CN1549313A - Method for converting amorphous silicon into polycrystalline silicon - Google Patents
Method for converting amorphous silicon into polycrystalline silicon Download PDFInfo
- Publication number
- CN1549313A CN1549313A CNA031378315A CN03137831A CN1549313A CN 1549313 A CN1549313 A CN 1549313A CN A031378315 A CNA031378315 A CN A031378315A CN 03137831 A CN03137831 A CN 03137831A CN 1549313 A CN1549313 A CN 1549313A
- Authority
- CN
- China
- Prior art keywords
- amorphous silicon
- polysilicon
- converted
- intert
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims abstract description 50
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims abstract description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 34
- 229920005591 polysilicon Polymers 0.000 claims description 30
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 12
- 238000005224 laser annealing Methods 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052704 radon Inorganic materials 0.000 claims description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 239000002002 slurry Substances 0.000 claims 1
- 239000011261 inert gas Substances 0.000 abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Recrystallisation Techniques (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明是有关于一种将非晶硅转换为多晶硅的方法,主要包括:提供一非晶硅基板,并对该非晶硅基板进行一惰性气体原子掺杂(doping)制程;以及提对该非晶硅基板的表面升温而进行一热制程或热程序制程。The present invention relates to a method for converting amorphous silicon into polycrystalline silicon, which mainly includes: providing an amorphous silicon substrate, and performing an inert gas atom doping process on the amorphous silicon substrate; and raising the temperature of the surface of the amorphous silicon substrate to perform a thermal process or a thermal program process.
Description
技术领域technical field
本发明是关于一种将非晶硅(amorphous silicon)转换为多晶硅(poly-silicon)的方法。The invention relates to a method for converting amorphous silicon (amorphous silicon) into polysilicon (poly-silicon).
背景技术Background technique
目前半导体技术主要是以非晶硅加工为主,以其制程较为简单且适合大规模制造,成本较低为优势。然而非晶硅材质的半导体元件其电子移动速率较慢,渐渐无法符合半导体元件微小化之后所需要的高速电子移动速率,因此新技术“低温多晶硅”(LTPS,Low Temperature PolySilicon)便应运而生,目前较为显著的应用是在TFT-LCD产业上。At present, semiconductor technology is mainly based on the processing of amorphous silicon, which has the advantages of relatively simple manufacturing process, suitable for large-scale manufacturing, and low cost. However, the semiconductor element made of amorphous silicon has a slow electron movement rate, which gradually cannot meet the high-speed electron movement rate required after the semiconductor element is miniaturized. Therefore, a new technology "Low Temperature Polysilicon" (LTPS, Low Temperature PolySilicon) came into being. At present, the more significant application is in the TFT-LCD industry.
与原先a-Si TFT-LCD最大的差异在于,LTPS TFT-LCD的晶体管需进一步接受准分子激光退火(ELA,excimer laser annealing)的制程步骤,将非晶硅的薄膜转变为多晶硅薄膜层。而这样的转变,使得LTPSTFT-LCD在硅晶结构上较a-Si TFT-LCD排列较有秩序,可以提高电子传导速率达a-Si TFT-LCD的100倍以上,达到200cm2/V-sec;因此可以将TFT元件做得更小但反应更快,与a-Si TFT-LCD相较,可使TFT元件缩小50%以上;并提升开口率(aperture ratio),若与相同尺寸下a-S TFT-LCD相比,LTPS TFT-LCD可以制造出更高的解析度,且功率的消耗降低;而由于其电子传导速度较快,因此可以将部分驱动IC整合至玻璃基板内,以降低材料成本,同时更可以在后段模组组装过程中,避免组装所造成的产品损害,进而提升良率以降低制造成本;且采用单纯的P-type电路结构,较传统的CMOS电路结构更能节省光罩层次,并降低成本;除此之外,由于整合部分Driver IC的使用,除了减少IC的重量,更可以减少后段组装所需的其他材料,整体的重量将会大幅度的减少。The biggest difference from the original a-Si TFT-LCD is that the transistors of LTPS TFT-LCD need to be further subjected to the process steps of excimer laser annealing (ELA, excimer laser annealing) to convert the amorphous silicon film into a polysilicon film layer. Such a transformation makes LTPSTFT-LCD more orderly in the silicon crystal structure than a-Si TFT-LCD, and can increase the electron conduction rate by more than 100 times that of a-Si TFT-LCD, reaching 200cm 2 /V-sec ; Therefore, the TFT element can be made smaller but responds faster. Compared with a-Si TFT-LCD, the TFT element can be reduced by more than 50%; and the aperture ratio (aperture ratio) can be improved. -Compared with LCD, LTPS TFT-LCD can produce higher resolution and lower power consumption; and because of its faster electron conduction speed, part of the driver IC can be integrated into the glass substrate to reduce material costs, At the same time, it can avoid product damage caused by assembly in the later stage of module assembly process, thereby improving yield rate and reducing manufacturing cost; and adopting a simple P-type circuit structure, compared with traditional CMOS circuit structure, it can save more masks. In addition, due to the integration of part of the Driver IC, in addition to reducing the weight of the IC, it can also reduce other materials required for subsequent assembly, and the overall weight will be greatly reduced.
