CN1553708A - Method for detecting dynamic image pixel with adjustable critical value - Google Patents
Method for detecting dynamic image pixel with adjustable critical value Download PDFInfo
- Publication number
- CN1553708A CN1553708A CNA031372066A CN03137206A CN1553708A CN 1553708 A CN1553708 A CN 1553708A CN A031372066 A CNA031372066 A CN A031372066A CN 03137206 A CN03137206 A CN 03137206A CN 1553708 A CN1553708 A CN 1553708A
- Authority
- CN
- China
- Prior art keywords
- value
- critical value
- field
- pixel
- missing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 44
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000001914 filtration Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 abstract description 44
- 238000010586 diagram Methods 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 7
- 230000000873 masking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明为一种临界值可调的动态图象像素检测方法。它通过图象中动态像素的信息界定一可变动的临界值,并以之判断图象中缺失像素(missing pixels)是位于静态区域(static region)还是非静态区域(non-static region)。若缺失像素邻近参考场动态大,便使用小的临界值;若缺失像素邻近参考场动态小,便使用较大的临界值,以排除噪声造成的错误判断,并分别以前后场内插法(inter-field interpolation)与周围场内插法(intra-field interpolation)达到最佳重建缺失像素的目的。
The present invention is a dynamic image pixel detection method with adjustable critical value. It defines a variable critical value through the information of dynamic pixels in the image, and uses it to judge whether the missing pixels in the image are located in a static region or a non-static region. If the dynamics of the missing pixel adjacent to the reference field are large, a small critical value is used; if the dynamics of the missing pixel adjacent to the reference field are small, a larger critical value is used to eliminate the erroneous judgment caused by noise, and the purpose of optimally reconstructing the missing pixels is achieved by using inter-field interpolation and intra-field interpolation respectively.
Description
技术领域technical field
本发明为一种动态图象像素检测的方法,通过一可变动的临界值判断图象中缺失像素是位于静态区域还是非静态区域,以排除噪声造成的错误判断,并以内插法达到重建缺失像素的目的。The present invention is a dynamic image pixel detection method, which judges whether the missing pixel in the image is located in a static area or a non-static area through a variable critical value, so as to eliminate the wrong judgment caused by noise, and achieve reconstruction of missing pixels by interpolation The purpose of the pixel.
背景技术Background technique
说明书正文。The text of the manual.
现有技术中,动态调整算法(motion-adaptive algorithm)是以周围邻近像素之间的差异判断图象中缺失像素位于静态区域还是非静态区域。之后,如果判断其缺失像素位于静态区域,便以一利用邻近场(neighboringfields)像素信息的前后场内插法(inter-field interpolation)来重建此缺失像素;如果判断缺失像素位于非静态区域,就以同一个场(field)邻近原扫描线(neighboring original scan lines)信息的周围场内插法(intra-field interpolation)来重建此缺失像素。In the prior art, a dynamic adjustment algorithm (motion-adaptive algorithm) judges whether a missing pixel in an image is located in a static area or a non-static area based on the difference between surrounding adjacent pixels. Afterwards, if it is judged that the missing pixel is located in a static area, the missing pixel will be reconstructed by an inter-field interpolation method using the pixel information of adjacent fields (neighboring fields); if it is judged that the missing pixel is located in a non-static area, The missing pixel is reconstructed by intra-field interpolation of information from neighboring original scan lines in the same field.
请参阅图1A中现有技术的前后场内插法示意图。其中缺失像素(missing pixel)10发生于图中所示的X,而所示○的此缺失像素10的前时间像素11与后时间像素13为原本存在的像素,其各时间点此像素的坐标为(x,y),前时间像素11、缺失像素10与后时间像素13为三个不同时间的显示,若要重建此缺失像素10,此前后场内插法将前时间像素11与后时间像素13的图象信息作平均得到缺失像素10的重建值,即:Please refer to FIG. 1A for a schematic diagram of the front and back field interpolation method in the prior art. Wherein the missing pixel (missing pixel) 10 occurs at the X shown in the figure, and the
其中,F(x,y,n-1)为前像素11的像素函数式,F(x,y,n+1)为后时间像素13的像素函数式。Wherein, F(x, y, n−1) is the pixel function formula of the
请参阅图1B现有技术的周围场内插法示意图。其中缺失像素10位于图中所示的×,而所示○的第一位置像素14与第二位置像素16为原本存在的像素,其第一位置像素14、缺失像素10与第二位置像素16的坐标分别为(x,y-1)、(x,y)与(x,y+1),为三个上下像素的显示,若要重建缺失像素10,以一周围内插法将第一位置像素14与第二位置像素16的图象信息作平均得到缺失像素10的重建值,即:Please refer to FIG. 1B for a schematic diagram of the surrounding field interpolation method in the prior art. Wherein the
其中,F(x,y-1,n)为第一位置像素14的像素函数式,F(x,y+1,n)为第二位置像素16的像素函数式。Wherein, F(x, y−1, n) is the pixel function formula of the
