product has high purity and improved flame retardancy.
Description
技术领域technical field
本发明的技术方案涉及稀土金属作次主要成分的镁基合金,具体地说是一种稀土阻燃镁合金及其制备方法。The technical solution of the invention relates to a magnesium-based alloy with rare earth metal as the secondary main component, specifically a rare earth flame-retardant magnesium alloy and a preparation method thereof.
背景技术Background technique
Mg在周期表中的位置处于碱性金属的范围,其核外电子属较少,这决定了Mg具有很强的化学活性。Mg很容易与具有氧化性的介质发生反应,从而使得以Mg为主的产品和构件在应用中受到了极大的限制。然而,Mg具有一些其他金属所不具备的优良特性:质轻、高比强度和高比刚度、优良的抗磁性和减震性、良好的切屑加工性和易回收等特性,所以镁合金在航空、交通和电子等领域具有不可替代的优势。The position of Mg in the periodic table is in the range of alkaline metals, and its extranuclear electrons are less, which determines that Mg has strong chemical activity. Mg is easy to react with oxidizing media, so that the application of Mg-based products and components is greatly limited. However, Mg has some excellent characteristics that other metals do not have: light weight, high specific strength and high specific stiffness, excellent antimagnetic and shock absorption, good chip processing and easy recycling, so magnesium alloys are used in aviation , transportation and electronics have irreplaceable advantages.
针对于镁及镁合金易氧化燃烧的缺点,截至目前,国内外科研工作者先后研究过多种阻燃镁合金的制备方法。这些方法大致分为:熔剂覆盖法、气体保护法和合金化阻燃法。此三种方法在起到提高镁合金阻燃作用的同时,带来了一些不可避免的副作用。熔剂覆盖法中的熔剂多采用氯盐或氯盐的混合物,在熔炼镁合金的过程中,由于氯盐的密度大,加入的氯盐会不断地沉到底部,需要不停的加入,这无疑造成了更多夹杂物的卷入,另外,氯盐是有毒的,对于人身健康与安全造成威胁;气体保护法虽然解决了操作上的复杂性,但是所用气体为稀有气体或者含S的一些混合气体,稀有气体成本高而且稀少,不适于广泛推广使用,而含S的气体会产生一些有毒的气体或者具有超强温室效应的气体,与全球提出的安全型、环保型生产产生冲突;合金化阻燃法是目前较为理想的阻燃镁合金的制备方法,然而在所有的阻燃元素中,单就提高阻燃性来说,Be和Ca的效果最佳,但是Be为有毒物质,而钙的加入使得镁合金的力学性能大大降低。另外,除了上述三种常见的阻燃镁合金的制备方法之外,还有一种是制造设备的更新。国外已经开发出了真空熔炼镁合金的大型设备,但是其前期资金投入巨大,由于我国冶金设备技术和企业模式的限制,这种方法在国内还不能得以应用。In view of the shortcomings of magnesium and magnesium alloys that are easy to oxidize and burn, so far, domestic and foreign researchers have studied a variety of preparation methods for flame-retardant magnesium alloys. These methods are roughly divided into: flux covering method, gas protection method and alloying flame retardant method. These three methods have brought some unavoidable side effects while improving the flame retardancy of magnesium alloys. The flux in the flux covering method mostly uses chlorine salt or a mixture of chloride salts. During the process of smelting magnesium alloys, due to the high density of chloride salts, the added chloride salts will continue to sink to the bottom and need to be added continuously. This is undoubtedly More inclusions are involved. In addition, chlorine salt is toxic and poses a threat to personal health and safety; although the gas protection method solves the operational complexity, the gas used is a rare gas or some mixture containing S. Gases, rare gases are expensive and scarce, not suitable for widespread use, and gases containing S will produce some toxic gases or gases with a strong greenhouse effect, which conflicts with the safe and environmentally friendly production proposed by the world; alloying The flame retardant method is currently an ideal method for preparing flame retardant magnesium alloys. However, among all flame retardant elements, Be and Ca have the best effects in terms of improving flame retardancy, but Be is a toxic substance, and calcium The addition of Mg makes the mechanical properties of the magnesium alloy greatly reduced. In addition, in addition to the above three common preparation methods of flame-retardant magnesium alloys, there is another one that is the renewal of manufacturing equipment. Large-scale equipment for vacuum smelting magnesium alloys has been developed abroad, but the initial capital investment is huge. Due to the limitations of my country's metallurgical equipment technology and business model, this method cannot be applied in China.
