CN1587187A - Lanthanum hafnate base transparent ceramics and its preparing method - Google Patents
Lanthanum hafnate base transparent ceramics and its preparing method Download PDFInfo
- Publication number
- CN1587187A CN1587187A CN 200410053428 CN200410053428A CN1587187A CN 1587187 A CN1587187 A CN 1587187A CN 200410053428 CN200410053428 CN 200410053428 CN 200410053428 A CN200410053428 A CN 200410053428A CN 1587187 A CN1587187 A CN 1587187A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- transparent
- ceramics
- lanthanum hafnate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 78
- 229910052746 lanthanum Inorganic materials 0.000 title claims abstract description 23
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 15
- 238000005245 sintering Methods 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 6
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 6
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 6
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 6
- 238000007731 hot pressing Methods 0.000 claims abstract description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 5
- -1 rare earth ions Chemical class 0.000 claims abstract description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 26
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 238000000462 isostatic pressing Methods 0.000 claims description 12
- 239000004471 Glycine Substances 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000002834 transmittance Methods 0.000 abstract description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000002189 fluorescence spectrum Methods 0.000 description 10
- 238000001354 calcination Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000002050 diffraction method Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005049 combustion synthesis Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明涉及一种铪酸镧基透明陶瓷及其制备方法,属于透明陶瓷领域。其特征在于透明陶瓷的组成为:La2-2xRE2x Hf2O7;0≤x<0.1,RE为Ce,Pr,Eu,Tm,Tb等稀土离子,x=0时为纯铪酸镧。采用热压、热等静压和真空、氢气中烧结工艺可将上述材料制备成具有良好透明性的透明陶瓷。本发明提供的透明陶瓷密度高、吸收射线能力强,1mm厚经抛光的透明La2Hf2O7陶瓷在可见光波段的最大透过率大于70%;掺杂稀土激活离子在辐射探测和激光材料等领域具有潜在的应用前景。The invention relates to a lanthanum hafnate-based transparent ceramic and a preparation method thereof, belonging to the field of transparent ceramics. It is characterized in that the composition of the transparent ceramic is: La 2-2x RE 2x Hf 2 O 7 ; 0≤x<0.1, RE is Ce, Pr, Eu, Tm, Tb and other rare earth ions, and when x=0, it is pure lanthanum hafnate . The above materials can be prepared into transparent ceramics with good transparency by adopting hot pressing, hot isostatic pressing and sintering in vacuum and hydrogen. The transparent ceramic provided by the invention has high density and strong ability to absorb rays, and the maximum transmittance of the 1mm thick polished transparent La 2 Hf 2 O 7 ceramic in the visible light band is greater than 70%; and other fields have potential application prospects.
Description
技术领域technical field
本发明涉及一种铪酸镧基透明陶瓷及其制备方法,属于透明陶瓷领域。The invention relates to a lanthanum hafnate-based transparent ceramic and a preparation method thereof, belonging to the field of transparent ceramics.
背景技术Background technique
自1962年R.L.Coble首次报道成功制备半透明的氧化铝陶瓷(U.S.P.3026210),开辟了陶瓷材料新的应用领域。经过几十年的发展人们能够制备出光学性能优异的透明陶瓷,一些透明陶瓷的光学性能已经达到单晶相当的水平,而力学等性能则明显优于单晶。透明陶瓷已成为一种重要的光学材料在高温视窗、辐射探测、激光介质等领域得到了应用。Since R.L. Coble first reported the successful preparation of translucent alumina ceramics (U.S.P. 3026210) in 1962, a new application field of ceramic materials has been opened up. After decades of development, people have been able to prepare transparent ceramics with excellent optical properties. The optical properties of some transparent ceramics have reached the level of single crystals, while their mechanical properties are significantly better than single crystals. Transparent ceramics have become an important optical material and have been applied in high temperature windows, radiation detection, laser media and other fields.