欲确定缺失像素10位于静态还是非静态区域,即利用此缺失像素10周围邻近像素的信息差异来判断,若差异值小于一临界值(threshold),表示此缺失像素10周围像素为静态,也判断此缺失像素10为静态;若差异值大于或等于此一临界值,则周围像素为非静态,即判断此缺失像素10位于动态区域。To determine whether the
请参阅图2现有技术的计算差异值方法示意图。本图所示为上述差异值的计算,利用图中所示为×的缺失像素20的前时间场21与后时间场23中所示为○的周围无缺失像素计算差值的绝对值总和(sum of absolutedifference,SAD),即将上述图1A前后时间场的前后内插法与图1B上下位置的周围内插法连结运用,其运算式如下:Please refer to FIG. 2 for a schematic diagram of a method for calculating difference values in the prior art. This figure shows the calculation of the above-mentioned difference value, using the
其中Diff(x,y,n)为差异值函数式,∑|f(i,j,n-1)-f(i,j,n+1)|为缺失像素20前后时间场的周围像素计算差值的绝对值总和,函数式f(i,j,n-1)表示在图2所示的前时间场21,函数式为F(n-1)内的各像素函数,包含各像素的信息,f(i,j,n+1)则表示在后时间场23,函数式为F(n+1)内的各像素函数,而(i,j)则表示前后时间场像素的位置,位置包括有(x,y-2)、(x,y)、(x,y+2)、(x-1,y)与(x+1,y)。Among them, Diff(x, y, n) is the difference value function formula, ∑|f(i, j, n-1)-f(i, j, n+1)| is calculated for the surrounding pixels of the time field before and after the
图3为现有技术的动态像素调整运算流程图。如图所示,F(n)为一时间场函数式,动态像素调整运算开始时,此时间场函数式F(n)被解交错(deinterlaced)计算(步骤301),一解交错处理器(deinterlacingprocessor)输入时间场F(n)、前时间场F(n-1)与一函数式为F(n+1)的后时间场(步骤303),之后,扫描出图象中时间场F(n)中的缺失像素,并在一光栅序列(raster order)中执行内插(步骤305),也就是由图象的左上至右下(top-left to bottom-right)循序扫描,之后以图2所述的运算式计算环绕缺失像素周围像素的差异值(步骤307),并与一临界值比较来判断缺失像素是位于静态或非静态区域(步骤309),如果差异值小于此临界值,便以图1A所述的前后场内插法重建(步骤311),若差异值大于或等于临界值,便以图1B所述的周围场内插法重建(步骤313),再输出重建的解交错像素(步骤315),之后判断是否结束此场函数式F(n)的解交错运算(步骤317),若否,即继续扫描缺失像素,并在一光栅循序中执行内插305,直到时间场F(n)内缺失像素完全重建;若是,即表示结束此场函数式F(n)的解交错运算(步骤319)。FIG. 3 is a flowchart of a dynamic pixel adjustment operation in the prior art. As shown in the figure, F(n) is a time field function formula. When the dynamic pixel adjustment operation starts, the time field function formula F(n) is calculated by deinterlacing (step 301), and a deinterlacing processor ( deinterlacingprocessor) input time field F (n), front time field F (n-1) and a function formula is the back time field (step 303) of F (n+1), after that, scan out the time field F in the image ( n), and perform interpolation (step 305) in a raster order (raster order), that is, sequential scanning from top-left to bottom-right (top-left to bottom-right) of the image, and then The calculation formula described in 2 calculates the difference value of the pixels surrounding the missing pixel (step 307), and compares it with a critical value to determine whether the missing pixel is located in a static or non-static area (step 309), if the difference value is smaller than the critical value, Then rebuild with the front and back field interpolation method described in FIG. 1A (step 311), if the difference value is greater than or equal to the critical value, then rebuild with the surrounding field interpolation method described in FIG. 1B (step 313), and then output the reconstructed solution Interleave pixels (step 315), then judge whether to end the de-interleaving operation of this field function F(n) (step 317), if not, continue to scan missing pixels, and perform interpolation 305 in a raster sequence until time The missing pixels in the field F(n) are completely reconstructed; if yes, the de-interleaving operation of the field function F(n) is ended (step 319 ).
以上所述为现有技术动态像素调整运算流程,此方法简单又易实施,但仅以一固定的临界值来判断缺失像素位于静态或非静态区域可能会导致将图象中区域性的变化作错误的判断,比如图象因资料格式转换造成的噪声,这样的噪声可能会使邻近像素的差异值大于该临界值,将原本位于静态区域应使用前后场内插法的缺失像素,而使用周围场内插法错误地重建此缺失像素,如果只有一两个缺失像素因错误判断重建还不会有太大的影响,若有很多需要重建的像素便会造成相当程度的图象闪烁现象。The above is the operation process of dynamic pixel adjustment in the prior art. This method is simple and easy to implement, but only using a fixed critical value to judge whether the missing pixel is located in a static or non-static area may cause regional changes in the image to be regarded as regional changes. Wrong judgment, such as the noise caused by image format conversion, such noise may cause the difference value of adjacent pixels to be greater than the critical value, and the missing pixels originally located in the static area should use the front and back field interpolation method, and use the surrounding The intra-field interpolation method wrongly reconstructs the missing pixels. If there are only one or two missing pixels due to wrong judgment, the reconstruction will not have much impact. If there are many pixels to be reconstructed, it will cause a considerable degree of image flickering.