我国是稀土资源大国,为此我国的研究者们越来越重视并不断研发稀土对于金属材料的特殊作用,稀土不仅能净化金属液,除渣排气,而且还能优化材料的性能。为了使Mg这种具有优良特性的材料获得更大的利用价值,我国的研究者们对于稀土在镁合金中的作用也进行了积极的研发。my country is a country rich in rare earth resources. For this reason, researchers in our country pay more and more attention to and continue to develop the special effects of rare earths on metal materials. Rare earths can not only purify molten metal, remove slag and exhaust, but also optimize the performance of materials. In order to make Mg, a material with excellent characteristics, obtain greater utilization value, researchers in our country have also carried out active research and development on the role of rare earths in magnesium alloys.
CN101376938公开了一种新型阻燃高强耐热镁合金及其制备方法,是将Al-Ca中间合金、Al-RE中间合金和Al-Sr中间合金加入到熔融的镁合金AZ91D中;CN1400328披露了强韧阻燃镁合金,其组分包括Al、Zn、Mn、RE和Mg;CN1540016报道的铸造阻燃镁合金,其组分为Al、Zn、Mn、RE、Be和Mg。上述专利文献中的RE为混合稀土元素。可见现有公开的稀土类阻燃镁合金的组成都是以常用镁合金Mg-Al系和Mg-Zn系合金为基体然后加入多种混合稀土元素的中间合金及其他中间合金,由此也导致现有公开的稀土类阻燃镁合金的制备方法在熔炼制备过程中不可避免地会卷入一些杂质,并且其制得的阻燃镁合金的耐热性即燃点还有待进一步提高。CN101376938 discloses a novel flame-retardant high-strength heat-resistant magnesium alloy and its preparation method, which is to add Al-Ca master alloy, Al-RE master alloy and Al-Sr master alloy into the molten magnesium alloy AZ91D; CN1400328 discloses strong A tough flame-retardant magnesium alloy whose components include Al, Zn, Mn, RE and Mg; CN1540016 reported a cast flame-retardant magnesium alloy whose components are Al, Zn, Mn, RE, Be and Mg. RE in the above patent documents is a mixed rare earth element. It can be seen that the composition of the existing disclosed rare earth flame-retardant magnesium alloys is based on the commonly used magnesium alloys Mg-Al series and Mg-Zn series alloys, and then adding a variety of mixed rare earth element master alloys and other master alloys, which also leads to The existing disclosed preparation methods of rare earth flame-retardant magnesium alloys will inevitably involve some impurities during the smelting and preparation process, and the heat resistance, ie, the ignition point, of the prepared flame-retardant magnesium alloys needs to be further improved.
CN200910069793.1阻燃泡沫镁合金及其制备方法所公开的是采用熔体发泡两步法工艺制得镁钇镝三元合金为基体材料的阻燃泡沫镁合金产品,其制备工艺和制得的产品结构性能与非泡沫状的阻燃镁合金有本质的区别。CN200910069793.1 Flame-retardant foamed magnesium alloy and its preparation method discloses a flame-retardant foamed magnesium alloy product with a magnesium-yttrium-dysprosium ternary alloy as the matrix material by using a melt foaming two-step process. The structural performance of the product is essentially different from that of non-foamed flame-retardant magnesium alloys.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种稀土阻燃镁合金及其制备方法,其是以纯镁为基体,将其和Mg-Y和Mg-Dy中间合金同时加入,使其一起熔化的方式所制得的镁钇镝三元阻燃镁合金,其组成的原子百分比是:Mg96.0~98.19Y0.31~0.5Dy1.5~3.5。该方法克服了现有公开的稀土类阻燃镁合金的制备方法在熔炼制备过程中不可避免地会卷入一些杂质的缺点,并且其制得的阻燃镁合金的耐热性即燃点得到进一步提高。The technical problem to be solved by the present invention is to provide a rare-earth flame-retardant magnesium alloy and its preparation method, which uses pure magnesium as the matrix, and adds it and Mg-Y and Mg-Dy master alloys at the same time to make them melt together The prepared magnesium yttrium dysprosium ternary flame-retardant magnesium alloy has the composition atomic percentage of: Mg 96.0-98.19 Y 0.31-0.5 Dy 1.5-3.5 . This method overcomes the disadvantage that some impurities will inevitably be involved in the smelting and preparation process of the existing disclosed rare earth flame-retardant magnesium alloy preparation method, and the heat resistance of the flame-retardant magnesium alloy prepared by it, that is, the ignition point, is further improved. improve.