目前已经发展了Yttralox:Nd(1973)[C.Greskovich,J.P.Chernoch.J.Appl.Phys.,1973,44(10):4599-4603.],YAG:Nd[A.Ikesue,T.Kinoshita,K.Kamata,et al.,J.Am.Ceramic Soc.,1995,78(4):1033-1037.],Y2O3:Nd(2001)[Ji.Lu,Ju.Lu,T.Murai,et al.,Jpn.J Appl.Phys.,2001,40(12A):L1277-1283.]等激光陶瓷,以及(Y,Gd)2O3:Eu[U.S.P.4421671]、Gd2O2S:Pr,Ce,F[Ito H,Yamada H,Yoshida M,et al,Jpn.J.Appl.Phys.1988,27(8):L1371-1373]、Gd3Ga5O12:Cr,Ce[U.S.P.5318722]等闪烁陶瓷。目前,激光陶瓷还处于试制阶段,而一些闪烁陶瓷基本上满足了医学X-CT的性能要求,逐步替代了原来的无机闪烁晶体广泛应用于医学X-CT探测器。Has developed Yttralox: Nd (1973) [C.Greskovich, JPChernoch.J.Appl.Phys., 1973, 44 (10): 4599-4603.], YAG: Nd [A.Ikesue, T.Kinoshita, K .Kamata, et al., J.Am.Ceramic Soc., 1995, 78(4):1033-1037.], Y 2 O 3 :Nd (2001) [Ji.Lu, Ju.Lu, T.Murai, et al., Jpn.J Appl.Phys., 2001, 40(12A): L1277-1283.] and other laser ceramics, and (Y, Gd) 2 O 3 :Eu[USP4421671], Gd 2 O 2 S:Pr , Ce, F[Ito H, Yamada H, Yoshida M, et al, Jpn.J.Appl.Phys.1988, 27(8):L1371-1373], Gd 3 Ga 5 O 12 :Cr, Ce[USP5318722] etc. flashing ceramics. At present, laser ceramics are still in the trial production stage, and some scintillation ceramics basically meet the performance requirements of medical X-CT, and gradually replace the original inorganic scintillation crystals and are widely used in medical X-CT detectors.
铪酸镧(La2Hf2O7)具有高密度、高有效原子序数和高射线吸收能力,而且多种激活离子在铪酸镧中都有较强的发光。因此,铪酸镧(La2Hf2O7)可以作为高吸收重闪烁体的基质材料用在辐射探测领域具。但是由于铪酸镧(La2Hf2O7)的熔点较高(~2300℃),难以通过传统的晶体生长方法制备大尺寸单晶,限制了其作为闪烁晶体的应用。Lanthanum hafnate (La 2 Hf 2 O 7 ) has high density, high effective atomic number and high ray absorption capacity, and various active ions have strong luminescence in lanthanum hafnate. Therefore, lanthanum hafnate (La 2 Hf 2 O 7 ) can be used as a host material of high absorption heavy scintillators in the field of radiation detection. However, due to the high melting point of lanthanum hafnate (La 2 Hf 2 O 7 ) (~2300°C), it is difficult to prepare large-sized single crystals by traditional crystal growth methods, which limits its application as scintillation crystals.
通过固态扩散的陶瓷烧结工艺可以在大大低于熔点的温度条件下通过特殊的烧结工艺将具有立方相等光学各项同性的材料制备成光学性能优异的透明陶瓷。相对于单晶,透明陶瓷还具有制备时间短、成本低,并可制备大尺寸和形状复杂和力学性能优异的透明陶瓷等优点。铪酸镧(La2Hf2O7)在2500K以下具有稳定的立方烧绿石结构,不存在双折射现象,因此有可能将其制备成透明陶瓷。传统上一般采用固相反应制备铪酸镧(La2Hf2O7)粉体,难以得到高烧结活性的粉体;目前还无将铪酸镧(La2Hf2O7)制备成透明陶瓷等光学材料的报道。通过热压、热等静压和真空、氢气中烧结工艺和燃烧合成的高烧结活性铪酸镧(La2Hf2O7)及其稀土离子掺杂的粉体,将其制备成透明陶瓷,开发出一种新的具有高密度、高射线吸收能力的光学透明陶瓷材料,就引出本发明的目的。The ceramic sintering process through solid-state diffusion can prepare materials with cubic equal optical isotropy into transparent ceramics with excellent optical properties through a special sintering process at a temperature much lower than the melting point. Compared with single crystals, transparent ceramics also have the advantages of short preparation time, low cost, and the ability to prepare transparent ceramics with large sizes, complex shapes, and excellent mechanical properties. Lanthanum hafnate (La 2 Hf 2 O 7 ) has a stable cubic pyrochlore structure below 2500K, and there is no birefringence, so it is possible to prepare it into transparent ceramics. Traditionally, solid-state reaction is generally used to prepare lanthanum hafnate (La 2 Hf 2 O 7 ) powder, and it is difficult to obtain powder with high sintering activity; so far, there is no preparation of lanthanum hafnate (La 2 Hf 2 O 7 ) into transparent ceramics. and other reports on optical materials. The highly sintered active lanthanum hafnate (La 2 Hf 2 O 7 ) and its rare earth ion-doped powder synthesized by hot pressing, hot isostatic pressing, vacuum, hydrogen sintering process and combustion are prepared into transparent ceramics, The development of a new optically transparent ceramic material with high density and high radiation absorption leads to the object of the present invention.