为解决上述因使用固定临界值而造成图象中区域性变化的错误判断,而造成图象缺失像素的错误重建,本发明提出一种临界值可调的动态图象像素检测方法以达到正确的静态与非静态区域判断。In order to solve the above-mentioned erroneous judgment of regional changes in the image caused by the use of a fixed critical value, resulting in erroneous reconstruction of missing pixels in the image, the present invention proposes a dynamic image pixel detection method with an adjustable critical value to achieve correct Static and non-static area judgment.
发明内容Contents of the invention
本发明为一种临界值可调的动态图象像素检测方法。是以图象中动态像素的信息界定一可变动的临界值,并以缺失像素邻近周围像素的差异与此临界值作比较,作为图象中缺失像素是位于静态区域还是非静态区域的判断,更可通过变动临界值来排除噪声造成的错误判断,再分别以前后场内插法与周围场内插法达到最佳重建缺失像素的目的。The invention is a dynamic image pixel detection method with adjustable critical value. A variable critical value is defined by the information of dynamic pixels in the image, and the difference between the adjacent pixels of the missing pixel and the surrounding pixels is compared with this critical value to determine whether the missing pixel in the image is located in a static area or a non-static area. It is also possible to eliminate erroneous judgments caused by noise by changing the critical value, and then achieve the best reconstruction of missing pixels by the front and back field interpolation method and the surrounding field interpolation method.
为达到上述目的,本发明临界值可调的动态图象像素检测方法是以解交错计算一缺失像素所在的时间场,并在一解交错处理器中输入该时间场与复数个参考场,再计算该参考场的变动量,然后依照该参考场的变动程度决定一临界值,将该缺失像素扫描出并计算环绕该缺失像素周围像素的差异值,再与先前决定的临界值比较来判断以前后场内插法或以周围场内插法重建该缺失像素。最后输出重建的解交错像素,并判断是否结束该时间场的解交错运算或重复步骤达到重建缺失像素的目的。In order to achieve the above object, the dynamic image pixel detection method with adjustable critical value of the present invention is to calculate the time field where a missing pixel is located by deinterlacing, and input the time field and a plurality of reference fields in a deinterlacing processor, and then Calculate the change amount of the reference field, and then determine a critical value according to the change degree of the reference field, scan out the missing pixel and calculate the difference value of the surrounding pixels around the missing pixel, and then compare it with the previously determined critical value to judge the previous The missing pixels are reconstructed by back field interpolation or by surrounding field interpolation. Finally, the reconstructed de-interlaced pixels are output, and it is judged whether to end the de-interlaced operation of the time field or to repeat steps to achieve the purpose of reconstructing missing pixels.
附图说明Description of drawings
有关本发明的详细内容及技术,现参照附图说明如下:Relevant detailed content and technology of the present invention, now refer to accompanying drawing and explain as follows:
图1A为现有技术的前后场内插法示意图;FIG. 1A is a schematic diagram of front and back field interpolation methods in the prior art;
图1B为现有技术的周围场内插法示意图;FIG. 1B is a schematic diagram of the surrounding field interpolation method in the prior art;
图2为现有技术的计算差异值方法示意图;Fig. 2 is a schematic diagram of a method for calculating difference values in the prior art;
图3为现有技术的动态像素调整运算流程图;Fig. 3 is a flow chart of dynamic pixel adjustment operation in the prior art;
图4为本发明实施例使用变动临界值的动态像素调整运算流程图;FIG. 4 is a flowchart of a dynamic pixel adjustment operation using a variable threshold value according to an embodiment of the present invention;
图5为本发明实施例的变动临界值界定示意图;FIG. 5 is a schematic diagram of defining a variable threshold value according to an embodiment of the present invention;
图6为本发明实施例缺失像素的参考场示意图;FIG. 6 is a schematic diagram of a reference field of a missing pixel in an embodiment of the present invention;
图7为本发明实施例的边界导向周围图帧内插法示意图;FIG. 7 is a schematic diagram of a border-guided surrounding image frame interpolation method according to an embodiment of the present invention;
图8为本发明实施例的动态图象像素调整运算流程图。FIG. 8 is a flowchart of a dynamic image pixel adjustment operation according to an embodiment of the present invention.