本发明解决该技术问题所采用的技术方案是:一种稀土阻燃镁合金,是镁钇镝三元阻燃镁合金,其组成元素的原子百分比是Mg96.0~98.19Y0.31~0.5Dy1.5~3.5。The technical solution adopted by the present invention to solve the technical problem is: a rare earth flame-retardant magnesium alloy, which is a magnesium-yttrium-dysprosium ternary flame-retardant magnesium alloy, and the atomic percentage of its constituent elements is Mg 96.0~98.19 Y 0.31~0.5 Dy 1.5~ 3.5 .
上述一种稀土阻燃镁合金的制备方法,其步骤是:The preparation method of above-mentioned a kind of rare earth flame retardant magnesium alloy, its steps are:
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=96.0~98.19∶0.31~0.5∶1.5~3.5称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg;According to the mass percentage of the constituent elements, Mg:Y:Dy=96.0~98.19:0.31~0.5:1.5~3.5 Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials, wherein, Mg-Y master alloy contains The mass percentage of Y is 29.05% and the rest is Mg, and the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025% and the rest is Mg;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
将坩埚在坩埚式电阻炉中预热至500℃取出,将第一步称取的纯镁、Mg-Y中间合金和Mg-Dy中间合金全原料部一次性加入该坩埚中,再将该坩埚迅速放入坩埚式电阻炉中,并立刻通入一次保护气体,于温度600~720℃下加热,在600℃、650℃和720℃进行间歇性通入保护气体,致使全部原料熔化,在镁的熔点以上进行机械搅拌使稀土元素均匀分散,在搅拌的同时将浮在该镁合金液上方的残渣扒除,进行稀土阻燃镁合金的熔炼,所述的保护气体为99.5vol.%CO2+0.5vol.%SF6的混合气体;Preheat the crucible in a crucible-type resistance furnace to 500°C and take it out, add all the raw materials of pure magnesium, Mg-Y master alloy and Mg-Dy master alloy weighed in the first step into the crucible at one time, and then the crucible Quickly put it into a crucible-type resistance furnace, and immediately pass a protective gas, heat at a temperature of 600-720°C, and intermittently pass a protective gas at 600°C, 650°C and 720°C, so that all the raw materials are melted. Mechanical stirring is carried out above the melting point of the magnesium alloy to uniformly disperse the rare earth elements. While stirring, the residue floating above the magnesium alloy liquid is removed to melt the rare earth flame-retardant magnesium alloy. The protective gas is 99.5vol.% CO 2 +0.5vol.% SF 6 mixed gas;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
将第二步坩埚式电阻炉内的坩埚中的温度在720℃的熔炼的稀土阻燃镁合金液,加热至740℃,静置10分钟,然后浇铸到金属铸型中,即制得组成元素的原子百分比是Mg96.0~98.19Y0.31~0.5Dy1.5~3.5的阻燃镁合金制品。Heat the rare earth flame retardant magnesium alloy solution melted in the crucible in the second step crucible resistance furnace at 720°C to 740°C, let it stand for 10 minutes, and then cast it into a metal mold to obtain the constituent elements The atomic percentage is Mg 96.0~98.19 Y 0.31~0.5 Dy 1.5~3.5 flame retardant magnesium alloy products.
