CN1424870A - Nuclear transfer with selected donor cells - Google Patents
Nuclear transfer with selected donor cells Download PDFInfo
- Publication number
- CN1424870A CN1424870A CN00813845A CN00813845A CN1424870A CN 1424870 A CN1424870 A CN 1424870A CN 00813845 A CN00813845 A CN 00813845A CN 00813845 A CN00813845 A CN 00813845A CN 1424870 A CN1424870 A CN 1424870A
- Authority
- CN
- China
- Prior art keywords
- cell
- cells
- animal
- embryo
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012546 transfer Methods 0.000 title abstract description 63
- 210000004027 cell Anatomy 0.000 claims abstract description 351
- 238000000034 method Methods 0.000 claims abstract description 126
- 210000002257 embryonic structure Anatomy 0.000 claims abstract description 77
- 230000022131 cell cycle Effects 0.000 claims abstract description 74
- 241001465754 Metazoa Species 0.000 claims abstract description 46
- 230000009261 transgenic effect Effects 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 210000002308 embryonic cell Anatomy 0.000 claims abstract description 11
- 210000001161 mammalian embryo Anatomy 0.000 claims description 57
- 210000004940 nucleus Anatomy 0.000 claims description 54
- 210000002459 blastocyst Anatomy 0.000 claims description 26
- 238000010367 cloning Methods 0.000 claims description 26
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 26
- 210000000287 oocyte Anatomy 0.000 claims description 22
- 210000001519 tissue Anatomy 0.000 claims description 22
- 238000002054 transplantation Methods 0.000 claims description 16
- 238000011282 treatment Methods 0.000 claims description 15
- 230000001605 fetal effect Effects 0.000 claims description 14
- 108090000623 proteins and genes Proteins 0.000 claims description 14
- 210000002950 fibroblast Anatomy 0.000 claims description 13
- 210000004748 cultured cell Anatomy 0.000 claims description 12
- 210000000130 stem cell Anatomy 0.000 claims description 11
- 241001494479 Pecora Species 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 210000000056 organ Anatomy 0.000 claims description 10
- 210000003754 fetus Anatomy 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 8
- 230000002068 genetic effect Effects 0.000 claims description 8
- 235000013336 milk Nutrition 0.000 claims description 8
- 239000008267 milk Substances 0.000 claims description 8
- 210000004080 milk Anatomy 0.000 claims description 8
- 230000001225 therapeutic effect Effects 0.000 claims description 8
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 241000282994 Cervidae Species 0.000 claims description 6
- 241000282326 Felis catus Species 0.000 claims description 6
- 241000283984 Rodentia Species 0.000 claims description 6
- 210000003855 cell nucleus Anatomy 0.000 claims description 6
- 230000006378 damage Effects 0.000 claims description 6
- 230000004069 differentiation Effects 0.000 claims description 6
- 229940079593 drug Drugs 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 238000004113 cell culture Methods 0.000 claims description 5
- 230000007159 enucleation Effects 0.000 claims description 5
- 210000001082 somatic cell Anatomy 0.000 claims description 5
- 241000894007 species Species 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000001415 gene therapy Methods 0.000 claims description 4
- 210000002569 neuron Anatomy 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 241000251468 Actinopterygii Species 0.000 claims description 3
- 241000283707 Capra Species 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 208000012902 Nervous system disease Diseases 0.000 claims description 3
- 210000004413 cardiac myocyte Anatomy 0.000 claims description 3
- 238000007877 drug screening Methods 0.000 claims description 3
- 238000012239 gene modification Methods 0.000 claims description 3
- 230000005017 genetic modification Effects 0.000 claims description 3
- 235000013617 genetically modified food Nutrition 0.000 claims description 3
- 208000020431 spinal cord injury Diseases 0.000 claims description 3
- 208000026350 Inborn Genetic disease Diseases 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims description 2
- 238000007796 conventional method Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 208000032839 leukemia Diseases 0.000 claims description 2
- 235000013372 meat Nutrition 0.000 claims description 2
- 238000010449 nuclear transplantation Methods 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 241000283073 Equus caballus Species 0.000 claims 4
- 241000009328 Perro Species 0.000 claims 4
- 238000000926 separation method Methods 0.000 claims 3
- 241000282898 Sus scrofa Species 0.000 claims 2
- 206010002027 Amyotrophy Diseases 0.000 claims 1
- 208000028782 Hereditary disease Diseases 0.000 claims 1
- 241000238631 Hexapoda Species 0.000 claims 1
- 208000024556 Mendelian disease Diseases 0.000 claims 1
- 238000012271 agricultural production Methods 0.000 claims 1
- 210000002821 alveolar epithelial cell Anatomy 0.000 claims 1
- 210000002443 helper t lymphocyte Anatomy 0.000 claims 1
- 210000003292 kidney cell Anatomy 0.000 claims 1
- 210000005229 liver cell Anatomy 0.000 claims 1
- 235000013622 meat product Nutrition 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 230000008520 organization Effects 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000000284 resting effect Effects 0.000 claims 1
- 231100000820 toxicity test Toxicity 0.000 claims 1
- 238000009602 toxicology test Methods 0.000 claims 1
- 239000002417 nutraceutical Substances 0.000 abstract 1
- 235000021436 nutraceutical agent Nutrition 0.000 abstract 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 51
- 230000010190 G1 phase Effects 0.000 description 50
- 238000011161 development Methods 0.000 description 45
- 230000018109 developmental process Effects 0.000 description 45
- 210000000805 cytoplasm Anatomy 0.000 description 43
- 239000002609 medium Substances 0.000 description 41
- 241000283690 Bos taurus Species 0.000 description 33
- 238000000338 in vitro Methods 0.000 description 30
- 229940098773 bovine serum albumin Drugs 0.000 description 28
- 230000004927 fusion Effects 0.000 description 24
- 239000012894 fetal calf serum Substances 0.000 description 23
- 230000035519 G0 Phase Effects 0.000 description 22
- 230000004913 activation Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 230000004083 survival effect Effects 0.000 description 18
- 210000002966 serum Anatomy 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 15
- 230000003325 follicular Effects 0.000 description 15
- 230000002062 proliferating effect Effects 0.000 description 15
- 230000011278 mitosis Effects 0.000 description 14
- 230000008672 reprogramming Effects 0.000 description 14
- 230000018199 S phase Effects 0.000 description 13
- 244000309466 calf Species 0.000 description 13
- 210000001626 skin fibroblast Anatomy 0.000 description 13
- BVIAOQMSVZHOJM-UHFFFAOYSA-N N(6),N(6)-dimethyladenine Chemical compound CN(C)C1=NC=NC2=C1N=CN2 BVIAOQMSVZHOJM-UHFFFAOYSA-N 0.000 description 12
- 230000035935 pregnancy Effects 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 11
- 230000018486 cell cycle phase Effects 0.000 description 9
- 230000001086 cytosolic effect Effects 0.000 description 9
- 230000013020 embryo development Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000035800 maturation Effects 0.000 description 9
- 108010077544 Chromatin Proteins 0.000 description 7
- 210000003483 chromatin Anatomy 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 108010076119 Caseins Proteins 0.000 description 6
- 210000004186 follicle cell Anatomy 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000000394 mitotic effect Effects 0.000 description 6
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 5
- 102000011632 Caseins Human genes 0.000 description 5
- 239000007995 HEPES buffer Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000001109 blastomere Anatomy 0.000 description 5
- 239000005018 casein Substances 0.000 description 5
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 5
- 235000021240 caseins Nutrition 0.000 description 5
- 230000031864 metaphase Effects 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 4
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229950004398 broxuridine Drugs 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000032823 cell division Effects 0.000 description 4
- 244000144980 herd Species 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 235000003642 hunger Nutrition 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 244000144972 livestock Species 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000037351 starvation Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- 230000010337 G2 phase Effects 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007910 cell fusion Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 230000000984 immunochemical effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 3
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 3
- 229940043355 kinase inhibitor Drugs 0.000 description 3
- 210000002380 oogonia Anatomy 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009758 senescence Effects 0.000 description 3
- 239000003104 tissue culture media Substances 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 2
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 2
- 241001354243 Corona Species 0.000 description 2
- 108050006400 Cyclin Proteins 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 206010028289 Muscle atrophy Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102000009339 Proliferating Cell Nuclear Antigen Human genes 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 2
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000000408 embryogenic effect Effects 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 210000000633 nuclear envelope Anatomy 0.000 description 2
- 210000003101 oviduct Anatomy 0.000 description 2
- 230000032696 parturition Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000016853 telophase Effects 0.000 description 2
- 231100000041 toxicology testing Toxicity 0.000 description 2
- 238000002689 xenotransplantation Methods 0.000 description 2
- 210000004340 zona pellucida Anatomy 0.000 description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101000741065 Bos taurus Beta-casein Proteins 0.000 description 1
- 108091060290 Chromatid Proteins 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 102000004654 Cyclic GMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010003591 Cyclic GMP-Dependent Protein Kinases Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000011961 Maturation-Promoting Factor Human genes 0.000 description 1
- 108010075942 Maturation-Promoting Factor Proteins 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000283903 Ovis aries Species 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000031016 anaphase Effects 0.000 description 1
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 1
- NOFOAYPPHIUXJR-APNQCZIXSA-N aphidicolin Chemical compound C1[C@@]23[C@@]4(C)CC[C@@H](O)[C@@](C)(CO)[C@@H]4CC[C@H]3C[C@H]1[C@](CO)(O)CC2 NOFOAYPPHIUXJR-APNQCZIXSA-N 0.000 description 1
- SEKZNWAQALMJNH-YZUCACDQSA-N aphidicolin Natural products C[C@]1(CO)CC[C@]23C[C@H]1C[C@@H]2CC[C@H]4[C@](C)(CO)[C@H](O)CC[C@]34C SEKZNWAQALMJNH-YZUCACDQSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000029803 blastocyst development Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 210000004756 chromatid Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000003040 circulating cell Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 1
- 229940099500 cystamine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000008143 early embryonic development Effects 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 210000002503 granulosa cell Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 244000309465 heifer Species 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 210000003250 oocyst Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000000270 postfertilization Effects 0.000 description 1
- 230000007542 postnatal development Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003909 protein kinase inhibitor Substances 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 210000004367 thymic lymphocyte Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/13—Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
- C12N2502/1323—Adult fibroblasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/99—Coculture with; Conditioned medium produced by genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2517/00—Cells related to new breeds of animals
- C12N2517/10—Conditioning of cells for in vitro fecondation or nuclear transfer
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Neurology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Developmental Biology & Embryology (AREA)
- Biochemistry (AREA)
- Emergency Medicine (AREA)
- Psychology (AREA)
- Cell Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Reproductive Health (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Gynecology & Obstetrics (AREA)
- Oncology (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
Abstract
Description
本发明涉及一种核移植的新方法,明确地说,但决不排斥使用于产生哺乳动物胚胎、胎儿和后代,包括遗传工程或转基因哺乳动物胚胎、胎儿和后代的克隆技术中。The present invention relates to a novel method of nuclear transfer, specifically, but in no way exclusive, for use in cloning techniques for the production of mammalian embryos, fetuses and offspring, including genetically engineered or transgenic mammalian embryos, fetuses and offspring.
发明背景Background of the invention
胚胎重建时供体细胞核和受体细胞质所处细胞周期的时间阶段是决定核移植后成功发育的关键因素。两种“细胞”的特定组合是确保第一次胚性细胞周期后得到一套二倍体染色质和将细胞核重编和随后的发育机会增加到最大限度所必须的。当细胞分裂期间的供体细胞核与去核中期停顿卵母细胞(称作细胞质或受体细胞)融合时,立即发生核膜解体(NEBD)并且供体染色质遭受染色体超前凝聚(PCC)(Barnes等,1993)。这些效应是由一个称作促成熟因子(MPF,也称作促减数分裂或有丝分裂因子,参考,综述,Campell等,1996a)的细胞质活性诱导的。在卵母细胞成熟中,MPF的活性在中期最高,而在受精或人工激活后迅速下降。所以,两种类型的细胞质可以用于重建;使用未激活或激活的中期II(M II)细胞质相应是MPF含量依次较高或较低的细胞质。The timing of the cell cycle phase of the donor nucleus and recipient cytoplasm at the time of embryo reconstitution is a key determinant of successful development after nuclear transfer. A specific combination of the two "cells" is necessary to ensure a diploid set of chromatin after the first embryogenic cell cycle and to maximize the chances of nuclear reprogramming and subsequent development. When the donor nucleus during cell division fuses with the enucleated metaphase-arrested oocyte (called the cytoplasm or recipient cell), nuclear envelope disintegration (NEBD) occurs immediately and the donor chromatin undergoes advanced chromosome condensation (PCC) (Barnes et al., 1993). These effects are induced by a cytoplasmic activity called maturation-promoting factor (MPF, also called meiotic or mitogenic factor, reference, review, Campell et al., 1996a). In oocyte maturation, the activity of MPF was highest at metaphase and decreased rapidly after fertilization or artificial activation. Therefore, two types of cytoplasm can be used for reconstitution; use of non-activated or activated metaphase II (M II) cytoplasm corresponds to a cytoplasm with sequentially higher or lower MPF content.
在有助于认识到哺乳动物核移植中,细胞周期协调性对保持染色体完整和由此引起的发育潜能的重要性的早期研究工作中使用了来自诸如兔子、绵羊和牛等物种植入前胚胎的未分化卵裂球(即未特化胚胎细胞)。这些研究揭示出供体细胞核所处细胞周期的阶段和暴露于细胞质MPF的时间长度对观察到的PCC程度具有显著的影响。暴露于MPF中的S期细胞核染色质存在典型的粉碎化外形,并且染色体研究表明了畸形的高发率。(Collas等,1992b)。相反,处于G1或G2期的细胞核的染色质凝聚形成依次具有单股或双股染色单体的伸长的染色体(Collas等,1992b)。在适当的将重建胚胎从中期停顿中解放出来并激活发育的刺激作用后,核膜围绕供体染色质重组,随后不论其以前所处细胞周期阶段,供体染色质进行DNA合成。所以,处于G1期的供体细胞核发动了与正常发育相容的DNA合成,而处于G2期或S期的细胞核则完全或部分地再复制已经复制的DNA,如此以致,到第一次胚性细胞周期结束时,两个子细胞的DNA含量不正确,导致异常的早期胚胎发育。Early work that contributed to the understanding of the importance of cell cycle coordination for maintenance of chromosomal integrity and consequent developmental potential in mammalian nuclear transfer used preimplantation embryos from species such as rabbit, sheep, and cattle. Undifferentiated blastomeres (ie, unspecialized embryonic cells). These studies reveal that the cell cycle phase of the donor nuclei and the length of exposure to cytoplasmic MPF have a significant effect on the degree of PCC observed. S-phase nuclei exposed to MPF had a typical comminuted appearance of chromatin, and chromosome studies indicated a high incidence of malformations. (Collas et al., 1992b). In contrast, the chromatin of nuclei in Gl or G2 phase condenses to form elongated chromosomes with sequentially single- or double-stranded chromatids (Collas et al., 1992b). Following appropriate stimuli that liberate the reconstructed embryo from metaphase arrest and activate development, the nuclear envelope reorganizes around the donor chromatin, which subsequently undergoes DNA synthesis regardless of its previous cell cycle stage. Thus, donor nuclei in G1 initiate DNA synthesis compatible with normal development, while nuclei in G2 or S phase fully or partially re-replicate the DNA that has already been replicated, so that, to the first embryogenic At the end of the cell cycle, the DNA content of the two daughter cells is incorrect, leading to abnormal early embryonic development.
相反,这些早期研究表明在细胞质激活后经过一个足够长的间隔,等MPF消失后,把卵裂球细胞核移植到细胞质中,NEBD就不发生(所以PCC也不发生)并且供体细胞核依据其在移植时所处细胞周期的阶段控制DNA复制。所以,G1期或S期的细胞核分别启动或继续复制,而G2期的细胞核则不能诱导或进入另外一次DNA合成。这种预先激活的细胞质被命名为“通用受体”(Compbell等,1994),其具有在细胞周期的任何阶段协调供体细胞发育的能力。这一点对克隆植入前胚胎特别重要,在植入前胚胎中大多数未分化卵裂球细胞核在任何时刻处于S期(80-90%,Barnes等,1993;Campbell等,1994),所以最适合移植到含MPF较低的细胞质中。Instead, these earlier studies showed that after a sufficiently long interval after cytoplasmic activation, the blastomere nuclei transplanted into the cytoplasm after MPF disappearance, NEBD (and thus PCC) did not occur and the donor nuclei, based on their presence in The phase of the cell cycle at the time of transplantation controls DNA replication. Therefore, the nucleus in G1 phase or S phase initiates or continues to replicate, respectively, while the nucleus in G2 phase cannot induce or enter another DNA synthesis. This pre-activated cytoplasm has been named the "universal receptor" (Compbell et al., 1994), which has the ability to coordinate the development of the donor cell at any stage of the cell cycle. This is particularly important for cloning preimplantation embryos, where the majority of undifferentiated blastomere nuclei are in S phase at any one time (80-90%, Barnes et al., 1993; Campbell et al., 1994), so it is most Suitable for transplantation into cytoplasm with low MPF content.