符号说明Symbol Description
10.........................缺失像素;10....................missing pixels;
11.........................前时间像素;11....................Pixels of previous time;
13.........................后时间像素;13....................back time pixels;
14.........................第一位置像素;14..............................first position pixel;
16.........................第二位置像素;16..............Second position pixel;
20.........................缺失像素;20........... missing pixels;
21.........................前时间场;21....................Previous time field;
23.........................后时间场;23 .................... post-time field;
61.........................第一时间场;61.................................First time field;
63.........................第二时间场;63....................Second time field;
65.........................第三时间场;65.....................the third time field;
67.........................第四时间场;67....................................Fourth time field;
70.........................缺失像素;70..............missing pixels;
71.........................第一邻近像素;71.....................first neighboring pixel;
72.........................第二邻近像素;72....................Second adjacent pixel;
73.........................第三邻近像素;73.....................the third adjacent pixel;
74.........................第四邻近像素;74.....................the fourth adjacent pixel;
75.........................第五邻近像素;75....................Fifth Neighboring Pixel;
76.........................第六邻近像素;76...................Sixth adjacent pixel;
D1.........................第一差异值;D1..................... the first difference value;
D2.........................第二差异值;D2................................Second difference value;
Th1........................第一临界值;Th1.....................First critical value;
Th2........................第二临界值;Th2....................................Second critical value;
U1.........................第一差值;U1.....................the first difference;
U2.........................第二差值;U2................................Second difference;
U3.........................第三差值;U3.....................the third difference;
Diff.......................差异值;Diff.................................difference value;
FieldDiff..................场差异值。FieldDiff.............Field difference value.
具体实施方式Detailed ways
本发明提供一可调式临界值检测图象像素为静态或非静态的方法,以下通过实施例的流程图进行说明。The present invention provides a method for detecting whether an image pixel is static or non-static with an adjustable threshold value, which will be described below through the flow chart of the embodiment.
图4为本发明实施例使用变动临界值的动态像素调整运算流程图。是以图象中动态像素的信息界定一可变动的临界值,并以缺失像素(missingpixel)邻近周围像素的差异与此临界值作比较,以作为图象中缺失像素是位于静态区域还是非静态区域的判断,此缺失像素为被解交错的图象于图象图帧转换到时间场(frame-to-field conversion)时所丢弃的像素。如图所示,F(n)为一时间场函数式,动态像素调整运算开始时,此时间场函数式F(n)被解交错计算(步骤401),一解交错处理器输入时间场F(n)及邻近周围的参考场(步骤403),之后,算出邻近周围参考场的变化量(步骤405),以动态调整界定出适当的临界值(步骤407)(其方法于本发明实施例图5详细说明),再扫描出图象中时间场F(n)中的缺失像素,并在一光栅序列中执行内插(步骤409),也就是由图象的左上至右下(top-left tobottom-right)循序扫描。FIG. 4 is a flowchart of a dynamic pixel adjustment operation using a variable threshold value according to an embodiment of the present invention. A variable critical value is defined by the information of dynamic pixels in the image, and the difference between the surrounding pixels of the missing pixel (missing pixel) is compared with this critical value to determine whether the missing pixel in the image is located in a static area or a non-static area The judgment of the area, the missing pixels are the pixels discarded when the de-interlaced image is converted from the image frame to the time field (frame-to-field conversion). As shown in the figure, F(n) is a time field function formula. When the dynamic pixel adjustment operation starts, the time field function formula F(n) is deinterleaved and calculated (step 401), and a deinterleave processor inputs the time field F (n) and adjacent surrounding reference fields (step 403), after that, calculate the variation of adjacent surrounding reference fields (step 405), and define an appropriate critical value with dynamic adjustment (step 407) (the method is described in the embodiment of the present invention Fig. 5 explains in detail), then scan out the missing pixels in the time field F(n) in the image, and perform interpolation (step 409) in a raster sequence, that is, from the upper left to the lower right of the image (top- left to bottom-right) sequential scanning.
为了计算缺失像素周围的区域为静态或非静态,以图2所述的公式(3)
请参阅图5本发明实施例的变动临界值界定示意图,即为图4流程图所示的界定变动临界值的步骤(步骤405至步骤407)。先计算该扫描出的缺失像素邻近周围参考场像素的变化量(步骤405),判断是否参考场的动态为大,即为一高变化图象(步骤501),若是,因掩蔽效应(masking effect)的关系,图象中噪声相对于此高变化图象,其影响就小,所以就选择使用小临界值(步骤503);若否,即参考场动态为小,为一低变化图象,因助长效应(facilitation effeet)的关系,图象中噪声在低变化图象中影响就显得大,故要选择大临界值(步骤505)。以上所述选择出的临界值,为该动态像素调整运算的流程。Please refer to FIG. 5 , which is a schematic diagram of defining a variable threshold value according to an embodiment of the present invention, which is the steps of defining a variable threshold value (step 405 to step 407 ) shown in the flow chart of FIG. 4 . First calculate the amount of change (step 405) of the missing pixels adjacent to the surrounding reference field pixels of the scan, and judge whether the dynamics of the reference field is large, which is a high-change image (step 501), if so, because of the masking effect (masking effect) ), the noise in the image has little influence relative to the high-variation image, so it is selected to use a small critical value (step 503); if not, the reference field dynamics is small, and it is a low-variation image. Due to the facilitation effect (facilitation effeet), the influence of the noise in the image appears to be large in the low-variation image, so a large critical value should be selected (step 505). The critical value selected above is the flow of the dynamic pixel adjustment operation.