然而一般以化学气相沉积方式(CVD,Chemical Vapor Deposition)所镀出来的的a-Si前驱物质,在经历ELA(Excimer Laser Annealing)时其适用范围(process window)很狭小(10-20mJ/cm2),然而a-Si前驱质对于激光的稳定度十分敏感,只要激光稳定度不佳时就会造成多晶硅的品质均匀度不佳,进而影响或降低所制成的半导体元件良率。However, the a-Si precursor material plated by chemical vapor deposition (CVD, Chemical Vapor Deposition) generally has a narrow application range (process window) (10-20mJ/cm 2 ) when undergoing ELA (Excimer Laser Annealing). ), however, the a-Si precursor is very sensitive to the stability of the laser, as long as the laser stability is not good, the quality uniformity of the polysilicon will be poor, which will affect or reduce the yield of the semiconductor device produced.
发明内容Contents of the invention
本发明的主要目的是在提供一种将非晶硅转换为多晶硅的方法,以便能降低a-Si前驱质对于激光不稳定度的敏感度,并增加其适用范围。The main purpose of the present invention is to provide a method for converting amorphous silicon into polysilicon, so as to reduce the sensitivity of a-Si precursor to laser instability and increase its application range.
本发明的另一目的是在提供一种将非晶硅转换为多晶硅的方法,以便能降低准分子激光退火所需要的能量密度,进而增加总产率。Another object of the present invention is to provide a method for converting amorphous silicon into polysilicon, so as to reduce the energy density required for excimer laser annealing, thereby increasing the overall yield.
为达成上述目的,本发明的一种将非晶硅转换为多晶硅的方法,主要包括:提供一非晶硅基板,并对该非晶硅基板进行一惰性气体原子掺杂(doping)制程;以及提对该非晶硅基板的表面升温而进行一热制程或热程序制程。In order to achieve the above object, a method for converting amorphous silicon into polysilicon according to the present invention mainly includes: providing an amorphous silicon substrate, and performing an inert gas atom doping (doping) process on the amorphous silicon substrate; and A thermal process or a thermal program process is performed by raising the temperature of the surface of the amorphous silicon substrate.
详细论之,本发明的方法主要是在准分子激光退火制程将a-Si转换为poly-Si之前,先进行一惰性气体的掺杂制程,将一惰性气体分子如氦气、氖气、氩气等掺杂至该a-Si前驱质之中,以降低硅结晶中的转换能量密度(Eth)以及最佳能量密度(Ec),进而增加process window。In detail, the method of the present invention is mainly to perform an inert gas doping process before the excimer laser annealing process converts a-Si into poly-Si, and an inert gas molecule such as helium, neon, argon Gas etc. are doped into the a-Si precursor to reduce the conversion energy density (Eth) and optimal energy density (Ec) in the silicon crystal, thereby increasing the process window.
