[go: up one dir, main page]

CN1373908A - Long-lifetime polymer light-emitting devices with improved luminous efficiency and radiance - Google Patents

Long-lifetime polymer light-emitting devices with improved luminous efficiency and radiance Download PDF

Info

Publication number
CN1373908A
CN1373908A CN00810523A CN00810523A CN1373908A CN 1373908 A CN1373908 A CN 1373908A CN 00810523 A CN00810523 A CN 00810523A CN 00810523 A CN00810523 A CN 00810523A CN 1373908 A CN1373908 A CN 1373908A
Authority
CN
China
Prior art keywords
layer
cathode
work function
metal
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00810523A
Other languages
Chinese (zh)
Other versions
CN1182601C (en
Inventor
M·B·奥雷甘
张驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Displays Inc
Original Assignee
DuPont Displays Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DuPont Displays Inc filed Critical DuPont Displays Inc
Publication of CN1373908A publication Critical patent/CN1373908A/en
Application granted granted Critical
Publication of CN1182601C publication Critical patent/CN1182601C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The luminous efficiency and radiance of light emitting diodes (LEDs) fabricated from organic emissive materials can be increased by using a multilayer cathode including a low work function layer and a high work function high reflectivity layer, in combination with a high work function, high reflectivity anode material in the device.

Description

具有改进的发光效率和辐射率的长效聚合物发光装置Long-lived polymer light-emitting devices with improved luminous efficiency and radiance

                     发明领域Field of Invention

本发明涉及具有改进的发光效率和改进的辐射率的有机聚合物发光二极管。The present invention relates to organic polymer light emitting diodes with improved luminous efficiency and improved emissivity.

                   相关技术描述Related technical description

由共轭有机聚合物层制造的二极管,且特别是发光二极管(LEDs),由于其在显示器技术方面的应用潜力而倍受关注。标准的聚合物LED结构包括下列相接触的序列层:具有铟-锡氧化物(ITO)涂层的基材、钝化层、发射性聚合物、然后是一个阴极单层。在有机聚合物基LEDs领域,通常使用较高逸出功的金属作为阳极,用于在具有半导体性质的电致发光聚合物的其他填充π-带注入空穴。较低逸出功金属优选作为阴极材料,用于在具有半导体性质的电致发光聚合物的其他空π*-带注入电子。在阳极注入的空穴和在阴极注入的电子在活性层内重新辐射性结合并发光。典型的用作阳极材料的较高逸出功材料包括透明的铟/锡-氧化物导电薄膜。或者,可以使用导电翠绿亚胺盐形式的聚苯胺薄膜。铟/锡-氧化物薄膜和导电翠绿亚胺盐形式的聚苯胺薄膜通常是优选的,因为作为透明电极,两者均允许从LED中发射的光以有用的水平从装置中发射出去。Diodes, and especially light-emitting diodes (LEDs), fabricated from conjugated organic polymer layers have attracted much attention due to their application potential in display technology. A standard polymer LED structure consists of the following sequential layers in contact: a substrate with an indium-tin oxide (ITO) coating, a passivation layer, an emissive polymer, and then a cathode monolayer. In the field of organic polymer-based LEDs, higher work function metals are commonly used as anodes for hole injection in otherwise filled π-bands of electroluminescent polymers with semiconducting properties. Lower work function metals are preferred as cathode materials for injecting electrons in otherwise empty π * -bands of electroluminescent polymers with semiconducting properties. The holes injected at the anode and the electrons injected at the cathode recombine radiatively within the active layer and emit light. Typical higher work function materials used as anode materials include transparent indium/tin-oxide conductive films. Alternatively, polyaniline films in the form of conductive emeraldine salts can be used. Indium/tin-oxide films and polyaniline films in the form of conductive emeraldine salts are generally preferred because, as transparent electrodes, both allow light emitted from the LED to exit the device at useful levels.

典型的适于用作阴极材料的较低逸出功金属为诸如钙、镁和钡的金属。碱金属趋向于太易流动并且会掺入发射层(例如电致发光聚合物),由此引起短路及不能被接受的短的装置使用寿命。Typical lower work function metals suitable for use as cathode materials are metals such as calcium, magnesium and barium. Alkali metals tend to be too mobile and can get incorporated into emissive layers (eg, electroluminescent polymers), thereby causing short circuits and unacceptably short device lifetimes.

在本领域中已知低逸出功金属超薄层[见Cao,Y.;PCT WO98/57381和Pichler,K.,国际专利申请WO 98/10621]或低逸出功金属氧化物超薄层[见Cao,Y.;PCT申请99 US/23775]形式的阴极产生的LEDs与使用传统厚膜阴极的类似LEDs相比,可提供同等或更好的初始性能(例如亮度和效率)及延长的运行寿命。Low work function metal ultrathin layers [see Cao, Y.; PCT WO98/57381 and Pichler, K., International Patent Application WO 98/10621] or low work function metal oxide ultrathin layers are known in the art [See Cao, Y.; PCT Application 99 US/23775] Cathode-generated LEDs that provide equal or better initial performance (e.g., brightness and efficiency) and extended lifetime compared to similar LEDs using conventional thick-film cathodes. operating life.

虽然制造聚合物LEDs的方法有所改进,但仍存在需要解决的问题。例如,聚合物LEDs的亮度和效率足以使其用于某些显示器应用领域。但是,在靠电池运转的装置中,发光效率是一个关键参数。较高的发光效率在无需使电池再充电的情况下可直接得到更长的使用期限。更一般而言,较高的发光效率能够用于更大范围的显示器应用领域。因此,对具有较高发光效率的LEDs仍然存在需求。在具体应用中,光输出优选沿前进方向为一个窄锥体。在这种应用中,高辐射率是特别重要的。Although the methods of making polymer LEDs have improved, there are still problems that need to be solved. For example, polymer LEDs are bright and efficient enough to be used in some display applications. However, in battery-operated devices, luminous efficiency is a key parameter. Higher luminous efficacy directly translates to longer lifetime without recharging the battery. More generally, higher luminous efficiencies enable a wider range of display applications. Therefore, there is still a demand for LEDs with higher luminous efficiency. In particular applications, the light output is preferably a narrow cone along the forward direction. In this application, high emissivity is especially important.

                       发明概述Invention Summary

本发明涉及包括一个阳极和一个阴极的发光二极管,所述阳极包括一个具有高反射率和高逸出功的半透明层,所述阴极包括至少一个选自金属、金属氧化物及其结合物的低逸出功材料的第一阴极层和至少一个具有高反射率和高逸出功的第二阴极层。The present invention relates to a light-emitting diode comprising an anode comprising a translucent layer with high reflectivity and high work function and a cathode comprising at least one element selected from the group consisting of metals, metal oxides and combinations thereof. A first cathode layer of low work function material and at least one second cathode layer having high reflectivity and high work function.

本发明获得了改进的发光效率和改进的辐射率。在第一个实施方案中,半透明层或第二个阴极层具有至少91.4%的反射率和大于约4eV的逸出功。在第二个实施方案中,半透明层和/或第二个阴极层在400-500nm的发射波长范围内具有至少86%的反射率。在优选的实施方案中,半透明层和第二个阴极层均为银。The invention achieves improved luminous efficiency and improved emissivity. In a first embodiment, the translucent layer or the second cathode layer has a reflectivity of at least 91.4% and a work function of greater than about 4 eV. In a second embodiment, the translucent layer and/or the second cathode layer has a reflectivity of at least 86% in the emission wavelength range of 400-500 nm. In a preferred embodiment, both the translucent layer and the second cathode layer are silver.

此处所用短语“相邻”未必表示一层紧邻另一层。在所述的相邻层之间可存在一个或多个中间层。The phrase "adjacent" as used herein does not necessarily mean that one layer is immediately adjacent to another layer. There may be one or more intermediate layers between said adjacent layers.

此处所用短语“在发射波长范围内…反射率”是指在光的特定波长处一层的反射率。所引反射率处的波长为从装置中发射的峰值波长。反射率值可从J.H.Weaver,H.P.R.Frederikse在CRC手册12-117页的“金属和半导体的光学性能”的标准教程表中读出。As used herein, the phrase "reflectivity over the emission wavelength range..." refers to the reflectivity of a layer at a particular wavelength of light. The wavelength at which reflectance is quoted is the peak wavelength emitted from the device. Reflectance values can be read from the standard tutorial tables of J.H. Weaver, H.P.R. Frederikse, "Optical Properties of Metals and Semiconductors", CRC Handbook, pages 12-117.