请参阅图6本发明实施例缺失像素的参考场示意图,利用缺失像素邻近周围参考场的差异算出变化量,其中,若缺失像素(missing pixel)位于上层场,即图示的第三时间场65内,也就是为当前的时间场,标示符号为X,其参考场则为邻近的时间场。如图所示的复数个参考场与当前的时间场,第一时间场61,函数式为F(n-2),第二时间场63,函数式为F(n-1),缺失像素在内的第三时间场65,函数式为F(n),第四时间场67,函数式为F(n+1),本实施例以此四个时间场的差异来判断为一高变化图象还是低变化图象,其场差异值FieldDiff使用其各前后场间的差异值绝对值总和(SAD),运算式如下:Please refer to FIG. 6 for a schematic diagram of the reference field of the missing pixel in the embodiment of the present invention. The difference between the adjacent reference fields of the missing pixel is used to calculate the amount of change. Wherein, if the missing pixel (missing pixel) is located in the upper field, that is, the third time field 65 shown in the figure Inside, that is, the current time field, marked with X, and its reference field is the adjacent time field. As shown in the figure, the plurality of reference fields and the current time field, the first time field 61, the function formula is F(n-2), the second time field 63, the function formula is F(n-1), and the missing pixels are in In the third time field 65, the function formula is F(n), and in the fourth time field 67, the function formula is F(n+1). In this embodiment, the difference between the four time fields is judged as a high-change graph If the image is still a low-variation image, its field difference value FieldDiff uses the sum of the absolute values of the difference values (SAD) between its front and back fields, and the calculation formula is as follows:
其中F(n)与F(n-2)为上层场(top field),F(n-1)与F(n+1)为下层场(bottom field),M与N分别为图象中图帧(frame)的高度与宽度,图中所示的各个原像素与缺失像素,符号分别为○与×,位置坐标表示为(x,y)等。通过此场差异值FieldDiff来界定临界值大小,是由另一动态临界值与此场差异值FieldDiff比较而决定临界值大小,当场差异值FieldDiff大于或等于一预先设定的动态临界值,则判断这复数个时间场的图象为高变化图象,就定为小的临界值;当场差异值FieldDiff小于动态临界值,则判断这复数个时间场的图象为低变化图象,就定为大的临界值。Among them, F(n) and F(n-2) are the upper field (top field), F(n-1) and F(n+1) are the lower field (bottom field), and M and N are the images in the image respectively. The height and width of the frame, the symbols of each original pixel and missing pixel shown in the figure are ○ and × respectively, and the position coordinates are expressed as (x, y) and so on. The threshold value is defined by the field difference value FieldDiff, and the threshold value size is determined by comparing another dynamic threshold value with this field difference value FieldDiff. When the field difference value FieldDiff is greater than or equal to a preset dynamic threshold value, it is judged The images of these plural time fields are high-variation images, and it is determined as a small critical value; the difference value FieldDiff on the spot is smaller than the dynamic critical value, and then it is judged that the images of these plural time fields are low-variation images, and it is determined as a low-variation image. large critical value.
请继续参阅图6本发明实施例的差异值计算示意图。为了改善判断图象是否静态的准确度,本发明在图象画面中使用上层场与下层场中的四个时间场来计算差异值,分别是第一时间场61,函数式为F(n-2),第二时间场63,函数式为F(n-1),缺失像素所在的第三时间场65,函数式为F(n),第四时间场67,函数式为F(n+1)。其中需要被解交错的场为有缺失像素的第三时间场65,若此当前时间场为上层场(top-field),其参考场有复数个前时间场与一个后时间场。如计算差异值所需的复数个参考场,以第三时间场65为基准的参考场有:第一时间场61为前前状态的时间场,第二时间场63为之前状态的时间场,第四时间场67为之后状态的时间场。并通过第一时间场61与第三时间场65的各像素位置计算出第一差异值D1;通过第二时间场63与第四时间场67各像素位置计算出第二差异值D2,其运算式分别如下:Please continue to refer to FIG. 6 for a schematic diagram of difference value calculation in an embodiment of the present invention. In order to improve the accuracy of judging whether the image is static, the present invention uses four time fields in the upper field and the lower field in the image frame to calculate the difference value, which is the first time field 61 respectively, and the function formula is F(n- 2), the second time field 63, the function formula is F(n-1), the third time field 65 where the missing pixel is located, the function formula is F(n), the fourth time field 67, the function formula is F(n+ 1). The field to be deinterlaced is the third time field 65 with missing pixels. If the current time field is a top-field, the reference field has a plurality of front time fields and a back time field. As the complex number of reference fields required for calculating the difference value, the reference fields based on the third time field 65 include: the first time field 61 is the time field of the previous state, and the second time field 63 is the time field of the previous state. The fourth time field 67 is the time field of the subsequent state. And calculate the first difference value D1 by each pixel position of the first time field 61 and the third time field 65; Calculate the second difference value D2 by each pixel position of the second time field 63 and the fourth time field 67, its operation The formulas are as follows:
其中Γ1与Г2为像素位置,分别如下:Among them, Γ1 and Г2 are pixel positions, respectively as follows:
Г1=[(x-1,y-1),(x,y-1),(x+1,y-1),(x-1,y+1),(x,y+1),(x+1,y+1)]Г1=[(x-1, y-1), (x, y-1), (x+1, y-1), (x-1, y+1), (x, y+1), ( x+1, y+1)]
Г2=[(x,y-2),(x,y),(x,y+2),(x-1,y),(x+1,y)]Г2=[(x, y-2), (x, y), (x, y+2), (x-1, y), (x+1, y)]
另外,若此缺失像素所在的当前时间场为下层场(bottom-field),其余为计算差异值所需的复数个参考场包括有:一个前状态的时间场与复数个后状态的时间场。In addition, if the current time field where the missing pixel is located is the bottom-field, the remaining reference fields for calculating the difference include: a time field of the previous state and a plurality of time fields of the subsequent state.