本发明的将非晶硅转换为多晶硅的方法中,该惰性气体原子较佳是为至少一种选自一由包括氮气、氦气、氖气、氩气、氪气、氙气及氡气组成的群组,亦即该惰性气体可为单一惰性气体或惰性气体混合物,其中惰性气体较佳为氩气;本发明的方法中,该惰性气体原子与该非晶硅基板的比例并无限制,较佳地,该惰性气体原子是占该非晶硅基板的1-0.001原子百分比;本发明的方法中,达成该惰性气体原子掺杂制程的方式并无限制,较佳是以电浆掺杂方式、化学气相沉积方式、干蚀刻等方式达成。本发明的方法中的功能性元件可为现有的功能性元件,较佳为该功能性开关元件为薄膜晶体管。本发明的方法中的该多晶硅基板可为现有的各用途多晶硅基板,较佳为该多晶硅基板为平面显示器用面板,最佳为液晶显示器用面板。本发明的方法中的准分子激光工作能量范围可为任何现有的准分子激光工作能量范围,较佳为该准分子激光工作能量范围是介于300至450mJ/cm2之间。In the method for converting amorphous silicon into polysilicon of the present invention, the inert gas atom is preferably at least one selected from a group consisting of nitrogen, helium, neon, argon, krypton, xenon and radon. Group, that is, the inert gas can be a single inert gas or a mixture of inert gases, wherein the inert gas is preferably argon; in the method of the present invention, the ratio of the inert gas atoms to the amorphous silicon substrate is not limited, more Preferably, the inert gas atoms account for 1-0.001 atomic percent of the amorphous silicon substrate; in the method of the present invention, there is no limit to the way to achieve the inert gas atom doping process, preferably by plasma doping , chemical vapor deposition, dry etching and other methods to achieve. The functional element in the method of the present invention can be an existing functional element, preferably the functional switching element is a thin film transistor. The polysilicon substrate in the method of the present invention can be an existing polysilicon substrate for various purposes, preferably the polysilicon substrate is a panel for a flat panel display, most preferably a panel for a liquid crystal display. The working energy range of the excimer laser in the method of the present invention can be any existing working energy range of the excimer laser, preferably the working energy range of the excimer laser is between 300 and 450 mJ/cm 2 .
附图说明Description of drawings
为能让审查员能更了解本发明的技术内容,特举一较佳具体实施例说明如下,其中:In order to allow examiners to better understand the technical content of the present invention, a preferred specific embodiment is given as follows, wherein:
图1是本发明实施例的电子移动速率对外加能量密度的变化图。Fig. 1 is a graph showing the change of electron movement rate versus applied energy density in an embodiment of the present invention.
图2是本发明实施例的晶粒尺寸对能量密度的变化图。Fig. 2 is a graph showing the variation of grain size versus energy density in an embodiment of the present invention.
图3是本发明实施例的能量密度减少值对于掺杂能量的变化图。Fig. 3 is a graph showing the variation of energy density reduction value versus doping energy in an embodiment of the present invention.
图4是已知的准分子激光器的示意图。Fig. 4 is a schematic diagram of a known excimer laser.
具体实施方式Detailed ways
实施例:非晶硅基板的氩掺杂Example: Argon Doping of Amorphous Silicon Substrates
在本实施例中,主要是针对一非晶硅基板在进行准分子激光以将其转换为多晶硅之前,先进行一氩掺杂制程。In this embodiment, an argon doping process is performed on an amorphous silicon substrate before excimer laser conversion into polysilicon.
在一玻璃基板上制造N型与P型金属氧化半导体场效晶体管(MOSFETs)的顶栅极(top gate)结构。在430℃状态下,利用电浆辅助化学气相沉积(PECVD)方式先沉积一层厚度为2000A的a-Si作为缓冲层,接着沉积一厚度为层500A的a-Si,准备进行准分子激光退火(ELA)。The top gate structure of N-type and P-type metal-oxide-semiconductor field-effect transistors (MOSFETs) is fabricated on a glass substrate. At 430°C, a layer of a-Si with a thickness of 2000A was deposited as a buffer layer by plasma-assisted chemical vapor deposition (PECVD), and then a layer of a-Si with a thickness of 500A was deposited for excimer laser annealing (ELA).