上述一种稀土阻燃镁合金及其制备方法,所述纯镁原料是纯度为质量百分比是99.95%的工业纯镁。In the aforementioned rare-earth flame-retardant magnesium alloy and its preparation method, the pure magnesium raw material is industrially pure magnesium with a purity of 99.95% by mass.
上述一种稀土阻燃镁合金及其制备方法,所述Mg-Y中间合金和Mg-Dy中间合金原料购买于内蒙古稀土研究院,所述纯镁原料则通过一般市购获得,所用的设备是通用的。The above-mentioned rare earth flame-retardant magnesium alloy and its preparation method, the raw materials of the Mg-Y master alloy and the Mg-Dy master alloy are purchased from Inner Mongolia Rare Earth Research Institute, and the pure magnesium raw materials are obtained from the general market, and the equipment used is generic.
本发明的有益效果是:与现有技术相比,本发明的显著进步在于;The beneficial effects of the present invention are: compared with the prior art, the remarkable progress of the present invention lies in;
(1)本发明方法制得的阻燃镁合金有很高的纯度,因而各种性能优良。(1) The flame-retardant magnesium alloy prepared by the method of the present invention has very high purity, so various properties are excellent.
①现有技术CN101376938选用的母材是AZ91D,是由工业纯镁经过一道工序炼制成的常用镁合金,在熔炼制备过程中不可避免的会卷入一些杂质,本发明选用的母材是纯镁,避免了杂质的卷入。1. The parent material selected in the prior art CN101376938 is AZ91D, which is a common magnesium alloy made by refining industrial pure magnesium through a process. Some impurities will inevitably be involved in the smelting preparation process. The parent material selected in the present invention is pure Magnesium, to avoid the involvement of impurities.
②现有技术CN101376938所用的中间合金有Al-Ca中间合金、Al-RE中间合金和Al-Sr中间合金三种,本发明所用的中间合金只有Mg-Y中间合金和Mg-Dy中间合金两种。选用的中间合金种类越多,熔炼时会导致镁合金液的纯度越低。2. the used master alloy of prior art CN101376938 has three kinds of Al-Ca master alloy, Al-RE master alloy and Al-Sr master alloy, and the master alloy used in the present invention has only two kinds of Mg-Y master alloy and Mg-Dy master alloy . The more types of master alloys selected, the lower the purity of the magnesium alloy solution during smelting.
③在镁合金的制备过程中,现有技术CN101376938采用的是在740℃,母材AZ91D熔化后再加入预热过的中间合金。在740℃的高温下,镁合金液的表面很容易吸附空气中的气体发生反应,使镁合金液的杂质增多,当中间合金加入时,会搅动镁合金液表面,使得吸附的气体卷入到镁合金液内部,从而降低制备出的阻燃镁合金的性能。本发明方法采用母材和中间合金一起加入的方式,避免了二次加入中间合金时卷入气体,从而保证镁合金液纯净,由此保证制备出的阻燃镁合金的优良性能。③In the preparation process of magnesium alloy, the prior art CN101376938 adopts the preheated master alloy after melting the base material AZ91D at 740°C. At a high temperature of 740°C, the surface of the magnesium alloy liquid is easy to absorb gas in the air to react, which increases the impurities in the magnesium alloy liquid. When the intermediate alloy is added, it will stir the surface of the magnesium alloy liquid, causing the adsorbed gas to be involved in the Inside the magnesium alloy liquid, thereby reducing the performance of the prepared flame-retardant magnesium alloy. The method of the invention adopts the method of adding the base metal and the master alloy together, avoiding the gas involved when adding the master alloy for the second time, thereby ensuring the purity of the magnesium alloy liquid, thereby ensuring the excellent performance of the prepared flame-retardant magnesium alloy.
(2)本发明方法制得的阻燃镁合金的燃点提高,即阻燃性能提高。(2) The ignition point of the flame-retardant magnesium alloy prepared by the method of the present invention is improved, that is, the flame-retardant performance is improved.