图7为本发明实施例的边界导向周围图帧内插法示意图。此边界导向周围内插法是选择该缺失像素的周围对角位置像素的函数式差异最小者,则该对角位置像素的平均值即为该缺失像素的重建值。如图所示,符号×表示一缺失像素70,其邻近的像素有第一邻近像素71、第二邻近像素72、第三邻近像素73、第四邻近像素74、第五邻近像素75与第六邻近像素76,利用相对应的邻近像素之间差异性来判断此缺失像素70位于静态或非静态区域。FIG. 7 is a schematic diagram of a frame interpolation method for boundary-guided surrounding images according to an embodiment of the present invention. The boundary-guided surrounding interpolation method is to select the pixel with the smallest functional difference between the pixels at the diagonal positions around the missing pixel, and then the average value of the pixels at the diagonal positions is the reconstruction value of the missing pixel. As shown in the figure, the symbol X represents a missing
其中,第一差值U1表示第一邻近像素71与第六邻近像素76的差异;第二差值U2表示第二邻近像素72与第五邻近像素75的差异;第三差值U3表示第三邻近像素73与第四邻近像素74的差异,并找出其中最小的差值当作静态像素与非静态像素的判断。若最小值为U1,如图所示,则缺失像素70为第一邻近像素71与第六邻近像素76的平均;若最小值为U2,则缺失像素70为第二邻近像素72与第五邻近像素75的平均;若最小值为U3,则缺失像素70为第三邻近像素73与第四邻近像素74的平均。Among them, the first difference U1 represents the difference between the first
之后更进一步以一中间值过滤法得到缺失像素70的重建值,此中间值过滤法是找出该缺失像素与上下相对像素的中间值作为该缺失像素重建值,并为减少该缺失像素重建时误差的方法,本实施例为找出与第二邻近像素72、第五邻近像素75的中间值(mean of value),以此中间值作为缺失像素70新的重建值。以上所述为边界导向周围图帧内插法(edge-oriented intra-frame interpolation)与中间值过滤法(medianfiltering)的实施内容。After that, the reconstruction value of the missing
请参阅图8本发明实施例的动态图象像素调整运算流程图,是以图6所示各场间的差异性计算出的第一差异值D1与第二差异值D2,并设定两个相对应且依需要变动的临界值来判断缺失像素为静态还是非静态,可藉由一个对照表(look-up table)内建的各种变化情况来决定此变化的临界值。动态图象像素调整运算流程图如图8所示,F(n)为一时间场函数式,此动态像素调整运算流程开始时,此时间场函数式F(n)被解交错计算(步骤801),一解交错处理器输入各时间场函数式(步骤803),分别为第一时间场61,函数式为F(n-2)、第二时间场63,函数式为F(n-1)、第三时间场65,函数式为F(n)与函数式为F(n-1)的第四时间场67。之后,再利用图6所示的时间场间差异性计算出各场间的场差异值(步骤805),并比较是否与一另订的动态临界值还大(步骤807),用以判断缺失像素所在的图象为高变化图象或低变化图象,若是,则界定小的第一临界值与第二临界值(步骤809);若否,则界定第一临界值与第二临界值为大(步骤811)。Please refer to Fig. 8 for the dynamic image pixel adjustment operation flow chart of the embodiment of the present invention, which is the first difference value D1 and the second difference value D2 calculated from the difference between the fields shown in Fig. 6, and set two To determine whether the missing pixel is static or non-static, the corresponding and variable critical value can be used to determine the critical value of the change through a variety of built-in change conditions in a look-up table. The dynamic image pixel adjustment operation flowchart is as shown in Figure 8, F (n) is a time field function formula, when this dynamic pixel adjustment operation flow process starts, this time field function formula F (n) is deinterleaved calculation (step 801 ), a deinterleaving processor inputs each time field functional formula (step 803), is respectively the first time field 61, and the functional formula is F(n-2), the second time field 63, and the functional formula is F(n-1 ), the third time field 65, the fourth time field 67 whose function formula is F(n) and the function formula is F(n-1). Afterwards, use the difference between time fields shown in Figure 6 to calculate the field difference value between each field (step 805), and compare whether it is larger than a dynamic critical value set separately (step 807), in order to judge the missing The image where the pixel is located is a high-variation image or a low-variation image, if so, then define a small first critical value and a second critical value (step 809); if not, then define a first critical value and a second critical value is large (step 811).