核移植之后,正常发育取决于卵母细胞细胞质里(或者外因诱导的辅助因子)具有重塑染色质结构和适当重编供体细胞核基因表达形式的因子。成熟细胞质包含指导正常受精的卵裂期胚胎发育到基因组正常激活时间的RNA转录物和蛋白质,基因组正常激活时间是指胚胎细胞核开始合成自已的RNA并指导胚胎发育。所以,来自已经越过基因组正常激活时间点的胚胎或细胞类型的供体细胞核必须在重建后停止它们的RNA合成,并且保持失活状态直到新的重编母体胚胎基因组转换发生。移植后,供体细胞核被迫重编合子状态,随后以正常胚胎发育发生所需的正确水平,适当的时空方式激活适当的基因。实现这个细胞核重编的机制目前不是十分清楚。Following nuclear transfer, normal development depends on factors in the oocyte cytoplasm (or exogenously induced cofactors) that remodel chromatin structure and appropriately reprogram the expression patterns of genes in the donor nucleus. The mature cytoplasm contains RNA transcripts and proteins that guide the development of a normally fertilized cleavage-stage embryo to the time of normal genome activation, when the embryonic nucleus begins to synthesize its own RNA and direct embryonic development. Therefore, donor nuclei from embryos or cell types that have passed the normal activation time point of the genome must cease their RNA synthesis after reconstitution and remain inactive until the transition to the newly reprogrammed maternal embryo genome occurs. After transplantation, the donor nuclei are forced to reprogram the zygotic state and subsequently activate the appropriate genes at the correct level, in the appropriate spatio-temporal manner, required for normal embryogenesis to occur. The mechanism by which this nuclear reprogramming is achieved is not well understood.
鉴于新近用培养保存的细胞进行核移植的兴趣,重编和细胞周期协调已经成为重要课题。培养的细胞比用胚胎分裂球克隆用于早期研究的细胞更加分化(即具有更加特化的细胞功能)。这些细胞可以从胚胎、胎儿或动物成体中分离。因为可以得到较大数量的细胞,所以使用分化细胞培养物的高效核移植技术在家畜中可能实现大规模增殖希望的遗传型并且将加速培养细胞基因操作后转基因动物的生产。Given the recent interest in nuclear transfer using culture-preserved cells, reprogramming and cell cycle coordination have become important topics. The cultured cells were more differentiated (ie, had more specialized cellular functions) than cells cloned with embryonic blastomeres for earlier studies. These cells can be isolated from embryos, fetuses or adult animals. Since larger numbers of cells can be obtained, high-efficiency nuclear transfer techniques using differentiated cell cultures may achieve large-scale proliferation of desired genotypes in livestock and will accelerate the production of transgenic animals following genetic manipulation of cultured cells.
用活跃生长、未同步化的绵羊胚细胞(细胞周期不清楚)培养物的早期(Campbell等,1995)但不是后期的传代细胞(Campbell等,1996b)与前激活细胞质融合的早期研究实际上产生了分娩期羔羊。用去除血清5天后、处于静止状态的细胞(即,经此处理的细胞被认为退出正常的细胞分裂周期,进入所谓的G0状态)与其前、其后或同时用相似综合效率激活的细胞质融合的后续研究产生了活羔羊(Campbell等,1996b)。这些作者(Campbell等,1996b;Schnieke等,1997;Wilmut等,1997;专利WO97/07669)提出了使用退出正常细胞分裂周期并且被同步于静止或G0状态的细胞有助于细胞核重编和从分化细胞产生克隆化动物的重要性。由上述作者提出的优选实现细胞静止同步化的方法(以缺乏增殖细胞细胞核抗原(PCNA)为基础,该种状况表明没有细胞处于S期)是合适时间的血清饥饿。然而,近来,关于血清饥饿细胞中实际处于G0状态的细胞比例受到了质疑。使用双参量流式细胞计同时测量细胞DNA和蛋白含量(为了在二倍体群体中区分G0和G1期细胞,静止期细胞含有更少的RNA和蛋白),Boquest等(1999)研究了培养的猪胎儿成纤维细胞的细胞周期特征。他们证实虽然经过了5天的血清饥饿处理,但是实际上根据他们的定义低于50%的细胞处于G0状态。通过挑选细胞群中的“小”细胞,血清饥饿培养物中G0细胞份额增加到72%(Boquest等,1999)。Early studies using actively growing, unsynchronized sheep embryonic cell (cell cycle unclear) cultures of early (Campbell et al., 1995) but not later passage cells (Campbell et al., 1996b) fusion with preactivating cytoplasm actually produced The farrowing lamb. 5 days after deprivation of serum, cells in a quiescent state (i.e., cells so treated are considered to have exited the normal cell division cycle and entered the so-called G0 state) fused with cytoplasmic cells activated before, after, or at the same time with a similar overall efficiency Subsequent studies produced live lambs (Campbell et al., 1996b). These authors (Campbell et al., 1996b; Schnieke et al., 1997; Wilmut et al., 1997; patent WO 97/07669) proposed the use of cells exiting the normal cell division cycle and synchronized to a quiescent or G0 state to facilitate nuclear reprogramming and differentiation from The importance of cells to generate cloned animals. The preferred method for synchronization of cell quiescence proposed by the above authors (based on the absence of proliferating cell nuclear antigen (PCNA), a condition that indicates no cells in S phase) is serum starvation at the appropriate time. Recently, however, questions have been raised about the proportion of cells actually in the G0 state among serum-starved cells. Using a dual-parameter flow cytometer to simultaneously measure cellular DNA and protein content (in order to differentiate between G0 and G1 phase cells in a diploid population, quiescent cells contain less RNA and protein), Boquest et al. (1999) studied cultured Cell cycle characteristics of porcine fetal fibroblasts. They demonstrated that despite 5 days of serum starvation, less than 50% of the cells were actually in the G0 state by their definition. The share of GO cells in serum starved cultures was increased to 72% by selection of "small" cells in the cell population (Boquest et al., 1999).
作为使用静止期细胞的替代方法,Cibelli和同事们(1998;和专利说明书WO 99/01163)报道了使用非血清饥饿的自由生长的牛细胞培养物与随后使用离子霉素和6-二甲氨基嘌呤(6-DMAP)激活的中期II(M II)细胞质融合。但是,这些公告并未阐明使用这些方法最终产生克隆化小牛胚胎的供体细胞在核移植时所处细胞周期。As an alternative to the use of quiescent cells, Cibelli and co-workers (1998; and patent specification WO 99/01163) reported the use of non-serum-starved free-growing bovine cell cultures with subsequent use of ionomycin and 6-dimethylamino Purine (6-DMAP)-activated metaphase II (M II) cytoplasmic fusion. However, these announcements do not address the cell cycle of the donor cells that ultimately yield cloned calf embryos using these methods at the time of nuclear transfer.
同样地,其他报道说克隆化小牛(Vignon等,1998,1999;Zakhartchenko等,1999)和小鼠(Wakayama和Yangimachi,1999)已经从非血清饥饿的自由生长细胞培养物中产生。但是,与前面一样,产生克隆化后代的供体细胞在进行核移植时所处细胞周期的阶段不能确定。Likewise, other reports that cloned calves (Vignon et al., 1998, 1999; Zakhartchenko et al., 1999) and mice (Wakayama and Yangimachi, 1999) have been generated from non-serum-starved free-growing cell cultures. However, as before, the cell cycle stage of the donor cells that give rise to the cloned progeny at the time of nuclear transfer cannot be determined.
所以,上面所提的研究没有一项准确地证实细胞周期的哪个阶段或哪些阶段导致重建胚胎中最终发育成活后代的比例如此低。Therefore, none of the above-mentioned studies established exactly which phase or phases of the cell cycle resulted in such a low proportion of reconstructed embryos ultimately developing viable offspring.
上述讨论强调,迄今为止,关于培养的供体细胞在核移植时所处细胞周期的描述总地来说少的可怜,这就使本技术水平不稳定并且不易重复。The above discussion emphasizes that, to date, the cell cycle in cultured donor cells at the time of nuclear transfer has generally been described poorly, making the state of the art unstable and not easily reproducible.
所以,期望有一种准确知晓供体细胞核所处细胞周期阶段的核移植方法。Therefore, it is desirable to have a nuclear transfer method that accurately knows the cell cycle phase of the donor cell nucleus.
本发明的一个目的就是向前推进以便实现这一期望或者至少给公众提供有用的选择机会。It is an object of the present invention to move forward in order to fulfill this desire or at least to provide the public with a useful choice.
发明概述Summary of the invention
根据第一个方面,本发明提供了一种核移植的方法,该方法包括从增殖的或未增殖的供体细胞群中挑选分离G1期细胞和从如此分离的G1期细胞中将一个细胞核移植到一个去核的受体细胞中。供体细胞群可以处于细胞周期的一个或多个已知或未知的阶段。According to a first aspect, the present invention provides a method of nuclear transfer, the method comprising selecting and isolating cells in G1 phase from a population of proliferated or non-proliferating donor cells and transplanting a cell nucleus from the cells in G1 phase thus separated into an enucleated recipient cell. The donor cell population can be in one or more known or unknown phases of the cell cycle.
该方法提供了关于供体细胞核在胚胎重建时所处细胞周期的阶段的确定性,所以优于现有技术。This method provides certainty about the stage of the cell cycle in which the donor nuclei are at the time of embryo reconstruction and is therefore superior to existing techniques.
本发明考虑使用细胞周期抑制剂将自由生长的细胞阻滞在细胞周期的特定阶段,以便产生非增殖同步化细胞群。优选地,细胞生长被阻滞在有丝分裂中,并且一旦去除抑制剂,进入G1期的细胞用于核移植。The present invention contemplates the use of cell cycle inhibitors to arrest freely growing cells at specific phases of the cell cycle in order to generate non-proliferating synchronized cell populations. Preferably, cell growth is arrested in mitosis, and once the inhibitor is removed, cells entering G1 phase are used for nuclear transfer.
所以,在第二个方面,本发明提供了一种核移植方法,该方法包括将一个从同步于细胞周期G1期的非增殖细胞群中分离的细胞的一个细胞核移植到一个去核的受体细胞中。Therefore, in a second aspect, the present invention provides a method of nuclear transfer comprising transferring a nucleus of a cell isolated from a population of non-proliferating cells synchronized to the G1 phase of the cell cycle to an enucleated recipient in cells.
优选地,所述G1期细胞是从自由增殖的细胞群或从处于G1早期的非增殖同步化细胞群中单个分离。Preferably, said cells in G1 phase are isolated singly from a population of freely proliferating cells or from a population of non-proliferating synchronized cells in early G1.
可选择地是,非增殖细胞群可以包括衰老细胞。Alternatively, the non-proliferating cell population can include senescent cells.
分离的G1期供体细胞是从动物体内,或者,更优选地,从体外细胞培养物中分离。适合的细胞可以来自胚胎,胎儿,幼年动物,直到完全成熟的成年动物。实际上,任何具备细胞增殖能力的核型正常的二倍体细胞或衰老细胞都可以用于本发明中。细胞可以是未分化状态或细胞分化的不同程度,只要它们可被刺激进入细胞周期和增殖。静止期的细胞可以用合适的培养条件(例如加入血清或特殊的生长因子)刺激进入细胞周期并且在有丝分裂后的G1早期用于核移植。一些细胞类型可被证明比其他的类型更有效,但是成体和胎儿的成纤维细胞和成体卵泡细胞已被发现令人满意。为了说明本发明,下面介绍在牛中(实施例1-7)使用两种卵泡细胞系、四种皮肤成纤维细胞系和两种遗传修饰的胎儿成纤维细胞系的实施结果。Isolated G1 donor cells are isolated from an animal, or, more preferably, from in vitro cell culture. Suitable cells can be derived from embryos, fetuses, juvenile animals, up to fully grown adult animals. In fact, any karyotypically normal diploid cell or senescent cell capable of cell proliferation can be used in the present invention. Cells can be in an undifferentiated state or in varying degrees of cell differentiation, so long as they can be stimulated to enter the cell cycle and proliferate. Cells in quiescent phase can be stimulated to enter the cell cycle with appropriate culture conditions (eg addition of serum or specific growth factors) and used for nuclear transfer in early post-mitotic G1. Some cell types may prove more effective than others, but adult and fetal fibroblasts and adult follicle cells have been found to be satisfactory. To illustrate the invention, the results of experiments using two follicular cell lines, four skin fibroblast cell lines and two genetically modified fetal fibroblast cell lines in cattle (Examples 1-7) are presented below.
优选地,受体细胞包括来自与供体细胞核来源一致的物种的去核卵母细胞。去核卵母细胞可以在胚胎重建时具有较高或较低的MPF活性,因为两种状态是与具有2C含量DNA的G1期供体细胞核相容。Preferably, the recipient cell comprises an enucleated oocyte from the same species as the nucleus of the donor cell. Enucleated oocytes can have higher or lower MPF activity upon embryo reconstitution because both states are compatible with G1-phase donor nuclei with 2C-content DNA.
可选择地是,受体细胞可以包括一个去核的干细胞或一团融合在一起的去核干细胞。优选地,这些干细胞是胚胎干细胞。在核移植中用作受体细胞的胚胎干细胞本身可以从生长着的胚胎或已经建立的培养干细胞系中分离。在这种情况下,用本发明的方法挑选的G1期细胞的供体细胞核所做的核移植可以用于“治疗性克隆”的目的。Alternatively, the recipient cells may comprise an enucleated stem cell or a fused mass of enucleated stem cells. Preferably, these stem cells are embryonic stem cells. Embryonic stem cells used as recipient cells in nuclear transfer can themselves be isolated from growing embryos or from established cultured stem cell lines. In this case, nuclear transfer of donor nuclei from cells in G1 phase selected by the method of the present invention can be used for the purpose of "therapeutic cloning".
根据第三个方面,本发明提供了通过将分离的G1期供体细胞核,优选地G1早期,移植到去核的受体细胞中而产生克隆化动物胚胎的方法。According to a third aspect, the present invention provides a method for producing cloned animal embryos by transplanting isolated G1 donor cell nuclei, preferably early G1 , into enucleated recipient cells.
本发明的方法可以用于生产任何动物胚胎,有关物种包括鸟类、两栖类、鱼类和哺乳类。优选地,相关动物胚胎是哺乳动物胚胎,包括,但不仅限于,灵长类包括人、啮齿类、兔子、猫、狗、马、猪和最优选地,有蹄类动物如牛、绵羊、鹿和山羊。The methods of the present invention can be used to produce embryos of any animal, relevant species including birds, amphibians, fish and mammals. Preferably, the relevant animal embryo is a mammalian embryo including, but not limited to, primates including humans, rodents, rabbits, cats, dogs, horses, pigs and most preferably ungulates such as cattle, sheep, deer and goats.
优选地使用本技术领域所知的方法遗传修饰的细胞核所获的克隆动物胚胎具有期望的遗传性状。Cloned animal embryos obtained preferably using genetically modified nuclei by methods known in the art have desired genetic traits.
根据第四个方面,本发明提供一种用本发明的方法制备的重组动物胚胎,包括重组转基因动物胚胎。如此形成的胚胎然后可以再次克隆以便进一步增加胚胎数量或者进行连续核移植以便进一步帮助核重编和/或发育潜能。According to a fourth aspect, the present invention provides a recombinant animal embryo prepared by the method of the present invention, including a recombinant transgenic animal embryo. Embryos so formed can then be cloned again to further increase the number of embryos or undergo serial nuclear transfer to further aid nuclear reprogramming and/or developmental potential.
根据第五个方面,本发明提供了一种克隆非人类动物的方法,该方法包括(1)根据上面所述的发明提供的方法产生克隆化动物胚胎;(2)用已知方法让动物从胚胎发育到分娩;以及(3)用传统方法或根据本发明方法克隆的随意繁殖如此形成的动物。According to a fifth aspect, the present invention provides a method for cloning a non-human animal, the method comprising (1) producing a cloned animal embryo according to the method provided by the above-mentioned invention; (2) using a known method to make the animal from Embryo development to parturition; and (3) random breeding of animals thus formed by conventional methods or cloned according to the method of the present invention.
本发明的方法可以用于生产非人类动物,有关的物种包括鸟类、两栖类、鱼类和哺乳类。优选地,所说的非人类动物选自:人以外的灵长类、啮齿类、兔子、猫、狗、马、猪和最优选地,有蹄类动物如牛、绵羊、鹿和狗。The methods of the invention can be used to produce non-human animals, and relevant species include birds, amphibians, fish and mammals. Preferably, said non-human animal is selected from the group consisting of non-human primates, rodents, rabbits, cats, dogs, horses, pigs and most preferably ungulates such as cattle, sheep, deer and dogs.
根据第六个方面,本发明提供了用上面描述的发明中的方法制备非人类克隆化动物,以及这种非人类克隆化动物的后代和后裔。According to a sixth aspect, the present invention provides cloned non-human animals produced by the method of the invention described above, and the progeny and descendants of such cloned non-human animals.