在进行ELA之前,在480℃、氮气流(nitrogen now)之下进行10分钟的脱氢反应,以生成自然氧化物。在a-Si前驱物上,以30ns脉冲持续时间以及95%扫瞄重叠(scan overlap)进行氩原子掺杂(Argon布植)。在利用第一光罩对多晶硅层产生图形之外,也利用离子布植方法形成源极、漏极以及LDD(厚度为1mm)区域。在430℃的状态下利用PECVD方法,沉积厚度为1000A的SiO2以作为栅极绝缘层(gate insulator)。接下来的步骤为闸极金属沉积、图形产生以及内层介电层沉积。在通道孔蚀刻之后,作为第二层金属的Ti/Al/Ti接着被沉积且蚀刻。同时亦在高温下进行氢化反应(hydrogenation)。SiNx障蔽层(capping layer)亦包含在此结构当中。Prior to ELA, a dehydrogenation reaction was performed at 480° C. for 10 minutes under nitrogen flow (nitrogen now) to generate native oxides. Argon atom doping (Argon implantation) was performed on the a-Si precursor with a pulse duration of 30 ns and a scan overlap of 95%. In addition to using the first photomask to pattern the polysilicon layer, ion implantation is also used to form source, drain and LDD (thickness 1mm) regions. SiO 2 was deposited to a thickness of 1000 Å as a gate insulating layer (gate insulator) by PECVD method at 430° C. The next steps are gate metal deposition, patterning and ILD deposition. After via hole etching, Ti/Al/Ti as a second layer metal is then deposited and etched. At the same time, the hydrogenation reaction (hydrogenation) is also carried out at high temperature. A SiNx capping layer is also included in this structure.
本实施例的结果显示于图1、图2以及图3的中。请先参见图1,此是本实施例的电子移动速率对外加能量密度的变化图。在本图中列出了四种不同的实验条件,分别为N-STD(N-mos标准状态)、N-Ar(N-mos加入氩原子掺杂)、P-STD(P-mos标准状态)、以及P-Ar(P-mos加入氩原子掺杂)。图1代表了两种意义,其一为,氩原子掺杂后的多晶硅基板其电子移动速率(mobility)的稳定度较高;以N-mos元件为例,若从图1的纵轴选定一区间值,例如从120至130,可见到在此区间之中,加入氩原子掺杂之后其斜率较未掺杂氩原子为低,因此有掺杂氩原子的多晶硅基板其退火制程的准分子激光工作能量范围(390-410mJ/cm2),比未掺杂氩原子的多晶硅基板的工作能量范围(390-400mJ/cm2)大,代表着制程所能容许的激光能量变化较大,或意味着该电子移动速率受该激光的不稳定度的影响或对该激光的不稳定度敏感度降低,激光的不稳定度对均匀度的影响小,从而提高了产品的均匀度以及生产良率。另一方面,掺杂氩原子的多晶硅基板其电子迁移速率一般会比未掺杂氩原子的多晶硅基板为低,然而从本图中可见,虽然N-mos元件掺杂氩原子之后其电子移动速率的确稍低于为掺杂氩原子,然其降低幅度并不明显,以410mJ/cm2为例,其降低幅度约为15%左右,并且P-mos的电子移动速率不论有无掺杂氩原子,均无太大变化。The results of this example are shown in FIG. 1 , FIG. 2 and FIG. 3 . Please refer to FIG. 1 first, which is a diagram of the variation of the electron movement rate versus the applied energy density in this embodiment. Four different experimental conditions are listed in this figure, namely N-STD (N-mos standard state), N-Ar (N-mos added with argon atom doping), P-STD (P-mos standard state ), and P-Ar (P-mos is doped with argon atoms). Figure 1 represents two meanings, one is that the polysilicon substrate doped with argon atoms has a higher electron mobility (mobility) stability; A range of values, for example, from 120 to 130, it can be seen that in this range, the slope after doping with argon atoms is lower than that of undoped argon atoms, so the polysilicon substrate doped with argon atoms is an excimer The working energy range of the laser (390-410mJ/cm 2 ), which is larger than the working energy range (390-400mJ/cm 2 ) of the polysilicon substrate not doped with argon atoms, means that the laser energy change that the process can tolerate is larger, or It means that the electron movement rate is affected by the instability of the laser or the sensitivity to the instability of the laser is reduced, and the instability of the laser has little effect on the uniformity, thereby improving the uniformity of the product and the production yield . On the other hand, the electron mobility rate of the polysilicon substrate doped with argon atoms is generally lower than that of the polysilicon substrate not doped with argon atoms. It is indeed slightly lower than that of doped argon atoms, but the reduction is not obvious. Taking 410mJ/cm 2 as an example, the reduction is about 15%, and the electron movement rate of P-mos is no matter whether it is doped with argon atoms or not. , without much change.