此处所用短语“半透明”定义为表示能够透过至少部分光,优选透过所感兴趣的特定波长光量的约4%-25%。The phrase "translucent" as used herein is defined as capable of transmitting at least some light, preferably between about 4% and 25% of the amount of light of the particular wavelength of interest.

                           附图简述Brief description of attached drawings

图1为用于本发明的聚合物LED装置的构造示意图。没有按比例绘制。FIG. 1 is a schematic diagram of the construction of a polymer LED device used in the present invention. Not drawn to scale.

图2显示了作为波长函数的人眼对光的敏感度。Figure 2 shows the sensitivity of the human eye to light as a function of wavelength.

图3显示了使用Covion PDO 122由ITO电极和Ba/Al电极制造的对比例聚合物LED的电致发光光谱(即对比例A)。Figure 3 shows the electroluminescence spectrum of a comparative polymer LED fabricated from ITO electrodes and Ba/Al electrodes using Covion PDO 122 (i.e. Comparative Example A).

图4显示了本发明的由300银阳极和Ba/Ag电极制造的聚合物LED的电致发光光谱(即实施例3)。Figure 4 shows the electroluminescence spectrum of a polymer LED fabricated from a 300 Å silver anode and a Ba/Ag electrode of the present invention (ie Example 3).

图5显示了使用Covion PDY 131由ITO电极和Ba/Al电极制造的对比例聚合物LED的电致发光光谱(即对比例C)。Figure 5 shows the electroluminescence spectrum of a comparative polymer LED fabricated from ITO electrodes and Ba/Al electrodes using Covion PDY 131 (ie comparative example C).

图6显示了使用Covion PDY 131由300银阳极和Ba/Ag阴极制造的本发明聚合物LED的电致发光光谱(即实施例4)。Figure 6 shows the electroluminescence spectrum of a polymer LED of the present invention fabricated using Covion PDY 131 from a 300 Å silver anode and a Ba/Ag cathode (ie Example 4).

图7显示了实施例4和对比例C装置的亮度对电压的曲线。Figure 7 shows luminance versus voltage curves for Example 4 and Comparative Example C devices.

                   优选实施方案描述            Preferred Implementation Scheme Description

从图1中可以很好地看出,LED装置100包括基材110和阳极120。阳极120包括一个高反射率金属的半透明层122和一个选择性的钝化层128。半透明层122具有一个与基材110相邻的第一表面124和一个相对的第二表面126。在阳极120和阴极140之间放置至少一个发射层130。阴极140包括一个低逸出功材料的第一阴极层142和一个高反射率金属的第二阴极层144。光如箭头150所示从基材110发出。基材As best seen in FIG. 1 , LED device 100 includes substrate 110 and anode 120 . Anode 120 includes a translucent layer 122 of a highly reflective metal and a selective passivation layer 128 . The translucent layer 122 has a first surface 124 adjacent to the substrate 110 and an opposite second surface 126 . At least one emissive layer 130 is placed between the anode 120 and the cathode 140 . Cathode 140 includes a first cathode layer 142 of low work function material and a second cathode layer 144 of high reflectivity metal. Light is emitted from substrate 110 as indicated by arrow 150 . Substrate

可以用作基材110的适宜材料包括例如玻璃和聚合物薄膜。阳极Suitable materials that may be used as substrate 110 include, for example, glass and polymer films. anode

虽然在发光装置的发光侧面实际上通常使用透明电极如ITO,但为了使通过电极的透光损失最少,本发明用一个高反射率金属薄层126替代或增加透明电极以提高装置的效率。从图1中可以很好地看出,阳极120可以是一个复合材料层,由半透明层126和涂布在半透明层126的第二表面124上的导电聚合物的钝化层128组成。Although transparent electrodes such as ITO are usually used on the light-emitting side of the light-emitting device, in order to minimize the loss of light transmission through the electrode, the present invention replaces or adds a transparent electrode with a high-reflectivity metal thin layer 126 to improve the efficiency of the device. As best seen in FIG. 1 , the anode 120 may be a composite layer consisting of a translucent layer 126 and a passivation layer 128 of conductive polymer coated on the second surface 124 of the translucent layer 126 .

在第一个替代的实施方案(未示出)中,阳极只包括一个可以用作注入空穴层的导电载流层,而不包括钝化层。在第二个替代的实施方案(未示出)中,阳极包括一个与半透明层126的第一表面124相邻的透明导电层如ITO以及钝化层128。在第三个替代的实施方案(未示出)中,阳极包括一个与半透明层126的第一表面124相邻的透明导电层如ITO而不包括钝化层。复合材料阳极120的半透明层126或替代的单一阳极层(未示出)是由选自高逸出功(一般大于约4.0eV)的高反射率金属的阳极材料制成的。适宜金属的实例包括银、金、铝和铜。在一个优选的实施方案中,半透明层126在发射波长处具有至少91.4%的反射率,是一种良好的电导体(导电率为约102-约108Ω-1cm-1,并且能够形成光滑的接触的薄膜)。在第二个优选的实施方案中,半透明层在发射波长处具有大于约92%的反射率。在第三个优选的实施方案中,半透明层在发射波长处具有约92%-约96.5%的反射率。在第四个优选的实施方案中,半透明层在发射波长处具有约94%-约96.5%的反射率。在第五个优选的实施方案中,半透明层126在发射波长处具有大于约96%的反射率。在另一个优选的实施方案中,半透明层126在400-500nm的发射波长范围内具有至少86%的反射率。这种阳极材料的实例包括银、铝、金和铜以及这些金属的合金。In a first alternative embodiment (not shown), the anode includes only a conductive current-carrying layer, which can serve as a hole-injecting layer, and no passivation layer. In a second alternative embodiment (not shown), the anode includes a transparent conductive layer such as ITO adjacent to the first surface 124 of the translucent layer 126 and a passivation layer 128 . In a third alternative embodiment (not shown), the anode includes a transparent conductive layer such as ITO adjacent the first surface 124 of the translucent layer 126 and does not include a passivation layer. The translucent layer 126 or alternative single anode layer (not shown) of composite anode 120 is made of an anode material selected from high reflectivity metals with high work function (typically greater than about 4.0 eV). Examples of suitable metals include silver, gold, aluminum and copper. In a preferred embodiment, translucent layer 126 has a reflectivity of at least 91.4% at the emission wavelength, is a good electrical conductor (conductivity of about 10 2 to about 10 8 Ω −1 cm −1 , and capable of forming a smooth contact film). In a second preferred embodiment, the translucent layer has a reflectivity of greater than about 92% at the emission wavelength. In a third preferred embodiment, the translucent layer has a reflectivity of from about 92% to about 96.5% at the emission wavelength. In a fourth preferred embodiment, the translucent layer has a reflectivity of from about 94% to about 96.5% at the emission wavelength. In a fifth preferred embodiment, translucent layer 126 has a reflectivity of greater than about 96% at the emission wavelength. In another preferred embodiment, the translucent layer 126 has a reflectivity of at least 86% over the emission wavelength range of 400-500 nm. Examples of such anode materials include silver, aluminum, gold and copper and alloys of these metals.

半透明层126一般可使用薄膜沉积领域中任何已知的技术,利用例如纯金属或合金或其他薄膜前体制造,所述技术包括例如真空蒸发、溅射沉积、电子束沉积、或化学蒸气沉积。金属层的厚度可通过蒸发/沉积的速率和时间控制。典型的蒸发/沉积速率为约0.5-10/sec。半透明层的厚度应足够薄以透过至少部分光(以使之为半透明的),并且还应足够厚以提供连续的层。一般,半透明金属层126具有约100-约500的厚度。在第一个优选实施方案中,半透明层具有约250-约400的厚度。在第二个优选实施方案中,半透明层具有约275-约350的厚度。在第三个优选实施方案中,半透明层具有约275-约325A的厚度。Translucent layer 126 may generally be fabricated using any technique known in the thin film deposition art, using, for example, pure metals or alloys or other thin film precursors, including, for example, vacuum evaporation, sputter deposition, electron beam deposition, or chemical vapor deposition. . The thickness of the metal layer can be controlled by the rate and time of evaporation/deposition. Typical evaporation/deposition rates are about 0.5-10 Å/sec. The thickness of the translucent layer should be thin enough to transmit at least some light (so as to be translucent), and thick enough to provide a continuous layer. Typically, the translucent metal layer 126 has a thickness of about 100 to about 500 Å. In a first preferred embodiment, the translucent layer has a thickness of about 250 to about 400 Å. In a second preferred embodiment, the translucent layer has a thickness of from about 275 to about 350 Å. In a third preferred embodiment, the translucent layer has a thickness of about 275 to about 325A.