之后,继续扫描出图象时间场F(n)中的缺失像素并在一光栅序列中执行内插(步骤813),以图2所述的差异值运算,并通过图6所示各场间差异计算第一差异值D1与第二差异值D2(步骤815),分别是第一时间场61与第三时间场65计算出第一差异值D1,与第二时间场63与第四时间场67计算第二差异值D2,再使用之前界定相对应的第一临界值Th1与第二临界值Th2,并通过将这两个临界值与两个差异值比较来判断缺失像素是位于静态或非静态区域(步骤817),如果第一差异值D1小于此第一临界值Th1并同时第二差异值D2小于第二临界值Th2,即判断此缺失像素位于静态区域,便以现有技术的前后场内插法重建缺失像素(步骤819)。当第一差异值D1大于等于第一临界值Th1或者第二差异值D2大于等于第二临界值Th2,即判断缺失像素位于动态区域,便以现有技术的周围场内插法重建缺失像素(步骤821),此周围场内插法更包括两个步骤,先是以图7所述的边界导向周围图帧内插法重建此缺失像素(步骤823),在此不再详述。接着以一中间值过滤法得到缺失像素的重建(步骤825)。再输出重建的解交错像素(步骤827),之后判断是否结束此场函数式F(n)的解交错运算(步骤829),若否,即继续扫描缺失像素并在一光栅序列中执行内插(步骤813),直到时间场F(n)内缺失像素完全重建;若是,即表示结束此场函数式F(n)的解交错运算(步骤831)。Afterwards, continue to scan out the missing pixels in the image time field F(n) and perform interpolation in a raster sequence (step 813), calculate with the difference value described in Fig. 2, and pass each field shown in Fig. 6 Difference calculation of the first difference value D1 and the second difference value D2 (step 815), respectively, the first time field 61 and the third time field 65 calculate the first difference value D1, and the second time field 63 and the fourth time field 67 Calculate the second difference value D2, then use the previously defined corresponding first critical value Th1 and second critical value Th2, and compare the two critical values with the two difference values to determine whether the missing pixel is located in static or non-static Static area (step 817), if the first difference value D1 is less than the first critical value Th1 and the second difference value D2 is smaller than the second critical value Th2 at the same time, it is judged that the missing pixel is located in the static area. Intra-field interpolation reconstructs missing pixels (step 819). When the first difference value D1 is greater than or equal to the first critical value Th1 or the second difference value D2 is greater than or equal to the second critical value Th2, it is determined that the missing pixel is located in the dynamic region, and the missing pixel is reconstructed by the surrounding field interpolation method in the prior art ( Step 821), the surrounding field interpolation method further includes two steps, first, the boundary-guided surrounding image frame interpolation method described in FIG. 7 is used to reconstruct the missing pixel (step 823), which will not be described in detail here. Then a median filtering method is used to obtain the reconstruction of the missing pixels (step 825). Then output the reconstructed de-interlaced pixels (step 827), then judge whether to end the de-interlaced operation of the field function F(n) (step 829), if not, continue to scan the missing pixels and perform interpolation in a raster sequence (Step 813 ), until the missing pixels in the temporal field F(n) are completely reconstructed; if yes, it means that the de-interleaving operation of the field function F(n) is ended (Step 831 ).
以上为本发明临界值可调的动态图象像素检测方法实施例的详细说明,本发明以缺失像素周围图象的信息来界定可变动的临界值,藉以改善对缺失像素所在区域为静态与非静态的判断,以正确重建缺失像素,另外更使用一边界导向周围图帧内插法与中间值过滤法作更严格的重建。The above is the detailed description of the embodiment of the dynamic image pixel detection method with adjustable critical value of the present invention. The present invention uses the information of the image around the missing pixel to define the variable critical value, so as to improve the detection of the static and non-static regions where the missing pixels are located. Static judgment to correctly reconstruct missing pixels. In addition, a boundary-guided surrounding image frame interpolation method and median filtering method are used for more stringent reconstruction.
综上所述,本发明临界值可调的动态图象像素检测方法在目的及效能上均具有极大的先进性,极具产业的利用价值,且为目前市场上前所未见的新发明,完全符合发明专利的要求。To sum up, the dynamic image pixel detection method with adjustable critical value of the present invention is extremely advanced in terms of purpose and efficiency, has great industrial utilization value, and is an unprecedented new invention in the market , in full compliance with the requirements of invention patents.