本发明的方法可以用于生产非人类动物,优选哺乳动物,其具有使用本技术领域所熟知的方法遗传修饰供体细胞核所获的期望遗传性状。用这种方法产生的转基因动物也构成本发明的一部分。The methods of the invention can be used to produce non-human animals, preferably mammals, having a desired genetic trait obtained by genetically modifying the donor nucleus using methods well known in the art. Transgenic animals produced in this way also form part of the invention.
本发明也可用于生产适用于,例如细胞、组织和器官移植的胚胎细胞系,胚胎干细胞系,胎儿或后代。The invention can also be used to produce embryonic cell lines, embryonic stem cell lines, fetuses or offspring suitable for, eg, cell, tissue and organ transplantation.
相应地,在另一个实施方案中,本发明提供了产生胚胎细胞系的方法,该方法包括如下步骤:a)从不知道细胞周期的供体细胞增殖群中或同步化的G1期细胞群中挑选分离G1期细胞和将分离细胞的细胞核移植到去核受体细胞中;b)培养到胚泡期;c)回收胚胎细胞;以及d)使用本技术领域公知的方法建立体外无限增殖化细胞系。Accordingly, in another embodiment, the present invention provides a method of producing an embryonic cell line comprising the steps of: a) proliferating from a cell cycle-agnostic donor cell population or from a synchronized G1 phase cell population selecting and isolating cells in the G1 phase and transplanting the nuclei of the isolated cells into enucleated recipient cells; b) culturing to the blastocyst stage; c) recovering embryonic cells; and d) establishing immortalized cells in vitro using methods known in the art Tie.
在另一个实施方案中,提供了生产动物胚胎干细胞的方法,该方法包括如下步骤:a)从处于细胞周期未知的不同阶段的动物供体细胞生长群中或同步化的G1期培养物中挑选分离G1期细胞和将分离细胞的细胞核移植到去核动物受体细胞中;b)培养到胚泡期;c)回收胚胎干细胞。In another embodiment, there is provided a method of producing animal embryonic stem cells comprising the steps of: a) selecting from a growing population of animal donor cells at different stages of the cell cycle or from synchronized G1 phase cultures Isolating G1 phase cells and transplanting the nuclei of the isolated cells into enucleated animal recipient cells; b) culturing to blastocyst stage; c) recovering embryonic stem cells.
优选地,在上述方法中使用的动物供体细胞是人源的。最优选地,在上述方法中使用的动物供体和受体细胞都是人源的。Preferably, the animal donor cells used in the above methods are of human origin. Most preferably, both the animal donor and recipient cells used in the above methods are of human origin.
最优选地,供体细胞是选自任何核型正常的细胞类型的成体或胎儿细胞,并且受体细胞是选自任何能够重编基因表达的细胞类型,包括去核卵母细胞或胚胎干细胞。Most preferably, the donor cell is an adult or fetal cell selected from any karyotypically normal cell type, and the recipient cell is selected from any cell type capable of reprogramming gene expression, including enucleated oocytes or embryonic stem cells.
用本发明的方法产生的胚胎干细胞是多潜能细胞,可以用本技术领域公知的方法在培养中诱导分化形成人体细胞特化类型的纯化群,包括神经细胞例如神经元、星形胶质细胞和少突胶质细胞;肝细胞;肌肉细胞例如肌原细胞;心脏细胞例如心肌细胞;造血细胞;胰细胞和其他感兴趣的细胞。The embryonic stem cells produced by the method of the present invention are pluripotent cells, which can be induced to differentiate in culture by methods known in the art to form purified populations of specialized types of human cells, including nerve cells such as neurons, astrocytes and Oligodendrocytes; Hepatocytes; Muscle cells such as myogenic cells; Cardiac cells such as cardiomyocytes; Hematopoietic cells; Pancreatic cells and other cells of interest.
这些特化的人体细胞和组织然后可以在特定疾病或者受损细胞不能自我更新或不能有效更新的伤害中用于移植治疗。其中,人供体细胞来自需要这种移植的病人,由于移植的组织与病人在遗传上相同,该移植的组织就不会被病人排斥。These specialized human cells and tissues can then be used for transplantation therapy in specific diseases or injuries where damaged cells cannot self-renew or renew effectively. Where the human donor cells come from the patient in need of such a transplant, since the transplanted tissue is genetically identical to the patient, the transplanted tissue will not be rejected by the patient.
可替代地是,这些分化的细胞和组织可以用于治疗疾病或损伤,例如,多种神经系统障碍(例如帕金森病)、糖尿病、心脏病、肌肉萎缩、多种遗传性疾病、特定癌症(例如白血病)、脊髓损伤、烧伤和其他痛苦。Alternatively, these differentiated cells and tissues can be used to treat diseases or injuries, for example, various neurological disorders (such as Parkinson's disease), diabetes, heart disease, muscle wasting, various genetic diseases, certain cancers ( such as leukemia), spinal cord injuries, burns and other afflictions.
这些方法在本技术领域称做“治疗性克隆”。These methods are known in the art as "therapeutic cloning".
人体胚胎干细胞体外分化成特定细胞类型也有助于筛选药物和人类药物毒理学研究。In vitro differentiation of human embryonic stem cells into specific cell types is also useful for drug screening and human drug toxicology studies.
所以,在另一个方面,本发明提供了用本发明方法生产体外分化人体胚胎干细胞进行药物筛选和药物毒理学实验的方法。Therefore, in another aspect, the present invention provides a method for using the method of the present invention to produce in vitro differentiated human embryonic stem cells for drug screening and drug toxicology experiments.
根据另外一个方面,本发明提供了异种移植的方法,其中细胞、组织和器官可以分离自根据本发明的方法生产的非人类克隆化动物和它们的后代,用于需要这种治疗的人类疾病患者的移植中。如果这种细胞、组织或器官中包括了转基因,这种细胞、组织或器官可以用于基因治疗,或调节病人对含有外源基因的组织的免疫反应。According to a further aspect, the present invention provides methods of xenotransplantation wherein cells, tissues and organs can be isolated from non-human cloned animals produced according to the methods of the present invention and their progeny for use in human diseased patients in need of such treatment being transplanted. If such cells, tissues or organs include transgenes, such cells, tissues or organs can be used for gene therapy, or to modulate a patient's immune response to tissues containing foreign genes.
附图说明Description of drawings
现在参考附图对本发明予以描述:The invention will now be described with reference to the accompanying drawings:
图1表示用处于供体细胞周期的G0或G1期卵泡细胞重建的克隆化牛胚胎全妊娠过程中的存活率;Figure 1 shows the survival rate of cloned bovine embryos reconstituted with follicular cells in G0 or G1 phase of the donor cell cycle during whole pregnancy;
图2表示用处于供体细胞周期的G0或G1期雌性成体皮肤成纤维细胞重建的克隆化牛胚胎全妊娠过程中的存活率;Figure 2 shows the survival rate during whole gestation of cloned bovine embryos reconstituted with female adult skin fibroblasts in G0 or G1 phase of the donor cell cycle;
图3表示用处于供体细胞周期的G0或G1期雌性成体皮肤成纤维细胞(3XTC细胞)重建的克隆化牛胚胎全妊娠过程中的存活率;Figure 3 shows the survival rate during whole gestation of cloned bovine embryos reconstituted with female adult skin fibroblasts (3XTC cells) in G0 or G1 phase of the donor cell cycle;
图4表示用处于供体细胞周期的G0或G1期雄性成体皮肤成纤维细胞(LJ801细胞)重建的克隆化牛胚胎全妊娠过程中的胚胎存活率;Figure 4 shows the embryo survival rate during the whole gestation of cloned bovine embryos reconstituted with male adult skin fibroblasts (LJ801 cells) in the G0 or G1 phase of the donor cell cycle;
图5表示用处于供体细胞周期的G0或G1期、经过遗传修饰的雌性胎儿肺成纤维细胞(酪蛋白+5110细胞)重建的克隆化转基因牛胚胎全妊娠过程中的胚胎存活率;和Figure 5 shows embryo survival throughout gestation of cloned transgenic bovine embryos reconstituted with genetically modified female fetal lung fibroblasts (casein+5110 cells) in the G0 or G1 phase of the donor cell cycle; and
图6表示用不增殖的衰老雌性胎儿成纤维细胞(561细胞系)重建的克隆化转基因牛胚胎全妊娠过程中的胚胎存活率;Figure 6 shows the embryo survival rate during whole gestation of cloned transgenic bovine embryos reconstituted with non-proliferating senescent female fetal fibroblasts (561 cell line);
发明详述Detailed description of the invention
本发明涉及对核移植克隆动物胚胎的已有技术的改进。虽然考虑到本发明的胚胎克隆方法可以用于多种哺乳动物和其他动物种类,但是本方法将参考牛类予以描述。本发明的本质特征是供体细胞核处于G1期,优选地,处于G1早期。The present invention relates to the improvement of the prior art of cloning animal embryos by nuclear transfer. Although it is contemplated that the embryo cloning method of the present invention may be used in a variety of mammals and other animal species, the method will be described with reference to bovines. An essential feature of the invention is that the donor cell nucleus is in G1 phase, preferably, in early G1 phase.
从自由生长的培养细胞群中确定得到G1期细胞的一个方法是从培养物表面逐个挑选有丝分裂细胞,并将它们放在包含10%的胎牛血清(FCS)的培养基中使其完成有丝分裂。这种供体细胞然后在有丝分裂后的较短时间里并在进入S期前融合受体细胞(即细胞质),通常应用中该时间是三个小时,可以用5-溴脱氧尿苷标记检测。以这种方式,细胞被确保处于G1早期并且拥有2C含量的DNA。所以,循环的细胞在其进入G1/S分界点前用于核移植。挑选的细胞在操作的整个过程中存放在高血清含量的培养基中,至少到与细胞质的融合完成之后。所以,细胞不能被诱导退出细胞分裂周期,不能静止在任何意时刻。One method of identifying cells in G1 phase from a freely growing population of cultured cells is to individually pick mitotic cells from the culture surface and place them in a medium containing 10% fetal calf serum (FCS) to complete mitosis. This donor cell then fuses with the recipient cell (ie cytoplasm) within a short time after mitosis and before entering S phase, typically three hours, detectable with 5-bromodeoxyuridine labeling. In this way, cells are ensured to be in early G1 and possess a 2C content of DNA. Therefore, circulating cells are available for nuclear transfer before they enter the G1/S junction. Selected cells are maintained in high serum content medium throughout the manipulation, at least until fusion with the cytoplasm is complete. Therefore, cells cannot be induced to exit the cell division cycle and cannot be quiescent for any desired moment.
虽然本发明考虑生产用于核移植的同步化G1期细胞群,但是本发明的方法中一个优点是不必使用具有细胞潜在毒性或干扰细胞同步化的试剂例如噻氨酯哒唑或秋水仙素,例如,预先将较高比例的细胞同步化于M期,随后再从这一阻滞中释放,等细胞分裂后挑选G1早期细胞。但是,为了挑选大量的G1期细胞或者可逆性地将用于核移植的G1期细胞抑制于特定的时间点,根据本发明,以合适的药物浓度和孵育时间使用合适的试剂即细胞周期抑制剂是有益的。这种试剂和方法为本领域的技术人员所知晓。这些方法可以包括为减少药物暴露时间的预同步化处理,例如在二次加入血清前使用血清饥饿法诱导细胞暂时进入G0期,让细胞再次进入G0/G1分界点或限制点和进行细胞分裂周期。适合可逆性把细胞抑制在G1期不同时间点的试剂(参考,Gadbois等,1992)包括:(1)星形孢菌素(一种非专一性的激酶抑制剂,在纳摩尔水平的极低浓度使用);(2)作用于细胞周期进程的更专一的激酶抑制剂,例如cAMP依赖型蛋白激酶和cGMP依赖性蛋白激酶抑制剂;(3)洛伐他丁;(4)异亮氨酸缺乏;(5)蚜栖菌素或者羟基脲,以阻止细胞进入S期、阻滞在G1/S分界点的方式使用。Although the present invention contemplates the production of synchronized G1 phase cell populations for nuclear transfer, an advantage in the methods of the present invention is that it is not necessary to use agents that are potentially cytotoxic or interfere with cell synchronization, such as thicarbazol or colchicine, For example, presynchronizing a higher proportion of cells in M phase and later releasing from this arrest allows selection of early G1 cells after cell division. However, in order to select a large number of cells in G1 phase or to reversibly suppress G1 phase cells for nuclear transfer at a specific time point, according to the present invention, a suitable reagent, namely a cell cycle inhibitor, is used at a suitable drug concentration and incubation time. is beneficial. Such reagents and methods are known to those skilled in the art. These methods can include presynchronization to reduce drug exposure time, such as using serum starvation to temporarily induce cells into G0 phase before the second addition of serum, allowing cells to re-enter the G0/G1 junction or checkpoint and carry out the cell division cycle . Reagents suitable for reversibly inhibiting cells at different time points in G1 phase (reference, Gadbois et al., 1992) include: (1) staurosporine (a non-specific kinase inhibitor, very low concentrations); (2) more specific kinase inhibitors that act on cell cycle progression, such as cAMP-dependent protein kinase and cGMP-dependent protein kinase inhibitors; (3) lovastatin; (4) isobright (5) Aphidicolin or hydroxyurea, used to prevent cells from entering the S phase and arresting at the G1/S junction.
由于G1期供体细胞核含有2C含量的DNA(即它是二倍体),它们可以与具有或高或低含量MPF的细胞质重建。这也就是说,G1期细胞核可以在激活发生之前、之后或同时引入细胞质。但是,为了克隆胚胎较好发育,优选地,将供体细胞核(不管是在电诱导细胞融合还是直接细胞核注射后进行引入)在去核卵母细胞的细胞质存在的因子中暴露适当的时间,以便促进细胞核重编。这被称做“激活前融合”或者FBA。以前的研究工作已经表明与基本上是“同时融合和激活”或AFS相比较本方法的好处(Stice等,1996;Wells等,1998;1999)。而且,建议在细胞质中暴露时间至少大于一个小时,优选地是在3-6小时之间,以便提高发育到胚泡期的比例。但是,使用本方法时,为了在最终胚胎中保持正确的倍性染色体,用合适方法阻止微核形成是重要的,其中微核是在融合早于激活时发生的(Czolowska等,1984)。Since the G1 donor nucleus contains a 2C content of DNA (ie it is diploid), they can be reconstituted with cytoplasm with either high or low MPF content. That is, G1 nuclei can be brought into the cytoplasm before, after, or simultaneously with activation. However, for better development of cloned embryos, preferably, the donor nuclei (whether introduced after electrical induction of cell fusion or direct nuclei injection) are exposed to factors present in the cytoplasm of the enucleated oocyte for an appropriate period of time so that Promotes nuclear reprogramming. This is called "fusion before activation" or FBA. Previous research work has shown the benefits of this approach compared to essentially "simultaneous fusion and activation" or AFS (Stice et al., 1996; Wells et al., 1998; 1999). Furthermore, it is recommended to expose the cytoplasm for at least more than one hour, preferably between 3-6 hours, in order to increase the proportion of development to the blastocyst stage. However, in order to maintain the correct ploidy chromosomes in the final embryo, using this method, it is important to prevent the formation of micronuclei with appropriate methods, which occur when fusion precedes activation (Czolowska et al., 1984).
下面是牛类中用培养的G0期或G1期供体细胞重建和产生克隆化胚胎的方法略述。在下述详细的实施例中,收集自卵泡的牛卵泡细胞使用结果表现在实施例1-3中(成纤维细胞系的使用在实施例4-7中阐明)。在实际应用中,使用本技术可以证明本质上任何具备正常二倍体核型的细胞类型是全能的,包括胚胎、胎儿、幼年和成体细胞,不论其正在增殖还是能够诱导进入细胞周期或衰老过程。并且,本领域的技术人员觉察到的本技术领域已知的其他方法可以用于重组和生产克隆化胚胎。The following is an overview of methods for reconstituting and generating cloned embryos in bovine from cultured G0 or G1 donor cells. In the detailed examples below, the results of the use of bovine follicle cells collected from follicles are shown in Examples 1-3 (the use of fibroblast cell lines is illustrated in Examples 4-7). In practice, the technique can be used to demonstrate that essentially any cell type with a normal diploid karyotype is totipotent, including embryonic, fetal, juvenile and adult cells, whether they are proliferating or capable of being induced into the cell cycle or the senescence process . Also, other methods known in the art as recognized by those skilled in the art can be used to recombine and produce cloned embryos.