接着请参见图2,此是本实施例中晶粒尺寸(grain size)对能量密度(energy density)的变化图。在本图中可见到,有加入氩原子掺杂步骤的硅基板较的未掺杂氩原子的硅基板,其工作范围(process window)明显较大。以晶粒尺寸2500-3000A的范围为例,未掺杂氩原子的硅基板其激光扫瞄工作范围仅能容许在约373-378mJ/cm2之间,然而掺杂氩原子的硅基板其工作范围则大幅扩大至约360-380mJ/cm2之间,其可容许的激光扫瞄能量误差值提高了约四倍左右,证明本发明能够增加准分子激光退火制程的工作范围,减低误差产生的情形,提高产物的良率。Next, please refer to FIG. 2 , which is a graph showing the variation of grain size versus energy density in this embodiment. It can be seen from this figure that the process window of the silicon substrate with argon atom doping step is significantly larger than that of the silicon substrate without argon atom doping. Taking the grain size range of 2500-3000A as an example, the laser scanning range of silicon substrates not doped with argon atoms can only be allowed to be between about 373-378mJ/cm 2 , but the silicon substrates doped with argon atoms can work The range is greatly expanded to about 360-380mJ/ cm2 , and the allowable laser scanning energy error value is increased by about four times, which proves that the present invention can increase the working range of the excimer laser annealing process and reduce the error caused by situation, improve the yield of the product.
接着请参见图3,此是本实施例中能量密度减少值对于掺杂能量的变化图。在本图中可见,使用了越高的氩原子掺杂百分比,所能减少的能量密度越多,这代表着加入氩原子掺杂之后的a-Si基板,其最佳能量密度(Ec,optimum energy density)可以不需要使用原来进行掺杂那么高的能量,这些多余的能量可用以加宽扫瞄激光的宽度,进而减少每一片基板所需要进行激光扫瞄的时间,提高产率,节省生产成本。Next, please refer to FIG. 3 , which is a graph showing the variation of the energy density reduction value with respect to the doping energy in this embodiment. It can be seen in this figure that the higher the doping percentage of argon atoms is used, the more the energy density can be reduced, which represents the optimal energy density (Ec, optimal energy density) does not need to use the high energy of the original doping, the excess energy can be used to widen the width of the scanning laser, thereby reducing the time required for laser scanning for each substrate, improving productivity and saving production cost.
最后请参见图4,此是已知的准分子激光器的示意图。该准分子激光器主要包括一准分子激光射出元件2、一基板支撑座3以及一基板1。该准分子激光射出元件2连接至一支撑臂(图中未示),并可依照所排定的方式逐一扫瞄该基板1的表面,以加热完成退火程序,将非晶硅基板的表面转变为多晶硅。Finally, please refer to FIG. 4 , which is a schematic diagram of a known excimer laser. The excimer laser mainly includes an excimer laser emitting element 2 , a substrate support 3 and a substrate 1 . The excimer laser emitting element 2 is connected to a support arm (not shown in the figure), and can scan the surface of the substrate 1 one by one according to the scheduled method, and complete the annealing process by heating to transform the surface of the amorphous silicon substrate. for polysilicon.
综合以上实施例所述,可以发现,在一般a-Si层进行退火之前先加入一道氩原子掺杂的步骤,一方面可以加大激光退火的工作范围,一方面可以减低激光退火所需要的Ec,并可将原机台输出的多余能量转换为更宽的扫瞄激光宽度,减少每一基板的扫瞄时间,增进生产线上的制程效率。Based on the above examples, it can be found that adding an argon atom doping step before annealing the general a-Si layer can increase the working range of laser annealing and reduce the Ec required for laser annealing. , and can convert the excess energy output by the original machine into a wider scanning laser width, reduce the scanning time of each substrate, and improve the process efficiency on the production line.