发明内容Contents of the invention
本发明的目的在于采用通过热压、热等静压和真空、氢气中烧结工艺制备一种透明铪酸镧陶瓷基透明陶瓷。The purpose of the present invention is to prepare a transparent lanthanum hafnate ceramic-based transparent ceramic by hot pressing, hot isostatic pressing, and sintering in vacuum and hydrogen.
透明陶瓷的组成为:La2-2xRE2x Hf2O7;0≤x<0.1,RE为Ce,Pr,Eu,Tm,Nd,Yb,Tb等稀土离子,x=0时为纯铪酸镧。The composition of transparent ceramics is: La 2-2x RE 2x Hf 2 O 7 ; 0≤x<0.1, RE is Ce, Pr, Eu, Tm, Nd, Yb, Tb and other rare earth ions, and when x=0, it is pure hafnium acid lanthanum.
本发明制备的铪酸镧透明陶瓷,其通式表示为:La2-2xRE2x Hf2O7;0≤x<0.1,RE为Ce,Pr,Eu,Tm,Nd,Yb,Tb等稀土离子,x=0时为纯铪酸镧。该透明陶瓷具有高的密度和射线吸收能力,在辐射探测和激光介质领域具有重要的应用前景。The lanthanum hafnate transparent ceramic prepared by the present invention has a general formula: La 2-2x RE 2x Hf 2 O 7 ; 0≤x<0.1, RE is Ce, Pr, Eu, Tm, Nd, Yb, Tb and other rare earths Ions, x = 0 for pure lanthanum hafnate. The transparent ceramic has high density and ray absorption capacity, and has important application prospects in the fields of radiation detection and laser media.
本发明使用的粉料为利用甘氨酸、乙二胺四乙酸(EDTA)等有机燃料与La(NO3)3、HfO(NO3)2、RE(NO3)3燃烧合成的粒径为10-100纳米粉料。 The powder used in the present invention is a particle size of 10- 100 nanometer powder.
本发明提供的铪酸镧透明陶瓷包括燃烧合成的粉料热处理、成型和烧结工艺。烧结过程的特征在于:The lanthanum hafnate transparent ceramic provided by the invention includes the powder heat treatment, molding and sintering processes of combustion synthesis. The sintering process is characterized by:
(1)成型工艺可采用干压或等静压程序,烧结工艺可采用真空或氢气下烧结或热等静压烧结或热压烧结;(1) The molding process can adopt dry pressing or isostatic pressing procedure, and the sintering process can adopt vacuum or hydrogen sintering or hot isostatic pressing sintering or hot pressing sintering;
(2)在1500-2000℃保温4-10小时,随炉冷却。(2) Keep warm at 1500-2000°C for 4-10 hours, and cool with the furnace.
采用甘氨酸和乙二胺四乙酸(EDTA)为燃料通过燃烧反应制备的粉料,通过热压、热等静压和真空、氢气中烧结等烧结工艺首次成功制得具有良好透明性的La2Hf2O7陶瓷,经抛光1mm厚的试样在可见光波段的最高透过率高于70%。得到的陶瓷烧结体具有立方的烧绿石结构。陶瓷的微结构中未检测到气孔,晶粒间结合紧密,晶界很薄,具有典型的透明陶瓷的微结构特征。掺入Tb3+、Ce3+、Pr3+、Tm3+、Eu3+等稀土离子在紫外或X射线激发下具有较强的光发射。Using glycine and ethylenediaminetetraacetic acid (EDTA) as fuel to prepare powder through combustion reaction, La 2 Hf with good transparency was successfully prepared for the first time by sintering processes such as hot pressing, hot isostatic pressing, vacuum, and sintering in hydrogen 2 O 7 ceramics, the highest transmittance of the polished 1mm thick sample in the visible light band is higher than 70%. The obtained ceramic sintered body had a cubic pyrochlore structure. No porosity was detected in the microstructure of the ceramics, the grains were closely bonded, and the grain boundaries were very thin, which had typical microstructure characteristics of transparent ceramics. Doping rare earth ions such as Tb 3+ , Ce 3+ , Pr 3+ , Tm 3+ , Eu 3+ has strong light emission under ultraviolet or X-ray excitation.
本发明提供的La2Hf2O7透明陶瓷特点是:La 2 Hf 2 O 7 transparent ceramics provided by the present invention are characterized by:
(1)La2Hf2O7透明陶瓷内没有可以用扫描电镜检测到的气孔,晶界之间结合紧密,晶界很薄。(1) There are no pores in La 2 Hf 2 O 7 transparent ceramics that can be detected by scanning electron microscopy, and the grain boundaries are closely combined and the grain boundaries are very thin.