卵母细胞的体外成熟in vitro maturation of oocytes
在屠宰场收集雌牛卵巢,放入生理盐水中(30℃),2小时内运到实验室。用18号注射针和负压吸入3-10毫米的卵泡从而回收卵丘一卵母细胞复合体(COCs)。(替代地,未成熟卵母细胞可以从供体母牛通过卵子提取收集,随后进行体外成熟)。COCs被放到补充了50微克/毫升肝素(Sigma,St.Louis,MO)和0.4%w/v牛血清清蛋白(BSA)(Immuno-Chemical Products(ICP),Auckland,新西兰)的N-2-羟乙基哌嗪-N’-2-乙烷磺酸(HEPES)缓冲组织培养基199(H199;LifeTechnologies,Auckland,新西兰)中。在进行体外成熟前,只选择具有紧密非闭锁卵丘放射冠和匀质卵浆的COCs。这些COCs先用H199培养基+10%胎牛血清(FCS)(Life Technologies,新西兰)洗两次,再用碳酸氢盐缓冲的组织培养基199+10%FCS洗一次。将十个COCs转入10微升这种培养基中,加到置于5厘米培养皿(Falcon,BectonDickinson Labware,Lincoln Park,新泽西州)里的40微升成熟培养基中,用石蜡油(Squibb,Princeton,新泽西州)覆盖。成熟培养基包括补充10%FCS,10微克/毫升绵羊卵泡刺激素(FSH)(Ovagen;ICP),1微克/毫升绵羊黄体生成素(LH)(ICP),1微克/毫升雌二醇(Sigma),和0.1毫摩尔/升胱胺(Sigma)的组织培养基199。微滴培养皿在39℃、湿润的、含有5%CO2的气体环境中培养18-20小时。成熟后,将COCs置于含有0.1%透明质酸酶(来自牛睾丸;Sigma)的HEPES缓冲合成输卵管液体(HSOF;Thompson等,1990)涡流处理3分钟,再用HSOF+10%FCS洗三次,完全除掉卵丘放射冠。The ovaries of the female cattle were collected in the slaughterhouse, placed in normal saline (30°C), and transported to the laboratory within 2 hours. Cumulus-oocyte complexes (COCs) were recovered by aspirating 3-10 mm of follicles with an 18-gauge needle and negative pressure. (Alternatively, immature oocytes can be collected from donor cows by egg extraction followed by in vitro maturation). COCs were placed in N-2 supplemented with 50 μg/ml heparin (Sigma, St. Louis, MO) and 0.4% w/v bovine serum albumin (BSA) (Immuno-Chemical Products (ICP), Auckland, New Zealand). -Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffered tissue culture medium 199 (H199; Life Technologies, Auckland, New Zealand). Before proceeding to in vitro maturation, only COCs with compact non-atresisting cumulus coronas and homogeneous oocysts were selected. These COCs were first washed twice with H199 medium + 10% fetal calf serum (FCS) (Life Technologies, New Zealand), and then washed once with bicarbonate-buffered tissue culture medium 199 + 10% FCS. Ten COCs were transferred to 10 microliters of this medium, added to 40 microliters of maturation medium placed in a 5 cm Petri dish (Falcon, Becton Dickinson Labware, Lincoln Park, NJ), and washed with paraffin oil (Squibb , Princeton, NJ) coverage. Maturation medium was supplemented with 10% FCS, 10 μg/ml ovine follicle stimulating hormone (FSH) (Ovagen; ICP), 1 μg/ml ovine luteinizing hormone (LH) (ICP), 1 μg/ml ovine estradiol (Sigma ), and tissue culture medium 199 at 0.1 mmol/L cystamine (Sigma). Microtiter dishes were incubated at 39°C for 18-20 hours in a humidified atmosphere containing 5% CO2 . After maturation, COCs were placed in HEPES-buffered synthetic oviduct fluid (HSOF; Thompson et al., 1990) containing 0.1% hyaluronidase (from bovine testes; Sigma) and vortexed for 3 minutes, then washed three times with HSOF+10% FCS, Completely remove the corona cumulus.
培养细胞的核移植nuclear transfer of cultured cells
a)培养基成熟的卵母细胞、细胞质和重建胚胎在成熟后直到脉冲电击之后15-30分钟融合评估结束的时间区段内是在基于H199的培养基中保存或操作的。激活前3-6小时使供体细胞和M II细胞质融合(FBA处理法)重建的胚胎是在减去钙+10%FCS的AgResearch合成输卵管液体培养基(AgR SOF;这种培养基是Gardner等,1994所述配方的修改配方,已由AgResearch,Hamilton,新西兰,实现了商业化)中培养,直到激活前夕,即培养3-6小时后。此后,钙存在于所有使用的培养基配方中。a) Media Matured oocytes, cytoplasm and reconstructed embryos were maintained or manipulated in H199-based media for the period of time after maturation until the end of fusion assessment 15-30 minutes after pulse shock. Embryos reconstituted by fusing donor cells and M II cytoplasm (FBA treatment) 3–6 hours prior to activation were grown in AgResearch Synthetic Oviduct Liquid Medium (AgR SOF; this medium was developed by Gardner et al. , 1994, a modified formulation of the formulation described by AgResearch, Hamilton, New Zealand, which has been commercialized) until the eve of activation, ie after 3-6 hours of incubation. Calcium was present in all media formulations used thereafter.
b)去核用15-20微米(外径)玻璃吸管取除成熟处理约18-20小时的卵原细胞的细胞核,方法是在周围细胞质里吸取第一极体和中期板。卵原细胞先在含有10%FCS,5微克/毫升Hoechst 33342和7.5微克/毫升细胞松弛素B(Sigma)染色5-10分钟,然后在没有Hoechst 33342的这种培养基中操作。去核操作通过在紫外光下看见细胞核来确认。去核之后,所得细胞质在H199+10%FCS中粗放洗涤,然后保存在这种培养基中,直到注入供体细胞。b) Enucleation The nuclei of oogonia matured for approximately 18-20 hours were removed using a 15-20 micron (outer diameter) glass pipette by aspirating the first polar bodies and metaphase plates in the surrounding cytoplasm. Oogonia were first stained with 10% FCS, 5 μg/ml Hoechst 33342 and 7.5 μg/ml cytochalasin B (Sigma) for 5-10 minutes and then manipulated in this medium without Hoechst 33342. Enucleation was confirmed by visualization of the nuclei under UV light. After enucleation, the resulting cytoplasm was washed roughly in H199 + 10% FCS and then kept in this medium until injected into donor cells.
c)静止供体细胞的制备(即G0期细胞)用血清缺失的方法,培养卵泡细胞被诱导进入静止期(Campell等,1996b)。常规传代的某一天,培养基被吸走,用新鲜的磷酸缓冲盐溶液(PBS)将细胞洗三次,再加入只含0.5%FCS的新鲜培养基。将卵泡细胞放到低血清培养基中进一步培养9-23天(通常10天),然后用于核移植。就在注射前夕,用标准胰蛋白酶消化制备供体细胞单细胞悬液。沉淀细胞,重悬在H199+0.5%FCS中,保存在这种培养基中直到注射。c) Preparation of quiescent donor cells (ie cells in G0 phase) Cultured follicle cells were induced into quiescence by serum deprivation (Campell et al., 1996b). On one day of routine passaging, the medium was aspirated, the cells were washed three times with fresh phosphate-buffered saline (PBS), and fresh medium containing only 0.5% FCS was added. The follicle cells are further cultured in low serum medium for 9-23 days (usually 10 days), and then used for nuclear transfer. Just prior to injection, single-cell suspensions of donor cells were prepared by standard trypsinization. Cells were pelleted, resuspended in H199+0.5% FCS, and kept in this medium until injection.
d)G1期供体细胞的制备用合适的培养基(例如添加10%FCS的DMEM/F12)在培养皿中的玻璃盖玻片上培养增殖的卵泡细胞。从培养皿中用无菌操作挑选其表面长有细胞的盖玻片,放在能够进行细胞或细胞核收集和注射的合适构造的微操作室中。将一小滴包含10%FCS的HEPES缓冲培养基滴在细胞上,然后用矿物油覆盖。只要盖玻片上细胞浓度不太高,就可以区分并且用操作吸管小心地物理性地从盖玻片上挑取有丝分裂细胞,因为有丝分裂中,细胞变圆并且仅仅松松地附着在培养表面。如果这一操作不容易,可以在使用稀释的包含1.5微克/毫升细胞松弛素B的胰岛素溶液(例如培养细胞系常用转种培养强度的十分之一)前先用PBS很快清洗细胞,主要减少从盖玻片上物理挑取细胞导致的机械损伤。使用合适的显微镜(例如相差显微镜或DIC光学显微镜),主要通过看到纺锤体中凝聚染色体或识别处于有丝分裂末期仍由细胞质桥连接的细胞双联体中的凝聚染色体识别盖玻片上的有丝分裂细胞。所以,不必使用诸如Hoechst的DNA专一性荧光染料并将细胞暴露在紫外光中。依靠固定在操作器上的注射滴管,有丝分裂细胞被单个地从盖玻片上挑下来,放入临近的包含10%FCS的HEPES缓冲培养基小滴中,以便完成有丝分裂和最终的细胞分裂形成两个细胞。吸管的直径应该合适,其取决于细胞系,以便在操作中不会物理性的损伤细胞或纺锤体。所以,优选地,处于后期或末期的有丝分裂细胞被单个挑选、取出并允许完成有丝分裂一分为二。这些分裂产生的成对细胞然后可以通过短时间暴露在合适酶溶液的简便方法轻轻地被分离成单个细胞。然后,每个完整细胞被注入并融合到细胞质中。替代地,细胞核可以被分离并直接注射进去核卵母细胞的细胞质中。优选地,从最先从培养表面挑取有丝分裂细胞开始的三个小时内,完成供体细胞核导入细胞质。这就确保培养细胞是在细胞周期的G1早期并在S期发生前融合。对于这里使用的每一种细胞类型或细胞系应该使用例如,选择细胞样品负5-溴脱氧尿苷标记法,进行确认。而且,建议确认使用本方法所挑选的细胞实际上处于细胞周期中并且在后边的某一时间点进入S期。d) Preparation of Donor Cells in G1 Phase Proliferating follicle cells were cultured on glass coverslips in a petri dish with a suitable medium (eg DMEM/F12 supplemented with 10% FCS). Coverslips with cells grown on their surface are aseptically picked from a Petri dish and placed in a suitably configured micromanipulator chamber that allows collection and injection of cells or nuclei. A small drop of HEPES buffered medium containing 10% FCS was dropped on the cells and then covered with mineral oil. As long as the cell concentration on the coverslip is not too high, mitotic cells can be distinguished and carefully physically picked from the coverslip with a handling pipette, because in mitosis, cells become round and only loosely attached to the culture surface. If this is not easy, cells can be washed very quickly with PBS before using a diluted insulin solution containing 1.5 µg/mL cytochalasin B (e.g., one-tenth of the strength commonly used for transplanting cultured cell lines), mainly Reduces mechanical damage from physically picking cells from coverslips. Using an appropriate microscope (e.g., phase-contrast microscopy or DIC light microscopy), identify mitotic cells on coverslips primarily by seeing condensed chromosomes in the spindle or identifying condensed chromosomes in doublets of cells in telophase that are still connected by cytoplasmic bridges. Therefore, it is not necessary to use DNA-specific fluorescent dyes such as Hoechst and to expose cells to UV light. Mitotic cells are individually picked from the coverslip by means of an injection dropper fixed to the manipulator and placed into an adjacent droplet of HEPES buffered medium containing 10% FCS to complete mitosis and eventually cell division to form two cells. cells. The diameter of the pipette should be appropriate, depending on the cell line, so that the manipulation does not physically damage the cells or the spindle. Therefore, preferably, mitotic cells in anaphase or telophase are single-picked, removed and allowed to complete mitosis and divide in two. The paired cells resulting from these divisions can then be gently dissociated into single cells by a facile method of short-term exposure to a suitable enzyme solution. Each intact cell is then injected and fused into the cytoplasm. Alternatively, nuclei can be isolated and injected directly into the cytoplasm of the nucleated oocyte. Preferably, the transfer of donor cell nuclei to the cytoplasm is accomplished within three hours of first picking the mitotic cells from the culture surface. This ensures that cultured cells are confluent early in G1 of the cell cycle and before S phase occurs. For each cell type or cell line used here it should be confirmed using, for example, negative 5-bromodeoxyuridine labeling of selected cell samples. Also, it is advisable to confirm that cells picked using this method are actually in the cell cycle and enter S phase at some later point in time.
e)微注射受体细胞质在包含10%FCS和5%蔗糖的H199培养基中脱水的。这种培养基也用作微操作培养基。容纳供体细胞的合适大小吸管(例如外径30-35微米)刺过透明带,细胞被楔在透明带和细胞质的细胞膜间,将促进有助于随后融合的细胞膜紧密接触。注射后,重建胚胎经过两步再次脱水:首先在10%FCS和2.5%蔗糖的H199培养基中脱水5分钟,然后在H199+10%FCS中脱水直到融合。e) Microinjection of recipient cytoplasm dehydrated in H199 medium containing 10% FCS and 5% sucrose. This medium is also used as a micromanipulation medium. Piercing the zona pellucida with an appropriately sized pipette (eg, 30-35 micron outer diameter) to accommodate the donor cells, where the cells are wedged between the zona pellucida and the cytoplasmic membrane, will promote tight cell membrane contact that facilitates subsequent fusion. After injection, the reconstructed embryos were dehydrated again in two steps: first in H199 medium with 10% FCS and 2.5% sucrose for 5 min, then in H199+10% FCS until confluent.
f)细胞融合对G0期和G1期细胞处理而言,胚胎是用FBA战略(激活前融合)重建的。在成熟过程开始后约24小时(hpm),重建胚胎在由0.3摩尔/升甘露醇,0.5毫摩尔/升HEPES和含有0.05毫摩尔/升钙与0.1毫摩尔/升镁的0.05无脂肪酸(FAF)的BSA组成的缓冲液中进行电融合的。融合是在室温下,在一个具有两个用融合缓冲液覆盖相距500微米不锈钢电极的小室中进行。用手将重建胚胎与纤细的口控巴氏吸管对齐,以便细胞质和供体细胞的接触表面与电极平行。对于卵泡细胞,细胞融合是用两次由BTX电细胞操作仪200(BTX,SanDiego,加州)(需要区分每种细胞系的合适电参数)发射,每次15微秒强度2.25-2.50千伏/厘米的脉冲直流电诱导的。电刺激后,用H199+10%FCS洗涤重建胚胎。然后在15-30分钟内,用显微检查检验融合情况。f) Cell fusion Embryos were reconstituted using the FBA strategy (fusion before activation) for G0 and G1 cell treatments. Approximately 24 hours (hpm) after the start of the maturation process, the reconstituted embryos were treated with 0.3 mol/L mannitol, 0.5 mmol/L HEPES, and 0.05 fatty acid-free (FAF) containing 0.05 mmol/L calcium and 0.1 mmol/L magnesium. ) for electrofusion in a buffer composed of BSA. Fusion was performed at room temperature in a chamber with two stainless steel electrodes covered with fusion buffer 500 microns apart. Align the reconstructed embryo by hand with a slender mouth-controlled Pasteur pipette so that the contact surface of the cytoplasm and donor cells is parallel to the electrode. For follicle cells, cell fusion is performed with two shots by a BTX electrocytomanipulator 200 (BTX, San Diego, CA) (appropriate electrical parameters are required to differentiate each cell line), each 15 microsecond intensity 2.25-2.50 kV/ centimeter induced by pulsed direct current. After electrical stimulation, the reconstructed embryos were washed with H199+10% FCS. Fusion was then checked microscopically within 15-30 minutes.
不要期望上述的电融合参数对在24hpm使用的年轻细胞质产生显著的激活比例,因为在相同电刺激后,同一年龄的对照卵母细胞(n=112)只有低于1%的形成了原核(Wells等,1999)。这对FBA处理很重要,以便NEBD和PCC发生,从而允许G0期和G1期细胞核的供体染色体暴露在卵母细胞质里的因子中使染色质重构和细胞核重编。Do not expect the electrofusion parameters described above to produce significant activation ratios for young cytoplasm used at 24hpm, because less than 1% of control oocytes (n=112) of the same age formed pronuclei after the same electrical stimulation (Wells et al., 1999). This is important for FBA processing in order for NEBD and PCC to occur, allowing donor chromosomes in G0 and G1 nuclei to be exposed to factors in the oocyte cytoplasm for chromatin remodeling and nuclear reprogramming.