对本发明方法制得的阻燃镁合金进行阻燃测试,结果是其燃点要比纯镁燃点提高了200℃左右,燃点的平均值达到了850℃以上。这个结果比CN101376938、CN1400328和CN1540016报道的阻燃镁合金的阻燃总体效果要好。在测试燃点过程中,当本发明方法制得的阻燃镁合金局部有火星儿闪烁时,其本身能迅速自我修复,阻止了燃烧的进一步进行,进一步加热,本发明方法制得的阻燃镁合金熔化后,其表面的氧化膜韧性很好,有效地保护了熔融状态的镁合金液。The flame retardant test of the flame retardant magnesium alloy prepared by the method of the present invention shows that its ignition point is about 200°C higher than that of pure magnesium, and the average value of the ignition point reaches above 850°C. This result is better than the flame retardant overall effect of the flame retardant magnesium alloy reported by CN101376938, CN1400328 and CN1540016. In the process of testing the ignition point, when the flame-retardant magnesium alloy prepared by the method of the present invention has sparks flickering locally, it can quickly self-repair, preventing further combustion, and further heating, the flame-retardant magnesium alloy prepared by the method of the present invention After the alloy is melted, the oxide film on its surface has good toughness, which effectively protects the molten magnesium alloy liquid.
(3)本发明方法实施在一些特征温度时通入一部分保护气然后停气,即于温度600~720℃下加热,在600℃、650℃和720℃进行间歇性通入保护气体,防止原料的深度氧化。由于本发明方法采用的是CO2+SF6混合保护气体,这种间歇式通入保护气体的方式大大减少了由于SF6而造成的温室效应,同时还有效地降低了生产成本,而且在环保和人身安全方面将危害降低。(3) The method of the present invention is implemented at some characteristic temperatures by feeding a part of the protective gas and then stopping the gas, that is, heating at a temperature of 600 to 720°C, and intermittently feeding the protective gas at 600°C, 650°C and 720°C to prevent raw materials from deep oxidation. Because the method of the present invention adopts the mixed protective gas of CO 2 +SF 6 , this intermittent way of feeding the protective gas greatly reduces the greenhouse effect caused by SF 6 , effectively reduces the production cost, and is environmentally friendly. and personal safety will reduce the hazards.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明实施例1制得的阻燃镁合金制品的高倍金相照片。Fig. 1 is a high-magnification metallographic photograph of a flame-retardant magnesium alloy product prepared in Example 1 of the present invention.
图2是本发明实施例1制得的阻燃镁合金制品的低倍金相照片。Fig. 2 is a low-magnification metallographic photograph of the flame-retardant magnesium alloy product prepared in Example 1 of the present invention.
具体实施方式Detailed ways
实施例1Example 1
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=97.65∶0.35∶2.0称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg,所用纯镁为市购商品,Mg-Y中间合金和Mg-Dy中间合金购自内蒙古稀土研究院;Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials according to the mass percentage of constituent elements as Mg:Y:Dy=97.65:0.35:2.0, wherein, the mass percentage of Mg-Y master alloy containing Y is 29.05 The rest is Mg, the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025%, and the rest is Mg. The pure magnesium used is a commercially available commodity. The Mg-Y master alloy and the Mg-Dy master alloy are purchased from Inner Mongolia Rare Earth Research Institute;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
将坩埚在坩埚式电阻炉中预热至500℃取出,将第一步称取的纯镁、Mg-Y中间合金和Mg-Dy中间合金全原料部一次性加入该坩埚中,再将该坩埚迅速放入坩埚式电阻炉中,并立刻通入一次保护气体,于温度600~720℃下加热,在600℃、650℃和720℃进行间歇性通入保护气体,致使全部原料熔化,在镁的熔点以上进行机械搅拌使稀土元素均匀分散,在搅拌的同时将浮在该镁合金液上方的残渣扒除,进行稀土阻燃镁合金的熔炼,所述的保护气体为99.5vol.%CO2+0.5vol.%SF6的混合气体;Preheat the crucible in a crucible-type resistance furnace to 500°C and take it out, add all the raw materials of pure magnesium, Mg-Y master alloy and Mg-Dy master alloy weighed in the first step into the crucible at one time, and then the crucible Quickly put it into a crucible-type resistance furnace, and immediately pass a protective gas, heat at a temperature of 600-720°C, and intermittently pass a protective gas at 600°C, 650°C and 720°C, so that all the raw materials are melted. Mechanical stirring is carried out above the melting point of the magnesium alloy to uniformly disperse the rare earth elements. While stirring, the residue floating above the magnesium alloy liquid is removed to melt the rare earth flame-retardant magnesium alloy. The protective gas is 99.5vol.% CO 2 +0.5vol.% SF6 mixed gas;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
将第二步坩埚式电阻炉内的坩埚中的温度在720℃的熔炼的稀土阻燃镁合金液,加热至740℃,静置10分钟,然后浇铸到金属铸型中,即制得组成元素的原子百分比是Mg97.65Y0.35Dy2.0的阻燃镁合金制品。Heat the rare earth flame retardant magnesium alloy solution melted in the crucible in the second step crucible resistance furnace at 720°C to 740°C, let it stand for 10 minutes, and then cast it into a metal mold to obtain the constituent elements The atomic percentage is a flame-retardant magnesium alloy product of Mg 97.65 Y 0.35 Dy 2.0 .