(2)La2Hf2O7透明陶瓷在可见光波段(380-780nm)具有较高的透过率。(2) La 2 Hf 2 O 7 transparent ceramics have high transmittance in the visible light band (380-780nm).
(3)La2Hf2O7透明陶瓷具有高的密度(>7.8g/cm3)和高的射线吸收能力。(3) La 2 Hf 2 O 7 transparent ceramics have high density (>7.8g/cm 3 ) and high ray absorption capacity.
(4)掺杂Tb3+、Ce3+、Pr3+、Tm3+、Eu3+稀土的透明陶瓷在紫外或X射线激发下具有强的光发射。(4) Transparent ceramics doped with Tb 3+ , Ce 3+ , Pr 3+ , Tm 3+ , Eu 3+ rare earths have strong light emission under ultraviolet or X-ray excitation.
附图说明Description of drawings
图1是直径为1.5cm,厚度为1mm经抛光的透明La2Hf2O7陶瓷样品,表明其在可见光光波段是透明的。Figure 1 is a polished transparent La 2 Hf 2 O 7 ceramic sample with a diameter of 1.5 cm and a thickness of 1 mm, indicating that it is transparent in the visible light band.
图2厚度为1mm经抛光的透明La2Hf2O7陶瓷在可见光波段的透过率曲线,横坐标为波长,纵坐标透过率。Figure 2 is the transmittance curve of polished transparent La 2 Hf 2 O 7 ceramics with a thickness of 1mm in the visible light band, the abscissa is the wavelength, and the ordinate is the transmittance.
图3是透明La2Hf2O7陶瓷的X射线衍射谱,表明其为纯净的立方烧绿石结构的La2Hf2O7。Fig. 3 is the X-ray diffraction spectrum of the transparent La 2 Hf 2 O 7 ceramic, which shows that it is a pure cubic pyrochlore La 2 Hf 2 O 7 .
图4是透明La2Hf2O7陶瓷断口的SEM照片,未检测到气孔,晶粒间结合紧密,晶界很薄,具有典型的透明陶瓷的微结构特征。Figure 4 is the SEM photo of the fracture of transparent La 2 Hf 2 O 7 ceramics, no porosity was detected, the grains were closely bonded, the grain boundaries were very thin, and it had typical microstructure characteristics of transparent ceramics.
图5是La2Hf2O7:1%Eu3+透明陶瓷的(a)透过率曲线和(b)荧光光谱。图5(b)的横坐标为波长,纵坐标发光强度。Fig. 5 is (a) transmittance curve and (b) fluorescence spectrum of La 2 Hf 2 O 7 : 1% Eu 3+ transparent ceramic. The abscissa in Figure 5(b) is the wavelength, and the ordinate is the luminous intensity.
图6是La2Hf2O7:1%Tb透明陶瓷的(a)透过率曲线和(b)荧光光谱。Fig. 6 is (a) transmittance curve and (b) fluorescence spectrum of La 2 Hf 2 O 7 : 1% Tb transparent ceramics.
图7是La2Hf2O7:1%Tm透明陶瓷的(a)透过率曲线和(b)荧光光谱。Fig. 7 is (a) transmittance curve and (b) fluorescence spectrum of La 2 Hf 2 O 7 : 1% Tm transparent ceramics.
图8是La2Hf2O7:1%Ce透明陶瓷的(a)透过率曲线和(b)荧光光谱。Fig. 8 is (a) transmittance curve and (b) fluorescence spectrum of La 2 Hf 2 O 7 : 1% Ce transparent ceramics.
图9是La2Hf2O7:%1.5Pr透明陶瓷的(a)透过率曲线和(b)荧光光谱。Fig. 9 is (a) transmittance curve and (b) fluorescence spectrum of La 2 Hf 2 O 7 :% 1.5Pr transparent ceramics.
具体实施方式Detailed ways
下面通过实施例进一步阐明本发明实质性的特点和显著的进步,然而本发明绝非仅局限于所述的实施例。The substantive characteristics and remarkable progress of the present invention are further illustrated below through examples, but the present invention is by no means limited to the described examples.
实施例1Example 1
0.02摩尔的HfO(NO3)2和La(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,再经180MPa等静压成型后的成型密度为35%。等静压成型的制品在1850℃氢气气氛中保温6个小时。The powder prepared by combustion reaction of 0.02 mol of HfO(NO 3 ) 2 and La(NO 3 ) 3 with 0.054 mol of glycine was calcined at 800° C. for 2 hours to remove residual carbon and organic matters. The La 2 Hf 2 O 7 powder synthesized by calcination and combustion is first subjected to isoaxial pressing, and then subjected to 180MPa isostatic pressing to form a molding density of 35%. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1850°C for 6 hours.