可选择地是,正如本领域的技术人员所知,来自G1期细胞的细胞核可以被分离并直接注射到卵母细胞细胞质中。Alternatively, nuclei from cells in G1 phase can be isolated and injected directly into the oocyte cytoplasm, as known to those skilled in the art.
g)激活有多种实现人工激活的方法。一种独特的方法涉及离子霉素(Sigma)和6-二甲氨基嘌啉(6-DMAP;Sigma)(Susko-Parrish等,1994)。融合后,胚胎优选地在供体细胞核暴露给卵母细胞质3-6小时后被激活。这种优选的方法以被称做“激活前融合”(FBA;Wells等,1998)。在激活前30分钟,用FBA处理方法所得的融合胚胎用HSOF(含钙)+1毫克/毫升FAF BSA洗涤并保存。在滴加30微升5微摩尔/升的离子霉素(Sigma)的HSOF+1毫克/毫升FAF BSA中、37℃、孵育4分钟诱导激活。激活通常在细胞质年龄27-30hpm间发生。用HSOF+30毫克/毫升FAF BSA粗放地将胚胎洗涤5分钟,再在含有2毫摩尔/升的6-二甲氨基嘌啉(6-DMAP;Sigma)的AgR SOF(加钙)+10%FCS中培养4小时。g) Activation There are many ways to achieve manual activation. A unique approach involves ionomycin (Sigma) and 6-dimethylaminopurine (6-DMAP; Sigma) (Susko-Parrish et al., 1994). Following fusion, the embryo is preferably activated 3-6 hours after exposure of the donor nucleus to the oocyte cytoplasm. This preferred method has been termed "fusion before activation" (FBA; Wells et al., 1998). Thirty minutes before activation, fused embryos obtained by the FBA treatment method were washed with HSOF (with calcium) + 1 mg/ml FAF BSA and stored. Activation was induced by incubating 30 μl 5 μmol/L ionomycin (Sigma) dropwise in HSOF + 1 mg/ml FAF BSA at 37°C for 4 minutes. Activation usually occurs between cytoplasmic age 27-30hpm. Embryos were washed roughly for 5 min with HSOF + 30 mg/ml FAF BSA and then washed in AgR SOF (plus calcium) + 10% Incubate in FCS for 4 hours.
正如FBA方法(Stice等,1996:Wells等,1998;1999)中所述,延长细胞核暴露于卵母细胞质的时间所致胚胎发育比率提高必须与适当的阻止延迟激活之后微核形成(Czolowska等,1984)发生的处理方法结合。丝氨酸-苏氨酸激酶抑制剂,例如6-DMAP,似乎是合适的试剂。所以,在最初的激活刺激后,6-DMAP允许形成单个完整细胞核,因而在重建胚胎里保持了正确的倍性。As described in the FBA method (Stice et al., 1996; Wells et al., 1998; 1999), the increased rate of embryonic development resulting from prolonged exposure of nuclei to oocyte cytoplasm must be related to appropriate prevention of micronucleus formation after delayed activation (Czolowska et al., 1984) a combination of processing methods occurred. Serine-threonine kinase inhibitors, such as 6-DMAP, appear to be suitable agents. Thus, after the initial activating stimulus, 6-DMAP allowed the formation of a single intact nucleus, thus maintaining the correct ploidy in the reconstructed embryo.
体外培养核移植胚胎In vitro culture of nuclear transfer embryos
胚胎培养是在矿物油覆盖的20微升AgR SOF(可从AgResearch,Hamilton,新西兰购买)中进行的。AgR SOF是SOFaaBSA(包含8毫克/毫升的FAF BSA;如同Gardner等,1994描述)的修改配方。只要可能,多达10个胚胎在培养基小滴中一起培养。胚胎是在保湿的模件孵育小室(ICN Biomedicals,Aurora,俄亥俄州)中,由5%CO2、7%O2和88%N2组成的气体混合物中39℃培养。在发育的第4-5天(0天=胚胎重建当天),胚胎转入20微升新鲜的加有10微摩尔/升2,4-二硝基苯酚的AgR SOF中,如公开专利说明书WO 00/38538所披露的,其中2,4-二硝基苯酚作为氧化磷酸化的解偶联剂改善了体外牛胚胎发育,将该说明书引述于此作为参考。融合后的第7天,对可移植胚泡发育特征进行评价。Embryo culture was performed in 20 microliters of AgR SOF (available from AgResearch, Hamilton, New Zealand) overlaid with mineral oil. AgR SOF is a modified formulation of SOFaaBSA (containing 8 mg/ml of FAF BSA; as described by Gardner et al., 1994). Whenever possible, up to 10 embryos were cultured together in droplets of medium. Embryos were incubated at 39°C in a humidified modular incubation chamber (ICN Biomedicals, Aurora, Ohio) in a gas mixture consisting of 5% CO2, 7% O2 and 88% N2. On days 4-5 of development (
胚胎移植、怀孕诊断和产犊Embryo transfer, pregnancy diagnosis and calving
使用本领域熟知的技术进行胚胎移植、怀孕诊断和产犊管理。Embryo transfer, pregnancy diagnosis and calving management are performed using techniques well known in the art.
连续核移植和再克隆Sequential nuclear transfer and recloning
在本发明另外的实施方案中,可能期望对起源于使用G1期供体细胞与适合受体细胞重建所产生的克隆化胚胎的第一代进行再次克隆。再次克隆可以通过将植入前胚胎分离成单个细胞,然后将它们每个与合适的受体细胞质融合实现。正如本领域的技术人员所察觉到的那样,这种形式的胚胎细胞(或卵分裂球)克隆要求供体细胞和受体细胞的细胞周期的协调,以便避免染色体不正常,使发育最优化。优选地,供体细胞是在第一代克隆化胚胎的桑椹胚期(牛类约32个细胞)取得的,但是胚胎也可以在发育的早期或晚期。替代地,可以先用来自培养的G1期供体细胞产生一个克隆胎儿,然后再次得到胎儿细胞系,用该新细胞系再克隆胚胎。这种再克隆方法可以通过在植入前期延长原始供体细胞核暴露于卵母细胞质的时间给细胞核重编提供便利。本发明也在从第一代可用的原始胚胎增殖克隆胚胎数量产生第二代、第三代等克隆化胚胎中具有优势。In additional embodiments of the invention, it may be desirable to re-clon the first generation of cloned embryos derived from the reconstitution of G1 donor cells with suitable recipient cells. Recloning can be achieved by isolating preimplantation embryos into individual cells and fusing each of them with the appropriate recipient cytoplasm. As will be appreciated by those skilled in the art, this form of embryonic cell (or blastomere) cloning requires coordination of the cell cycles of the donor and recipient cells in order to avoid chromosomal abnormalities and to optimize development. Preferably, the donor cells are taken at the morula stage (approximately 32 cells in bovines) of the first generation cloned embryos, but the embryos can also be early or late in development. Alternatively, G1 donor cells from culture can be used to generate a cloned fetus first, the fetal cell line can then be derived again, and the new cell line used to re-clon the embryo. This recloning approach may facilitate nuclear reprogramming by prolonging the exposure of the original donor nuclei to the oocyte cytoplasm during the preimplantation period. The present invention also has advantages in multiplying the number of cloned embryos from original embryos available at the first generation to produce second, third, etc. cloned embryos.
连续胚胎移植涉及细胞核向适合的受体细胞质环境连续移植。正如本发明的实施方案中所述,期望先用G1期供体细胞和含MPF较高的未激活受体细胞质重建一个单细胞胚胎。这将允许发生NEBD和PCC现象并且当随后跟上激活刺激时,完整的二倍体细胞核将会形成。这个细胞核(该细胞核经历了细胞核重构和一定程度的细胞核重编)然后可以从单细胞克隆胚胎中被作为细胞核吸出,随后移植到处于受精后适当时期的去核受精卵中。然后让胚胎发育进行下去。这种顺序的连续核移植过程可以改善核重编。这也可能产生发育改善,因为第二次核移植步骤是将细胞核引入到用精子受精促使其更适合受激活进入胚胎发育的细胞质环境中。Serial embryo transfer involves the serial transfer of nuclei to a suitable recipient cytoplasmic environment. As described in embodiments of the present invention, it is desirable to first reconstitute a one-cell embryo with donor cells in G1 phase and non-activated recipient cytoplasm with higher MPF. This will allow the NEBD and PCC phenomena to occur and when followed by activating stimuli, fully diploid nuclei will form. This nucleus (which has undergone nuclear remodeling and to some extent nuclear reprogramming) can then be aspirated from a single-cell cloned embryo as a nucleus and subsequently transplanted into an enucleated zygote at the appropriate time post-fertilization. Embryo development is then allowed to proceed. This sequence of sequential nuclear transfer processes improves nuclear reprogramming. This may also result in developmental improvements, since the second nuclear transfer step introduces the nucleus into a cytoplasmic environment where fertilization with sperm makes it more suitable for activation into embryonic development.
转基因动物的产生Production of transgenic animals
用经过遗传修饰处于细胞周期G1期的供体细胞核做核移植产生转基因家畜可能是一种比向受精卵原核注射DNA(Wall等,1997)或涉及细胞质内注射精子和束缚外源基因的DNA精子介导基因转移(Perry等,1999)更有效通用的方法。用培养细胞所做的核移植的优点包括:(1)基因操作的范围可能更广泛;(2)相对于收集卵原细胞或受精卵,用细胞系使基因操作更容易在高遗传背景上进行;(3)所有产生的克隆后代是转基因的并具有期望的性别;和(4)与原核注射方法或精子介导基因转移产生单个原始动物相比,本方法有机会在短期内产生生产有用产品的直接畜群和牧群。Transgenic livestock produced by nuclear transfer using donor nuclei genetically modified in the G1 phase of the cell cycle may be a more efficient method than injection of DNA into the pronucleus of fertilized eggs (Wall et al., 1997) or DNA sperm involving intracytoplasmic injection of spermatozoa and tethering of foreign genes. Mediated gene transfer (Perry et al., 1999) is a more efficient and versatile approach. Advantages of nuclear transfer with cultured cells include: (1) the scope of genetic manipulation may be broader; (2) the use of cell lines allows genetic manipulation to be more easily performed on a high genetic background relative to the collection of oogonia or fertilized eggs ; (3) all cloned offspring produced are transgenic and of the desired sex; and (4) the present method has the opportunity to produce a useful product in the short term compared to pronuclear injection methods or sperm-mediated gene transfer to produce a single original animal direct herds and herds.
培养细胞可以通过插入、去除或改变适当的DNA进行遗传改变。诱发变异包括新DNA序列的随机插入(该序列可以是异源的)、DNA位点特异性插入和允许基因组中特定位点的DNA序列插入、缺失或改变的同源重组。使用本技术领域已知的方法进行细胞挑选和DNA分析证实了适当的遗传改变后,从核型正常的转基因细胞然后可以选出细胞周期处于G1期的,用于细胞核移植以便产生克隆化/转基因动物。Cultured cells can be genetically altered by inserting, removing or altering appropriate DNA. Induced mutations include random insertion of new DNA sequences (which may be heterologous), site-specific insertions of DNA, and homologous recombination that allow insertion, deletion, or alteration of DNA sequences at specific sites in the genome. From karyotypically normal transgenic cells, cells in the G1 phase of the cell cycle can then be selected for nuclear transfer to generate clones/transgenes after cell selection and DNA analysis confirm the appropriate genetic alterations using methods known in the art animal.
依据操作中特定基因不同,存在多种适用遗传修饰改变生物医学和农业用家畜的因素。因素的范围包括;(1)在奶、血或尿中生产药用蛋白;(2)生产滋补性产品和医用食物,例如牛奶;(3)控制农业生产的特性,例如提高奶、肉和纤维的数量和质量和提高对疾病和害虫的抵抗力;(4)生产工业用蛋白,例如在奶中;(5)异种移植;(6)产生作为人类疾病模型的家畜,例如囊性纤维化和Huntington疾病。Depending on the particular gene being manipulated, there are a variety of factors applicable to genetic modification to alter livestock for biomedical and agricultural use. The range of factors includes; (1) production of medicinal proteins in milk, blood or urine; (2) production of nutritious products and medical foods such as milk; (4) production of proteins for industrial use, such as in milk; (5) xenotransplantation; (6) generation of livestock as models of human diseases, such as cystic fibrosis and Huntington's disease.
治疗性克隆therapeutic cloning
细胞核移植和胚胎干细胞技术的一个显著的影响可能是基于人细胞的治疗领域(Pederson,1999)。发生特定疾病或者不能修复或不能自身有效更新的组织损伤(例如糖尿病、肌肉萎缩、脊髓损伤、特定癌症、多种神经系统障碍,包括帕金森病)的病人具有产生用于移植的自身治疗组织的潜能,提供了长效或终生治疗。首先本方法将使用人细胞核移植。这涉及从患病或受伤的病人身上收集一份健康组织样品,培养刺激细胞增殖。通过选择细胞周期的G1期供体细胞并将它们与合适的受体细胞融合将可能重编细胞核。如果受体细胞是去核的人卵母细胞,那么,在适当的激活刺激后,重建的胚胎能在合适的胚胎培养基中生长到胚泡期。在合适的培养条件下(Thomson等,1998),人体胚胎干细胞可以来自这种克隆胚胎的内部细胞群,该细胞将和捐赠这种培养细胞的病人在遗传上一样。A significant impact of nuclear transfer and embryonic stem cell technologies may be in the field of human cell-based therapeutics (Pederson, 1999). Patients with certain diseases or tissue damage that cannot be repaired or effectively renewed on its own (e.g., diabetes, muscle wasting, spinal cord injury, certain cancers, various neurological disorders, including Parkinson's disease) have the potential to generate their own therapeutic tissue for transplantation potential to provide long-acting or life-long therapy. First the method will use human cell nuclear transfer. This involves collecting a sample of healthy tissue from a diseased or injured patient and growing it to stimulate cell proliferation. Nuclei reprogramming is possible by selecting donor cells in the G1 phase of the cell cycle and fusing them with suitable recipient cells. If the recipient cells are enucleated human oocytes, then, following appropriate activation stimuli, the reconstructed embryos can grow to the blastocyst stage in suitable embryo culture media. Under appropriate culture conditions (Thomson et al., 1998), human embryonic stem cells can be derived from the inner cell population of such cloned embryos, which will be genetically identical to the patient who donated the cultured cells.
从“胚胎干细胞”字面意思来说,是指分离自胚胎中的任何一种多潜能性细胞类型,优选地用本技术领域广为所知的方法分离自胚泡期的内部细胞群。"Embryonic stem cells" literally means any pluripotent cell type isolated from an embryo, preferably from the inner cell population of the blastocyst stage by methods well known in the art.
用本发明方法所产生的胚胎干细胞将是未分化的、多潜能性的(具有分化成细胞内任何一种细胞类型的潜能)和本质上具备体外无限增殖能力。分离自内部细胞群的细胞系也可能有一定程度的分化和具备分化成多种细胞类型的有限分化能力,但是可能仍具有治疗价值。依据鼠胚胎干细胞的经验,适合的条件能够开发出来,这种条件能够产生特定分化细胞类型的纯化群,例如神经细胞、血细胞、心肌细胞等,治疗特定的疾病(例如产生胰岛素的细胞治疗糖尿病或产生多巴胺的细胞治疗帕金森病)。这些遗传上相容的细胞然后可以施用回病人,以便在移植后原位再生正常组织。因为细胞在遗传上与病人相同,所以将不会遭到排斥,因而不必或几乎不需要免疫抑制药物。经过系统修饰基因座,例如在免疫系统的外来细胞识别中扮演重要角色的主要组织相容性复合体基因,产生用于异源移植的“通用”胚胎干细胞系可能是有益的。Embryonic stem cells produced by the methods of the present invention will be undifferentiated, pluripotent (potential to differentiate into any cell type within the cell) and essentially capable of immortality in vitro. Cell lines isolated from internal cell populations may also be somewhat differentiated and have a limited ability to differentiate into multiple cell types, but may still be of therapeutic value. Based on experience with mouse embryonic stem cells, suitable conditions can be developed that can produce purified populations of specific differentiated cell types, such as nerve cells, blood cells, cardiomyocytes, etc., for the treatment of specific diseases (such as insulin-producing cells for diabetes or Dopamine-producing cells to treat Parkinson's disease). These genetically compatible cells can then be administered back to the patient to regenerate normal tissue in situ following transplantation. Because the cells are genetically identical to the patient, they will not be rejected and there is little or no need for immunosuppressive drugs. By systematically modifying loci, such as major histocompatibility complex genes that play an important role in foreign cell recognition by the immune system, it may be beneficial to generate "universal" embryonic stem cell lines for allogeneic transplantation.
一些应用可能涉及分化和移植前遗传修饰胚胎干细胞。这可能是因为基因治疗的目的是传递治疗用药物或改正体细胞的基因缺陷例如杜兴氏肌营养不良病人骨骼肌中肌营养不良蛋白基因。Some applications may involve differentiation and genetic modification of embryonic stem cells prior to implantation. This may be because the goal of gene therapy is to deliver therapeutic drugs or to correct genetic defects in somatic cells such as the dystrophin gene in the skeletal muscle of patients with Duchenne muscular dystrophy.
除了用细胞、组织或器官进行移植治疗外,人胚胎干细胞分化成特定细胞类型可能也对药物发现和人类药物的毒理学研究有益。In addition to transplantation therapy with cells, tissues or organs, differentiation of hESCs into specific cell types may also be beneficial for drug discovery and toxicology studies of human drugs.
并且,可以从克隆化非人动物后代中分离细胞、组织和器官,用于需要这种治疗(外源移植)的人类病人的移植中。当这种细胞、组织和器官包含转基因,这种细胞、组织和器官可以用于基因治疗或调节病人对外源组织的免疫反应。Also, cells, tissues and organs can be isolated from the progeny of cloned non-human animals for use in transplantation in human patients in need of such treatment (exogenous transplantation). When such cells, tissues and organs contain a transgene, such cells, tissues and organs can be used for gene therapy or to modulate a patient's immune response to foreign tissue.