导电材料的选择性钝化层128允许使用具有不能与所利用的发射聚合物精确匹配的逸出功的高反射率金属。用于本发明的导电材料的精确形式可以广泛变化并且不是关键的。适宜的导电材料实例包括但不限于聚苯胺、聚苯胺共混物、聚噻吩和聚噻吩共混物。有用的导电聚苯胺包括均聚物、衍生物及与本体聚合物的共混物。有用的聚苯胺实例包括U.S.专利5,232,631和U.S.专利5,723,873中所公开者。有用的导电聚噻吩包括均聚物、衍生物及与本体聚合物的共混物。有用的聚噻吩实例包括聚(亚乙基二氧噻吩)(PEDT),如聚(3,4-亚乙基二氧噻吩),及U.S.专利5,766,515和U.S.专利5,035,926中所公开者。术语“聚苯胺”和“聚噻吩”在此一般用来包括取代和未取代的材料。同样用这种方式来包括任何附带的掺杂剂,特别是用于赋予材料导电性的酸性材料。阴极The selective passivation layer 128 of conductive material allows the use of highly reflective metals with work functions that cannot be precisely matched to the emissive polymer utilized. The precise form of conductive material used in the present invention can vary widely and is not critical. Examples of suitable conductive materials include, but are not limited to, polyaniline, polyaniline blends, polythiophenes, and polythiophene blends. Useful conductive polyanilines include homopolymers, derivatives, and blends with bulk polymers. Examples of useful polyanilines include those disclosed in U.S. Patent 5,232,631 and U.S. Patent 5,723,873. Useful conductive polythiophenes include homopolymers, derivatives, and blends with bulk polymers. Examples of useful polythiophenes include poly(ethylenedioxythiophene) (PEDT), such as poly(3,4-ethylenedioxythiophene), and those disclosed in U.S. Patent 5,766,515 and U.S. Patent 5,035,926. The terms "polyaniline" and "polythiophene" are used herein generally to include both substituted and unsubstituted materials. Also included in this manner are any incidental dopants, especially acidic materials used to impart conductivity to the material. cathode

第一阴极层142选自低逸出功金属或低逸出功金属氧化物(一般小于约3.5eV)。适宜的低逸出功材料实例包括碱金属、碱土金属和镧系金属及碱金属、碱土金属和镧系金属的氧化物。术语“碱金属”在此以传统的意义用来表示周期表IA族的元素。术语“碱金属氧化物”在此以传统的意义用来表示碱金属和氧的化合物。方便起见,碱金属氧化物在此用相应的简单氧化物的化学式表示(例如Li2O,Na2O,K2O,Rb2O和Cs2O);但是,这种用简单氧化物的表示旨在包括其他氧化物,包括混合氧化物和非化学计量的氧化物(例如LixO,NaxO,KxO,RbxO和CsxO,其中x为约0.1-约2)。The first cathode layer 142 is selected from low work function metals or low work function metal oxides (typically less than about 3.5 eV). Examples of suitable low work function materials include alkali metals, alkaline earth metals and lanthanide metals and oxides of alkali metals, alkaline earth metals and lanthanide metals. The term "alkali metal" is used herein in the conventional sense to denote elements of Group IA of the Periodic Table. The term "alkali metal oxide" is used herein in the conventional sense to denote compounds of alkali metals and oxygen. For convenience, alkali metal oxides are represented here by the chemical formulas of the corresponding simple oxides (e.g., Li2O , Na2O , K2O , Rb2O , and Cs2O ); Indications are intended to include other oxides, including mixed oxides and non-stoichiometric oxides (e.g., Li x O, Na x O, K x O, Rb x O, and Cs x O, where x is from about 0.1 to about 2) .

术语“碱土金属”在此以传统的意义用来表示周期表IIA族的元素。优选的碱土金属包括镁(即Mg)、钙(即Ca)、锶(即Sr)和钡(即Ba)。术语“碱土金属氧化物”在此以传统的意义用来表示碱土金属和氧的化合物。方便起见,碱土金属氧化物在此用相应的简单氧化物的化学式表示(例如MgO,BaO,CaO,SrO和BaO);但是,这种用简单氧化物的表示旨在包括其他氧化物,包括混合氧化物和非化学计量的氧化物(例如MgxO,BaXO,CaxO,SrxO和BaxO,其中x为约0.1-约1)。The term "alkaline earth metal" is used herein in the conventional sense to denote elements of Group IIA of the Periodic Table. Preferred alkaline earth metals include magnesium (ie Mg), calcium (ie Ca), strontium (ie Sr) and barium (ie Ba). The term "alkaline earth metal oxide" is used herein in the conventional sense to denote compounds of alkaline earth metals and oxygen. For convenience, alkaline earth metal oxides are represented here by the formulas of the corresponding simple oxides (e.g., MgO, BaO, CaO, SrO, and BaO); however, this representation by simple oxides is intended to include other oxides, including mixed Oxides and non-stoichiometric oxides (eg, MgxO , BaxO , CaxO , SrxO , and BaxO , where x is from about 0.1 to about 1).

术语“镧系金属”在此以传统的意义用来表示周期表镧系的元素,从铈(即Ce)到镥(即Lu)。优选的镧系金属包括钐(即Sm)、钇(即Yb)和钕(即Nd)。术语“镧系金属氧化物”在此以传统的意义用来表示镧系金属和氧的化合物。方便起见,镧系金属氧化物在此用相应的+3价态的简单氧化物的化学式表示(例如Sm2O3,Yb2O3和Nd2O3);但是,这种用简单氧化物的表示旨在包括其他氧化物,包括混合氧化物和非化学计量的氧化物(例如SmxO,YbxO和NdxO,其中x为约0.1-约1.5)。The term "lanthanide metals" is used herein in the conventional sense to denote the elements of the lanthanide series of the periodic table, from cerium (ie, Ce) to lutetium (ie, Lu). Preferred lanthanide metals include samarium (ie, Sm), yttrium (ie, Yb), and neodymium (ie, Nd). The term "lanthanide metal oxide" is used herein in the conventional sense to denote compounds of lanthanide metals and oxygen. For convenience, lanthanide metal oxides are represented here by the chemical formulas of the corresponding simple oxides in the +3 valence state (such as Sm 2 O 3 , Yb 2 O 3 and Nd 2 O 3 ); however, this use of simple oxides The reference to is intended to include other oxides, including mixed oxides and non-stoichiometric oxides (eg, Sm x O, Yb x O, and Nd x O, where x is from about 0.1 to about 1.5).

在一个优选的实施方案中,第一阴极层142包括低逸出功金属氧化物。第一阴极层142一般可以通过热真空蒸发沉积。一般第一阴极层142的厚度为约10-200。典型的蒸发/沉积速率为约0.2-约4每秒。In a preferred embodiment, first cathode layer 142 includes a low work function metal oxide. The first cathode layer 142 may generally be deposited by thermal vacuum evaporation. Typically the first cathode layer 142 has a thickness of about 10-200 Å. Typical evaporation/deposition rates are from about 0.2 to about 4 Å per second.

与半透明层126类似,第二阴极层144具有高反射率和高逸出功,并且由可以形成光滑、接触的薄膜的材料制成。一般第二阴极层144具有大于4eV的逸出功。在一个优选的实施方案中,第二阴极层144在发射波长处具有至少91.4%的反射率。在第二个优选的实施方案中,第二阴极层在发射波长处具有约92%-约96.5%的反射率。在第三个优选的实施方案中,第二阴极层在发射波长处具有约94%-约96.5%的反射率。在第四个优选的实施方案中,第二阴极层在发射波长处的反射率大于96%。在另一个优选的实施方案中,使用在400-500nm的发射波长范围内具有至少86%反射率的金属作为第二阴极层144。与半透明层126类似,第二阴极层144包括选自金属和金属合金的阴极材料。适宜的高逸出功金属的实例包括铝、银、铜、金等以及这些金属的合金。Like the translucent layer 126, the second cathode layer 144 has a high reflectivity and high work function, and is made of a material that can form a smooth, contacting film. Generally, the second cathode layer 144 has a work function greater than 4eV. In a preferred embodiment, the second cathode layer 144 has a reflectivity of at least 91.4% at the emission wavelength. In a second preferred embodiment, the second cathode layer has a reflectivity of from about 92% to about 96.5% at the emission wavelength. In a third preferred embodiment, the second cathode layer has a reflectivity of from about 94% to about 96.5% at the emission wavelength. In a fourth preferred embodiment, the reflectivity of the second cathode layer at the emission wavelength is greater than 96%. In another preferred embodiment, a metal having a reflectivity of at least 86% in the emission wavelength range of 400-500 nm is used as the second cathode layer 144 . Like the translucent layer 126, the second cathode layer 144 includes a cathode material selected from metals and metal alloys. Examples of suitable high work function metals include aluminum, silver, copper, gold, etc. and alloys of these metals.