得到的透明陶瓷的透过率曲线如图2(b)所示。性能如下:The transmittance curve of the obtained transparent ceramics is shown in Fig. 2(b). The performance is as follows:
密度(g/cm3) >7.8Density (g/cm 3 ) >7.8
晶相(X衍射分析) La2Hf2O7 Crystal phase (X diffraction analysis) La 2 Hf 2 O 7
气孔率(%) <0.1Porosity (%) <0.1
380-780nm波段最大透过率(%) >60380-780nm band maximum transmittance (%) >60
从SEM断口形貌分析可见,La2Hf2O7陶瓷的晶粒尺寸分布不均匀,基本上由直径~1的大晶粒和直径~5μm的大晶粒组成,但晶粒子之间紧密排列,晶界很薄,扫描电镜下观察不到气孔,从而导致材料透明,如图4(a)所示。From the SEM fracture morphology analysis, it can be seen that the grain size distribution of La 2 Hf 2 O 7 ceramics is uneven, basically composed of large grains with a diameter of ~1 and large grains with a diameter of ~5 μm, but the grains are closely arranged , the grain boundaries are very thin, and no pores can be observed under the scanning electron microscope, resulting in a transparent material, as shown in Figure 4(a).
实施例2Example 2
0.02摩尔的HfO(NO3)2和La(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,后经180MPa等静压成型后的成型密度为35%。等静压成型的制品在1750℃氢气气氛中保温6个小时。得到的透明陶瓷的透过率曲线如图2(a)所示,制得的透明La2Hf2O7陶瓷性能如下:The powder prepared by combustion reaction of 0.02 mol of HfO(NO 3 ) 2 and La(NO 3 ) 3 with 0.054 mol of glycine was calcined at 800° C. for 2 hours to remove residual carbon and organic matters. The La 2 Hf 2 O 7 powder synthesized by calcination and combustion is first subjected to isoaxial pressing, and then subjected to 180MPa isostatic pressing to form a molding density of 35%. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1750°C for 6 hours. The transmittance curve of the obtained transparent ceramics is shown in Figure 2(a), and the properties of the prepared transparent La 2 Hf 2 O 7 ceramics are as follows:
密度(g/cm3) >7.5Density (g/cm 3 ) >7.5
晶相(X衍射分析) La2Hf2O7 Crystal phase (X diffraction analysis) La 2 Hf 2 O 7
气孔率(%) <0.1Porosity (%) <0.1
380-780nm波段最大透过率(%) >40380-780nm band maximum transmittance (%) >40
实施例3Example 3
0.02摩尔的HfO(NO3)2和La(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,后经180MPa等静压成型后的成型密度为35%。等静压成型的制品在1900℃氢气气氛中保温6个小时。得到的透明陶瓷的透过率曲线如图2(c)所示,制得的透明La2Hf2O7陶瓷性能如下:The powder prepared by combustion reaction of 0.02 mol of HfO(NO 3 ) 2 and La(NO 3 ) 3 with 0.054 mol of glycine was calcined at 800° C. for 2 hours to remove residual carbon and organic matters. The La 2 Hf 2 O 7 powder synthesized by calcination and combustion is first subjected to isoaxial pressing, and then subjected to 180MPa isostatic pressing to form a molding density of 35%. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1900°C for 6 hours. The transmittance curve of the obtained transparent ceramics is shown in Figure 2(c), and the properties of the prepared transparent La 2 Hf 2 O 7 ceramics are as follows:
密度(g/cm3) >7.5Density (g/cm 3 ) >7.5
晶相(X衍射分析) La2Hf2O7 Crystal phase (X diffraction analysis) La 2 Hf 2 O 7
气孔率(%) <0.1Porosity (%) <0.1
380-780nm波段最大透过率(%) >60380-780nm band maximum transmittance (%) >60
实施例4Example 4
0.02摩尔的HfO(NO3)2和La(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,再经180MPa等静压成型后的成型密度为35%。等静压成型的制品在1850℃氢气气氛中保温12个小时。得到的透明陶瓷的透过率曲线如图2(d)所示,制得的透明La2Hf2O7陶瓷性能如下:The powder prepared by combustion reaction of 0.02 mol of HfO(NO 3 ) 2 and La(NO 3 ) 3 with 0.054 mol of glycine was calcined at 800° C. for 2 hours to remove residual carbon and organic matters. The La 2 Hf 2 O 7 powder synthesized by calcination and combustion is first subjected to isoaxial pressing, and then subjected to 180MPa isostatic pressing to form a molding density of 35%. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1850°C for 12 hours. The transmittance curve of the obtained transparent ceramics is shown in Figure 2(d), and the properties of the prepared transparent La 2 Hf 2 O 7 ceramics are as follows:
密度(g/cm3) >7.8Density (g/cm 3 ) >7.8
晶相(X衍射分析) La2Hf2O7 Crystal phase (X diffraction analysis) La 2 Hf 2 O 7
气孔率(%) <0.1Porosity (%) <0.1
380-780nm波段最大透过率(%) >70380-780nm band maximum transmittance (%) >70
实施例5Example 5
0.02摩尔的HfO(NO3)2和La(NO3)3与0.013摩尔乙二胺四乙酸(EDTA)燃烧合成的粉体在1000℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,后经180MPa等静压成型后。等静压成型的制品在1850℃氢气气氛中保温6个小时。The powder synthesized by combustion of 0.02 mol of HfO(NO 3 ) 2 and La(NO 3 ) 3 and 0.013 mol of ethylenediaminetetraacetic acid (EDTA) was calcined at 1000°C for 2 hours to remove residual carbon and organic matter. After calcination, the La 2 Hf 2 O 7 powder synthesized by combustion is first subjected to isoaxial pressing, and then isostatically pressed at 180 MPa. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1850°C for 6 hours.