以上所述者,仅为本发明的较佳实施例而已,当不能以之限定本发明所实施的范围。凡依本发明申请专利范围所作的同等变化与修饰,皆应仍属于本发明专利涵盖的范围内。The above descriptions are only preferred embodiments of the present invention, and should not be used to limit the implementation scope of the present invention. All equivalent changes and modifications made according to the patent scope of the present invention should still belong to the scope covered by the patent of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031372066A CN1319374C (en) | 2003-05-26 | 2003-05-26 | Dynamic Image Pixel Detection Method with Adjustable Threshold Value |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031372066A CN1319374C (en) | 2003-05-26 | 2003-05-26 | Dynamic Image Pixel Detection Method with Adjustable Threshold Value |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1553708A true CN1553708A (en) | 2004-12-08 |
CN1319374C CN1319374C (en) | 2007-05-30 |
Family
ID=34323523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031372066A Expired - Fee Related CN1319374C (en) | 2003-05-26 | 2003-05-26 | Dynamic Image Pixel Detection Method with Adjustable Threshold Value |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1319374C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100471232C (en) * | 2007-06-15 | 2009-03-18 | 威盛电子股份有限公司 | Digital dynamic image de-interlacing method and device |
CN102202162A (en) * | 2010-03-24 | 2011-09-28 | 索尼公司 | Image processing apparatus, image processing method and program |
CN110378345A (en) * | 2019-06-04 | 2019-10-25 | 广东工业大学 | Dynamic scene SLAM method based on YOLACT example parted pattern |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06121287A (en) * | 1992-10-09 | 1994-04-28 | Sanyo Electric Co Ltd | Motion detection circuit for muse system decoder |
JPH08510880A (en) * | 1993-06-01 | 1996-11-12 | トムソン マルチメディア ソシエテ アノニム | Method and apparatus for motion compensated interpolation |
US5602654A (en) * | 1995-01-06 | 1997-02-11 | National Science Council | Contour-sensitive, single-field deinterlacing method |
US6134352A (en) * | 1996-05-21 | 2000-10-17 | Lucent Technologies Inc. | Spatial error concealment for image processing |
US5917928A (en) * | 1997-07-14 | 1999-06-29 | Bes Systems, Inc. | System and method for automatically verifying identity of a subject |
WO1999021369A1 (en) * | 1997-10-23 | 1999-04-29 | Sony Electronics, Inc. | Apparatus and method for mapping and image to blocks to provide for robust error recovery in a lossy transmission environment |
EP1267575B1 (en) * | 2001-06-14 | 2006-11-29 | STMicroelectronics S.r.l. | A method for converting the scanning format of images, a system and computer program product therefor |
-
2003
- 2003-05-26 CN CNB031372066A patent/CN1319374C/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100471232C (en) * | 2007-06-15 | 2009-03-18 | 威盛电子股份有限公司 | Digital dynamic image de-interlacing method and device |
CN102202162A (en) * | 2010-03-24 | 2011-09-28 | 索尼公司 | Image processing apparatus, image processing method and program |
CN110378345A (en) * | 2019-06-04 | 2019-10-25 | 广东工业大学 | Dynamic scene SLAM method based on YOLACT example parted pattern |
CN110378345B (en) * | 2019-06-04 | 2022-10-04 | 广东工业大学 | Dynamic scene SLAM method based on YOLACT instance segmentation model |
Also Published As
Publication number | Publication date |
---|---|
CN1319374C (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1207906C (en) | Interlacing-removing device and method | |
CN1266934C (en) | Method and device for video frequency removing interleave | |
CN1290057C (en) | Improved spatial resolution of video images | |
CN1678024A (en) | Improved Motion Vector Estimation at Image Boundaries | |
CN1601914A (en) | De-interlacing device and method therefor | |
CN1832564A (en) | Image processing apparatus and method | |
CN101309385A (en) | A Deinterlacing Method Based on Motion Detection | |
CN102045530B (en) | Motion adaptive de-interlacing method based on edge detection | |
CN1278687A (en) | Mobile detecting circuit and noise inhibiting circuit including said mobile detecting circuit | |
CN1505386A (en) | Deinterlacing device and method | |
CN1643917A (en) | Upconversion with noise constrained diagonal enhancement | |
CN1553708A (en) | Method for detecting dynamic image pixel with adjustable critical value | |
CN1848910A (en) | Global motion adaptive system with motion value correction relative to brightness level | |
CN101088290B (en) | Spatio-temporal adaptive video de-interlacing method, device and system | |
CN1933584A (en) | Image signal processing apparatus, image signal processing method and program | |
CN1825939A (en) | Down conversion detection device and down conversion detection method | |
CN101600062B (en) | In-field deinterlacing method based on enhanced edge adaptivity | |
CN1819620A (en) | Device and method for pre-processing before encoding of a video sequence | |
CN103024331B (en) | Video de-interlacing method based on edge detection | |
CN1305007C (en) | Detection and reconstruction method of dynamic image pixels | |
CN100336395C (en) | Adaptive motion detecting method fordigital TV. post-processing deintestage technology | |
CN102186046A (en) | Video image de-interlacing scanning method and device | |
US7315661B2 (en) | Directional interpolation method using DCT information and related device | |
CN1520180A (en) | Image processor having frame speed conversion and its method | |
CN101459812A (en) | Method for generating distances representative of the edge orientations in a video picture, corresponding device and use of the method for deinterlacing or format conversion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070530 |