优选的实施方案使用在发射波长处具有至少91.4%反射率的金属或金属合金同时作为半透明层126和第二阴极层144。在另一个优选的实施方案中,使用在400-500nm的发射波长范围内反射率至少为86%的金属同时作为半透明层126和第二阴极层144。A preferred embodiment uses a metal or metal alloy having a reflectivity of at least 91.4% at the emission wavelength for both the translucent layer 126 and the second cathode layer 144 . In another preferred embodiment, a metal having a reflectivity of at least 86% in the emission wavelength range of 400-500 nm is used as both the semi-transparent layer 126 and the second cathode layer 144 .

一般而言,第二阴极层144不必与用于半透明层126者为同一种材料。例如,金可用作高逸出功半透明阳极,而银可用作双层阴极中的高反射率金属层。在一个优选的实施方案中,高反射层142含有反射率至少为91.4%或在400-500nm的发射波长范围内反射率至少为86%的金属同时作为第二阴极层144和半透明层126。在一个更加优选的实施方案中,用银(Ag)作为双层阴极中的高反射率金属层和半透明阳极。In general, the second cathode layer 144 need not be the same material as that used for the translucent layer 126 . For example, gold can be used as a high work function semitransparent anode, while silver can be used as a high reflectivity metal layer in a double-layer cathode. In a preferred embodiment, the highly reflective layer 142 contains a metal having a reflectivity of at least 91.4% or a reflectivity of at least 86% in the emission wavelength range of 400-500 nm as both the second cathode layer 144 and the semi-transparent layer 126. In a more preferred embodiment, silver (Ag) is used as the high reflectivity metal layer and semi-transparent anode in the dual layer cathode.

任选可以使用多层阴极体系(未示出)。例如,第一高反射率阴极层(优选足够厚以便不透明)可被另一个高反射率阴极层(反射率可以比第一高反射率阴极层高或低)覆盖。在一个三层阴极盖结构中,最上层金属可以是能够形成光滑、接触的薄膜的任何稳定金属,例如铝或铝合金。为了特殊功能,例如为了钝化和密封装置可以添加后继层。用于密封装置的层的实例包括对空气稳定的盖层。术语“对空气稳定”是指保护盖层以下的层免受可能存在于装置周围的环境氧气和潮气影响的能力。适用于对空气稳定盖层的材料包括金属或金属合金。Optionally a multilayer cathode system (not shown) can be used. For example, a first high reflectivity cathode layer (preferably thick enough to be opaque) may be covered by another high reflectivity cathode layer (which may have a higher or lower reflectivity than the first high reflectivity cathode layer). In a three-layer cathode cap structure, the uppermost metal can be any stable metal capable of forming a smooth, contacting film, such as aluminum or an aluminum alloy. Subsequent layers can be added for special functions, eg for passivation and sealing of the device. Examples of layers used to seal the device include air-stable cover layers. The term "air stable" refers to the ability to protect the layers below the cover layer from ambient oxygen and moisture that may be present around the device. Materials suitable for the air-stable cover include metals or metal alloys.

与半透明层126类似,第二阴极层144可以使用已知的沉积技术制造。典型的蒸发/沉积速率为约1-20/sec。第二阴极层144的厚度应足够厚以覆盖第一阴极层并且足够不透明以在令人感兴趣的波长给出高反射率。一般第二阴极层的厚度至少为约800。发射层Like the translucent layer 126, the second cathode layer 144 can be fabricated using known deposition techniques. Typical evaporation/deposition rates are about 1-20 Å/sec. The thickness of the second cathode layer 144 should be thick enough to cover the first cathode layer and opaque enough to give high reflectivity at wavelengths of interest. Typically the thickness of the second cathode layer is at least about 800 Å. emission layer

在本发明的LEDs中,所述至少一个发射层130(也称作发光层或电致发光层)包括一种电致发光的半导体有机材料。一般用作LEDs中发射层的材料包括显示电致发光性的聚合或分子材料,更具体而言,包括显示电致发光性并且是可溶的且可从溶液中被加工形成均匀薄膜的材料。In the LEDs of the present invention, said at least one emissive layer 130 (also referred to as a light emitting layer or an electroluminescent layer) comprises an electroluminescent semiconducting organic material. Materials typically used as emissive layers in LEDs include polymeric or molecular materials that exhibit electroluminescence, and more specifically, materials that exhibit electroluminescence and are soluble and can be processed from solution to form uniform thin films.

有用的分子发射材料的实例包括已知显示电致发光性的简单有机分子如蒽、噻二唑衍生物和香豆素衍生物。此外,复合物如带有三价金属离子,特别是铝的8-羟基喹啉盐也是适宜的发射材料,例如在Tang等人的美国专利5,552,678中所述。Examples of useful molecular emissive materials include simple organic molecules known to exhibit electroluminescence such as anthracene, thiadiazole derivatives and coumarin derivatives. In addition, complexes such as 8-quinolinate with trivalent metal ions, especially aluminum, are also suitable emissive materials, as described, for example, in US Pat. No. 5,552,678 to Tang et al.

有用的聚合物发射材料的实例包括半导体共轭聚合物。适宜的半导体共轭聚合物的实例包括聚(亚苯基亚乙烯基),PPV和PPV的可溶性衍生物如聚(2-甲氧基-5-(2’-乙基己氧基)-1,4-亚苯基亚乙烯基)、MEH-PPV,一种能隙Eg为~2.1eV的半导体聚合物。该材料在Wudl,F.,Hoger,S.,Zhang,C.,Pakbaz,K.,Heeger,A.J.,PolymerPreprints,1993,34(no.1),197中有更详细描述。另一种在本申请中所述的有用材料为聚(2,5-二胆甾烷氧基-1,4-亚苯基亚乙烯基)BCHA-PPV,一种能隙Eg为~2.2eV的半导体聚合物。该材料在美国专利5,189,136中有更详细描述。其他适宜的聚合物包括例如Braun,D.,Gustafsson,G.,McBranch D.和Heeger,A.J.在“聚(3-噻吩)二极管中的电致发光和电传输”,J.Appl.Phys.,1992,72,564中所述的聚(3-烷基噻吩);Grem,G.,Leditzky,G.,Ullrich,B.和Leising,G.在“使用聚(对亚苯基)的蓝光发射装置的实现”,Adv.Mater.,1992,4,36中所述的聚(对亚苯基)及Yang,Z.,Sokolik,I和Karasz F.E.在“可溶性发蓝光聚合物”,Macromolecules,1993,26,1188中所述的其可溶性衍生物;以及Parker,I.D.,Pei,Q.,Marrocco,M在“来自氟代聚喹啉的有效蓝光电致发光”,Appl.Phys.Lett.,1994,65,1272中所述的聚喹啉。共轭半导体聚合物与非共轭主体或载体聚合物的共混物也可用作聚合物LEDs中的活性层,如Zhang,C.,von Seggern,H.,Pakbaz,K.,Kraabel,B.,Schmidt,H.W.和Heeger,A.J.在“利用聚(对苯基亚苯基亚乙烯基)在聚(9-乙烯基咔唑)中的共混物的蓝光电致发光二极管”,Synthetic Metals,1994,62,35中所述。同样有用的是包括两种或多种共轭聚合物的共混物,如Yu,G.和Heeger,A.J.在“由半导体聚合物制备的高效发光装置”,Synthetic Metals,1997,85,1183中所述。Examples of useful polymeric emissive materials include semiconducting conjugated polymers. Examples of suitable semiconducting conjugated polymers include poly(phenylene vinylene), PPV and soluble derivatives of PPV such as poly(2-methoxy-5-(2'-ethylhexyloxy)-1 , 4-phenylene vinylene), MEH-PPV, a semiconducting polymer with an energy gap Eg of ~2.1eV. This material is described in more detail in Wudl, F., Hoger, S., Zhang, C., Pakbaz, K., Heeger, AJ, Polymer Preprints, 1993, 34(no. 1), 197. Another useful material described in this application is poly(2,5-dicholestalkoxy-1,4-phenylene vinylene) BCHA-PPV, an energy gap Eg of ~2.2 eV semiconducting polymers. This material is described in more detail in US Patent 5,189,136. Other suitable polymers include, for example, Braun, D., Gustafsson, G., McBranch D. and Heeger, AJ in "Electroluminescence and electrotransport in poly(3-thiophene) diodes", J. Appl. Phys., Poly(3-alkylthiophenes) described in 1992, 72, 564; Grem, G., Leditzky, G., Ullrich, B. and Leising, G. in "Blue light emission using poly(p-phenylene) Realization of the device", Adv.Mater., 1992, 4, 36 poly(p-phenylene) and Yang, Z., Sokolik, I and Karasz FE in "Soluble blue light-emitting polymers", Macromolecules, 1993 , 26, its soluble derivatives described in 1188; and Parker, ID, Pei, Q., Marrocco, M in "Effective blue photoluminescence from fluoropolyquinolines", Appl.Phys.Lett., 1994 , 65, the polyquinoline described in 1272. Blends of conjugated semiconducting polymers with non-conjugated host or carrier polymers can also be used as active layers in polymer LEDs, as Zhang, C., von Seggern, H., Pakbaz, K., Kraabel, B. ., Schmidt, HW and Heeger, AJ in "Blue light-emitting diodes utilizing blends of poly(p-phenylenevinylene) in poly(9-vinylcarbazole), Synthetic Metals, 1994, 62, 35 described. Also useful are blends comprising two or more conjugated polymers, as in Yu, G. and Heeger, AJ in "Efficient Light-Emitting Devices Prepared from Semiconducting Polymers", Synthetic Metals, 1997, 85, 1183 mentioned.