制得的透明La2Hf2O7陶瓷具有良好的透光性,性能如下:The prepared transparent La 2 Hf 2 O 7 ceramics have good light transmittance, and the properties are as follows:
密度(g/cm3) >7.8Density (g/cm 3 ) >7.8
晶相(X衍射分析) La2Hf2O7 Crystal phase (X diffraction analysis) La 2 Hf 2 O 7
气孔率(%) <0.1Porosity (%) <0.1
380-780nm波段最大透过率(%) >40380-780nm band maximum transmittance (%) >40
从SEM断口形貌(图4(b))分析可见,La2Hf2O7陶瓷的晶粒尺寸分布均匀,晶粒粒径~4μm,但晶粒子之间紧密排列,晶界很薄,扫描电镜下观察不到气孔,从而导致材料透明。From the analysis of SEM fracture morphology (Fig. 4(b)), it can be seen that the grain size distribution of La 2 Hf 2 O 7 ceramics is uniform, and the grain size is ~4 μm, but the grains are closely arranged, and the grain boundaries are very thin. No pores were observed under the electron microscope, resulting in a transparent material.
实施例6Example 6
0.02摩尔的HfO(NO3)2、0.0198摩尔La(NO3)3、0.0002摩尔Eu(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。经煅烧处理燃烧合成的La2Hf2O7粉体先经等轴压,后180MPa等静压成型。等静压成型的制品在1900℃氢气气氛中保温6个小时。制得的透明La2Hf2O7:1%Eu陶瓷的380-780nm波段最大透过率>40%,透过率曲线和荧光光谱见图5。The powder prepared by combustion reaction of 0.02 mole of HfO(NO 3 ) 2 , 0.0198 mole of La(NO 3 ) 3 , 0.0002 mole of Eu(NO 3 ) 3 and 0.054 mole of glycine was calcined at 800°C for 2 hours to remove residual carbon and organic matter. After calcination, the La 2 Hf 2 O 7 powder synthesized by combustion is first subjected to isoaxial pressing, and then isostatically pressed at 180 MPa. The products formed by isostatic pressing are kept in a hydrogen atmosphere at 1900°C for 6 hours. The prepared transparent La 2 Hf 2 O 7 :1% Eu ceramics has a maximum transmittance in the 380-780nm band of >40%. The transmittance curve and fluorescence spectrum are shown in FIG. 5 .
实施例7Example 7
0.02摩尔的HfO(NO3)2、0.0198摩尔La(NO3)3、0.0002摩尔Tb(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。其它同实施例3。制得的透明La2Hf2O7:1%Tb陶瓷的380-780nm波段最大透过率>40%,透过率曲线和荧光光谱见图6。The powder prepared by combustion reaction of 0.02 mole of HfO(NO 3 ) 2 , 0.0198 mole of La(NO 3 ) 3 , 0.0002 mole of Tb(NO 3 ) 3 and 0.054 mole of glycine was calcined at 800°C for 2 hours to remove residual carbon and organic matter. Others are the same as embodiment 3. The prepared transparent La 2 Hf 2 O 7 :1% Tb ceramic has a maximum transmittance in the 380-780nm band > 40%. The transmittance curve and fluorescence spectrum are shown in FIG. 6 .