图1是本发明实施例1制得的阻燃镁合金制品的500倍金相照片,图2是本发明实施例1制得的阻燃镁合金制品的200倍金相照片。由这两张照片可以看出,本发明实施例1制得的阻燃镁合金制品的组织致密,晶界清晰,杂质少。Fig. 1 is a 500 times metallographic photo of the flame retardant magnesium alloy product prepared in Example 1 of the present invention, and Fig. 2 is a 200 times metallographic photo of the flame retardant magnesium alloy product prepared in Example 1 of the present invention. It can be seen from these two photos that the flame-retardant magnesium alloy product prepared in Example 1 of the present invention has a dense structure, clear grain boundaries, and few impurities.
实施例2Example 2
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=96.1∶0.40∶3.5称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg,所用纯镁为市购商品,Mg-Y中间合金和Mg-Dy中间合金购自内蒙古稀土研究院;According to the mass percent of the constituent elements, Mg:Y:Dy=96.1:0.40:3.5 Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials, wherein, the mass percent of Mg-Y master alloy containing Y is 29.05 The rest is Mg, the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025%, and the rest is Mg. The pure magnesium used is a commercially available commodity. The Mg-Y master alloy and the Mg-Dy master alloy are purchased from Inner Mongolia Rare Earth Research Institute;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
同实施例1;With embodiment 1;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
同实施例1,即制得组成元素的原子百分比是Mg96.1Y0.40Dy3.5的阻燃镁合金制品。Same as in Example 1, that is, a flame-retardant magnesium alloy product in which the atomic percentage of the constituent elements is Mg 96.1 Y 0.40 Dy 3.5 is obtained.
实施例3Example 3
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=97.05∶0.45∶2.5称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg,所用纯镁为市购商品,Mg-Y中间合金和Mg-Dy中间合金购自内蒙古稀土研究院;According to the mass percentage of the constituent elements, Mg:Y:Dy=97.05:0.45:2.5 Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials, wherein, the mass percentage of Mg-Y master alloy containing Y is 29.05 The rest is Mg, the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025%, and the rest is Mg. The pure magnesium used is a commercially available commodity. The Mg-Y master alloy and the Mg-Dy master alloy are purchased from Inner Mongolia Rare Earth Research Institute;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
同实施例1;With embodiment 1;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
同实施例1,即制得组成元素的原子百分比是Mg97.05Y0.45Dy2.5的阻燃镁合金制品。The same as in Example 1, that is, a flame-retardant magnesium alloy product in which the atomic percentage of the constituent elements is Mg 97.05 Y 0.45 Dy 2.5 is obtained.