人体应用中的受体细胞Recipient cells in human applications
在根据本发明所述的细胞核移植的方法中,优选的受体是使用公开的方法制备的去核卵母细胞。然而,对于人体应用而言,这是困难的。In the method of nuclear transfer according to the present invention, the preferred recipient is an enucleated oocyte prepared by the disclosed method. However, for human applications, this is difficult.
一种能够重编分化体细胞核的受体细胞替代性来源是胚胎干细胞。所以,需要某一形式细胞治疗病人的体细胞可以在培养中去分化,而不必是人体卵母细胞。这可以通过将处于细胞周期G1期的健康体细胞与一个去核胚胎干细胞或一组去核胚胎干细胞(为了提供用于重编的大量细胞质)融合实现。控制受体干细胞的细胞周期状态是必要的,优选地在融合时处于M期或G1期。在这种方法中,体细胞的分化细胞核可以在暴露给干细胞质之后去分化。重建产生的细胞可以具有发育潜力多能性,可能诱导产生治疗用的一组其他特化的细胞类型。这种观念以前在胸腺淋巴细胞和胚胎生殖细胞融合产生的杂合体细胞中得以证实(Tada等,1997)。An alternative source of recipient cells capable of reprogramming differentiated somatic nuclei are embryonic stem cells. Thus, somatic cells from patients in need of some form of cell therapy can be dedifferentiated in culture, rather than human oocytes. This can be achieved by fusing a healthy somatic cell in the G1 phase of the cell cycle with an enucleated ES cell or a pool of enucleated ES cells (in order to provide a large amount of cytoplasm for reprogramming). It is necessary to control the cell cycle state of recipient stem cells, preferably in M phase or G1 phase at the time of fusion. In this approach, differentiated nuclei of somatic cells can be dedifferentiated following exposure to stem cytoplasm. The reconstituted cells can have developmental potential for pluripotency, potentially inducing a panel of additional specialized cell types for therapeutic use. This notion was previously demonstrated in hybrid cells resulting from the fusion of thymic lymphocytes and embryonic germ cells (Tada et al., 1997).
现在用下面的实施例具体说明本发明,这些实施例正如本领域的技术人员所知不是为了限制本发明的范围。The present invention is now illustrated in detail by the following examples, which are not intended to limit the scope of the present invention as known to those skilled in the art.
实施例1滤泡供体细胞同步化于G0期或G1期对核移植后的体外发育的影响 Example 1 Effect of Follicle Donor Cell Synchronization in G0 or G1 Phase on In Vitro Development after Nuclear Transfer
在这个特定实验中,滤泡颗粒细胞的原代细胞系用于核移植。该细胞系用J1表示,它是来自一头新西兰Jersey小母牛。使用于本实验的J1细胞是培养中的7-8代细胞。In this particular experiment, a primary cell line of follicular granulosa cells was used for nuclear transfer. The cell line, denoted J1, was derived from a New Zealand Jersey heifer. The J1 cells used in this experiment are the 7-8 generation cells in culture.
以便比较,供体细胞是在细胞周期的两个阶段同步化的:For comparison, donor cells are synchronized in two phases of the cell cycle:
(1)G0期细胞是在包含0.5%FCS的培养基中培养,在血清缺乏10-11天得到的。(1) G0 phase cells were cultured in a medium containing 0.5% FCS and obtained after 10-11 days of serum deficiency.
(2)G1期细胞是在完成有丝分裂后的1-3小时里与细胞质融合的。(2) Cells in G1 phase fuse with cytoplasm within 1-3 hours after completing mitosis.
负5-溴脱氧尿苷标记检测证实在有丝分裂的3小时里融合的J1细胞未进入细胞周期的S期,而是细胞周期的G1期。Negative 5-bromodeoxyuridine labeling assay confirmed that confluent J1 cells did not enter the S phase of the cell cycle, but the G1 phase of the cell cycle within 3 hours of mitosis.
本实验中用来自这两种细胞周期处理组的供体细胞重建胚胎是在补充了牛血清清蛋白(BSA,Life Technologies产品编号30036-578)的AgR SOF培养基中体外培养。Embryos reconstructed in this experiment with donor cells from both cell cycle treatment groups were cultured in vitro in AgR SOF medium supplemented with bovine serum albumin (BSA, Life Technologies Prod. No. 30036-578).
体外发育的结果见表1中。使用电融合时,细胞周期G0期(对照)和G1期供体细胞与细胞质(受体细胞)的融合效率相等。正如下面的表1所示,G0期和G1期供体细胞处理组体外发育到胚泡期的融合重建胚胎的比例没有差别。The results of in vitro development are shown in Table 1. When electrofusion was used, donor cells in the G0 (control) and G1 phases of the cell cycle fused with cytoplasm (recipient cells) with equal efficiency. As shown in Table 1 below, there was no difference in the proportion of fusion-reconstructed embryos that developed in vitro to the blastocyst stage between the G0 and G1 donor cell treatment groups.
表1:用处于细胞周期G0或G1期的J1滤泡细胞重建、在补充了Life Technologies牛血清清蛋白(BSA)的AgR SOF培养基中培养的克隆化胚胎的体外发育。细胞周期的阶段 融合率 1-2级胚泡期 总发育率G0(n=152) 86±5.2% 24±1.1% 77±6.4%G1(n=186) 78±5.0% 25±6.2% 77±6.9%实施例2滤泡供体细胞(J1和EFC细胞系)同步化于G0期或G1期对细胞核移植后培养在补充了Sigma牛血清清蛋白的培养基中对体外发育的影响Table 1: In vitro development of cloned embryos reconstituted with J1 follicular cells in G0 or G1 phase of the cell cycle and cultured in AgR SOF medium supplemented with Life Technologies bovine serum albumin (BSA). The stage fusion rate of the cell cycle The total development rate of blastocyst stage 1-2 stage G0 (n=152) 86±5.2% 24±1.1% 77±6.4% G1 (n=186) 78±5.0% 25±6.2% 77± Effect of 6.9% Example 2 Follicle Donor Cells (J1 and EFC Cell Lines) Synchronized in G0 Phase or G1 Phase on In Vitro Development after Nuclear Transplantation Cultured in Medium Supplemented with Sigma Bovine Serum Albumin
进一步的证据是在表2中提供的,以便支持处于细胞周期G0期和G1期的滤泡供体细胞对体外培养克隆胚胎培养7天后发育到胚泡期没有影响。Further evidence is provided in Table 2 to support that follicle donor cells in the G0 and G1 phases of the cell cycle have no effect on the development of cloned embryos cultured in vitro to the blastocyst stage after 7 days of culture.
实验是用两种独立的滤泡细胞系进行的:Experiments were performed with two independent follicular cell lines:
(1)“EFC”;一种来自新西兰弗里斯兰奶牛的滤泡细胞系和(1) "EFC"; a follicular cell line from a New Zealand Frisian cow and
(2)“J1”一种来自新西兰泽西种小奶牛。(2) "J1" is a young cow from New Zealand's Jersey breed.
在本实验中,EFC细胞仅用G0期,而J1细胞仅用细胞周期的G1期。但是,本实施例的资料予以综合,因为两种细胞系来自滤泡细胞并且重建胚胎是在相同的培养基配方上培养。在这些实验中,培养基是标准的AgR SOF培养基,但是补充了Sigma的牛血清清蛋白(SigmaChemical Company;产品编号A-7073)而不是如上述实施例1中的LifeTechnologies的牛血清清蛋白。In this experiment, EFC cells only used the G0 phase, while J1 cells only used the G1 phase of the cell cycle. However, the data in this example were combined because both cell lines were derived from follicular cells and the reconstructed embryos were cultured on the same media formulation. In these experiments, the medium was standard AgR SOF medium, but supplemented with Sigma's bovine serum albumin (Sigma Chemical Company; Product No. A-7073) instead of Life Technologies' bovine serum albumin as in Example 1 above.
J1细胞是在第3-6代传代细胞时用于细胞核移植的,供体细胞是在有丝分裂完成后的1-3小时里融合的。EFC细胞是在培养的3-8代间使用并在培养的9-18天之间使用含有0.5%的血清同步化在G0期。J1 cells are used for nuclear transfer at passage 3-6, and donor cells are fused within 1-3 hours after the completion of mitosis. EFC cells were used between passages 3-8 in culture and synchronized in G0 phase with serum containing 0.5% between days 9-18 in culture.
体外发育结果见表2,表明对于滤泡供体细胞,在细胞周期的G0期和G1期之间发育到胚泡期的融合胚胎的比例没有不同。The in vitro development results are presented in Table 2, showing that for follicular donor cells, the proportion of fused embryos that developed to the blastocyst stage did not differ between the G0 and G1 phases of the cell cycle.
表2用处于细胞周期G0期或G1期的滤泡细胞重建、并在补充了Sigma牛血清清蛋白的AgR SOF培养基中培养的克隆胚胎的体外发育细胞系 细胞周期的阶段 融合率 1-2级胚泡期 总发育率J1 G1(n=576) 82±3.8% 38±3.6% 67±1.8%EFC G0(n=1108) 78±2.3% 37±2.3% 59±3.3% Table 2 The in vitro developmental cell line cell cycle stage fusion rate of cloned embryos reconstituted with follicular cells in G0 or G1 phase of the cell cycle and cultured in AgR SOF medium supplemented with Sigma bovine serum albumin The total development rate of blastocyst J1 G1 (n=576) 82±3.8% 38±3.6% 67±1.8% EFC G0 (n=1108) 78±2.3% 37±2.3% 59±3.3%
实施例3核移植后,滤泡供体细胞同步化在G0或G1期对核移植后体内发育的影响。 Example 3 After nuclear transfer, the effect of synchronization of follicle donor cells in G0 or G1 phase on development in vivo after nuclear transfer.
图1中的数据表示用处于细胞周期的G0或G1期滤泡细胞重建的克隆牛胚胎在移植到受体母牛后的整个妊娠期的存活率。图1中的数据是从上面的实施例1和2所阐明的实验产生的胚胎数据汇总而来。这包括从两种滤泡细胞系产生的克隆胚胎,即J1和EFC。并且,包括补充了Sigma的牛血清清蛋白或Life Technologies的牛血清清蛋白的同一AgR SOF培养基配方中产生克隆胚胎。这些数据汇总进来,因为两种滤泡细胞系或者两种来源的牛血清清蛋白对移植后的生存能力没有影响(虽然对于发育到胚泡期有显著影响)。The data in Figure 1 represent the survival of cloned bovine embryos reconstituted with follicular cells in G0 or G1 phase of the cell cycle throughout gestation after transplantation into recipient cows. The data in Figure 1 were compiled from data on embryos generated from the experiments set forth in Examples 1 and 2 above. This includes cloned embryos generated from two follicular cell lines, namely J1 and EFC. Also, cloned embryos were generated in the same AgR SOF medium formulation supplemented with either Sigma's bovine serum albumin or Life Technologies' bovine serum albumin. These data were pooled because the two follicular cell lines or the two sources of bovine serum albumin had no effect on post-transplant viability (although there was a significant effect on development to the blastocyst stage).
图1中的数据表示移植到同步化受体母牛的生殖道的用G0供体细胞重建的85个胚胎和用G1早期供体细胞重建的95个胚胎。The data in Figure 1 represent 85 embryos reconstituted with G0 donor cells and 95 embryos reconstituted with G1 early donor cells transplanted into the reproductive tract of synchronized recipient cows.
图1图示用常规超声波扫描术、直肠触诊和产犊所定的自胚胎移植的第7天到分娩的整个妊娠过程中存在的胚胎/胎儿的百分率。最显著的是,使用G1滤泡细胞导致完全分娩的活牛犊的出生。与G0供体细胞相比,从妊娠的第30天开始一直到完全分娩完成,用G1细胞重建的克隆化胚胎的胚胎存活率有下降的趋势,但是,这里报道的移植数量没有达到统计学意义。Figure 1 illustrates the percentage of embryos/fetus present throughout pregnancy from day 7 of embryo transfer to delivery as determined by conventional sonography, rectal palpation, and calving. Most notably, the use of G1 follicular cells resulted in the birth of live calves at full farrow. Compared with G0 donor cells, there was a trend toward decreased embryo survival in cloned embryos reconstituted with G1 cells starting from day 30 of gestation until completion of full parturition, however, the number of transfers reported here did not reach statistical significance .
对于G1滤泡细胞,9%的移植胚胎(9/95)导致完全分娩的小牛的出生。但是,这些小牛中的4个在出生时或出生后死了,导致从G1细胞产生的活克隆小牛总效率是5%。相反,G0供体滤泡细胞导致20%发育到完全分娩(17/85),由于3个牛犊在出生时死亡,最终所产活小牛的总效率是16%(14/85)。For G1 follicular cells, 9% of transferred embryos (9/95) resulted in the birth of fully delivered calves. However, 4 of these calves died at or after birth, resulting in an overall efficiency of 5% for live cloned calves generated from G1 cells. In contrast, GO donor follicular cells resulted in 20% development to full farrowing (17/85), resulting in an overall efficiency of 16% (14/85) of live calves born as 3 calves died at birth.
实施例4将雌性成体皮肤成纤维细胞(Age±和Age-细胞系)同步化于G0或G1对细胞核移植后、在补充有Life Technologies牛血清清蛋白的培养基上培养的体外和体内发育的影响。 Example 4 Synchronization of Female Adult Skin Fibroblasts (Age± and Age− Cell Lines) in G0 or G1 Pairs After Nuclear Transfer in Cultured Media Supplemented with Life Technologies Bovine Serum Albumin for In Vitro and In Vivo Development Influence.
数据来自于用两种独立的成体皮肤成纤维细胞的原代细胞系。这两个细胞系定义为“Age+”和“Age-”。它们都是来自挑选地相应或迟或早进入青春期的安格斯肉牛的雌性细胞系。由于这两种相似的细胞系在体内和体外发育上没有显著的不同,所以数据合编于下面的表3和图2中。Data are from two independent primary cell lines of adult skin fibroblasts. These two cell lines are defined as "Age+" and "Age-". They are all derived from female lines of Angus beef cattle that have been selected to enter puberty later or earlier. Since these two similar cell lines did not differ significantly in in vivo and in vitro development, the data are compiled in Table 3 and Figure 2 below.
细胞周期的两个阶段在这些实验中进行比较:Two phases of the cell cycle are compared in these experiments:
(1)G1,在有丝分裂完成后的1-3小时内,供体细胞和细胞质融合。(1) G1, within 1-3 hours after the completion of mitosis, the donor cell and the cytoplasm fuse.
(2)G0,供体细胞在补充0.5%FCS的培养基中培养3-12天。对于移植到受体母牛的重建胚胎,细胞遭受4-5天的血清缺乏。(2) G0, the donor cells were cultured in a medium supplemented with 0.5% FCS for 3-12 days. For reconstructed embryos transplanted into recipient cows, cells were subjected to serum starvation for 4-5 days.
来自两种细胞系和两种细胞周期处理的细胞是在培养的第7代用于细胞核移植。重建胚胎是在补充了Life Technologies牛血清清蛋白(Life Technologies产品编号30036-578)的标准AgR SOF培养基中培养的。Cells from two cell lines and two cell cycle treatments were used for nuclear transfer at passage 7 in culture. Reconstructed embryos were cultured in standard AgR SOF medium supplemented with Life Technologies bovine serum albumin (Life Technologies product number 30036-578).
表3中所列数据表明G0细胞在低血清中的时间长度对融合效率的影响,但是,一旦与细胞质融合就不会对随后的体外发育产生影响,所以,G0细胞质数据予以汇总。G0和G1细胞周期阶段对到胚泡期的发育没有影响。The data presented in Table 3 demonstrate the effect of the length of time G0 cells were in low serum on fusion efficiency, however, once fused to the cytoplasm there was no effect on subsequent in vitro development, therefore, the G0 cytoplasm data were pooled. G0 and G1 cell cycle phases had no effect on development to the blastocyst stage.
表3用处于G0或G1的雌性成体皮肤成纤维细胞(Age+和Age-细胞系)重建、在补充有Life Technologies牛血清清蛋白的AgR SOF培养基上培养的克隆牛胚胎的体外发育。细胞周期的阶段 融合率 1-2级胚泡期 总发育率G0 3-5天(n=411) 66±1.9%a Table 3 In vitro development of cloned bovine embryos reconstituted with female adult skin fibroblasts (Age+ and Age- cell lines) at G0 or G1, cultured on AgR SOF medium supplemented with Life Technologies bovine serum albumin. Stage of cell cycle Fusion rate 1-2 blastocyst stage Total development rate G0 3-5 days (n=411) 66±1.9% a
19±3.0% 58±4.5%12天(n=107) 41±6.9%bG1(n=401) 59±2.5%ab 19±5.0% 67±6.6%19±3.0% 58±4.5% 12 days (n=107) 41±6.9% b G1 (n=401) 59±2.5%a b 19±5.0% 67±6.6%
ab P<0.05ab P<0.05
图2的数据表明挑选的G1成体皮肤成纤维细胞能产生完全分娩的活牛犊。与图1的数据相似,存在的完全分娩生存率趋势比G0大,但是,就这里进行的移植数量而言没有统计学意义。使用G1供体细胞,移植的胚胎最终4%产生了活牛犊(1/25)。相比,G0供体细胞导致最终14%活胚胎发育到分娩(3/22)。在本实验中,所有生产的4个牛犊经过了出生后发育。The data in Figure 2 demonstrate that selected G1 adult skin fibroblasts are capable of producing live calves at full farrow. Similar to the data in Figure 1, there was a trend towards greater survival in complete delivery than in G0, however, this was not statistically significant with respect to the number of transplants performed here. Using G1 donor cells, 4% of the embryos transferred eventually produced live calves (1/25). In contrast, GO donor cells resulted in an eventual 14% of viable embryos developing to farrowing (3/22). In this experiment, all 4 calves produced underwent postnatal development.