实施例8Example 8
0.02摩尔的HfO(NO3)2、0.0198摩尔La(NO3)3、0.0002摩尔Tm(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。其它同实施例3。制得的透明La2Hf2O7:1%Tm陶瓷的380-780nm波段最大透过率>40%,透过率曲线和荧光光谱见图7。The powder prepared by combustion reaction of 0.02 mole of HfO(NO 3 ) 2 , 0.0198 mole of La(NO 3 ) 3 , 0.0002 mole of Tm(NO 3 ) 3 and 0.054 mole of glycine was calcined at 800°C for 2 hours to remove residual carbon and organic matter. Others are the same as embodiment 3. The prepared transparent La 2 Hf 2 O 7 :1% Tm ceramic has a maximum transmittance in the 380-780nm band > 40%. The transmittance curve and fluorescence spectrum are shown in FIG. 7 .
实施例9Example 9
0.02摩尔的HfO(NO3)2、0.0198摩尔La(NO3)3、0.0002摩尔Ce(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。其它同实施例3。制得的透明La2Hf2O7:1%Ce陶瓷的380-780nm波段最大透过率>40%,透过率曲线和荧光光谱见图8。The powder prepared by combustion reaction of 0.02 mole of HfO(NO 3 ) 2 , 0.0198 mole of La(NO 3 ) 3 , 0.0002 mole of Ce(NO 3 ) 3 and 0.054 mole of glycine was calcined at 800°C for 2 hours to remove residual carbon and organic matter. Others are the same as embodiment 3. The maximum transmittance in the 380-780nm band of the prepared transparent La 2 Hf 2 O 7 :1% Ce ceramics is >40%. The transmittance curve and fluorescence spectrum are shown in FIG. 8 .
实施例10Example 10
分别0.02摩尔的HfO(NO3)2、0.0197摩尔La(NO3)3、0.0003摩尔Pr(NO3)3与0.054摩尔甘氨酸燃烧反应制备的粉体在800℃条件下煅烧2个小时除去残留的碳和有机物。其它同实施例3。制得的透明La2Hf2O7:1.5%Pr陶瓷的380-780nm波段最大透过率>40%,透过率曲线和荧光光谱见图9。The powder prepared by combustion reaction of 0.02 mole of HfO(NO 3 ) 2 , 0.0197 mole of La(NO 3 ) 3 , 0.0003 mole of Pr(NO 3 ) 3 and 0.054 mole of glycine was calcined at 800°C for 2 hours to remove residual carbon and organic matter. Others are the same as embodiment 3. The prepared transparent La 2 Hf 2 O 7 :1.5% Pr ceramic has a maximum transmittance in the 380-780nm band >40%. The transmittance curve and fluorescence spectrum are shown in FIG. 9 .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410053428 CN1289439C (en) | 2004-08-04 | 2004-08-04 | Lanthanum hafnate base transparent ceramics and its preparing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410053428 CN1289439C (en) | 2004-08-04 | 2004-08-04 | Lanthanum hafnate base transparent ceramics and its preparing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1587187A true CN1587187A (en) | 2005-03-02 |
CN1289439C CN1289439C (en) | 2006-12-13 |
Family
ID=34602852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410053428 Expired - Fee Related CN1289439C (en) | 2004-08-04 | 2004-08-04 | Lanthanum hafnate base transparent ceramics and its preparing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1289439C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100391896C (en) * | 2005-05-13 | 2008-06-04 | 中国科学院上海硅酸盐研究所 | Hafnium oxide-gadolinium oxide solid solution transparent ceramic scintillation material and its preparation method and application |
CN101445725B (en) * | 2008-12-30 | 2012-05-09 | 华东师范大学 | Hafnate luminescent material and preparation method thereof |
CN101580393B (en) * | 2009-05-21 | 2012-05-30 | 中国科学院上海硅酸盐研究所 | Preparation method of transparent yttrium hafnate ceramics |
CN102674837A (en) * | 2012-05-22 | 2012-09-19 | 长春理工大学 | Er3+: Lu2O3 transparent ceramics |
CN102838352A (en) * | 2005-12-13 | 2012-12-26 | 通用电气公司 | Polycrystalline transparent ceramic articles and method of making same |
CN101343173B (en) * | 2007-05-08 | 2013-09-11 | 肖特公开股份有限公司 | Optoceramics, optical elements manufactured thereof and their use as imaging optics |
US8872119B2 (en) | 2008-12-30 | 2014-10-28 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
US8877093B2 (en) | 2008-12-30 | 2014-11-04 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
CN104535117A (en) * | 2015-01-29 | 2015-04-22 | 中国科学院上海硅酸盐研究所 | Compound sensor and preparation method thereof |
US9175216B2 (en) | 2008-12-30 | 2015-11-03 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
US9183962B2 (en) | 2008-12-30 | 2015-11-10 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
CN113045316A (en) * | 2021-04-29 | 2021-06-29 | 中国科学院上海硅酸盐研究所 | Transparent ceramic material capable of absorbing ultraviolet light and preparation method thereof |
-
2004