在一个实施方案中,电致发光有机材料为一种电致发光半导体有机聚合物,该聚合物为π-共轭聚合物或含有π-共轭部分链段的共聚物。共轭聚合物在本领域是为人熟知的。适宜的电致发光半导体有机聚合物的实例包括但不限于:In one embodiment, the electroluminescent organic material is an electroluminescent semiconducting organic polymer that is a π-conjugated polymer or a copolymer containing segments of π-conjugated moieties. Conjugated polymers are well known in the art. Examples of suitable electroluminescent semiconducting organic polymers include, but are not limited to:

(i)聚(对亚苯基亚乙烯基)及其在亚苯基部分上各位置被取代的衍生物;(i) poly(p-phenylene vinylene) and derivatives thereof substituted at various positions on the phenylene moiety;

(ii)聚(对亚苯基亚乙烯基)及其在亚乙烯基部分上各位置被取代的衍生物;(ii) poly(p-phenylene vinylene) and derivatives thereof substituted at various positions on the vinylene moiety;

(iii)聚(对亚苯基亚乙烯基)及其在亚苯基部分上各位置被取代的并且在亚乙烯基部分上各位置被取代的衍生物;(iii) poly(p-phenylenevinylene) and derivatives thereof substituted at various positions on the phenylene moiety and substituted at various positions on the vinylene moiety;

(iv)聚(亚芳基亚乙烯基),其中亚芳基可以是诸如亚萘基、亚蒽基、亚呋喃基、亚噻吩基、噁二唑等部分;(iv) poly(arylenevinylene), wherein the arylene group can be a moiety such as naphthylene, anthracenylene, furylene, thienylene, oxadiazole, etc.;

(v)聚(亚芳基亚乙烯基)衍生物,其中亚芳基可以同以上(iv),并且在亚芳基的各位置上另外带有取代基;(v) poly(arylene vinylene) derivatives, wherein the arylene group can be the same as (iv) above, and additionally have a substituent at each position of the arylene group;

(vi)聚(亚芳基亚乙烯基)衍生物,其中亚芳基可以同以上(iv),并且在亚乙烯基的各位置上另外带有取代基;(vi) poly(arylene vinylene) derivatives, wherein the arylene group can be the same as (iv) above, and additionally have a substituent at each position of the vinylene group;

(vii)聚(亚芳基亚乙烯基)衍生物,其中亚芳基可以同以上(iv),并且在亚芳基的各位置上和亚乙烯基的各位置上另外带有取代基;(vii) poly(arylene vinylene) derivatives, wherein the arylene group can be the same as (iv) above, and additionally have substituents at each position of the arylene group and at each position of the vinylene group;

(viii)亚芳基亚乙烯基低聚物的共聚物,如(iv),(v),(vi)和(vii)中所述者与非共轭低聚物的共聚物;(viii) copolymers of arylenevinylene oligomers, such as those described in (iv), (v), (vi) and (vii), with non-conjugated oligomers;

(ix)聚对亚苯基及其在亚苯基部分上各位置被取代的衍生物,包括梯形聚合物衍生物如聚(9,9-二烷基芴)等;(ix) Polyparaphenylene and its derivatives substituted at various positions on the phenylene moiety, including ladder polymer derivatives such as poly(9,9-dialkylfluorene);

(x)聚亚芳基,其中亚芳基可以是诸如亚萘基、亚蒽基、亚呋喃基、亚噻吩基、噁二唑等部分;及其在亚芳基的各位置上被取代的衍生物;(x) Polyarylene, wherein the arylene can be moieties such as naphthylene, anthracenylene, furylene, thienylene, oxadiazole, etc.; and substituted at each position of the arylene derivative;

(xi)低聚亚芳基如在(x)中所述者与非共轭低聚物的共聚物;(xi) copolymers of oligoarylenes as described in (x) with non-conjugated oligomers;

(xii)聚喹啉及其衍生物;(xii) polyquinoline and its derivatives;

(xiii)聚喹啉与对亚苯基的共聚物,所述对亚苯基在亚苯基上被例如烷基或烷氧基取代以提供溶解性;(xiii) Copolymers of polyquinoline and p-phenylene substituted on the phenylene with, for example, alkyl or alkoxy groups to provide solubility;

(xiv)刚性棒状聚合物如聚(对亚苯基-2,6-苯并二噻唑)、聚(对亚苯基-2,6-苯并二噁唑)、聚(对亚苯基-2,6-苯并咪唑)及其衍生物;等等。(xiv) Rigid rod polymers such as poly(p-phenylene-2,6-benzobithiazole), poly(p-phenylene-2,6-benzobisoxazole), poly(p-phenylene- 2,6-benzimidazole) and its derivatives; and so on.

同样有用的是半导体共轭聚合物与离散分子、与和半导体共轭聚合物共混或通过共价键共价连接的离散分子化合物的结合物。同样有用的是聚芴衍生物。见例如美国专利5,777,070;美国专利5,708,130;和美国专利5,900,327。Also useful are combinations of semiconducting conjugated polymers with discrete molecules, with discrete molecular compounds blended with or covalently attached to the semiconducting conjugated polymers. Also useful are polyfluorene derivatives. See, eg, US Patent 5,777,070; US Patent 5,708,130; and US Patent 5,900,327.

在一个实施方案中,电致发光半导体有机材料为一种电致发光半导体有机聚合物。在优选的实施方案中,电致发光半导体有机材料选自聚(对亚苯基亚乙烯基)、聚(亚芳基亚乙烯基)、聚(对亚苯基)和聚亚芳基。In one embodiment, the electroluminescent semiconducting organic material is an electroluminescent semiconducting organic polymer. In a preferred embodiment, the electroluminescent semiconducting organic material is selected from poly(p-phenylene vinylene), poly(arylene vinylene), poly(p-phenylene) and polyarylene.

发射层还可包括其他材料,如载体聚合物和添加剂。一般发射层的厚度为约600-约1100,依赖于所需发射波长以及空穴尺寸。The emissive layer may also include other materials such as carrier polymers and additives. Typically the emissive layer has a thickness of about 600 to about 1100 Å, depending on the desired emission wavelength and hole size.

发射层一般可利用本领域任何已知的技术,特别是有机分子和有机聚合物LEDs领域中已知的方法制造,所述技术包括例如直接从溶液中浇铸、以及浇铸聚合物前体然后进行反应(例如通过加热)形成所需聚合物。The emissive layer can generally be fabricated using any technique known in the art, particularly in the art of organic molecular and organic polymer LEDs, including, for example, casting directly from solution, and casting polymer precursors followed by reaction The desired polymer is formed (eg by heating).

我们已经发现使用一个多层阴极和一个阳极可以获得优异的电子注入、高反射率、微孔结构中的高Q及由此改进的发光效率和改进的辐射率,所述阴极包括至少一个覆盖有高反射率金属的低逸出功金属或金属氧化物超薄层(提供有效电子注入),所述阳极包括一个半透明的高反射率金属层。我们认为微孔效应提高了发光效率和亮度。该装置半透明金属阳极和阴极双层的较高反射率形成微孔结构的高性能聚合物LED。微孔效应使得发光带变窄。变窄的结果使发射光子的主波长向人眼更敏感的区域移动(见图2)并由此显著提高了发光结构的发光效率。用相同的发光聚合物以传统结构制造的聚合物LED的宽电致发光光谱示于图3中以资比较。封装We have found that excellent electron injection, high reflectivity, high Q in the microporous structure and thus improved luminous efficiency and improved emissivity can be obtained using a multilayer cathode comprising at least one layer covered with Low work function metal or metal oxide ultrathin layer of high reflectivity metal (provides efficient electron injection), the anode includes a translucent high reflectivity metal layer. We believe that the microhole effect improves the luminous efficiency and brightness. The higher reflectivity of the semi-transparent metal anode and cathode double layer of the device forms a high-performance polymer LED with a microporous structure. Microhole effect narrows the luminescent band. As a result of the narrowing, the dominant wavelength of emitted photons is shifted to a region where the human eye is more sensitive (see FIG. 2 ) and thus significantly improves the luminous efficiency of the light-emitting structure. The broad electroluminescence spectrum of a polymer LED fabricated in a conventional configuration with the same light-emitting polymer is shown in Figure 3 for comparison. encapsulation

一般优选将本发明的LEDs封装以防止长期降解。封装方法是本领域为人熟知的。例如,可将装置密封在玻璃版之间,或者密封在隔离聚合物层之间。It is generally preferred to encapsulate the LEDs of the invention to prevent long-term degradation. Encapsulation methods are well known in the art. For example, the device can be sealed between glass plates, or between layers of isolating polymers.

                           实施例Example

下列实施例说明了本发明的某些特征和优点。它们旨在说明本发明而非对其进行限制。The following examples illustrate certain features and advantages of the invention. They are intended to illustrate the invention, not to limit it.

在下面的实施例和对比例中,根据下列方法进行下列测量:效率:In the following examples and comparative examples, the following measurements are carried out according to the following methods: Efficiency:

效率是使用UDT S370视力计(由San Diego,CA的GammaScientific分部UDT提供)测定的,该视力计包括一个使用下述步骤校准的光电二极管,光电二极管是如下校准的:使用一个具有已知均匀发射光的NIST校准光源。使用一个面罩以便只发射象素活性面积(active area)的光束。将光电二极管放置在光的给定距离处,并记录电压值。由此得知对应特殊光密度(340 cd/m2)的电压值。辐射率:Efficiency was determined using a UDT S370 vision meter (supplied by UDT, Gamma Scientific Division, San Diego, CA) that included a photodiode calibrated using the following procedure: NIST calibrated light source that emits light. A mask is used so that only the active area of the pixel emits the beam. Place the photodiode at a given distance from the light and record the voltage value. From this, the voltage value corresponding to the special optical density (340 cd/m 2 ) is obtained. Emissivity:

辐射率是使用Newport光电二极管(由Irvine,CA的NewportCorporation提供)测定的。寿命:Emissivity was measured using a Newport photodiode (supplied by Newport Corporation of Irvine, CA). life:

为了进行运行寿命试验,使用环氧树脂和一个玻璃罩将LEDs密封起来。寿命试验是在空气中于以恒定电流、0.5msec脉冲、0.5%循环周期、5mA每象素点的装置中的单各象素点上进行的。使用带有校准光电二极管的UDT S370视力计测定象素衰减到零光输出所需的时间。For operational lifetime tests, the LEDs were sealed with epoxy and a glass cover. Life tests were performed in air on a single pixel in the device at constant current, 0.5 msec pulse, 0.5% cycle time, 5 mA per pixel. The time required for the pixel to decay to zero light output was measured using a UDT S370 vision meter with a calibrated photodiode.

                      对比例AComparative Example A

如下制造聚合物LED装置:在部分用ITO涂布的玻璃基材上以6,000rpm在空气中旋涂聚苯胺共混物的溶液(一般的制备方法描述于美国专利5,626,795中)。将所得薄膜在50℃的热板上干燥30分钟并随后于70℃真空下过夜。将由Covion Organic SemiconductorsGmbH(法兰克福,德国)提供的Covion PDO 122的甲苯溶液以1,800rpm旋涂在pAni薄膜上(在氮气手套箱中)。将薄膜在室温下真空干燥1小时。使钡阴极在Covion PDO 122聚合物薄膜上蒸气淀积至厚度为30埃。在钡层的上面蒸气淀积一层厚度为3,000的铝层。Polymer LED devices were fabricated by spin-coating a solution of the polyaniline blend in air at 6,000 rpm on a partially ITO-coated glass substrate (the general method of preparation is described in US Patent 5,626,795). The resulting film was dried on a hot plate at 50°C for 30 minutes and then at 70°C overnight under vacuum. A toluene solution of Covion PDO 122 supplied by Covion Organic Semiconductors GmbH (Frankfurt, Germany) was spin-coated on the pAni film (in a nitrogen glove box) at 1,800 rpm. The film was vacuum dried at room temperature for 1 hour. A barium cathode was vapor deposited on Covion PDO 122 polymer film to a thickness of 30 Angstroms. On top of the barium layer a layer of aluminum was vapor deposited to a thickness of 3,000 Å.

                          对比例BComparative Example B

按对比例A制造聚合物LED装置,但铝层被厚度为3,000的蒸气淀积的银层替代。A polymer LED device was fabricated as in Comparative Example A, except that the aluminum layer was replaced by a vapor-deposited silver layer having a thickness of 3,000 Å.

                          实施例1Example 1

按对比例A制造聚合物LED装置,但ITO被厚度为300的蒸气淀积的银层替代。A polymer LED device was fabricated as in Comparative Example A, except that the ITO was replaced by a vapor-deposited silver layer having a thickness of 300 Å.

                       实施例2Example 2

按对比例A制造聚合物LED装置,但将厚度为300的银层蒸气淀积在ITO顶部。该装置的性能类似于实施例1和下面描述的实施例3的装置性能。A polymer LED device was fabricated as in Comparative Example A, but with a 300 Å thick layer of silver vapor deposited on top of the ITO. The performance of the device was similar to that of Example 1 and Example 3 described below.

                       实施例3Example 3

按实施例1或实施例2制造聚合物LED装置,但铝层被蒸气淀积的厚度为3,000的银层替代。测定这些装置的效率。A polymer LED device was fabricated as in Example 1 or Example 2, except that the aluminum layer was replaced by a vapor-deposited silver layer having a thickness of 3,000 Å. The efficiency of these devices was determined.

这些装置的性能归纳在表1中:The properties of these devices are summarized in Table 1:

    表1  装置在0.3mA时的效率(cd/A)和运行电压Table 1 Efficiency (cd/A) and operating voltage of the device at 0.3mA

     实施例       0.3mA时的效率       电压(V)Example Example Efficiency at 0.3mA Voltage (V)

                     (cd/A)(cd/A)

     对比例A          5.25            11.3 Comparative Example A                                                                                                                           ,

     对比例B          4.54            9.6 Comparative example B                                                                                

     实施例1          5.9             10.2Example 1 5.9 10.2

     实施例2          9.5             10.4Example 2 9.5 10.4

以上表1显示用300银层替代ITO(但铝留在原位)在某种程度上改进了光输出,亮度提高了12%(即对比例A相对实施例1)。但是,最显著的改进是在实施例3所描述的结构装置中获得的,其中使用了银阳极,并且银是双层阴极结构中所用的高反射率金属。实施例3的装置比对比例A的装置亮80%以上。表1还说明只是在阴极一侧用银替代铝(对比例A相对B)而保持阳极不变不能改进装置的效率。事实上,光输出还有所减少。Table 1 above shows that replacing the ITO with a 300 Å silver layer (but leaving the aluminum in place) improves the light output somewhat, with a 12% increase in brightness (ie Comparative Example A vs. Example 1). However, the most significant improvement was obtained in the structural device described in Example 3, where silver anodes were used and silver was the high reflectivity metal used in the dual layer cathode structure. The device of Example 3 is more than 80% brighter than the device of Comparative Example A. Table 1 also shows that simply substituting silver for aluminum on the cathode side (Comparative Example A vs. B) while keeping the anode unchanged does not improve the efficiency of the device. In fact, the light output is also reduced.

还以辐射线测量单位(W/Sr/m2)对实施例1和3装置的发射进行了测量,该测量忽略了人眼响应效应而测量的是绝对意义的光输出。结果归纳在下面的表2中。注意来自根据本发明(实施例3)制造的装置的辐射比用相同发光聚合物以传统聚合物LED结构制造的装置的辐射高2.5倍。The emission of the devices of Examples 1 and 3 was also measured in radiometric units (W/Sr/m 2 ), which ignores human eye response effects and measures light output in absolute terms. The results are summarized in Table 2 below. Note that the radiation from devices fabricated according to the present invention (Example 3) was 2.5 times higher than that from devices fabricated with the same light-emitting polymer in a conventional polymer LED configuration.

图4显示了来自实施例3的装置的电致发光光谱。注意相对于图3所示光谱,电致发光发射谱变窄,尽管在两个装置中使用的是相同的发光聚合物。我们认为是Covion PDO 122被限制在实施例3的微孔中导致发射谱变窄。Figure 4 shows the electroluminescence spectrum of the device from Example 3. Note the narrowing of the electroluminescence emission spectrum relative to the spectrum shown in Figure 3, even though the same light-emitting polymer was used in both devices. We believe that Covion PDO 122 is confined in the micropores of Example 3 resulting in narrowing of the emission spectrum.

               表2装置的辐射率        Table 2 Radiation rate of the device

           实施例      0.3mA时的辐射率Example Example Radiation rate at 0.3mA

                         (W/Sr/m2)(W/Sr/m 2 )

           对比例A            32     Comparative Example A                                        

           对比例B            28Comparative Example B 28

           实施例1            41Example 1 41

           实施例3            102Example 3 102

                      对比例CComparative Example C

按对比例A制造聚合物LED装置,但所用半导体共轭聚合物为由Covion Organic Semiconductors GmbH(法兰克福,德国)提供的Covion PDY 131,并且Covion PDY 131薄膜是以3,000rpm旋涂的。钡层厚度为15。A polymer LED device was fabricated as in Comparative Example A, but the semiconducting conjugated polymer used was Covion PDY 131 supplied by Covion Organic Semiconductors GmbH (Frankfurt, Germany), and the Covion PDY 131 film was spin-coated at 3,000 rpm. The thickness of the barium layer was 15 Å.

该装置的电致发光光谱示于图5中。The electroluminescence spectrum of the device is shown in FIG. 5 .

                       实施例4Example 4

按实施例3制造聚合物LED装置,但所用半导体共轭聚合物为Covion PDY 131,并且Covion PDY 131薄膜是以3,000rpm旋涂的。Ba层厚度为15。A polymer LED device was fabricated as in Example 3, but the semiconducting conjugated polymer used was Covion PDY 131, and the Covion PDY 131 film was spin-coated at 3,000 rpm. The thickness of the Ba layer was 15 Å.

该装置的电致发光光谱示于图6中。The electroluminescence spectrum of the device is shown in FIG. 6 .

表3  实施例中装置在0.3mA时的效率(cd/A)和运行电压Efficiency (cd/A) and operating voltage of the device at 0.3mA in the embodiment of table 3

     实施例          效率(cd/A)       电压(V)Example Example Efficiency (cd/A) Voltage (V)

     对比例C            10.8             8.9Comparative Example C 10.8 8.9

     实施例4            27.4             10Example 4 27.4 10

             表4  实施例中装置的辐射率       Table 4 The emissivity of the device in the embodiment

          实施例       0.3mA时的辐射率Example Example Radiation rate at 0.3mA

                          (W/Sr/m2)(W/Sr/m 2 )

          对比例C            36Comparative Example C 36

          实施例4            83Example 4 83

以上表3和4显示了对比例C和实施例4中装置的结果。显然本发明并不限于一种半导体聚合物,因为当阴极覆盖金属由铝换成银,并且在阳极一侧ITO由银替代时,用另一种半导体聚合物同样实现了光输出的显著改进。来自实施例4的装置显示了比对比例C中装置高2.5倍的发光效率(表3)。Tables 3 and 4 above show the results for the devices in Comparative Example C and Example 4. It is clear that the invention is not limited to one semiconducting polymer, since a significant improvement in light output was also achieved with another semiconducting polymer when the cathode cover metal was changed from aluminum to silver, and on the anode side ITO was replaced by silver. The device from Example 4 showed 2.5 times higher luminous efficiency than the device in Comparative Example C (Table 3).

测定了实施例4和对比例C的装置的光输出对电压(L-V)曲线,并且测量曲线示于图7中。图7中数据证明在实施例4中制造的装置的亮度得到了显著提高。The light output versus voltage (L-V) curves of the devices of Example 4 and Comparative Example C were determined, and the measured curves are shown in FIG. 7 . The data in Figure 7 demonstrates that the brightness of the device fabricated in Example 4 was significantly improved.

下面的表5显示实施例1和3的装置比包括ITO阳极层的对比装置具有更长的寿命并且更稳定。Table 5 below shows that the devices of Examples 1 and 3 had longer lifetimes and were more stable than the comparative device comprising an ITO anode layer.

         表5  高电流(应力)条件下装置的寿命Table 5 Device life under high current (stress) conditions

           实施例       至零光输出时的时间(h)Example Example Time to zero light output (h)

           对比例A               2.5     Comparative Example A                                                                       

           实施例1      试验终止时未达到(15h)    Example 1   Did not reach (15h) when the test was terminated

           实施例3      试验终止时未达到(15h)    Example 3   Did not reach (15h) when the test was terminated

在被认为是非常高的电流条件(0.5msec脉冲,0.5%循环周期,5mA每象素点)下测试实施例1和3以及对比例A的装置,以便加速老化过程并由此可以测试许多装置。在三个装置中,对比例A的装置发出最少的光并且最快下降到零点(2.5小时后无光发射)。实施例1和3的装置在其寿命期间显示了非常不同的行为。在每种情况下,亮度下降至初始值的约50%并随后保持在该水平。在实施例1和3装置的情况下,在认为试验完成之前不能到达失败点。The devices of Examples 1 and 3 and Comparative Example A were tested under what are considered to be very high current conditions (0.5 msec pulse, 0.5% cycle time, 5 mA per pixel) in order to accelerate the aging process and thus allow testing of many devices . Of the three devices, the device of Comparative Example A emitted the least light and dropped to zero the fastest (no light emission after 2.5 hours). The devices of Examples 1 and 3 show very different behavior during their lifetime. In each case, the brightness dropped to about 50% of the initial value and then remained at this level. In the case of the Example 1 and 3 devices, the point of failure could not be reached before the test was considered complete.

因此,虽然ITO一般优选于银作为阳极层,但本发明以银结构获得了比ITO装置更长的运行寿命。Thus, while ITO is generally preferred over silver as the anode layer, the present invention achieves a longer operating life than ITO devices with a silver structure.

Claims (10)

1. a light-emitting device (100), this device comprises an anode (120) and a negative electrode (140), described anode (120) comprises a semitransparent layer (122) with high reflectance and high work function, and described negative electrode (140) comprises first cathode layer (142) of the low work function material that at least one is selected from metal, metal oxide and bond thereof and second cathode layer (144) that at least one has high reflectance and high work function.
2. the device of claim 1, wherein semitransparent layer has the work function greater than 4eV.
3. the device of claim 1, wherein semitransparent layer comprises a kind of anode material that is selected from metal and metal alloy.
4. the device of claim 1, wherein second cathode layer has the work function greater than 4eV.
5. the device of claim 1, wherein second cathode layer comprises a kind of cathode material that is selected from metal and metal alloy.
6. the device of claim 1, wherein at least one device assembly that is selected from semitransparent layer and at least one second cathode layer has in the transmitted wave strong point and is at least 91.4% reflectivity.
7. the device of claim 1, wherein at least one device assembly that is selected from semitransparent layer and at least one second cathode layer has in 400-500nm transmitted wave strong point and is at least 86% reflectivity.
8. the device of claim 1, wherein at least one device assembly that is selected from semitransparent layer and at least one second cathode layer comprises silver.
9. the device of claim 1, wherein semitransparent layer has first surface adjacent with negative electrode (124) and opposing second surface (126), and anode further comprises a passivation layer (128) adjacent with first surface, and this passivation layer comprises a kind of passivating material that is selected from polyaniline, polyaniline blend, polythiophene and polythiophene blend.
10. the device of claim 1, wherein semitransparent layer has first surface and the opposing second surface adjacent with negative electrode, and anode further comprises an indium/tin-oxide hyaline layer adjacent with the second surface of semitransparent layer.
CNB008105235A 1999-07-19 2000-07-18 Long-lived polymer light-emitting devices with improved luminous efficiency and radiance Expired - Fee Related CN1182601C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14425199P 1999-07-19 1999-07-19
US60/144251 1999-07-19

Publications (2)

Publication Number Publication Date
CN1373908A true CN1373908A (en) 2002-10-09
CN1182601C CN1182601C (en) 2004-12-29

Family

ID=22507760

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008105235A Expired - Fee Related CN1182601C (en) 1999-07-19 2000-07-18 Long-lived polymer light-emitting devices with improved luminous efficiency and radiance

Country Status (7)

Country Link
EP (1) EP1196955A1 (en)
JP (1) JP2003505823A (en)
CN (1) CN1182601C (en)
CA (1) CA2377077A1 (en)
MY (1) MY133491A (en)
TW (1) TW493289B (en)
WO (1) WO2001006576A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359711C (en) * 2004-08-17 2008-01-02 友达光电股份有限公司 Top-emitting organic light-emitting diode structure and manufacturing method thereof
CN100385706C (en) * 2003-04-28 2008-04-30 三菱电机株式会社 Organic electroluminescence element and its manufacturing method
CN100442569C (en) * 2003-06-03 2008-12-10 三星Sdi株式会社 Organic electroluminescent device using multilayer pixel electrode and manufacturing method thereof
CN100463210C (en) * 2003-06-03 2009-02-18 三星移动显示器株式会社 Organic electroluminescence display device using low resistance cathode
CN100541857C (en) * 2003-10-13 2009-09-16 铼宝科技股份有限公司 Planar light-emitting element and method for manufacturing the same
CN101299895B (en) * 2003-11-24 2010-06-09 三星移动显示器株式会社 Organic light emitting display and manufacturing method thereof
CN101931057A (en) * 2009-06-23 2010-12-29 索尼公司 Organic electroluminescence device, manufacturing method thereof, and display unit including same
CN101577314B (en) * 2009-03-27 2011-03-16 福建华映显示科技有限公司 Organic electroluminescent element
CN101295769B (en) * 2007-04-23 2011-09-14 三星移动显示器株式会社 Organic light emitting device and method of manufacturing the same
CN103258967A (en) * 2003-06-25 2013-08-21 三星显示有限公司 Bottom emission type electroluminescent display
CN107017350A (en) * 2015-10-28 2017-08-04 三星显示有限公司 Organic illuminating element
CN110690258A (en) * 2019-09-02 2020-01-14 武汉华星光电半导体显示技术有限公司 Display structure

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377321B1 (en) 1999-12-31 2003-03-26 주식회사 엘지화학 Electronic device comprising organic compound having p-type semiconducting characteristics
KR100721656B1 (en) 2005-11-01 2007-05-23 주식회사 엘지화학 Organic electrical devices
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US6680570B2 (en) * 2001-03-21 2004-01-20 Agilent Technologies, Inc. Polymer organic light emitting device with improved color control
US7701130B2 (en) 2001-08-24 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Luminous device with conductive film
TWI306721B (en) 2001-08-25 2009-02-21 Cambridge Display Tech Ltd Display device
JP2003123987A (en) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc Optical resonator
GB2405746B (en) 2002-05-22 2005-10-26 Fuji Electric Holdings Co Organic el light-emitting device
KR100875097B1 (en) * 2002-09-18 2008-12-19 삼성모바일디스플레이주식회사 Organic electroluminescent device using optical resonance effect
JP4290953B2 (en) * 2002-09-26 2009-07-08 奇美電子股▲ふん▼有限公司 Image display device, organic EL element, and method of manufacturing image display device
US6861800B2 (en) 2003-02-18 2005-03-01 Eastman Kodak Company Tuned microcavity color OLED display
US7973319B2 (en) * 2003-09-19 2011-07-05 Sony Corporation Display unit, method of manufacturing same, organic light emitting unit, and method of manufacturing same
JPWO2005062678A1 (en) * 2003-12-19 2007-07-19 出光興産株式会社 Organic electroluminescence element, conductive laminate, and display device
JP4857427B2 (en) * 2004-03-25 2012-01-18 独立行政法人産業技術総合研究所 Light transmissive electrode for semiconductor device, semiconductor device, and method of manufacturing electrode
GB0408486D0 (en) 2004-04-16 2004-05-19 Koninkl Philips Electronics Nv Electroluminescent display device
EP1794255B1 (en) 2004-08-19 2016-11-16 LG Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
GB0505298D0 (en) * 2005-03-15 2005-04-20 Cambridge Display Tech Ltd Light emissive device
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units
US7622865B2 (en) 2006-06-19 2009-11-24 Seiko Epson Corporation Light-emitting device, image forming apparatus, display device, and electronic apparatus
JP2007335347A (en) * 2006-06-19 2007-12-27 Seiko Epson Corp LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
GB2459895B (en) 2008-05-09 2011-04-27 Cambridge Display Technology Limited Organic light emissive device
GB2475246B (en) * 2009-11-10 2012-02-29 Cambridge Display Tech Ltd Organic opto-electronic device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619058A (en) * 1994-02-17 1997-04-08 Lucent Technologies Inc. Light emitting diode device having four discrete regions
WO1999059379A2 (en) * 1998-05-14 1999-11-18 Fed Corporation An organic light emitting diode device for use with opaque substrates

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385706C (en) * 2003-04-28 2008-04-30 三菱电机株式会社 Organic electroluminescence element and its manufacturing method
CN100463210C (en) * 2003-06-03 2009-02-18 三星移动显示器株式会社 Organic electroluminescence display device using low resistance cathode
CN100442569C (en) * 2003-06-03 2008-12-10 三星Sdi株式会社 Organic electroluminescent device using multilayer pixel electrode and manufacturing method thereof
CN103258967A (en) * 2003-06-25 2013-08-21 三星显示有限公司 Bottom emission type electroluminescent display
CN100541857C (en) * 2003-10-13 2009-09-16 铼宝科技股份有限公司 Planar light-emitting element and method for manufacturing the same
CN101299895B (en) * 2003-11-24 2010-06-09 三星移动显示器株式会社 Organic light emitting display and manufacturing method thereof
CN100359711C (en) * 2004-08-17 2008-01-02 友达光电股份有限公司 Top-emitting organic light-emitting diode structure and manufacturing method thereof
CN101295769B (en) * 2007-04-23 2011-09-14 三星移动显示器株式会社 Organic light emitting device and method of manufacturing the same
CN101577314B (en) * 2009-03-27 2011-03-16 福建华映显示科技有限公司 Organic electroluminescent element
CN101931057A (en) * 2009-06-23 2010-12-29 索尼公司 Organic electroluminescence device, manufacturing method thereof, and display unit including same
CN101931057B (en) * 2009-06-23 2014-08-06 索尼公司 Organic electroluminescence device, method of manufacturing an organic electroluminescence device and display unit including the same
CN107017350A (en) * 2015-10-28 2017-08-04 三星显示有限公司 Organic illuminating element
CN110690258A (en) * 2019-09-02 2020-01-14 武汉华星光电半导体显示技术有限公司 Display structure
US11417859B2 (en) 2019-09-02 2022-08-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display structure

Also Published As

Publication number Publication date
MY133491A (en) 2007-11-30
TW493289B (en) 2002-07-01
CA2377077A1 (en) 2001-01-25
WO2001006576A1 (en) 2001-01-25
EP1196955A1 (en) 2002-04-17
CN1182601C (en) 2004-12-29
JP2003505823A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
CN1182601C (en) Long-lived polymer light-emitting devices with improved luminous efficiency and radiance
US6849869B1 (en) Long lifetime polymer light-emitting devices with improved luminous efficiency and improved radiance
JP4739098B2 (en) Electronic cold light emission device
CN1287636C (en) Encapsulation of polymer-based solid state devices with inorganic materials
US6563262B1 (en) Thin metal-oxide layer as stable electron-injecting electrode for light emitting diodes
JP5025910B2 (en) Optoelectronic devices
US8552637B2 (en) Organic electroluminescence element having a conductive resin layer and method for manufacturing the same
JP4977548B2 (en) Organic electroluminescence device and manufacturing method thereof
JP2002504261A (en) Ultrathin alkaline earth metals as stable electron injection cathodes in polymer light emitting diodes
JP2002508107A (en) Variable color bipolar / AC light emitting device
CN1201414C (en) Organic electroluminescent component
KR20020069199A (en) High Resistance Polyaniline Useful in High Efficiency Pixellated Polymer Electronic Displays
US20060138656A1 (en) Electrode for an electronic device
JP4669785B2 (en) Light emitting element and display device
JP2004537833A (en) Electrode composition
GB2412658A (en) Organic EL element
Wang et al. Light‐emitting devices for wearable flexible displays
Oh et al. Electroluminescence of polymer blends composed of a PVK and a copolymer containing SiPh-PPV and MEH-PPV unit
Yang et al. Poly (1, 4‐phenylene‐1, 2‐diphenylvinylene) and tris (8‐quinolinolato) aluminum bilayer light‐emitting diodes
CN1431854A (en) Organic electroluminescence component with fluorine-containing inorganic layer
JP2006236801A (en) Light emitting device manufacturing method, light emitting device

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1050268

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041229

Termination date: 20140718

EXPY Termination of patent right or utility model