实施例4Example 4
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=98.19∶0.31∶1.5称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg,所用纯镁为市购纯度为质量百分比是99.95%的工业纯镁,Mg-Y中间合金和Mg-Dy中间合金购自内蒙古稀土研究院;According to the mass percent of the constituent elements, Mg:Y:Dy=98.19:0.31:1.5 Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials, wherein, the mass percent of Mg-Y master alloy containing Y is 29.05 The rest is Mg, and the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025%, and the rest is Mg. The pure magnesium used is industrially pure magnesium with a commercially available purity of 99.95% by mass, the Mg-Y master alloy and the Mg-Dy master alloy. The alloy was purchased from Inner Mongolia Rare Earth Research Institute;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
同实施例1;With embodiment 1;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
同实施例1,即制得组成元素的原子百分比是Mg98.19Y0.31Dy1.5的阻燃镁合金制品。The same as in Example 1, that is, the flame-retardant magnesium alloy product with the atomic percentage of the constituent elements being Mg 98.19 Y 0.31 Dy 1.5 was obtained.
实施例5Example 5
第一步,配料Step One, Ingredients
按组成元素的质量百分比为Mg∶Y∶Dy=96.0∶0.50∶3.5称取纯镁、Mg-Y中间合金和Mg-Dy中间合金原料,其中,Mg-Y中间合金含Y的质量百分数为29.05%其余是Mg,Mg-Dy中间合金含Dy的质量百分数为29.025%其余是Mg,所用纯镁为市购纯度为质量百分比是99.95%的工业纯镁,Mg-Y中间合金和Mg-Dy中间合金购自内蒙古稀土研究院;Weigh pure magnesium, Mg-Y master alloy and Mg-Dy master alloy raw materials according to the mass percentage of constituent elements as Mg:Y:Dy=96.0:0.50:3.5, wherein, the mass percentage of Mg-Y master alloy containing Y is 29.05 The rest is Mg, and the mass percentage of Dy contained in the Mg-Dy master alloy is 29.025%, and the rest is Mg. The pure magnesium used is industrially pure magnesium with a commercially available purity of 99.95% by mass, the Mg-Y master alloy and the Mg-Dy master alloy. The alloy was purchased from Inner Mongolia Rare Earth Research Institute;
第二步,稀土阻燃镁合金的熔炼The second step, smelting of rare earth flame retardant magnesium alloy
同实施例1;With embodiment 1;
第三步,浇铸成阻燃镁合金制品The third step is casting into flame retardant magnesium alloy products
同实施例1,即制得组成元素的原子百分比是Mg96.0Y0.50Dy3.5的阻燃镁合金制品。The same as in Example 1, that is, the flame-retardant magnesium alloy product with the atomic percentage of the constituent elements being Mg 96.0 Y 0.50 Dy 3.5 was obtained.
在上述实施例所述的进行机械搅拌使稀土元素均匀分散的过程中,镁合金液表面平稳纯净,并无起燃现象发生;而且搅拌时镁合金液表面的液面能够迅速自我修复,有效地阻止了外界空气的加入;浇铸时镁合金液流平稳,无任何火星儿闪烁和浓烟的冒出。In the process of mechanically stirring the rare earth elements as described in the above-mentioned embodiments, the surface of the magnesium alloy liquid is stable and pure, and no ignition phenomenon occurs; and the liquid level on the surface of the magnesium alloy liquid can quickly self-repair during stirring, effectively The addition of outside air is prevented; the magnesium alloy liquid flow is stable during casting, without any sparks flickering and thick smoke coming out.