- 2004-08-04 CN CN 200410053428 patent/CN1289439C/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100391896C (en) * | 2005-05-13 | 2008-06-04 | 中国科学院上海硅酸盐研究所 | Hafnium oxide-gadolinium oxide solid solution transparent ceramic scintillation material and its preparation method and application |
CN102838352A (en) * | 2005-12-13 | 2012-12-26 | 通用电气公司 | Polycrystalline transparent ceramic articles and method of making same |
CN101343173B (en) * | 2007-05-08 | 2013-09-11 | 肖特公开股份有限公司 | Optoceramics, optical elements manufactured thereof and their use as imaging optics |
CN101445725B (en) * | 2008-12-30 | 2012-05-09 | 华东师范大学 | Hafnate luminescent material and preparation method thereof |
US8872119B2 (en) | 2008-12-30 | 2014-10-28 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
US8877093B2 (en) | 2008-12-30 | 2014-11-04 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
US9175216B2 (en) | 2008-12-30 | 2015-11-03 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
US9183962B2 (en) | 2008-12-30 | 2015-11-10 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic scintillator body and scintillation device |
CN101580393B (en) * | 2009-05-21 | 2012-05-30 | 中国科学院上海硅酸盐研究所 | Preparation method of transparent yttrium hafnate ceramics |
CN102674837A (en) * | 2012-05-22 | 2012-09-19 | 长春理工大学 | Er3+: Lu2O3 transparent ceramics |
CN104535117A (en) * | 2015-01-29 | 2015-04-22 | 中国科学院上海硅酸盐研究所 | Compound sensor and preparation method thereof |
CN113045316A (en) * | 2021-04-29 | 2021-06-29 | 中国科学院上海硅酸盐研究所 | Transparent ceramic material capable of absorbing ultraviolet light and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1289439C (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103396121B (en) | Novel transparent glitter ceramic with garnet structure and preparation method thereof | |
CN1289439C (en) | Lanthanum hafnate base transparent ceramics and its preparing method | |
CN102126857B (en) | Method for preparing transparent calcium fluoride ceramic | |
CN103601484B (en) | Preparation method for lutetium-aluminum garnet-based transparent ceramic | |
CN103228762A (en) | Light emissive ceramic laminate and method of making same | |
CN1837142A (en) | Lutetium aluminum garnet-based transparent ceramic and preparation method thereof | |
CN1724465A (en) | The yttrium aluminum garnet transparent ceramic material and the preparation method of codope | |
CN113149632B (en) | A high-hardness YAG-based composite structure transparent ceramic and its preparation method | |
CN111925202B (en) | A kind of yttrium aluminum garnet powder without sintering aid, yttrium aluminum garnet ceramic, its preparation method and application | |
US7081425B2 (en) | Aluminum nitride sintered body | |
CN102815941B (en) | Rare-earth-ion-doped lanthanum gadolinium zirconate transparent ceramic material and preparation method thereof | |
Xiong et al. | Influence of sintering conditions on the microstructure and optical properties of Eu: CaF2 transparent ceramic | |
CN101580393B (en) | Preparation method of transparent yttrium hafnate ceramics | |
CN100336777C (en) | Method for preparing lutecia based transparent ceramics | |
CN106867523A (en) | A kind of porous long after glow luminous material and preparation method | |
CN1256300C (en) | Process for preparing yttrium oxide based transparent ceramic material | |
CN108046768A (en) | Gadolinium gallium aluminium scintillating ceramic of codope rare earth ion and preparation method thereof | |
CN1587196A (en) | High light output quick attenuation flash ceramic and its preparing method | |
US8080175B2 (en) | Scintillator having a MgAI2O4 host lattice | |
CN100391896C (en) | Hafnium oxide-gadolinium oxide solid solution transparent ceramic scintillation material and its preparation method and application | |
CN1259464C (en) | Method for growing cerium-doped yttrium aluminum garnet crystal | |
JP5750142B2 (en) | Method for producing modified aluminum nitride sintered body | |
JP2020105064A (en) | Lutetium-aluminum-garnet sintered body containing praseodymium and method for producing the same | |
Jiang et al. | Synthesis of Y2O3-MgO nanopowder and infrared transmission of the sintered nanocomposite | |
CN102557624A (en) | Preparation method of zirconic acid yttrium transparent ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20061213 Termination date: 20140804 |
|
EXPY | Termination of patent right or utility model |