实施例5成体皮肤成纤维细胞(LJ801和3XTC细胞系)同步化于G0或G1期对细胞核移植后、在补充了ICP牛血清清蛋白的培养基中培养的体内和体外发育的影响 Example 5 Effect of Synchronization of Adult Skin Fibroblasts (LJ801 and 3XTC Cell Lines) in G0 or G1 Phase on In Vivo and In Vitro Development After Nuclear Transfer, Cultured in Medium Supplemented with ICP Bovine Serum Albumin
另外用两种独立的成体皮肤成纤维细胞系做了比较G0和G1细胞周期阶段的实验。这两种细胞系表示为“LJ801”和“3XTC”。LJ801是来自一个Limousine X Jersey公牛的雄性细胞系,而3XTC是来自一种三次产生三体牛犊的杂交母牛。Additional experiments comparing G0 and G1 cell cycle phases were performed using two independent adult skin fibroblast cell lines. These two cell lines are denoted "LJ801" and "3XTC". LJ801 was derived from a male cell line of a Limousine X Jersey bull, while 3XTC was derived from a crossbreed cow that had produced trisomic calves three times.
两个细胞周期阶段予以比较:Two cell cycle phases are compared:
(1)G0细胞,两种细胞系的供体细胞是在含有0.5%FCS的培养基中培养4-5天;和(1) G0 cells, the donor cells of the two cell lines were cultured for 4-5 days in a medium containing 0.5% FCS; and
(2)G1细胞,有丝分裂完成后的1-3小时内,供体细胞与细胞质融合。(2) For G1 cells, within 1-3 hours after the completion of mitosis, the donor cells fuse with the cytoplasm.
负5-溴脱氧尿苷标记法确认有丝分裂的3小时内融合的成体皮肤成纤维细胞没有进入S期。Negative 5-bromodeoxyuridine labeling confirmed that confluent adult skin fibroblasts did not enter S phase within 3 hours of mitosis.
LJ801和3XTC细胞系都是在培养的3-4代用于细胞核移植实验的。Both LJ801 and 3XTC cell lines were used for nuclear transfer experiments at passage 3-4.
由于LJ801和3XTC细胞之间在发育到胚泡期的效率上没有差别、并且来自两种细胞系的重建胚胎是在补充了牛血清清蛋白的相同标准AgR SOF培养基,但是这一次牛血清清蛋白来自ICP(Immuno-ChemicalProducts,Auckland,新西兰;产品编号ABFF-002)。胚胎移植后,整个妊娠期的胚胎存活率是以相应的细胞系3XTC和LJ801表示在图3和4中。Since there was no difference in the efficiency of development to the blastocyst stage between LJ801 and 3XTC cells, and the reconstructed embryos from both cell lines were grown in the same standard AgR SOF medium supplemented with bovine serum albumin, but this time with bovine serum Protein was from ICP (Immuno-Chemical Products, Auckland, New Zealand; product number ABFF-002). After embryo transfer, embryo survival throughout gestation is shown in Figures 3 and 4 for the corresponding cell lines 3XTC and LJ801.
表4的数据表明成体皮肤成纤维供体细胞的细胞周期同步化在G0或G1对发育到胚泡期没有影响。The data in Table 4 demonstrate that cell cycle synchronization of adult skin fibroblast donor cells at G0 or G1 has no effect on development to the blastocyst stage.
表4用处于细胞周期G0或G1的成体皮肤成纤维细胞(LJ801和3XTC)重建并在补充了ICP牛血清清蛋白的AgR SOF培养基中培养的克隆胚胎的体外发育。细胞周期的阶段 融合率 1-2级胚泡期 总发育率G0(n=145) 72±7.8% 36±6.1% 61±5.0%G1(n=200) 60±3.1% 37±6.0% 57±5.0% Table 4 In vitro development of cloned embryos reconstituted with adult skin fibroblasts (LJ801 and 3XTC) in cell cycle G0 or G1 and cultured in AgR SOF medium supplemented with ICP bovine serum albumin. The stage fusion rate of the cell cycle The total development rate of blastocyst stage 1-2 stage G0(n=145) 72±7.8% 36±6.1% 61±5.0%G1(n=200) 60±3.1% 37±6.0% 57± 5.0%
图3中的数据表明用3XTC重建的胚胎至少在生存到第150天上没有差异。对于处于细胞周期G1的供体细胞第150天的胚胎存活率是25%(3/12),而G0的供体细胞是27%(3/11)。The data in Figure 3 indicate that embryos reconstituted with 3XTC did not differ in survival to at least day 150. Embryo survival at day 150 was 25% (3/12) for donor cells in cell cycle Gl and 27% (3/11) for G0 donor cells.
图4中的数据表明用LJ801成纤维细胞重建胚胎存在使用G0供体细胞的胚胎在妊娠的第210天成活趋势更大,但是这不具备统计学意义。对于处于细胞周期G1的供体细胞第210天的胚胎存活率是23%(3/13),而G0的供体细胞是39%(7/18)。The data in Figure 4 indicate that embryos reconstituted with LJ801 fibroblasts had a greater trend towards gestational day 210 survival of embryos using G0 donor cells, but this was not statistically significant. Embryo survival at day 210 was 23% (3/13) for donor cells in cell cycle G1 and 39% (7/18) for G0 donor cells.
实施例6核移植后遗传修饰的牛胎儿成纤维细胞同步化在G0或G1对体外和体内发育的影响。 Example 6 Effect of synchronization of genetically modified bovine fetal fibroblasts in G0 or G1 on development in vitro and in vivo after nuclear transfer.
用遗传修饰的雌性牛胎儿肺成纤维细胞也进行了研究细胞周期的阶段对细胞核移植后的发育的影响。遗传改变包括牛β和к酪蛋白基因的附加拷贝的随机插入。转基因细胞系表示为“酪蛋白+5110”。The effect of cell cycle phase on development after nuclear transfer was also studied using genetically modified female bovine fetal lung fibroblasts. Genetic alterations include the random insertion of additional copies of the bovine beta and κ casein genes. Transgenic cell lines are indicated as "Casein+5110".
两个细胞周期阶段予以比较:Two cell cycle phases are compared:
(3)G0细胞,两种细胞系的供体细胞是在含有0.5%FCS的培养基中培养3-6天;和(3) G0 cells, the donor cells of the two cell lines were cultured in a medium containing 0.5% FCS for 3-6 days; and
(4)G1细胞,有丝分裂完成后的1-3小时内,供体细胞与细胞质融合。(4) For G1 cells, within 1-3 hours after the completion of mitosis, the donor cells fuse with the cytoplasm.
重建胚胎是在补充了ICP牛血清清蛋白(Immuno-ChemicalProducts,Auckland,新西兰;产品编号ABFF-002)的标准AgR SOF培养基中培养的。Reconstructed embryos were cultured in standard AgR SOF medium supplemented with ICP bovine serum albumin (Immuno-Chemical Products, Auckland, New Zealand; product number ABFF-002).
胚胎体外发育的数据见表5。当用于细胞核移植的酪蛋白+5110供体细胞是G1期时,相比G0期,发育到胚泡期显著降低了。这一结果与上面所述的以前的实施例中其他细胞系形成了对照。The data of embryonic development in vitro are shown in Table 5. When the casein+5110 donor cells used for nuclear transfer were in the G1 phase, development to the blastocyst stage was significantly reduced compared to the G0 phase. This result is in contrast to other cell lines described above in previous examples.
表5用处于细胞周期G0或G1阶段的转基因雌性胎儿肺成纤维细胞(酪蛋白+5110细胞系)重建并在补充了ICP牛血清清蛋白的AgRSOF培养基中培养的克隆化牛胚胎的体外发育。细胞周期的阶段 融合率 1-2级胚泡期 总发育率G0(n=150) 90±8.1% 52±1.8%a 72±2.9%°G1(n=73) 77±6.5% 26±5.1%b 43±2.2%° Table 5 In vitro development of cloned bovine embryos reconstituted with transgenic female fetal lung fibroblasts (Casein+5110 cell line) in the G0 or G1 phase of the cell cycle and cultured in AgRSOF medium supplemented with ICP bovine serum albumin . Stages of cell cycle Fusion rate Grade 1-2 blastocyst stage Total development rate G0(n=150) 90±8.1% 52±1.8% a 72±2.9%°G1(n=73) 77±6.5% 26±5.1% b 43±2.2%°
ab P<0.0b;cd P<0.01ab P<0.0b; cd P<0.01
图5所示的胚胎存活数据表明对酪蛋白+5110细胞系而言,细胞周期的阶段对发育到第90天至少没有影响。对于处于细胞周期G1的供体细胞第90天的胚胎存活率是38%(9/24),而G0的供体细胞是27%(6/22)。Embryo survival data presented in Figure 5 indicate that for the casein+5110 cell line, the phase of the cell cycle has no effect on development at least up to day 90. Embryo survival at day 90 was 38% (9/24) for donor cells in cell cycle G1 and 27% (6/22) for G0 donor cells.
实施例7不增殖的、衰老供体细胞(在G1后期)对核移植后的体外和体内发育的影响 Example 7 Effect of non-proliferating, senescent donor cells (at late G1 stage) on in vitro and in vivo development after nuclear transfer
做了研究不增殖的、衰老的牛供体细胞对发育影响的核移植实验。本实验中用到的细胞是雌性胎儿肺成纤维细胞并且经过了遗传修饰(标记为561细胞)。起初,细胞在活跃生长,但是,在培养过程中,生长日益变慢,到了后期,细胞进入非增殖期,即本技术领域技术人员所知的衰老期,此时细胞分裂停止。衰老细胞是抑制在细胞周期的G1,具体地是在G1/S期的分界点(Sherwood等,1988)。当细胞进入衰老期,响应于生理性的有丝分裂原,它们阻滞在G1晚期,不能进入S期。所以,衰老期不同于静止期,在后一种情况下,细胞可以诱导再次进入细胞周期,一旦回到合适条件就能增殖(例如在血清缺乏的细胞培养物中加入血清)。Nuclear transfer experiments were conducted to study the effects of non-proliferating, senescent bovine donor cells on development. The cells used in this experiment were female fetal lung fibroblasts and were genetically modified (labeled 561 cells). Initially, the cells are actively growing, but during the culture, the growth becomes increasingly slow, and at a later stage the cells enter a non-proliferative phase, known to those skilled in the art as senescence, when cell division ceases. Senescent cells are arrested at G1 of the cell cycle, specifically at the G1/S phase boundary (Sherwood et al., 1988). When cells enter senescence, they are arrested in late G1 and unable to enter S phase in response to physiological mitogens. Thus, the senescent phase is distinct from the quiescent phase, in which cells can be induced to re-enter the cell cycle and proliferate once they return to suitable conditions (for example, by adding serum to serum-deficient cell cultures).
转基因衰老细胞重建的胚胎是在补充了ICP牛血清清蛋白的AgRSOF培养基中培养的。Embryos reconstituted with transgenic senescent cells were cultured in AgRSOF medium supplemented with ICP bovine serum albumin.
体外胚胎发育的数据见表6。使用衰老供体细胞发育到胚泡期的比率低于前面实施例阐明的对G0或G1早期的期望值。The data of in vitro embryo development are shown in Table 6. The rate of development to the blastocyst stage using senescent donor cells was lower than expected for early G0 or G1 as illustrated in the previous examples.
表5用不增殖的、衰老的转基因成纤维细胞(561细胞)重建、在补充了ICP牛血清清蛋白的AgR SOF培养基中培养的克隆牛胚胎的体外发育。细胞系 细胞周期的阶段 融合率 1-2级胚泡期 总发育率561 衰老的(n=158) 88% 12% 35%Table 5 In vitro development of cloned bovine embryos reconstituted with non-proliferating, senescent transgenic fibroblasts (561 cells) cultured in AgR SOF medium supplemented with ICP bovine serum albumin. Cell Line Phase of Cell Cycle Fusion Rate Grade 1-2 Blastocyst Stage Total Developmental Rate 561 Senescent (n=158) 88% 12% 35%
图6所示胚胎存活率的数据提示抑制在G1晚期的不增殖衰老细胞的克隆效率低,只有4%的胚胎发育到第90天(1/26)。The embryo survival data shown in Figure 6 suggest that the cloning efficiency of suppressing non-proliferating senescent cells at late G1 is low, with only 4% of embryos developing to day 90 (1/26).
结论in conclusion
1.挑选细胞周期的一定阶段的单个细胞,优选G1早期,是可能的。这相对于以前使用所谓增殖细胞的技术具有优势,在以前的技术中,使用于核移植的单个细胞的实际细胞周期的阶段并不精确知晓。1. It is possible to select single cells in a certain phase of the cell cycle, preferably early G1. This has an advantage over previous techniques using so-called proliferating cells, where the actual cell cycle phase of the individual cells used for nuclear transfer was not precisely known.
2.由于细胞核移植后产生了活的牛犊,所以有丝分裂后处于细胞周期的G1早期的细胞是全能的。2. Cells in the early G1 phase of the cell cycle after mitosis are totipotent due to the generation of viable calves after nuclear transfer.
3.所以,G0不是与核移植后的发育相容的细胞周期的唯一一个阶段,用分化的培养细胞和G1细胞,优选地G1早期细胞,细胞核也能够被功能性地重编。3. Therefore, G0 is not the only phase of the cell cycle that is compatible with development after nuclear transfer, with differentiated cultured cells and G1 cells, preferably early G1 cells, nuclei can also be functionally reprogrammed.
4.有丝分裂后的G1早期细胞在核移植后如同G0细胞一样促进向胚泡期发育到相似水平。4. Early post-mitotic G1 cells promote blastocyst development to a similar level as G0 cells after nuclear transfer.
5.用G0或G1早期供体细胞核重建的克隆化胚胎在移植后的存活率上没有显著差别。5. There was no significant difference in the survival rate of cloned embryos reconstituted with G0 or G1 early donor nuclei after transplantation.
工业应用industrial application
本发明可能在建立动物的克隆化畜群/牧群上有用,包括能产生药学上有用的蛋白、农业上有用产品例如肉、奶和纤维的转基因动物和人体应用,特别是在克隆性治疗领域。The present invention may be useful in establishing cloned herds/herds of animals, including transgenic animals that produce pharmaceutically useful proteins, agriculturally useful products such as meat, milk and fiber, and human applications, particularly in the field of clonality therapy .
应该理解本描述本意不是将本发明的范围限制到上述实施例中,对于本领域技术人员来说显而易见的许多变化是可能的,而不偏离所附权利要求书的范围。It should be understood that the present description is not intended to limit the scope of the invention to the above-described examples, and that many variations, obvious to those skilled in the art, are possible without departing from the scope of the appended claims.
参考文献references
Barnes F L;Collas P;Powell R;King W A;Westhusin M和Shepherd D(1993).在核移植牛胚胎中,受体卵母细胞所处细胞周期的阶段对DNA合成、核摸解体、染色体重组和发育的影响.分子生殖和发育学(Molecular Reproduction and Development)36:33-41.Barnes F L; Collas P; Powell R; King W A; Westhusin M and Shepherd D (1993). In nuclear transfer bovine embryos, the stage of the cell cycle of recipient oocytes has an impact on DNA synthesis, nuclear disassembly, and chromosome disassembly. Implications for recombination and development. Molecular Reproduction and Development 36:33-41.
Boquest A C;Day B N和Prather R S(1999).流式细胞计分析培养的猪胎成纤维细胞的细胞周期.生殖生物学(Biology ofreproduction)60;1013-1019.Boquest A C; Day B N and Prather R S (1999). Flow cytometric analysis of the cell cycle in cultured porcine fetal fibroblasts. Biology of
Campell K H S;Loi P;Cappai P和Wilmut I(1994).用推测处于S期的去核激活卵母细胞重建的绵羊核移植胚胎发育到胚泡期的改良.生殖生物学(Biology ofreproduction)50;1385-1393.Campell K H S; Loi P; Cappai P and Wilmut I (1994). Development of sheep nuclear transfer embryos reconstituted with presumably S-phase enucleated activated oocytes to the blastocyst stage. Reproductive biology (Biology of reproduction) 50;1385-1393.
Campell K;Mc Whir J;Ritchie B和Wilmut I(1995).培养的胚胎盘细胞核移植后产生活羊羔.动物生殖学(Theriogenology)43:181.Campell K; Mc Whir J; Ritchie B and Wilmut I (1995). Live lambs after nuclear transfer from cultured embryonic discs. Theriogenology 43:181.