上述实施例仅是为了方便说明而举例而已,本发明所主张的权利范围自应以申请专利范围所述为准,而非仅限于上述实施例。The above-mentioned embodiments are only examples for convenience of description, and the scope of rights claimed by the present invention should be based on the scope of the patent application, rather than limited to the above-mentioned embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031378315A CN100373562C (en) | 2003-05-21 | 2003-05-21 | Method for converting amorphous silicon into polycrystalline silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031378315A CN100373562C (en) | 2003-05-21 | 2003-05-21 | Method for converting amorphous silicon into polycrystalline silicon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1549313A true CN1549313A (en) | 2004-11-24 |
CN100373562C CN100373562C (en) | 2008-03-05 |
Family
ID=34323580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031378315A Expired - Lifetime CN100373562C (en) | 2003-05-21 | 2003-05-21 | Method for converting amorphous silicon into polycrystalline silicon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100373562C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103855022A (en) * | 2012-12-04 | 2014-06-11 | 中芯国际集成电路制造(上海)有限公司 | Forming method of fin-type field effect transistor |
CN117276410A (en) * | 2023-11-17 | 2023-12-22 | 浙江晶科能源有限公司 | Passivated contact solar cell and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07153770A (en) * | 1993-11-30 | 1995-06-16 | Tokyo Electron Ltd | Film formation |
US6140246A (en) * | 1997-12-18 | 2000-10-31 | Advanced Micro Devices, Inc. | In-situ P doped amorphous silicon by NH3 to form oxidation resistant and finer grain floating gates |
-
2003
- 2003-05-21 CN CNB031378315A patent/CN100373562C/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103855022A (en) * | 2012-12-04 | 2014-06-11 | 中芯国际集成电路制造(上海)有限公司 | Forming method of fin-type field effect transistor |
CN103855022B (en) * | 2012-12-04 | 2017-06-13 | 中芯国际集成电路制造(上海)有限公司 | The forming method of fin formula field effect transistor |
CN117276410A (en) * | 2023-11-17 | 2023-12-22 | 浙江晶科能源有限公司 | Passivated contact solar cell and preparation method thereof |
CN117276410B (en) * | 2023-11-17 | 2024-03-29 | 浙江晶科能源有限公司 | Passivation contact solar cell and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100373562C (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4026182B2 (en) | Semiconductor device manufacturing method and electronic device manufacturing method | |
JP3255942B2 (en) | Method for manufacturing inverted staggered thin film transistor | |
JP2012119691A (en) | Thin film transistor manufacturing method | |
JP3429034B2 (en) | Method for manufacturing semiconductor film | |
JP3178715B2 (en) | Method for manufacturing thin film semiconductor device | |
JP4286692B2 (en) | Control method of polysilicon crystallization | |
CN100373562C (en) | Method for converting amorphous silicon into polycrystalline silicon | |
CN105702622B (en) | The production method and low temperature polycrystalline silicon TFT substrate of low temperature polycrystalline silicon TFT substrate | |
JP3281431B2 (en) | Thin film transistor | |
TW591702B (en) | A method for transforming amorphous silicon substrate to poly-silicon substrate | |
CN1265428C (en) | A method of fabricating a thin film transistor | |
KR20060079958A (en) | Silicon Thin Film Transistor | |
CN1314090C (en) | Method of forming polysilicon layer and method of manufacturing polysilicon thin film transistor | |
CN106601593A (en) | Method for reducing the polysilicon surface roughness | |
JP2751420B2 (en) | Method for manufacturing semiconductor device | |
JP2001068681A (en) | Fabrication of active matrix | |
JPH03104209A (en) | Manufacture of semiconductor device | |
JP3551012B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH0393273A (en) | Method for manufacturing thin film semiconductor devices | |
KR20050113294A (en) | Poly crystalline si thin film structure and fabrication method thereof and tft using the same | |
JPH03293731A (en) | Manufacturing method of semiconductor device | |
CN100388423C (en) | Method for manufacturing polycrystalline silicon thin film and thin film transistor obtained thereby | |
CN112563196A (en) | Manufacturing method of active switch and display panel | |
JP2002319678A (en) | Thin film semiconductor device and method of manufacturing the same | |
CN114823912A (en) | Thin film transistor, manufacturing method thereof and display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20080305 |