对上述所有实施例制得的阻燃镁合金进行阻燃测试,结果是其燃点都要比纯镁燃点提高了200℃以上,燃点的平均值达到了850℃以上。在测试燃点过程中,当上述所有实施例制得的阻燃镁合金局部有火星儿闪烁时,其本身都能迅速自我修复,阻止了燃烧的进一步进行,进一步加热,上述所有实施例制得的阻燃镁合金熔化后,其表面的氧化膜韧性都很好,有效地保护了熔融状态的镁合金液。The flame retardant tests of the flame retardant magnesium alloys prepared in all the above examples showed that the ignition points of the alloys were all 200°C higher than that of pure magnesium, and the average value of the ignition points reached over 850°C. In the process of testing the ignition point, when the flame-retardant magnesium alloy made by all the above-mentioned embodiments has local sparks, it can quickly self-repair, preventing further combustion and further heating. After the flame-retardant magnesium alloy is melted, the toughness of the oxide film on its surface is very good, which effectively protects the molten magnesium alloy liquid.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100701138A CN101629261B (en) | 2009-08-11 | 2009-08-11 | A kind of rare earth flame-retardant magnesium alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100701138A CN101629261B (en) | 2009-08-11 | 2009-08-11 | A kind of rare earth flame-retardant magnesium alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101629261A CN101629261A (en) | 2010-01-20 |
CN101629261B true CN101629261B (en) | 2010-12-08 |
Family
ID=41574539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100701138A Expired - Fee Related CN101629261B (en) | 2009-08-11 | 2009-08-11 | A kind of rare earth flame-retardant magnesium alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101629261B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102085387A (en) * | 2010-12-20 | 2011-06-08 | 苏州奥芮济医疗科技有限公司 | In vivo absorbable metal intervertebral fusion cage |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101092671A (en) * | 2007-07-05 | 2007-12-26 | 北京有色金属研究总院 | Low cost heat-resistant magnesium alloy containing rare earth, and prepartion method |
-
2009
- 2009-08-11 CN CN2009100701138A patent/CN101629261B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101092671A (en) * | 2007-07-05 | 2007-12-26 | 北京有色金属研究总院 | Low cost heat-resistant magnesium alloy containing rare earth, and prepartion method |
Non-Patent Citations (1)
Title |
---|
王志峰等.AZ91-1.0%RE镁合金及其高温热处理研究.《铸造》.2008,第57卷(第8期),第775-779. * |
Also Published As
Publication number | Publication date |
---|---|
CN101629261A (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103146943B (en) | Red impure copper refining agent and preparation method thereof | |
CN101158002A (en) | AE series heat-resistant die-casting magnesium alloy containing cerium and lanthanum | |
CN101440450A (en) | Preparation of lanthanum-containing AE heat resisting die-casting magnesium alloy | |
KR20180071361A (en) | Low cost high thermal conductive die-cast magnesium alloy and method of making same | |
CN102242298A (en) | Al and Zn strengthened Mg-Sn-RE-based high-toughness heat-resistant magnesium alloy | |
CN104630586B (en) | Flame-retardant and heat-resistant magnesium alloy and preparation method | |
CN101353747A (en) | Die-cast heat-resistant magnesium alloy and preparation method thereof | |
CN103602865A (en) | Copper-containing heat-resistant magnesium-tin alloy and preparation method thereof | |
CN101831581A (en) | High strength and toughness rare earth magnesium alloy | |
CN102534329A (en) | Preparation method for magnesium alloy with high strength and large plasticity | |
CN101469387B (en) | Yttrium-rich rare earth high-strength heat-resistant creep-resistant die-casting magnesium alloy | |
CN104099502A (en) | Magnesium lithium alloy, preparation method thereof and preparation method for magnesium lithium alloy plate | |
CN102296219A (en) | Mg-Sn-Sr-based magnesium alloy with high strength and toughness and heat resistance | |
CN101787473B (en) | A kind of strong and tough flame-retardant magnesium alloy and preparation method thereof | |
CN101376933B (en) | Flux for smelting rare earth-containing magnesium alloy and production method thereof | |
CN100529129C (en) | Mg-Gd-Y-Zr magnesium alloy refining flux and producing method thereof | |
CN108559875A (en) | A kind of High-strength heat-resistant aluminum alloy material and preparation method thereof for engine piston | |
CN106591659A (en) | High-strength and high-toughness cast rare earth magnesium alloy and preparation method thereof | |
CN106756363A (en) | A kind of corrosion-resistant, high temperature creep-resisting diecast magnesium alloy and preparation method thereof | |
CN102965556B (en) | Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof | |
CN104745845B (en) | Preparation method containing magnesium nickel-base alloy and nickel-base alloy containing magnesium | |
CN101629261B (en) | A kind of rare earth flame-retardant magnesium alloy and preparation method thereof | |
CN100564561C (en) | The preparation method of gadolinium-containing die-casting thermostable high-zinc magnesium alloy | |
CN103484742A (en) | High-strength damping magnesium alloy | |
CN103526092B (en) | Fire-retardant wrought magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101208 Termination date: 20120811 |