Campell K H S;Loi P;Otaegui P J和Wilmut I(1996a).使用核移植的胚胎克隆中细胞周期的协调.生殖评论(Reviews ofReproduction)1:40-46.Campell K H S; Loi P; Otaegui P J and Wilmut I (1996a). Cell cycle coordination in embryonic clones using nuclear transfer. Reviews of Reproduction 1:40-46.
Campell K;Mc Whire J;Ritchie W A和Wilmut I(1996b).从培养细胞系进行核移植克隆的绵羊.自然380:64-66.Campell K; McWhire J; Ritchie W A and Wilmut I (1996b). Sheep cloned by nuclear transfer from cultured cell lines. Nature 380:64-66.
Cibelli J B;Stice S L;Golueke P J;Kane J J;Jerry J;Blackwell C;Ponce De Leon F A和Robl J M(1998).从非静止胎儿成纤维细胞产生克隆化的转基因牛犊.科学280:1256-1258.Cibelli J B; Stice S L; Golueke P J; Kane J J; Jerry J; Blackwell C; Ponce De Leon F A and Robl J M (1998). Generation of cloned transgenic calves from non-quiescent fetal fibroblasts. Science 280: 1256-1258.
Collas P;Balise J J和Robl J M(1992a).供体细胞核的细胞周期阶段对核移植兔子胚胎的发育影响.生殖生物学(Biology ofreproduction)46;492-500.Collas P; Balise J J and Robl J M (1992a). Effect of cell cycle phase of donor nuclei on development of nuclear transfer rabbit embryos. Biology of reproduction 46; 492-500.
Collas P;Pinto-Correia C;Ponce De Leon F A和Robl J M(1992b).供体细胞周期阶段对核移植兔子胚胎的染色质和纺锤体形态学的影响.生殖生物学(Biology ofreproduction)46;501-511.Collas P; Pinto-Correia C; Ponce De Leon F A and Robl J M (1992b). Effect of donor cell cycle phase on chromatin and spindle morphology in nuclear transfer rabbit embryos. Biology of reproduction 46 ;501-511.
Czolowska R;Modlinski J A和Tarkowski A K(1984).胸腺淋巴细胞核在未激活或激活的小鼠卵母细胞中的行为.细胞科学杂志(Journalof Cell Science)69:19-34.Czolowska R; Modlinski J A and Tarkowski A K (1984). Behavior of thymic lymphocyte nuclei in non-activated or activated mouse oocytes. Journal of Cell Science 69: 19-34.
Gadbois D M,Crissman H A,Tobey R A和Brodbury E M(1992).非转化哺乳动物细胞的G1期多个激酶抑制位点在转化细胞中缺省.美国科学院院报(Proceedings of the National Academy of Sciences,USA)89:8626-8630.Gadbois D M, Crissman H A, Tobey R A, and Brodbury E M (1992). Multiple kinase inhibitory sites in the G1 phase of nontransformed mammalian cells are defaulted in transformed cells. Proceedings of the National Academy of Sciences, USA) 89: 8626-8630.
Gardner D K;Lane M;Spitzer A和Batt P(1994).缺乏血清和体细胞提高了绵羊受精卵卵裂和体外培养到胚泡期的发育比例:氨基酸、维生素和培养中的胚胎刺激了发育.生殖生物学(Biology ofreproduction)50;390-400.Gardner D K; Lane M; Spitzer A and Batt P (1994). Deficiency of serum and somatic cells increases the proportion of ovine zygote cleavage and development to the blastocyst stage in vitro: amino acids, vitamins, and embryos in culture stimulate development . Biology of reproduction 50; 390-400.
Pedersen R A(1999).医用胚胎干细胞.科学美国人(ScientificAmerican)四月,1999:44-49.Pedersen R A (1999). Embryonic Stem Cells for Medical Use. Scientific American April, 1999: 44-49.
Perry ACF Wakayama T,Kishikawa H,Kasai T,Okabe M,Toyoda Y和Yanagimachi R(1999).用细胞质内精子注射法进行哺乳动物基因转移.科学284:1180-1183.Perry ACF Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, and Yanagimachi R (1999). Mammalian gene transfer by intracytoplasmic sperm injection. Science 284: 1180-1183.
Schnieke A E;Kind A J;Ritchie W A;Mycock K;Scott A R;RitchieM;Wilmut I;Colman A和Campell KIIS(1997).从转染的胎儿成纤维细胞移植细胞核产生含有人IX因子的转基因绵羊.科学278;2130-2133.Schnieke A E; Kind A J; Ritchie W A; Mycock K; Scott A R; Ritchie M; Sheep. Science 278;2130-2133.
Sherwood S W,Rush D,Ellsworth J L和Schimke R T (1988).在IMR-90细胞中确定细胞衰老:一种流式细胞分析法.美国科学院院报(Proceedings of the National Academy of Sciences,USA)85:9086-9090.Sherwood S W, Rush D, Ellsworth J L, and Schimke RT (1988). Determining cellular senescence in IMR-90 cells: a flow cytometric assay. Proceedings of the National Academy of Sciences, USA )85:9086-9090.
Stice S L;Strelchenko N S;Keefer C L和Matthews L(1996).多潜能牛胚胎细胞系指导核移植后的胚胎发育.生殖生物学(Biology ofreproduction)54;100-110.Stice S L; Strelchenko N S; Keefer C L and Matthews L (1996). A multipotent bovine embryonic cell line directs embryonic development after nuclear transfer. Biology of reproduction 54;100-110.
Susko-Parrish J L;Leibfried-Rutledge M L;Northey D L;SchutzkusV和First N L(1994).诱导的瞬间钙现象对蛋白激酶的抑制引起没有完成减数分裂的牛卵原细胞向胚胎周期的转变.发育生物学(Developmental Biology)166:729-739.Susko-Parrish J L; Leibfried-Rutledge M L; Northey D L; Schutzkus V and First N L (1994). Inhibition of protein kinases by induced transient calcium events induces embryonic cycle progression in bovine oogonia that have not completed meiosis Transformation. Developmental Biology 166:729-739.
Tada M,Tada T,Lefebvre L,Barton S C和Surani M A(1997).杂合体细胞中,胚胎生殖细胞诱导体细胞核的后生重编.欧洲分子生物学杂志(The EMBO Journal)16:6510-6520.Tada M, Tada T, Lefebvre L, Barton S C, and Surani M A (1997). Epigenetic reprogramming of the somatic nucleus induced by embryonic germ cells in heterozygous cells. The EMBO Journal 16:6510- 6520.
Thompson J G E;Simpson A C;Pugh P A;Donnelly P E和Tervit HR(1990).氧浓度对植入前绵羊和牛胚胎的体外发育的影响.生殖和受精杂志(Journal of Reproduction and fertility)89:573-578.Thompson J G E; Simpson A C; Pugh P A; Donnelly P E and Tervit HR (1990). Effects of oxygen concentration on in vitro development of preimplantation sheep and bovine embryos. Journal of Reproduction and fertility 89 :573-578.
Thomson J A,Itskovitz-Eldor J,Shapiro SS,Waknitz MA,SwiergielJJ,Marshall VS和Jones JM(1998).从人胚泡中获得的胚胎干细胞系.科学282:1145-1147.Thomson J A, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, and Jones JM (1998). Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147.
Vignon X;Chesne P;Le Bourhis D;Flechon J E;Heyman Y和Renard J P(1998).用去核成熟的卵母细胞与培养的体细胞融合重建的牛胚胎的发育潜能.C R Academy of Science,Paris 321:735-745.Vignon X; Chesne P; Le Bourhis D; Flechon J E; Heyman Y and Renard J P (1998). Developmental potential of bovine embryos reconstructed by fusion of enucleated mature oocytes with cultured somatic cells. C R Academy of Science, Paris 321: 735-745.
Vignon X;Le Bourhis D;Chesne P;Marchal J;Heyman Y和RenardJ P(1999).用静止和增殖的皮肤成纤维细胞重组的牛核移植胚胎的发育.动物生殖学(Theriogenology)51:216.Vignon X; Le Bourhis D; Chesne P; Marchal J; Heyman Y and Renard J P (1999). Development of bovine nuclear transfer embryos reconstituted with quiescent and proliferating skin fibroblasts. Theriogenology 51:216.
Wakayama T和Yanagimachi R(1999).从成体尾尖细胞克隆成体雄性小鼠.自然遗传学(Nature Genetics)22:127-128.Wakayama T and Yanagimachi R (1999). Cloning of adult male mice from adult tail tip cells. Nature Genetics 22:127-128.
Wall RJ,Kerr DE和Bondioli KR(1997).转基因奶牛:大规模遗传工程.乳牛科学杂志(Journal of Dairy Sceince)80:2213-2224.Wall RJ, Kerr DE, and Bondioli KR (1997). Transgenic dairy cows: large-scale genetic engineering. Journal of Dairy Sceince 80: 2213-2224.
Wells D N;Misica P M;McMillan W H和Tervit H R(1998).用来自胎儿成纤维细胞系的细胞进行核移植后产生克隆化的牛胎儿.动物生殖学(Theriogenology)49:330.Wells D N; Misica P M; McMillan W H and Tervit H R (1998). Generation of cloned bovine fetuses following nuclear transfer of cells from a fetal fibroblast line. Theriogenology 49:330.
Wells D N;Misica P M;Tervit H R和Vivanco W H(1999).成体体细胞核移植用于保存最后一头恩德比地种母牛.生殖、受精和发育(Reproduction,Fertility and Development)10:369-378.Wells D N; Misica P M; Tervit H R and Vivanco W H (1999). Adult somatic cell nuclear transfer for preservation of the last Enderby ground cow. Reproduction, Fertility and Development 10:369 -378.
Wilmut I,Schnieke A E;McWhir J;Kind A J和Campbell K H S(1997).从哺乳动物胎儿和成体细胞获得活的后代.自然385:810-813.Wilmut I, Schnieke A E; McWhir J; Kind A J and Campbell K H S (1997). Obtaining live offspring from mammalian fetal and adult cells. Nature 385:810-813.
Zakhartchenko V;Durchova-Hills G;Stojkovic M;Schenthaner W;Prelle K;SteinbomR;Muller M;Brem G和Wolf E(1999).血清饥饿和再次克隆对牛胎儿成纤维细胞的核移植效率的影响.生殖和受精杂志(Journal of Reproduction and Fertility)115:325-331.Zakhartchenko V; Durchova-Hills G; Stojkovic M; Schenthaner W; Prelle K; Steinbom R; Muller M; and Journal of Reproduction and Fertility 115: 325-331.
所有参考资料是全面的引述于此进行参考。All references are incorporated herein by reference in their entirety.
Claims (55)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ337792 | 1999-09-14 | ||
NZ337792A NZ337792A (en) | 1999-09-14 | 1999-09-14 | Nuclear transfer and use in cloning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1424870A true CN1424870A (en) | 2003-06-18 |
Family
ID=19927507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN00813845A Pending CN1424870A (en) | 1999-09-14 | 2000-09-14 | Nuclear transfer with selected donor cells |
Country Status (8)
Country | Link |
---|---|
JP (1) | JP2004500038A (en) |
CN (1) | CN1424870A (en) |
AR (1) | AR032284A1 (en) |
AU (1) | AU784371B2 (en) |
DE (1) | DE10084987T1 (en) |
GB (1) | GB2369828B (en) |
NZ (1) | NZ337792A (en) |
WO (1) | WO2001019182A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1248640T3 (en) | 2000-01-20 | 2007-02-12 | Diabcell Pty Ltd | Xenotransplantation of pig islets and their production |
CA2509465A1 (en) * | 2002-12-10 | 2004-06-24 | Gtc Biotherapeutics, Inc. | Method and system for utilizing somatic cell nuclear transfer embryos as cell donors for additional nuclear transfer |
JP2006081542A (en) * | 2004-08-18 | 2006-03-30 | Institute Of Physical & Chemical Research | How to make a cloned mammal |
JP2010075099A (en) * | 2008-09-26 | 2010-04-08 | Japan Science & Technology Agency | Method for screening mammal nuclear transplantation embryo, nonhuman mammal nuclear transplantation embryo, clone nonhuman mammal and screening kit |
WO2016036754A1 (en) * | 2014-09-02 | 2016-03-10 | The Regents Of The University Of California | Methods and compositions for rna-directed target dna modification |
CN105483216B (en) * | 2015-11-30 | 2019-01-15 | 四川农业大学 | A kind of method of rabbit CETP genetic test meat breeding |
CN108624621B (en) * | 2018-01-17 | 2019-04-12 | 中国科学院上海生命科学研究院 | The preparation method of the somatic cell clone animal of non-human primates |
CN115551994A (en) | 2020-03-11 | 2022-12-30 | 倍特博有限公司 | Method for producing hepatocytes |
CN111793671A (en) * | 2020-07-22 | 2020-10-20 | 中国农业大学 | An optimized method for preparing chromosome suspension suitable for binary flow sorting of sheep chromosomes |
CN112715479A (en) * | 2021-01-06 | 2021-04-30 | 吉沙阿牛 | Goat ecological cycle breeding method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002511234A (en) * | 1998-03-16 | 2002-04-16 | リレグ ピーティーワイ リミテッド | Swine nuclear transfer |
-
1999
- 1999-09-14 NZ NZ337792A patent/NZ337792A/en not_active IP Right Cessation
-
2000
- 2000-09-14 AR ARP000104816A patent/AR032284A1/en unknown
- 2000-09-14 CN CN00813845A patent/CN1424870A/en active Pending
- 2000-09-14 GB GB0205915A patent/GB2369828B/en not_active Expired - Fee Related
- 2000-09-14 WO PCT/NZ2000/000179 patent/WO2001019182A1/en active Application Filing
- 2000-09-14 DE DE10084987T patent/DE10084987T1/en not_active Withdrawn
- 2000-09-14 AU AU74624/00A patent/AU784371B2/en not_active Ceased
- 2000-09-14 JP JP2001522836A patent/JP2004500038A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AR032284A1 (en) | 2003-11-05 |
GB2369828A (en) | 2002-06-12 |
NZ337792A (en) | 2002-03-28 |
WO2001019182A1 (en) | 2001-03-22 |
DE10084987T1 (en) | 2003-04-17 |
GB2369828B (en) | 2004-12-01 |
GB0205915D0 (en) | 2002-04-24 |
AU784371B2 (en) | 2006-03-23 |
JP2004500038A (en) | 2004-01-08 |
AU7462400A (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1210066C (en) | Method for cloning pigs using donor nuclei from differentiated cells | |
CN1248288B (en) | Nuclear transfer with differentiated fetal and adult donor cells | |
CN1200107C (en) | Full term development of animals from enucleated oocytes reconstituted with adult somatic cell nuclei | |
CA2262817A1 (en) | Embryonic or stem-like cell lines produced by cross species nuclear transplantation | |
KR20100014504A (en) | Highly efficient methods for reprogramming differentiated cells and for generating animals and embryonic stem cells from reprogrammed cells | |
CN1265599A (en) | Cloning using donor nuclei from non-serum starved, differentiated cells | |
US7371922B2 (en) | Nuclear transfer with porcine embryonic stem cells | |
Park et al. | Assisted reproductive techniques and genetic manipulation in the common marmoset | |
CN1424870A (en) | Nuclear transfer with selected donor cells | |
JP2004523239A (en) | Cloning of transgenic animals containing artificial chromosomes | |
CN1425064A (en) | Embryonic or stem-like cells produced by cross species nuclear transplantation | |
CN1299408A (en) | Embryonic or stem-like cell links produced by cross-species nuclear transplantation | |
CN1293188C (en) | Transferring nucleus of long-period cultured female or male cell including one changed by artificial induction gene into denucleated receptor cell | |
JP2003509031A (en) | Cloning of pigs using nuclei from donor cells or differentiated cells and production of pluripotent pigs | |
JP2006522609A (en) | A method for correcting spindle defects associated with somatic cell nuclear transfer in animals | |
Evecen et al. | Somatic cloning in cats using MI or MII oocytes | |
CN1673361A (en) | Multipotential cell containing heterogenous nuclear and mitochondrion | |
US20210002668A1 (en) | Sphingolipid-metabolizing proteins enhance the efficiency of gene editing in cells | |
US20040077077A1 (en) | Novel methods for the production of cloned mammals, mammals cloned according to the methods, and methods of use of same | |
CN1379814A (en) | Embryonic or stem-like cell lines produced by cross species nuclear transpcantation and methods for enhancing mebryonic development by genetic alteration of donor cells or by tissue culture conditions | |
JP2008521438A (en) | How to correct mitotic spindle defects and optimize pre-implantation embryo development rates associated with somatic cell nuclear transfer in animals | |
Bader et al. | Scientific background | |
Ogura et al. | Microinsemination using spermatogenic cells in mammals | |
Reggio | Production of transgenic goats by somatic cell nuclear transfer | |
MXPA99006464A (en) | Nuclear transfer with differentiated fetal and adult donor cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |