CN1326549A - 基于无源流体动力学的流体管路元件 - Google Patents
基于无源流体动力学的流体管路元件 Download PDFInfo
- Publication number
- CN1326549A CN1326549A CN99812094A CN99812094A CN1326549A CN 1326549 A CN1326549 A CN 1326549A CN 99812094 A CN99812094 A CN 99812094A CN 99812094 A CN99812094 A CN 99812094A CN 1326549 A CN1326549 A CN 1326549A
- Authority
- CN
- China
- Prior art keywords
- fluid
- stopper
- microchannel
- fluid circuit
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/14—Stream-interaction devices; Momentum-exchange devices, e.g. operating by exchange between two orthogonal fluid jets ; Proportional amplifiers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
- B01F25/4321—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
- B01F25/43211—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones using a simple by-pass for separating and recombining the flow, e.g. by using branches of different length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7172—Feed mechanisms characterised by the means for feeding the components to the mixer using capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/14—Stream-interaction devices; Momentum-exchange devices, e.g. operating by exchange between two orthogonal fluid jets ; Proportional amplifiers
- F15C1/146—Stream-interaction devices; Momentum-exchange devices, e.g. operating by exchange between two orthogonal fluid jets ; Proportional amplifiers multiple arrangements thereof, forming counting circuits, sliding registers, integration circuits or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/23—Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/715—Feeding the components in several steps, e.g. successive steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/025—Align devices or objects to ensure defined positions relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0621—Control of the sequence of chambers filled or emptied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0684—Venting, avoiding backpressure, avoid gas bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0874—Three dimensional network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/161—Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
- B01L2300/165—Specific details about hydrophobic, oleophobic surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0694—Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502746—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/04—Coatings; Surface treatments hydrophobic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00237—Handling microquantities of analyte, e.g. microvalves, capillary networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00356—Holding samples at elevated temperature (incubation)
- G01N2035/00366—Several different temperatures used
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00534—Mixing by a special element, e.g. stirrer
- G01N2035/00544—Mixing by a special element, e.g. stirrer using fluid flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S366/00—Agitating
- Y10S366/03—Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2076—Utilizing diverse fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2224—Structure of body of device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2267—Device including passages having V over gamma configuration
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Multiple-Way Valves (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
本发明涉及通过在微通道中使用无源阀或截止装置控制微通道中流体流动的方法。无源阀作为压力势垒,阻止溶液流动通过截止装置直到积累起足够的力克服压力势垒的力。很好地使用这种作为无源阀的截止装置可以调节流体通过微通道的流动,以使流体通过单独通道引入后混合或稀释或分配到多个通道中而不需要单独的移液。可以调节通过多个通道的流动以使流体在流出任一个子井或室之前全部充满一系列子井或室。以此方式充满子井或室可以使所有的井或室一致地经受反应。本发明还涉及使用空气排出管以防止空气陷在微通道中。
Description
流体在微通道内流动在很多技术中有重要意义。例如,在分子生物学领域,在包含微加工流动通道的芯片中进行聚合酶链式反应(PCR)(美国专利5498392;5587128;5726026)。在电子学领域,热喷墨打印机使用具有微通道的打印头,墨水在其中的流动必须得到很好地控制(美国专利5119116)。恰当地控制微通道内的流体是具有挑战性的,因为微观尺寸产生宏观范围内没有遇到过的困难。
上述文献和这里使用的其它材料是为了说明本发明的背景或提供与实际相关的其它细节,在这里均作为参考文献,方便起见,组成一组分别列于所附的参考文献表中。
表面效应描述了微观范围内表面的特性。物质通常有未键合的电子、外露的极性分子、或其它分子水平的特征,这将产生表面的电荷或反应特性。由于缩放,这些表面效应或表面力在微观结构上比在常规体积的设备中更加显著。在微观流体处理系统更是如此,其中流体运动的动力学由外部压力和流体与其流过的材料之间的引力控制。由于这些表面力的存在,此原理可用于制作有独特功能的结构。
本发明涉及微流体管路中流体的无源控制。利用微观领域内存在的自然力可达到无源控制,特别是毛细管力,它是由流体与特定材料之间的吸引或排斥产生的。目的是为了截止沿管路中某一通道流体的流动,直到产生足够的压力以推动流体通过截止装置,或直到去除截止装置本身或其作用可以忽略。由截止装置产生的压力能在某些创新的方面用于在管路中移动流体,或把流体保持在某一特定位置。
通常用方程h=2σglcos(θc)/grρ描述毛细管作用,其中h为与毛细管外部流体表面相比毛细管中流体的高度(或深度)。θc是流体与毛细管材料之间的接触角,它控制毛细管中的流体与其外部流体的表面相比是高还是低。如果毛细管材料与流体之间的接触角小于90°,则材料是亲水性的(喜水的)。如果毛细管材料与流体之间的接触角大于90°,则材料是疏水性的(憎水的)。σgl代表流体与环境(通常是空气)间的表面张力(mJ/m2),g是万有引力常数(m/s2),r是毛细管的半径(m),ρ是流体的密度(kg/m3)。
图1A-C表示了亲水性和疏水性的概念。图1A表示θc。σgs是气体和固体间的表面张力,σsl是固体和流体间的表面张力,σgl是气体和流体间的表面张力,σgs=σsl+σglcos(θc)。20℃左右水与不同材料的θc(角度以度为单位)列于表1中。图1B表示亲水性管,如玻璃,把水吸入管中。图1C与图1B相似但表示使用疏水性管(如Teflon)把水向管外推。
表1某些材料的θc
材料 | θc |
玻璃 | 0 |
乙缩醛 | 60 |
聚苯乙烯 | 84 |
HDPE(高密度聚乙烯) | 87.1 |
PVDF(聚偏二氟乙烯) | 94.8 |
PTFE(聚四氟乙烯) | 104 |
FEP(氟化乙丙烯) | 111 |
毛细管作用方程中的ρgh项,有时称作是流体的压力头P(Pa)。引入P后,毛细管作用方程可改写为P=2σglcos(θc)/r。为了使截止装置起作用,σgl、θc、r或三者的任意组合需要从截止装置的一侧到另一侧发生改变。这将产生压力势垒,导致流体运动停止直到压力势垒被克服或去除。例如,如果为了产生截止装置而改变通道的半径,则推动流体通过截止装置所需压力的方程为ΔP=2σglcos(θc)(1/r1-1/r2),其中r1是截止装置之前通道的半径,r2是截止装置之后通道的半径。此方程是对目前所用物理系统的简化。实际的模型应考虑实际通道的几何形状和其它物理/化学特性。
图1D表示通道半径的变化。半径a的通道突然变为小半径b的通道,半径b的通道又突然变为半径a的大通道。如果材料是亲水性的,则在通道半径尺寸增大的地方形成截止装置。在这种情况下,r1应记为b,r2应记为a。这使得ΔP的值为正,因为0到90度之间的角度(材料的接触角)余弦为正。正的ΔP产生压力势垒。如果材料是疏水性的,通道尺寸减小的地方形成截止装置。在这种情况下,r1应记为a,r2应记为b。由于接触角大于90度,其余弦值为负。负的余弦值乘以负数项(1/r1-1/r2),得到正的ΔP,获得压力势垒。
如果改变材料的接触角,例如亲水性通道有疏水性的区域,这也能形成截止装置。这种情况可以用方程ΔP=2σgl[cos(θc1)-cos(θc2)]/r描述,其中θc1是截止装置之前材料(亲水性)的接触角,θc2是截止装置之后材料(疏水性)的接触角。θc2的余弦为负,得到正的ΔP,成为压力势垒。
流过微流体管路的流体的表面张力变化,例如在通道壁上衬上可吸收的盐或表面活性剂,也能产生截止装置。描述这种压力势垒的方程为ΔP=2cos(θc)(σgl1-σgl2)/r,其中σgl1是截止装置之前流体的表面张力,σgl2是截止装置之后流体的表面张力。在疏水性材料中,为了获得压力势垒,越过截止装置需要增大表面张力。
本发明涉及采用上一段中所述的截止装置对微流体通道内流体进行无源控制。更具体地说,截止装置来自于减小流动通道的半径或流动区的截面积,流动通道为疏水性材料,内有水基的或极化的流体,或者涂有疏水性薄膜的材料。本发明还涉及控制亲水性材料中非极化流体或者是涂有亲水性薄膜的材料。具有这些特性的短通道变窄或限制可作为无源阀。
通过在微通道中使用限制或变窄作为阀,多种通道材料的组合和流体的组合可以用于达到所需的控制流体流动的作用。下面是这些有用组合的一些实例:
(A)PTFE(Teflon或聚四氟乙烯)、FEP(氟化乙丙烯)、PFA(全氟代烷氧基链烷烃)或PVDF(聚偏二氟乙烯)作通道材料;极化溶液如水、盐或缓冲溶液,其中没有大量的表面活性剂,所含的百分数是已知的或者对于领域内一般技术人员是容易确定的。
(B)金属、玻璃、PMMA(聚甲基丙烯酸甲酯)、聚碳酸酯、尼龙6/12或PVC(聚氯乙烯)作通道材料;非极化溶液,如己烷、庚烷、甲苯或苯。
(C)PTFE、FEP、PFA或PVDF作通道材料并涂覆亲水性涂层,如ElastophilicTM;非极化溶液,如上述(B)中提到的。
(D)金属、玻璃、PMMA、聚碳酸酯、尼龙6/12或PVC作通道材料并涂覆疏水性涂层,如TeflonAF;极化溶液,如上述(A)中提到的。
阀门作用依靠的是,流体驱动流动需要额外的压力、功或能量以使它通过截止装置,并且优先选择阻力小的通道或一起截止直到积累到足够的压力以迫使流体通过截止装置。驱动流动定义为流体的前进流,此流体具有运动的、溶液和空气或其它气体间的界面。界面处定义为弯月面。驱动流动的另一个特性是,在前进的弯月面的前面或下游的流动室的表面不能被流动的流体在很大程度上润湿。另一方面,所建立的流动位于没有运动的弯月面处以及流动通道的所有表面被很好地润湿的地方。
本发明的范围是使用多种截止装置,设计的这些截止装置是用于控制流体通道网络中流体的流动。更具体地说,本发明涉及使用短限制,或流体通道变窄,其设计是为控制疏水性流体通道网络中流体的流动。限制的狭窄程度和长度,取决于所需流体控制的类型和范围。但一般地,只有短限制是所需的,从而一旦通道中建立起流动,限制本身不会明显影响通道中建立起的流动。
本发明涉及控制流体通过微通道流动的装置,以流体混合或稀释并且/或者把一种流体或多种流体分配到几个通道中用于多种处理。本发明还涉及合并或混合几种样品或通道变成数目较少的样品或通道的多种装置,以及空气逸出通道和截止装置以满足复杂的流体处理。流体通过微通道的流动主要由故意设置在通道中的限制或变窄控制,例如通过微加工技术。这些限制或变窄作为阀。不象那些需要运动零件的阀一样,限制或变窄可以是静止的,并且它们的功能不取决于它们的运动。流体通过微通道的流动也能通过改变接触角或表面张力加以控制,如通过引入盐膜或表面活性剂,或者通过在其它亲水性通道中使用疏水性片。
图1A-D表示亲水性和疏水性的概念。图1A示出了σ(表示张力)和θc(流体弯月面和通道壁之间的接触角)。图1B示出了当亲水性管把水吸入时形成的弯月面。图1C表示当疏水性管把水往管外推出时形成的弯月面。图1D表示把通道变窄,用于在亲水性或疏水性材料中无源地控制流体。
图2A-J表示用连接在一起的旁路系统把两种流体混合的方法。在通道的点a和b有截止装置用于控制流体的流动。两种流体通过公共通道连续地进入并随后在点b混合。图2E-J表示截止装置的结构和流体在截止装置的位置,截止装置是疏水限制、亲水限制、疏水补片或盐补片。
图3A-G表示把流体分流到一系列子通道的方法。在流体流出所有子井或室之前,所有子井或室的填充由截止装置在每个井或室的远端进行控制。图3E-G表示截止装置的不同结构,根据所使用的类型选择。
图4A-G表示陷于一系列疏水性微通道内的空气或气体的存在,以及使空气或气体逸出而阻止流体流出的出口。图4E-G表示另一种截止装置,它能在液体通道不是疏水性的情况下使空气逸出。
图5A-D表示把流体从多个室合并到一个室内的两流体、窄通道法。
图6表示把流体从多个室合并到一个室内的两流体、窄通道法,其中多个窄的连接通道把每个室的截止装置连接到合并室。
图7A-D表示使用与两个通道的每一个相连的空气逸出口的概念,其中每一个通道包括一个截止装置。
图8A-C表示使使空气、另一种气体或第二流体进入的孔,以迫使流体通过截止装置。
图9A-D表示物理移动法,其中压力作用到管路的柔性区域,从而使流体在管路中移动。
图10A-C表示三种合并管路的形式。
图11A-E表示截止装置和空气逸出口的结合,以使流体绕过流体管路的一个特殊部分。旁路区随后能被下游的截止装置充满,产生足够的反向压力以克服原始的截止装置,防止流入未充满区域。
本发明涉及在微通道中使用无源截止装置以控制流体流过微通道的方法。这里微通道是指直径从0.1-1000微米的通道。优点是利用流体与盛流体容器壁之间的表面效应。这些表面效应在微观起作用。截止装置设计用于流体在某些条件下的流动,从而控制流体。这些截止装置用作无源阀,因为它们无需运动即可调节流体流动。
表面力效应的一个例子是毛细管力。在不施加任何外部压力时当水吸入开口的玻璃毛细管中即证明了毛细管力或毛细管作用。这是由于水与玻璃表面之间的表面张力引起的,从而把水吸入毛细管中。毛细管越细,把水吸入管中的力的作用越大。表征毛细管力大小的一个物理参数是水与玻璃之间的接触角。接触角小于90°,材料,如玻璃,是亲水性的,水就可吸入管中。当材料的接触角大于90°,材料是疏水性的。在疏水性情况下,需要额外的压力把水压入开口管中。管越细,需要的力越大。但是,在这两种情况下,一旦水进入管中,水的流动速率较大程度地取决于压力梯度和摩擦,而与材料是亲水性的还是疏水性的关系较小。
截止装置的产生是按照产生压力势垒的方法通过改变微通道的特性实现的。压力势垒是通过突然改变流体通过微通道时受的毛细管力产生的。毛细管力的突然改变是通过改变流体流过的微通道直径、改变微通道材料的接触角、改变流体的表面张力或联合使用以上方法实现的。
在疏水性材料中,可以通过减小流动通道的直径产生压力势垒。这种限制(变窄)应足够大,以使流体流入另外的直径大于限制装置的通道。通道的变窄能通过不同的装置起作用。例如,另外的直径固定的通道在一个或多个点具有突起或脊,使那些点处变窄。另外可供选择的是,具有某一直径的通道突然变窄成为直径较小的通道,即宽通道变窄成宽度较小的通道。产生的压力势垒的大小与限制的狭窄度和限制前的通道狭窄度之比成正比。一旦流体流过限制时,短的限制对流体流动产生的作用最小。优选的限制长度为1-1000μm,更优选的长度为5-500μm,最优选的长度为10-300μm。
在亲水性材料中,利用通道的限制产生压力势垒的方法与上述用于疏水性材料的相似。但是,在此情况下,由于毛细管力对流体的保持作用,流体不易流出限制。产生的压力势垒的大小与限制的狭窄度和限制后的通道狭窄度之比成正比。一旦流体流过限制时,短的限制对流体流动产生的作用最小。
并且,在亲水性材料中,可通过改变流动通道的接触角产生压力势垒。例如,微加工技术可将具有各种接触角范围的不同材料精确地形成薄膜。产生的压力势垒的大小与制成截止装置的材料的接触角的余弦差成正比。
也可通过改变微通道内流体的表面张力产生截止装置。这也是通过微加工技术实现的,即把能被流体吸收的各种盐或表面活性剂沉积成薄膜。产生的压力势垒的大小与截止装置两侧流体的表面张力差成正比。
使用无源流体动力学控制微通道或具有微通道设备中流体的流动是具有优势的。例如,两个子通道把一个主通道分支,一个通道中的截止装置使流体流入没有截止装置的通道。但是,一旦流体被推过截止装置,截止装置,如果设计恰当,对通道内建立起的流动产生的作用可以忽略。在这种情况下截止装置作为无源阀。
可以在很多技术中使用微通道,例如,把一个样品分在多个室中或分成多个样口或把多个组合或混合在一起。微通道可以根据需要设计成多种结构。下面的实施例表示了一些非常有用的设计。实施例1:在微通道中使用无源阀混合样品
图2A-J表示在微通道中使用截止装置调节流过通道的流体。在图2A中,主通道中的流体遇到截止装置a,使流体转向流入通道2。图2B中,通道2的流体遇到压力势垒大于截止装置a的截止装置b,结果流体流动被截止装置a截止并迫使流体通过截止装置a进入通道1。图2C表示流体到达截止装置b时通道1中的流体。截止装置b的所有侧面均被润湿。已在截止装置b形成的弯月面消失,从而使流体自由通过截止装置b。图2D中,通道1和2中的流体不受阻碍地流动。图2A-J所示的实施例表示了通过一个单独微通道进入一套微通道后两流体的混合。此实施例表示第一流体首先进入主通道。精确测量数量的此第一流体被引入主通道。第一流体引入后,在第一流体之后把第二流体引入主通道。此第二流体迫使第一流体沿主通道一直到达截止装置a。第一流体被此截止装置迫使进入通道2。一旦通道2被充满,第一流体到达截止装置b,由于截止装置b的压力势垒大于截止装置a,流体不能通过通道2。主通道中流体的力接着迫使第二流体通过截止装置a(此实施例中所有第一流体都进入通道2)。当第二流体到达截止装置b时,由于截止装置b所有侧面被润湿,克服了其压力势垒并且去除了在此处原有的弯月面。根据各自的阻抗流体在此点通过通道1和2,并且通道2中的第一流体与通道1中的第一流体混合,此混合发生在截止装置b后的通道1中。
图2E表示当截止装置a是疏水性限制时被截止的流体的几何形状和位置。图2F表示当截止装置b是疏水性限制时被截止的流体的几何形状和位置。图2G表示当截止装置a是亲水性限制时被截止的流体的几何形状和位置。图2H表示当截止装置b是亲水性限制时被截止的流体的几何形状和位置。图2I表示当截止装置a是疏水性片或盐膜时被截止的流体的几何形状和位置。图2J表示当截止装置b是疏水性片或盐膜时被截止的流体的几何形状和位置,其中疏水性片的接触角比截止装置a的大,或者盐膜在流体中产生的表面张力比截止装置a的大。
如图2A-J所示的混合流体的实施例是非常简单的类型。更复杂的类型中使用了更多的通道用于把两种以上的流体混合在一起,或者在一个时间点混合两种流体而其它的流体在以后的时间点混合,例如,在较远的下游使用与通道2相似的另外的支路。把流体引入主通道的方法有多种,主通道可以开一个单独的孔注入流体或者开多个孔注入流体。注入流体的体积与通道的体积相配,以精确地充满通道并完全地混合流体。实施例2:用一种流体充满多个通道或室
另一个使用无源阀的实施例是在并联的、流过一系列并联井或室的子通道网络中。此情况下的目标是把流体或样品均匀地分配在所有的通道中,同时充满所有的井或室,流入井或室中的流体保留在井或室中而不继续流入井或室的出口通道直到所需之时。一旦需要流体继续流动,就希望流体等同地沿流体管路向下游流动,如果存在另一套井或室则等同地流入其中。由于无源流体的动力学原因,这一过程是自动进行的。当主通道中的流体流向并联的子通道和井或室时,通道壁的缺陷将使一个通道到另一个通道的流动增大。在流体充满与其等同的井或室之前,流体将到达流动增大的通道并充满井或室。在流体继续向下流入流体管路之前,位于分支子通道中关键点处的截止装置将使流体充满分支通道并到达和截止在截止装置的每个子截止装置处。每个子截止装置应产生比上一级截止装置高的压力势垒,以保证流体没有首先到达所有支路上的子截止装置之前不通过此支路上的截止装置。为了保证每个井或室充满的程度相同,设计井或室时在其出口处设置截止装置。因为流体充满井或室以流过截止装置需要较大的压力,所产生的增大的压力将推动流体在剩余的通道中流动,从而使它们能克服任何小的通道壁缺陷并到达已在井或室中的流体。因此,截止装置作为无源阀并且可以把单一通道中的流体均匀地分配到几个子通道中。也可以使主通道的特定样品均匀地分配在通道网络中。截止装置的相关结构取决于材料、流体和压力,此压力是推动流体通过任何缺陷并进入所有通道、井或室所需的。
图3A-G表示了微通道中缺陷的影响,并示出了使用截止装置克服由缺陷引起的问题。图中还示出了主通道中的样品是如何在多个子通道中均匀分配的。在图3A中,一个支路中的流体受的摩擦小,比其它支路中的流体流得远,但在第一级子截止装置处被截止。图3B表示当一套支路中的流体到达第二子截止装置时流体和样品的分配。图3C表示在井或室的出口处的截止装置使流体充满所有的室,由这些截止装置产生的后压力使所有支路中的流体流过任何前级的截止装置并等同地充满这些室。图3D表示一旦所有井或室充满并且在这些井或室中所需的处理完成后,把井或室中的流体通过出口通道压出,并沿流体管路向下游流动,直到遇到下一级子截止装置。图3A-D中,黑色的流体是样品,浅色的流体是系统流体。在每一个图底部的标记代表各级子截止装置的位置。图3E表示当截止装置是疏水性限制时被截止的流体的几何形状和位置。图3F表示当截止装置是亲水性限制时被截止的流体的几何形状和位置。图3G表示当截止装置是疏水性片或盐膜时被截止的流体的几何形状和位置。
对于领域内一般技术人员来说,很明显,图3A-G中示出的仪器中的井或室的个数没有局限于8个,而可以有更多数量的井或室。并且,所有井或室的尺寸不必是相同的。这使得以非常简单的方式即可把在a点注入的一种样品分配到很多独立的井或室中。而不必为每个井或室单独移液即可充满很多反应井或室。实施例3:在微流体管路中使用排气管
截止装置的另一个应用是空气逸出管。在疏水性材料中,使用窄通道作为截止装置需要相当大的压力以迫使流体进入极小的通道或管中(直径为几个微米数量级)。因为这个原因,水能容易地流过这样的管并继续在通道中向下游流动而不进入管中。另一方面,如果空气在流体在通道受到限制,它通过管中排出是没有困难的。这可以作为把可能陷于流体通道中的气泡排出的方法。通过使用限制并扩大通道可以用亲水性材料制作空气逸出管,相似的空气逸出管也可利用疏水性或盐片制作。
图4A表示流体沿两个通道向下流动并会合在一起。图4B表示下通道中的流体先于上通道的流体到达交叉处。在这样的情况下,气泡将陷在上通道的流体中并阻止此通道中流体的流动。图4C表示这种问题是如何通过附加的空气逸出管克服的。在此图中用长的窄通道代表排气管,也可能表示疏水性材料的截止装置。图4D表示两个通道中的流体在一个通道在混合并继续沿流体管路流动。图4E表示当截止装置是疏水性限制而不是疏水性长的窄通道时被截止流体的几何形状和位置。图4F表示当截止装置是亲水性限制时被截止流体的几何形状和位置。图4G表示当截止装置是疏水性片或盐膜时被截止流体的几何形状和位置。
空气逸出管的另一个应用是当流体充满管路时使空气逸出流体管路。这通常是通过在流体管路的末端设置空气逸出管实现的,这可使空气逸出封闭的系统。空气逸出管的这种应用示于图5A-D、图6、图8A-C和图10A-C,这将在下面的实施例中详细地描述。
实施例4:流体的合并
合并是两个或两个以上的通道或井联接成数目较少的通道或井。一个实例是当4个独立的核酸排序反应后,想把这4个反应混合到一个井中以送到凝胶或其它分析仪器中。在此实施例中给出了4个略有不同的合并方法。A)两流体窄通道法
这种方法使用两种流体,其中一种粘度较大,用于推动粘度较小的流体通过微通道进入室或井,以把多室或井的粘度较小的流体合并成数目较少的室或井。图5A-D表示了这种方法。
待合并的通道或井充满流体,包括截止装置的通道或井的出口用于容纳流体管路中此点处的流体。在上游的某些点处存在第二流体,其粘度大于第一流体。用窄通道把截止装置的通道或井连接到接合点。第一流体截止于截止装置(图5A)。当第二粘度流体向下流入通道,它推动第一流体通过截止装置进入窄通道,并进入接合点或合并室(图5B)。当第二流体到达截止装置,由于产生了流体的弯月面,它没有截止。但是,推动粘度较大的溶液通过窄通道所需的压力却被用于推动相邻通道内的第一流体进入接合点(图5C)。重复这个过程直到所有的井或通道排空第一流体,输送过程结束(图5D)。图3E-G表示当通道或井的出口处截止装置分别是疏水性限制、亲水性限制或疏水性片或盐膜时,被截止流体可能的几何形状和位置。如果材料是疏水性的,则仅需要长的窄通道,而不必同时需要限制和长的窄通道。在合并室使用空气逸出管与实施例3和图4E-G所述的相似。
由于狭窄的连接通道非常小,它们被小颗粒阻塞的机率很高。为减少这种风险,可以制作多余的通道,这示于图6中。这有助于保证开口通道存在的可能性以使合并彻底。B)把通道与限制和空气逸出口连接的方法
使用空气逸出口使一般情况下会被陷住的气泡能够逸出的概念已在上面的实施例3讨论过了。这里给出的一个变化是合并的方法,其中使用了截止装置(见图7A-D)。图7A表示分别进入一个通道的两流体,每个通道在两通道左连接处变成一个单独通道的地方有一个截止装置。这使两通道中的流体都到达通道的连接点(图7C)。两个原始通道的每一个都有空气出口,以保证每个通道内都没有陷住空气,都能使流体到达连接区域。一旦一种流体通过其截止装置,它就会润湿相邻通道截止装置的其它表面,去除其弯月,这使两流体流入合并通道并混合在一起(图7D)。在截止装置中流体的结构和位置以及空气逸出管示于图2E-J和4E-G。C)空气移动的方法
其它的合并方法需使用第三方向上的开口,例如上方或下方。开口位于截止装置与流体通道的连接点处,这样,在正常的工作压力下,流体不会流入其中。由于使用截止装置,流体流入井或通道并截止在一个已知位置(图8A,截止位置位于4个原始井的每一个的右边,每个井与排出通道之间)。空气或其它气体通过开口进入流体通道(在图8A-C中位于4个原始井左侧的孔)。空气把流体移向下游通过截止装置(图8B),在此情况下,流入合并井(图8C),合并井中的空气逸出管使进入的空气排出系统,因此流体能充满合并井。第二流体,而不是空气,也可以通过开口进入并用于把井内的流体移到合并室。D)物理移动方法
这种方法也需要第三方向。在这种情况下,流体管路的一部分优选的是顶部或底部,位于物理移动出现点处,被制成柔性的。顶板或底板有开口,能使移动装置压缩柔性流体管路,以推动流体移向下游。这种移动装置可以是流体如水,气体如空气,或柱塞之类的装置。这表示于图9A-D中。图9A表示的是空管路。图9B表示的管路部分充满了流体。井的底部由柔性材料制成。在此实施例中,移动装置(水)在充满流体的最后的井的下部引入。水压缩井的底部(图9C),迫使流体从井流入相邻的空井中(图9D)。此移动装置可以用于别的地方并且不必直接用在最后的充满的井。实施例5:修改的两流体窄通道合并法
对上述示于图5A-D中、实施例4的A部分所述的方法进行了修改可产生改进的结果。两种修改示于图10B-C中,而图10A示出原始的设计用于对比。图10B所示的设计在4个井的每一个的上游都有截止装置。这些截止装置可以使样品均匀地分配到每一个通向4个井的通道支路中。尽管图5A或10A中没有示出,通向井的4个通道是从一个单独的源分支出来的,或者可以是来自于4个不同的源。
实践中,图10B的设计不能很好地工作。这是由于疏水性或亲水性限制作为喷嘴推动第二粘度较大的流体进入第一流体,引起不想要的混合。这产生了不是最佳状态的合并,并且在图10B右边的大的合并井中发现了相当数量的第二溶液。尽管作为混合方法这是有用的,但这种情况下的结果不是所需的结果。
图10C表示修改的合并设计,去掉了在图10B所示的设计中看到的不想要的混合。进入通道放在井的侧面,并且井的形状有些像保龄球的样式,即一个球形或部分明显大于其它部分,并且接合两部分的通道没有必要是窄的和尖的。这使第二流体在与大的第二部分中的第一流体相互作用之前减慢速度并在小的第一部分中稳定。如果第一和第二部分之间的过渡是光滑的和逐渐过渡的,第二流体(如果恰当选择)将与它自己相互作用,并且当第二流体充满井并推动第一流体通过窄通道进入合并井时能清楚地区分第一和第二流体。实施例6:临时绕过流体管路的一部分
实施例1表示用截止装置把流体从一个通道转向到微流体管路的支路上。实施例3表示使用空气逸出管使正常陷住的空气逸出通道并使流体流过通道,并最终在合并通道中混合流体。利用这些技术,使用把流体转向到不同通道中的截止装置,能临时绕过流体管路的一部分。下游的截止装置能用于克服原始截止装置的压力势垒,并且空气逸出管能使流体流过所绕过的部分,能把流体管路从其被切断处再接合起来。
图11A-E表示这种技术。在图11A中,流体沿主通道流动并遇到截止装置a把流体转向到侧通道中。当侧通道与主通道再接合时,能防止侧通道进入主通道的绕过区域,因为第二截止装置b把流体再转向到主通道中。在下游的一些点处,比原始截止装置a有较大压力势垒的截止装置导致流体流过截止装置a。位于截止装置b上游侧的空气逸出管使流体流过主通道。当它到达截止装置b,弯月面消失并且去除了截止装置b的压力势垒。取决于各自的阻抗,流体能流过主通道和侧通道。截止装置b的压力势垒大于截止装置a的压力势垒是重要的,以保证流体在流过截止装置a之前不能流过截止装置b。图11B表示了相似的情况,不同之处在于,由于截止装置a和b,主通道中的流体不能进入侧通道中。图11C表示流体管路中最初绕过的或最初注入的室或井,这取决于截止装置和空气逸出管的位置。图11D表示位于两通道接合点处的室,其中室的一个入口是从主通道绕过的分支。图11E表示了主通道,它包括室和一系列包含室和被绕过的次要通道。所有这些都含有截止装置以防止它们注入,以及空气逸出管以使它们最终注满。次要通道上游位置的截止装置的设计要能按流体管路正常工作所需的顺序克服它们的压力势垒,在此图中是从上到下。空气逸出管随后既可通往在还未注满的次要通道,也可以经沿过管路沿第三方向通往外部。
上述实施例表示了在一个单独通道中相互在旁边流动的两流体稀释或混合的方法,使支路通道分流流动的流体的方法,使空气逸出流体管路的方法,合并通道或样品的方法,临时绕过流体通道的方法,所有这些方法都利用基于流体毛细管力产生的压力势垒的无源流体动力学。
尽管参考本发明优选实施例的细节,在本发明申请中描述了本发明,但应当理解的是,其中所包含的内容是为了解释而不具有限制的意图,因为可以想到,对领域内一般技术人员,各种修改很容易实现,但都在本发明的精神和所附权利要求的范围内。
参考文献表
美国专利4946795
美国专利5119116
美国专利5498392
美国专利5587128
美国专利5627041
美国专利5726026
Claims (52)
1.一种流体管路,包括多个相连的微通道,其特征在于无源截止装置存在于一个或多个所述的微通道中,导致在所述流体管路流动的流体优先流入与所述截止装置上游连接的相邻微通道中而不是流过所述的截止装置。
2.如权利要求1所述的流体管路,其特征在于在足够大力的作用下能克服所述截止装置。
3.如权利要求1所述的流体管路,其特征在于,通过润湿所述截止装置的两侧能克服所述截止装置。
4.如权利要求1所述的流体管路,其特征在于,所述截止装置从以下的组中选取,此组包括疏水性限制装置、亲水性限制装置、疏水性片装置和表面张力片装置。
5.如权利要求4所述的流体管路,包括所述组中的两个或多个不同组元。
6.如权利要求4所述的流体管路,其特征在于,所述截止装置是疏水性限制装置。
7.如权利要求4所述的流体管路,其特征在于,所述流体与所述截止装置表面之间的表面张力大于所述微通道中气体与所述截止装置表面之间的表面张力。
8.如权利要求4所述的流体管路,其特征在于所述截止装置的长度在1~1000μm的范围内。
9.如权利要求4所述的流体管路,其特征在于所述截止装置的长度在5~500μm的范围内。
10.如权利要求4所述的流体管路,其特征在于所述截止装置的长度在10~300μm的范围内。
11.如权利要求1所述的流体管路,其特征在于所述截止装置具有不同的强度。
12.如权利要求1所述的流体管路,其特征在于所述微通道中至少一个在第一点分支进入邻近的微通道,邻近的微通道在第二点与所述微通道的所述一个再接合;并且其特征在于所述邻近微通道包括在所述第二点紧靠上游处的第二截止装置。
13.如权利要求1所述的流体管路,其特征在于所述微通道形成树状或零散的分支。
14.如权利要求1所述的流体管路,其特征在于所述管路包括多个井或室。
15.如权利要求14所述的流体管路,其特征在于所述多个井或室通过微通道连接到公共的合并井或室。
16.如权利要求15所述的流体管路,还包括一个或多个空气出口。
17.如权利要求15所述的流体管路,其特征在于通过多个微通道所述多个井或室中的一个或多个的每一个都与所述公共合并井或室连接。
18.如权利要求14所述的流体管路,其特征在于所述井或室的至少一部分是柔性的。
19.如权利要求14所述的流体管路,其特征在于所述井包括第一部分和第二部分,其特征在于所述第一部分小于所述第二部分,并且其特征在于所述微通道连接到所述井的每一个的所述第一部分,以及其特征在于所述第一部分连接到所述第二部分,其特征在于所述第一部分和所述第二部分在边界处连接,其特征在于所述边界在所述第一部分和所述第二部分之间形成狭窄。
20.如权利要求14所述的流体管路,可用于合并或混合两个微通道的流体,其特征在于所述流体管路包括两个微通道在交叉处相连形成一个公共的微通道,其特征在于所述微通道的一个或多个包括在所述交叉处上游的截止装置。
21.如权利要求20所述的流体管路,其特征在于所述的两个微通道中的一个或两个包括在所述交叉处上游的出口。
22.如权利要求1所述的流体管路,还包括空气出口。
23.如权利要求22所述的流体管路,其特征在于所述空气出口是窄的通道或管。
24.如权利要求22所述的流体管路,其特征在于所述空气出口包括疏水性限制、疏水性片、表面张力片或亲水性限制。
25.如权利要求1所述的流体管路,工作在已知的压力下,包括多个微通道,其特征在于两个或多个微通道会聚于一点并且所述两个或多个会聚于一点的微通道中至少一个包括出口,其特征在于所述出口使气态物质从所述出口流出,但其特征在于所述出口阻止流体在所述压力下从所述出口流出。
26.如权利要求25所述的流体管路,其特征在于所述出口包括疏水性片、表面张力片、疏水性限制或亲水性限制。
27.如权利要求1所述的流体管路,还包括一个或多个开口,使气体进入所述流体管路。
28.如权利要求27所述的流体管路,其特征在于所述开口足够大以使气体通过所述开口但又足够小以阻止流体在特定的工作压力下从所述开口流出。
29.如权利要求1所述的流体管路,还包括一个或多个开口,使流体能够在压力下进入所述流体管路。
30.如权利要求1所述的流体管路,包括第一微通道和第二微通道,其特征在于所述第二微通道从所述第一微通道的第一截止装置的上游分支,并且在所述第一微通道内的第二截止装置的下游与所述第一微通道再接合,其特征还在于所述第二截止装置是比所述第一截止装置强的截止装置,所述流体管路还包括在所述第一截止装置和所述第二截止装置之间的出口。
31.如权利要求1所述的流体管路,包括第一微通道和第二微通道,其特征在于所述第二微通道从所述第一微通道的第一交叉处分支,并且与所述第一微通道在第二交叉处再接合,其特征还在于所述第二微通道包括在所述第一交叉处的第一截止装置和在所述第二交叉处的第二截止装置,其特征在于所述第二截止装置比所述第一截止装置强,所述流体管路还包括在所述第一截止装置和所述第二截止装置之间的出口。
32.如权利要求30所述的流体管路,其特征在于所述第一微通道包括在所述第一截止装置和所述第二截止装置之间的井或室。
33.如权利要求31所述的流体管路,其特征在于所述第一微通道包括在所述第一交叉处和所述第二交叉处之间的井或室。
34.如权利要求31所述的流体管路,其特征在于所述第一微通道包括在所述第二交叉处的井或室。
35.如权利要求1所述的流体管路,包括具有室的通道,其特征在于所述室包括次要通道,所述次要通道包括次要室。
36.如权利要求35所述的流体管路,其特征在于所述次要通道包括截止装置。
37.如权利要求36所述的流体管路,其特征在于每个所述截止装置的强度可以互不相同,从而规定了一个顺序,以充满每个次要室。
38.如权利要求35所述的流体管路,其特征在于所述一个或多个次要通道包括出口。
39.一种在流体管路中混合第一流体和第二流体的方法,所述方法包括以下步骤:
把所述第一流体引入所述流体管路的主微通道中,其特征在于所述第一流体是被迫使流入所述管路中已知体积的第一微通道中到达所述主微通道中的第一截止装置,并且其特征在于所述第一微通道包括比所述第一截止装置强的第二截止装置,其特征在于所述第一流体的数量等于所述第一微通道的体积,和
把所述第二流体引入所述流体管路的主微通道中,其特征在于所述第一流体是被迫使通过所述第一截止装置流入第二微通道,并且所述第一通道和所述第二微通道在所述第二截止装置处会聚于一点,在此点所述第一流体和所述第二流体将在连续流入所述第二流体的情况下混合或者应用一个力使所述第一流体和所述第二流体运动。
40.如权利要求39所述的方法,其特征在于所述流体管路包括出口。
41.把流体从一个通道分配到多个井、室或通道中的方法,其特征在于所述方法包括把所述流体从所述一个通道输送到能到达所述井、室或通道遥分支微通道中,并且其特征还在于所述微通道包括一个或多个截止装置。
42.如权利要求41所述的方法,其特征在于存在多套井、室或通道,其特征在于第一套井、室或通道中的每一个井、室或通道有截止装置,从而导致在所述流体运动到第二套井、室或通道之前充满所述第一套的所有井、室或通道。
43.如权利要求42所述的方法,其特征在于所述第二套井、室或通道包括截止装置,它比所述第二套井、室或通道的所述截止装置强。
44.如权利要求41所述的方法,其特征在于所述流体管路包括出口。
45.从多个井的流体合并到一个公共合并井中的方法,其特征在于所述方法包括:
把所述流体引入流体管路的微通道中;接着
通过把所述第二流体引入所述微通道中,迫使所述流体通过所述微通道并且进入所述流体管路的井,其特征在于所述第二流体比所述流体粘度大,并且其特征在于所述井连在比所述井窄的通道上,并且其特征还在于所述出口通道连在所述公共合并井、室或通道上,其特征还在于引入足够的第二流体以迫使所述流体流入所述公共合并井、室或通道。
46.如权利要求45所述的方法,其特征在于所述流体管路包括一个或多个出口。
47.如权利要求45所述的方法,其特征在于每个所述井连在多于一个的通道上。
48.一种推动流体流过如权利要求27所述的流体管路的方法,这是通过迫使气体流过所述一个或多个开口,从而所述气体推动流体流动通过所述流体管路实现的。
49.一种推动第一流体流过如权利要求29所述的流体管路的方法,这是通过迫使第二流体在压力下通过所述一个或多个开口,从而所述第二流体迫使所述第一流体流动通过所述流体管路实现的。
50.一种在如权利要求18所述的流体管路中物理移动流体的方法,这是通过在所述井或室的所述柔性部分施加力实现的。
51.一种临时绕过流体管路中的微通道的方法,这是通过把第一流体引入到如权利要求30所述的流体管路中直到所述第一流体到达第三截止装置,其特征在于所述第三截止装置比所述第二截止强,因此使用另外的第一流体、第二流体或力导致所述第一流体或第二流体进入所述微通道。
52.一种临时绕过流体管路中的微通道的方法,这是通过把第一流体引入到如权利要求31所述的流体管路中直到所述第一流体到达第三截止装置,其特征在于所述第三截止装置比所述第二截止装置强,因此使用另外的第一流体、第二流体或力导致所述第一流体或第二流体进入所述微通道。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10397098P | 1998-10-13 | 1998-10-13 | |
US60/103,970 | 1998-10-13 | ||
US13809299P | 1999-06-08 | 1999-06-08 | |
US60/138,092 | 1999-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1326549A true CN1326549A (zh) | 2001-12-12 |
Family
ID=26801047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN99812094A Pending CN1326549A (zh) | 1998-10-13 | 1999-10-13 | 基于无源流体动力学的流体管路元件 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6296020B1 (zh) |
EP (1) | EP1125129A1 (zh) |
JP (1) | JP2002527250A (zh) |
KR (1) | KR20010089295A (zh) |
CN (1) | CN1326549A (zh) |
AU (1) | AU763497B2 (zh) |
BR (1) | BR9914554A (zh) |
CA (1) | CA2347182C (zh) |
WO (1) | WO2000022436A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100531915C (zh) * | 2003-01-23 | 2009-08-26 | 伯林格-英格尔海姆显微部件股份公司 | 在时间间隔期间切断液流的微型液流开关 |
CN100560208C (zh) * | 2003-01-23 | 2009-11-18 | 伯林格-英格尔海姆显微部件股份公司 | 分配液体剂量的微型液流装置和方法以及具有该微型液流装置的试样支架 |
WO2010118637A1 (zh) * | 2009-04-14 | 2010-10-21 | Huang Yanyi | 微流分配装置、其制备方法及用途 |
CN1638871B (zh) * | 2002-02-26 | 2010-12-29 | 西门子医疗保健诊断公司 | 通过离心力和/或毛细力精确输送和操作流体的方法和装置 |
CN102298069A (zh) * | 2010-06-24 | 2011-12-28 | 洹艺科技股份有限公司 | 用于微型化流体输送及分析系统的一致性阀操作的阀结构 |
CN101632947B (zh) * | 2003-12-20 | 2012-08-08 | 伯林格-英格尔海姆显微部件股份公司 | 用于无气泡地填充至少一个用于排出液体的系统的微结构装置 |
CN103167910A (zh) * | 2010-10-29 | 2013-06-19 | 霍夫曼-拉罗奇有限公司 | 用于分析样品液的微流体元件 |
CN102123786B (zh) * | 2008-08-19 | 2014-06-25 | 拜奥默里克斯公司 | 混合移液管 |
CN101297200B (zh) * | 2005-10-28 | 2014-11-05 | 爱科来株式会社 | 送液方法及其所使用的液盒 |
CN105074426A (zh) * | 2012-11-19 | 2015-11-18 | 通用医疗公司 | 用于集成复用光度测定模块的系统和方法 |
CN105190280A (zh) * | 2013-03-14 | 2015-12-23 | 小利兰·斯坦福大学托管委员会 | 用于微流体装置分段装载的毛细屏障 |
CN105344389A (zh) * | 2008-05-16 | 2016-02-24 | 哈佛大学 | 微流体系统、方法和装置 |
CN105443450A (zh) * | 2010-09-14 | 2016-03-30 | 彭兴跃 | 一种微流路芯片系列微器件的结构 |
CN105813753A (zh) * | 2013-12-19 | 2016-07-27 | 通用电气健康护理生物科学股份公司 | 具有隔膜阀的分层微流体装置 |
CN107532131A (zh) * | 2015-04-03 | 2018-01-02 | 国立研究开发法人产业技术总合研究所 | 细胞培养装置及细胞培养方法 |
CN108698003A (zh) * | 2016-02-19 | 2018-10-23 | 精密公司 | 微流体混合装置和方法 |
US10415030B2 (en) | 2016-01-29 | 2019-09-17 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
CN110622007A (zh) * | 2017-06-19 | 2019-12-27 | 积水化学工业株式会社 | 微流体器件 |
CN112368573A (zh) * | 2018-07-06 | 2021-02-12 | Qorvo美国公司 | 用于试剂盒的流体通道 |
US11041150B2 (en) | 2017-08-02 | 2021-06-22 | Purigen Biosystems, Inc. | Systems, devices, and methods for isotachophoresis |
CN113877646A (zh) * | 2021-11-08 | 2022-01-04 | 北京乐普智慧医疗科技有限公司 | 一种微流控分配芯片 |
Families Citing this family (319)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19815882A1 (de) * | 1998-04-08 | 1999-10-14 | Fuhr Guenther | Verfahren und Vorrichtung zur Manipulierung von Mikropartikeln in Fluidströmungen |
GB9808836D0 (en) | 1998-04-27 | 1998-06-24 | Amersham Pharm Biotech Uk Ltd | Microfabricated apparatus for cell based assays |
GB9809943D0 (en) * | 1998-05-08 | 1998-07-08 | Amersham Pharm Biotech Ab | Microfluidic device |
US20040202579A1 (en) * | 1998-05-08 | 2004-10-14 | Anders Larsson | Microfluidic device |
US6591852B1 (en) | 1998-10-13 | 2003-07-15 | Biomicro Systems, Inc. | Fluid circuit components based upon passive fluid dynamics |
US6601613B2 (en) | 1998-10-13 | 2003-08-05 | Biomicro Systems, Inc. | Fluid circuit components based upon passive fluid dynamics |
US6637463B1 (en) * | 1998-10-13 | 2003-10-28 | Biomicro Systems, Inc. | Multi-channel microfluidic system design with balanced fluid flow distribution |
US6270641B1 (en) * | 1999-04-26 | 2001-08-07 | Sandia Corporation | Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems |
US6464666B1 (en) * | 1999-10-08 | 2002-10-15 | Augustine Medical, Inc. | Intravenous fluid warming cassette with stiffening member and integral handle |
US6743399B1 (en) | 1999-10-08 | 2004-06-01 | Micronics, Inc. | Pumpless microfluidics |
US6451264B1 (en) * | 2000-01-28 | 2002-09-17 | Roche Diagnostics Corporation | Fluid flow control in curved capillary channels |
AU2001249176A1 (en) | 2000-03-14 | 2001-09-24 | Micronics, Inc. | Microfluidic analysis cartridge |
JP2001281233A (ja) * | 2000-03-28 | 2001-10-10 | Inst Of Physical & Chemical Res | 水性分配用マイクロチップおよびそれを用いた水性分配方法 |
ATE380071T1 (de) * | 2000-04-03 | 2007-12-15 | Parabol Technologies S A | Vorrichtung zur abgabe von genau kontrollierten kleinen flüssigkeitsmengen |
US6561208B1 (en) | 2000-04-14 | 2003-05-13 | Nanostream, Inc. | Fluidic impedances in microfluidic system |
SE0001790D0 (sv) * | 2000-05-12 | 2000-05-12 | Aamic Ab | Hydrophobic barrier |
CA2408574A1 (en) * | 2000-05-24 | 2001-11-29 | Micronics, Inc. | Microfluidic concentration gradient loop |
US8329118B2 (en) * | 2004-09-02 | 2012-12-11 | Honeywell International Inc. | Method and apparatus for determining one or more operating parameters for a microfluidic circuit |
US20030118486A1 (en) * | 2000-07-03 | 2003-06-26 | Xeotron Corporation | Fluidic methods and devices for parallel chemical reactions |
EP1301268A2 (en) * | 2000-07-03 | 2003-04-16 | Xeotron Corporation | Devices and methods for carrying out chemical reactions using photogenerated reagents |
US6615856B2 (en) * | 2000-08-04 | 2003-09-09 | Biomicro Systems, Inc. | Remote valving for microfluidic flow control |
US6890093B2 (en) | 2000-08-07 | 2005-05-10 | Nanostream, Inc. | Multi-stream microfludic mixers |
EP1309404A2 (en) | 2000-08-07 | 2003-05-14 | Nanostream, Inc. | Fluidic mixer in microfluidic system |
DE10041823C2 (de) * | 2000-08-25 | 2002-12-19 | Inst Mikrotechnik Mainz Gmbh | Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide |
GB2366529A (en) * | 2000-09-11 | 2002-03-13 | Univ Sheffield | Fluidic control valve for an assembly containing a plurality of microreactors |
AU2002213423B2 (en) * | 2000-09-18 | 2007-09-06 | President And Fellows Of Harvard College | Method and apparatus for gradient generation |
DE10062246C1 (de) * | 2000-12-14 | 2002-05-29 | Advalytix Ag | Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen |
US20040099310A1 (en) * | 2001-01-05 | 2004-05-27 | Per Andersson | Microfluidic device |
WO2002075312A1 (en) | 2001-03-19 | 2002-09-26 | Gyros Ab | Characterization of reaction variables |
US7429354B2 (en) | 2001-03-19 | 2008-09-30 | Gyros Patent Ab | Structural units that define fluidic functions |
US7829025B2 (en) | 2001-03-28 | 2010-11-09 | Venture Lending & Leasing Iv, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US6418968B1 (en) | 2001-04-20 | 2002-07-16 | Nanostream, Inc. | Porous microfluidic valves |
EP1390624A1 (en) * | 2001-04-25 | 2004-02-25 | President And Fellows Of Harvard College | Fluidic switches and method for controlling flow in fluidic systems |
KR100552078B1 (ko) | 2001-05-31 | 2006-02-20 | 유재천 | 초소형 구슬을 이용한 미세 밸브 장치 및 그 제어 방법 |
JP4566456B2 (ja) * | 2001-05-31 | 2010-10-20 | 独立行政法人理化学研究所 | 微量液体制御機構および微量液体制御方法 |
US6919046B2 (en) * | 2001-06-07 | 2005-07-19 | Nanostream, Inc. | Microfluidic analytical devices and methods |
JP4792664B2 (ja) * | 2001-06-15 | 2011-10-12 | コニカミノルタホールディングス株式会社 | 混合方法、混合機構、該混合機構を備えたマイクロミキサーおよびマイクロチップ |
US7211442B2 (en) * | 2001-06-20 | 2007-05-01 | Cytonome, Inc. | Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system |
US20030015425A1 (en) * | 2001-06-20 | 2003-01-23 | Coventor Inc. | Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system |
US7179423B2 (en) * | 2001-06-20 | 2007-02-20 | Cytonome, Inc. | Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system |
US20020197733A1 (en) * | 2001-06-20 | 2002-12-26 | Coventor, Inc. | Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system |
US20020195343A1 (en) * | 2001-06-20 | 2002-12-26 | Coventor, Inc. | Microfabricated separation device employing a virtual wall for interfacing fluids |
US20030032198A1 (en) * | 2001-08-13 | 2003-02-13 | Symyx Technologies, Inc. | High throughput dispensing of fluids |
US6919058B2 (en) * | 2001-08-28 | 2005-07-19 | Gyros Ab | Retaining microfluidic microcavity and other microfluidic structures |
EP1304167B1 (en) * | 2001-10-18 | 2004-07-28 | Aida Engineering Ltd. | Micro-globule metering and sampling structure and microchips having the structure |
US7338760B2 (en) * | 2001-10-26 | 2008-03-04 | Ntu Ventures Private Limited | Sample preparation integrated chip |
US20030138819A1 (en) * | 2001-10-26 | 2003-07-24 | Haiqing Gong | Method for detecting disease |
US7247274B1 (en) * | 2001-11-13 | 2007-07-24 | Caliper Technologies Corp. | Prevention of precipitate blockage in microfluidic channels |
US6877892B2 (en) * | 2002-01-11 | 2005-04-12 | Nanostream, Inc. | Multi-stream microfluidic aperture mixers |
AU2003219829A1 (en) * | 2002-02-23 | 2003-09-09 | Nanostream, Inc. | Microfluidic multi-splitter |
US7419821B2 (en) * | 2002-03-05 | 2008-09-02 | I-Stat Corporation | Apparatus and methods for analyte measurement and immunoassay |
US7524462B2 (en) * | 2002-03-29 | 2009-04-28 | Agilent Technologies, Inc. | Capillary flow for a heterogenous assay in a micro-channel environment |
US7461671B2 (en) | 2002-04-09 | 2008-12-09 | Humboldt-Universitaet Zu Berlin | Automatic sample collector |
US8128889B2 (en) | 2002-04-30 | 2012-03-06 | Arkray, Inc. | Analyzing article, analyzer and method of analyzing a sample using the analyzing article, and a method of forming an opening in the analyzing article |
US6883957B2 (en) * | 2002-05-08 | 2005-04-26 | Cytonome, Inc. | On chip dilution system |
US7901939B2 (en) * | 2002-05-09 | 2011-03-08 | University Of Chicago | Method for performing crystallization and reactions in pressure-driven fluid plugs |
SE0201738D0 (sv) * | 2002-06-07 | 2002-06-07 | Aamic Ab | Micro-fluid structures |
US7214348B2 (en) * | 2002-07-26 | 2007-05-08 | Applera Corporation | Microfluidic size-exclusion devices, systems, and methods |
JP2005533651A (ja) * | 2002-07-26 | 2005-11-10 | アプレラ コーポレイション | 求心力による流体の移動を助長するミクロチャンネル設計特徴 |
US7041258B2 (en) * | 2002-07-26 | 2006-05-09 | Applera Corporation | Micro-channel design features that facilitate centripetal fluid transfer |
KR100471747B1 (ko) * | 2002-08-23 | 2005-03-16 | 재단법인서울대학교산학협력재단 | 구동에너지 절감을 위한 마이크로 채널구조체 |
US20040042930A1 (en) * | 2002-08-30 | 2004-03-04 | Clemens Charles E. | Reaction chamber with capillary lock for fluid positioning and retention |
TW590982B (en) * | 2002-09-27 | 2004-06-11 | Agnitio Science & Technology I | Micro-fluid driving device |
US7112443B2 (en) | 2002-10-18 | 2006-09-26 | Symyx Technologies, Inc. | High throughput permeability testing of materials libraries |
KR100444751B1 (ko) * | 2002-11-11 | 2004-08-16 | 한국전자통신연구원 | 표면장력에 의한 유체제어 소자 |
KR100471377B1 (ko) * | 2002-11-20 | 2005-03-11 | 한국전자통신연구원 | 표면장력으로 제어되는 미세유체소자 |
US7094354B2 (en) | 2002-12-19 | 2006-08-22 | Bayer Healthcare Llc | Method and apparatus for separation of particles in a microfluidic device |
US7125711B2 (en) | 2002-12-19 | 2006-10-24 | Bayer Healthcare Llc | Method and apparatus for splitting of specimens into multiple channels of a microfluidic device |
CA2784762A1 (en) | 2003-04-10 | 2004-10-28 | President And Fellows Of Harvard College | Formation and control of fluidic species |
US20060073074A1 (en) * | 2004-10-06 | 2006-04-06 | Lars Winther | Enhanced sample processing system and methods of biological slide processing |
FR2855076B1 (fr) * | 2003-05-21 | 2006-09-08 | Inst Curie | Dispositif microfluidique |
KR100509254B1 (ko) * | 2003-05-22 | 2005-08-23 | 한국전자통신연구원 | 미세 유체의 이송 시간을 제어할 수 있는 미세 유체 소자 |
US20050042770A1 (en) * | 2003-05-23 | 2005-02-24 | Gyros Ab | Fluidic functions based on non-wettable surfaces |
JP2007502218A (ja) * | 2003-05-23 | 2007-02-08 | ユィロス・パテント・アクチボラグ | 親水性/疎水性表面 |
US7435381B2 (en) | 2003-05-29 | 2008-10-14 | Siemens Healthcare Diagnostics Inc. | Packaging of microfluidic devices |
US7731906B2 (en) | 2003-07-31 | 2010-06-08 | Handylab, Inc. | Processing particle-containing samples |
US20050032238A1 (en) * | 2003-08-07 | 2005-02-10 | Nanostream, Inc. | Vented microfluidic separation devices and methods |
US7347617B2 (en) | 2003-08-19 | 2008-03-25 | Siemens Healthcare Diagnostics Inc. | Mixing in microfluidic devices |
BRPI0414004A (pt) | 2003-08-27 | 2006-10-24 | Harvard College | controle eletrÈnico de espécies fluìdicas |
TW200508144A (en) * | 2003-08-29 | 2005-03-01 | Jing-Tang Yang | A microvalve with micro surface structure design |
US7147362B2 (en) * | 2003-10-15 | 2006-12-12 | Agilent Technologies, Inc. | Method of mixing by intermittent centrifugal force |
EP1525916A1 (en) * | 2003-10-23 | 2005-04-27 | F. Hoffmann-La Roche Ag | Flow triggering device |
US20050113739A1 (en) * | 2003-11-21 | 2005-05-26 | Matthias Stiene | Device and method for extracting body fluid |
US20070105236A1 (en) * | 2003-11-29 | 2007-05-10 | Digital Bio Technology | Method of examining blood type and apparatus for examining blood type using the method |
KR100540143B1 (ko) | 2003-12-22 | 2006-01-10 | 한국전자통신연구원 | 미소 유체 제어소자 및 미소 유체의 제어 방법 |
US8030057B2 (en) * | 2004-01-26 | 2011-10-04 | President And Fellows Of Harvard College | Fluid delivery system and method |
PL1776181T3 (pl) | 2004-01-26 | 2014-03-31 | Harvard College | Układ i sposób doprowadzania płynów |
DE102004007567A1 (de) * | 2004-02-17 | 2005-09-01 | Boehringer Ingelheim Microparts Gmbh | Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Flüssigkeit |
US8101431B2 (en) | 2004-02-27 | 2012-01-24 | Board Of Regents, The University Of Texas System | Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems |
US8105849B2 (en) | 2004-02-27 | 2012-01-31 | Board Of Regents, The University Of Texas System | Integration of fluids and reagents into self-contained cartridges containing sensor elements |
US7588724B2 (en) | 2004-03-05 | 2009-09-15 | Bayer Healthcare Llc | Mechanical device for mixing a fluid sample with a treatment solution |
US20050220644A1 (en) * | 2004-03-31 | 2005-10-06 | Sebastian Bohm | Pneumatic actuator for bolus generation in a fluid handling circuit |
US7665303B2 (en) * | 2004-03-31 | 2010-02-23 | Lifescan Scotland, Ltd. | Method of segregating a bolus of fluid using a pneumatic actuator in a fluid handling circuit |
US20050217742A1 (en) * | 2004-03-31 | 2005-10-06 | Sebastian Bohm | Microfluidic circuit including an array of triggerable passive valves |
US7059352B2 (en) | 2004-03-31 | 2006-06-13 | Lifescan Scotland | Triggerable passive valve for use in controlling the flow of fluid |
US7156117B2 (en) | 2004-03-31 | 2007-01-02 | Lifescan Scotland Limited | Method of controlling the movement of fluid through a microfluidic circuit using an array of triggerable passive valves |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
CN1981186B (zh) * | 2004-05-04 | 2012-06-20 | 拜耳医药保健有限公司 | 用于流体分析仪的具有测试带流体控制特征的机械卡盒 |
US7887750B2 (en) | 2004-05-05 | 2011-02-15 | Bayer Healthcare Llc | Analytical systems, devices, and cartridges therefor |
US7758814B2 (en) * | 2004-06-05 | 2010-07-20 | Freeslate, Inc. | Microfluidic fluid distribution manifold for use with multi-channel reactor systems |
US20060002817A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Flow modulation devices |
US20060000709A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Methods for modulation of flow in a flow pathway |
US9477233B2 (en) | 2004-07-02 | 2016-10-25 | The University Of Chicago | Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets |
US7655470B2 (en) | 2004-10-29 | 2010-02-02 | University Of Chicago | Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems |
WO2006022487A1 (en) * | 2004-08-21 | 2006-03-02 | Lg Chem. Ltd. | Microfluidic device, and diagnostic and analytical apparatus using the same |
US7968287B2 (en) | 2004-10-08 | 2011-06-28 | Medical Research Council Harvard University | In vitro evolution in microfluidic systems |
WO2006044896A2 (en) * | 2004-10-18 | 2006-04-27 | Applera Corporation | Fluid processing device including composite material flow modulator |
EP1652911A1 (en) * | 2004-10-26 | 2006-05-03 | Konica Minolta Medical & Graphic, Inc. | Micro-reactor for biological substance inspection and biological substance inspection device |
JP2006142242A (ja) * | 2004-11-22 | 2006-06-08 | Olympus Corp | マイクロ液体制御デバイス |
JP4054798B2 (ja) * | 2004-11-29 | 2008-03-05 | キヤノン株式会社 | 流体搬送方法 |
KR100591244B1 (ko) | 2004-12-14 | 2006-06-20 | 한국전자통신연구원 | 유체주입구의 압력을 제어할 수 있는 미세 유체 소자 및이를 구비하는 미세 유로망 |
DE102004063438A1 (de) * | 2004-12-23 | 2006-07-06 | Oktavia Backes | Neuartige mikrofluidische Probenträger |
JP4535123B2 (ja) | 2005-01-06 | 2010-09-01 | 株式会社島津製作所 | ガス交換チップ、それを用いたガス抽出方法及び全有機体炭素測定装置 |
WO2006089252A2 (en) * | 2005-02-16 | 2006-08-24 | Mcneely Michael R | Liquid valving using reactive or responsive materials |
AU2006217719A1 (en) * | 2005-02-25 | 2006-08-31 | Alere Switzerland Gmbh | Fluidic gating device |
CN101184983A (zh) * | 2005-03-16 | 2008-05-21 | 雅拓晶科生物系统(私人)有限公司 | 用于传输、封闭和分析流体样品的方法和装置 |
WO2006110097A1 (en) * | 2005-04-14 | 2006-10-19 | Gyros Patent Ab | Separation structure |
JP4927817B2 (ja) * | 2005-04-14 | 2012-05-09 | ギロス・パテント・エービー | 多数の弁を備えるマイクロ流体装置 |
US7668069B2 (en) * | 2005-05-09 | 2010-02-23 | Searete Llc | Limited use memory device with associated information |
US7519980B2 (en) * | 2005-05-09 | 2009-04-14 | Searete Llc | Fluid mediated disk activation and deactivation mechanisms |
US8121016B2 (en) | 2005-05-09 | 2012-02-21 | The Invention Science Fund I, Llc | Rotation responsive disk activation and deactivation mechanisms |
US8462605B2 (en) | 2005-05-09 | 2013-06-11 | The Invention Science Fund I, Llc | Method of manufacturing a limited use data storing device |
US8140745B2 (en) | 2005-09-09 | 2012-03-20 | The Invention Science Fund I, Llc | Data retrieval methods |
US7916615B2 (en) | 2005-06-09 | 2011-03-29 | The Invention Science Fund I, Llc | Method and system for rotational control of data storage devices |
US7907486B2 (en) | 2006-06-20 | 2011-03-15 | The Invention Science Fund I, Llc | Rotation responsive disk activation and deactivation mechanisms |
US7770028B2 (en) | 2005-09-09 | 2010-08-03 | Invention Science Fund 1, Llc | Limited use data storing device |
US8159925B2 (en) | 2005-08-05 | 2012-04-17 | The Invention Science Fund I, Llc | Limited use memory device with associated information |
US8099608B2 (en) | 2005-05-09 | 2012-01-17 | The Invention Science Fund I, Llc | Limited use data storing device |
US7565596B2 (en) | 2005-09-09 | 2009-07-21 | Searete Llc | Data recovery systems |
US7748012B2 (en) * | 2005-05-09 | 2010-06-29 | Searete Llc | Method of manufacturing a limited use data storing device |
US7694316B2 (en) * | 2005-05-09 | 2010-04-06 | The Invention Science Fund I, Llc | Fluid mediated disk activation and deactivation mechanisms |
US9396752B2 (en) | 2005-08-05 | 2016-07-19 | Searete Llc | Memory device activation and deactivation |
US8218262B2 (en) | 2005-05-09 | 2012-07-10 | The Invention Science Fund I, Llc | Method of manufacturing a limited use data storing device including structured data and primary and secondary read-support information |
US20110181981A1 (en) * | 2005-05-09 | 2011-07-28 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Method and system for rotational control of data storage devices |
US8220014B2 (en) | 2005-05-09 | 2012-07-10 | The Invention Science Fund I, Llc | Modifiable memory devices having limited expected lifetime |
US7668068B2 (en) | 2005-06-09 | 2010-02-23 | Searete Llc | Rotation responsive disk activation and deactivation mechanisms |
US7916592B2 (en) | 2005-05-09 | 2011-03-29 | The Invention Science Fund I, Llc | Fluid mediated disk activation and deactivation mechanisms |
US7512959B2 (en) * | 2005-05-09 | 2009-03-31 | Searete Llc | Rotation responsive disk activation and deactivation mechanisms |
US7596073B2 (en) | 2005-05-09 | 2009-09-29 | Searete Llc | Method and system for fluid mediated disk activation and deactivation |
CN101176001A (zh) * | 2005-05-19 | 2008-05-07 | 柯尼卡美能达医疗印刷器材株式会社 | 用于分析被检体中目标物质的检查芯片和微型综合分析系统 |
AU2006309284B2 (en) | 2005-05-31 | 2012-08-02 | Board Of Regents, The University Of Texas System | Methods and compositions related to determination and use of white blood cell counts |
CA2610875A1 (en) | 2005-06-06 | 2006-12-14 | Decision Biomarkers, Inc. | Assays based on liquid flow over arrays |
US20060280029A1 (en) * | 2005-06-13 | 2006-12-14 | President And Fellows Of Harvard College | Microfluidic mixer |
TWI296711B (en) * | 2005-10-11 | 2008-05-11 | Ind Tech Res Inst | Biochip with microchannels |
AU2006330913B2 (en) | 2005-12-21 | 2011-10-27 | Meso Scale Technologies, Llc | Assay modules having assay reagents and methods of making and using same |
JP5080494B2 (ja) | 2005-12-21 | 2012-11-21 | メソ スケール テクノロジーズ エルエルシー | アッセイ装置、方法および試薬 |
DE102005061811A1 (de) * | 2005-12-23 | 2007-06-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Probenkammer, insbesondere für biologische Proben |
EP3913375A1 (en) | 2006-01-11 | 2021-11-24 | Bio-Rad Laboratories, Inc. | Microfluidic devices and methods of use in the formation and control of nanoreactors |
FR2897282B1 (fr) * | 2006-02-16 | 2008-05-30 | Commissariat Energie Atomique | Procede de controle de l'avancee d'un liquide dans un compos ant microfluidique |
US20100200021A1 (en) * | 2006-02-17 | 2010-08-12 | Nils Adey | Slide Conditioning Systems and Methods |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US7998708B2 (en) | 2006-03-24 | 2011-08-16 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
EP3088083B1 (en) | 2006-03-24 | 2018-08-01 | Handylab, Inc. | Method of performing pcr with a mult-ilane cartridge |
JP4619316B2 (ja) * | 2006-04-27 | 2011-01-26 | シャープ株式会社 | 気液混合装置 |
EP2530167A1 (en) | 2006-05-11 | 2012-12-05 | Raindance Technologies, Inc. | Microfluidic Devices |
US20070263477A1 (en) * | 2006-05-11 | 2007-11-15 | The Texas A&M University System | Method for mixing fluids in microfluidic channels |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
US8432777B2 (en) * | 2006-06-19 | 2013-04-30 | The Invention Science Fund I, Llc | Method and system for fluid mediated disk activation and deactivation |
US8264928B2 (en) | 2006-06-19 | 2012-09-11 | The Invention Science Fund I, Llc | Method and system for fluid mediated disk activation and deactivation |
US7771655B2 (en) * | 2006-07-12 | 2010-08-10 | Bayer Healthcare Llc | Mechanical device for mixing a fluid sample with a treatment solution |
JP4899681B2 (ja) | 2006-07-18 | 2012-03-21 | 富士ゼロックス株式会社 | マイクロ流路デバイス |
US20080031089A1 (en) * | 2006-08-04 | 2008-02-07 | Zhenghua Ji | Low-volume mixing of sample |
US20080032311A1 (en) * | 2006-08-04 | 2008-02-07 | Zhenghua Ji | Low volume mixing of sample |
US8709787B2 (en) | 2006-11-14 | 2014-04-29 | Handylab, Inc. | Microfluidic cartridge and method of using same |
EA201201363A1 (ru) | 2006-11-21 | 2013-08-30 | Медимейт Холдинг Б.В. | Датчик ионов для текучей среды и способ его изготовления |
JP4852399B2 (ja) * | 2006-11-22 | 2012-01-11 | 富士フイルム株式会社 | 二液合流装置 |
US8772046B2 (en) | 2007-02-06 | 2014-07-08 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
KR100850235B1 (ko) * | 2007-02-16 | 2008-08-04 | 한국과학기술원 | 유체영동기반 입자정렬이송용 미세유체칩 및 확장미세유체칩 |
JP4169115B1 (ja) * | 2007-02-27 | 2008-10-22 | コニカミノルタホールディングス株式会社 | 流路切換システム |
JP5151204B2 (ja) | 2007-03-27 | 2013-02-27 | 富士ゼロックス株式会社 | マイクロ流路デバイス及びマイクロ流路デバイスの製造方法 |
SE0700930L (sv) * | 2007-04-16 | 2008-01-22 | Aamic Ab | Analysanordning för vätskeformiga prov |
DE102007018383A1 (de) * | 2007-04-17 | 2008-10-23 | Tesa Ag | Flächenförmiges Material mit hydrophilen und hydrophoben Bereichen und deren Herstellung |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
US7720362B2 (en) | 2007-04-24 | 2010-05-18 | Arizant Healthcare Inc. | Heat exchanger for high flow rate infusion |
WO2008137008A2 (en) | 2007-05-04 | 2008-11-13 | Claros Diagnostics, Inc. | Fluidic connectors and microfluidic systems |
KR101366487B1 (ko) | 2007-05-18 | 2014-02-21 | 메디메이트 홀딩 비.브이. | 미세유체 측정 장치 |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
JP5651011B2 (ja) | 2007-07-13 | 2015-01-07 | ハンディーラブ インコーポレイテッド | ポリヌクレオチド捕捉材料およびその使用方法 |
US8105783B2 (en) | 2007-07-13 | 2012-01-31 | Handylab, Inc. | Microfluidic cartridge |
US7977660B2 (en) * | 2007-08-14 | 2011-07-12 | General Electric Company | Article, device, and method |
JP5119848B2 (ja) | 2007-10-12 | 2013-01-16 | 富士ゼロックス株式会社 | マイクロリアクタ装置 |
WO2009078107A1 (ja) * | 2007-12-19 | 2009-06-25 | Shimadzu Corporation | 分注デバイス |
US7905133B2 (en) * | 2007-12-28 | 2011-03-15 | Thar Instruments, Inc. | Variable ratio flow splitter for a flowstream |
JP2009204339A (ja) * | 2008-02-26 | 2009-09-10 | Sharp Corp | 送液構造体及びこれを用いたマイクロ分析チップ |
US20090250345A1 (en) * | 2008-04-03 | 2009-10-08 | Protea Biosciences, Inc. | Microfluidic electroelution devices & processes |
US20090250347A1 (en) * | 2008-04-03 | 2009-10-08 | Protea Biosciences, Inc. | Microfluidic devices & processes for electrokinetic transport |
WO2009131677A1 (en) * | 2008-04-25 | 2009-10-29 | Claros Diagnostics, Inc. | Flow control in microfluidic systems |
US20100167943A1 (en) * | 2008-06-09 | 2010-07-01 | Nils Adey | System and Method for Hybridization Slide Processing |
US20110190153A1 (en) * | 2008-06-09 | 2011-08-04 | Nils Adey | System and method for hybridization slide processing |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
EP2315629B1 (en) | 2008-07-18 | 2021-12-15 | Bio-Rad Laboratories, Inc. | Droplet libraries |
US20110269226A1 (en) * | 2008-08-27 | 2011-11-03 | Agency For Science, Technology And Research | Microfluidic Continuous Flow Device for Culturing Biological Material |
EP2172260A1 (en) * | 2008-09-29 | 2010-04-07 | Corning Incorporated | Multiple flow path microfluidic devices |
JP5429774B2 (ja) * | 2008-10-01 | 2014-02-26 | シャープ株式会社 | 送液構造体及びこれを用いたマイクロ分析チップならびに分析装置 |
US8318439B2 (en) | 2008-10-03 | 2012-11-27 | Micronics, Inc. | Microfluidic apparatus and methods for performing blood typing and crossmatching |
JP2010115624A (ja) | 2008-11-14 | 2010-05-27 | Fuji Xerox Co Ltd | マイクロ流路デバイス、分離装置、並びに、分離方法 |
WO2010080115A2 (en) | 2008-12-18 | 2010-07-15 | Claros Diagnostics, Inc. | Improved reagent storage in microfluidic systems and related articles and methods |
EP2213364A1 (en) * | 2009-01-30 | 2010-08-04 | Albert-Ludwigs-Universität Freiburg | Phase guide patterns for liquid manipulation |
DE202010018623U1 (de) | 2009-02-02 | 2018-12-07 | Opko Diagnostics, Llc | Strukturen zur Steuerung der Lichtwechselwirkung mit mikrofluidischen Vorrichtungen |
JP5003702B2 (ja) | 2009-03-16 | 2012-08-15 | 富士ゼロックス株式会社 | マイクロ流体素子及びマイクロ流体制御方法 |
DE102009015395B4 (de) | 2009-03-23 | 2022-11-24 | Thinxxs Microtechnology Gmbh | Flusszelle zur Behandlung und/oder Untersuchung eines Fluids |
EP2269737B1 (en) * | 2009-07-02 | 2017-09-13 | Amic AB | Assay device comprising serial reaction zones |
US9216413B2 (en) * | 2009-07-07 | 2015-12-22 | Boehringer Ingelheim Microparts Gmbh | Plasma separation reservoir |
US20110124025A1 (en) * | 2009-11-20 | 2011-05-26 | College Of Nanoscale Science And Engineering | Cell Collecting Devices and Methods for Collecting Cells |
EA024999B1 (ru) | 2009-11-24 | 2016-11-30 | Опкоу Дайагностикс, Ллк. | Смешивание и доставка текучих сред в микрофлюидных системах |
JP2011158456A (ja) * | 2010-02-03 | 2011-08-18 | Kohei Kosaka | 毛管上昇方式表面張力測定装置 |
US8511889B2 (en) * | 2010-02-08 | 2013-08-20 | Agilent Technologies, Inc. | Flow distribution mixer |
EP4484577A3 (en) | 2010-02-12 | 2025-03-26 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
US10351905B2 (en) | 2010-02-12 | 2019-07-16 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
US9366632B2 (en) | 2010-02-12 | 2016-06-14 | Raindance Technologies, Inc. | Digital analyte analysis |
ATE542136T1 (de) * | 2010-03-15 | 2012-02-15 | Boehringer Ingelheim Int | Vorrichtung und verfahren zur manipulation oder untersuchung einer flüssigen probe |
US9630178B2 (en) * | 2010-03-17 | 2017-04-25 | Ut-Battelle, Llc | Method for preparing small volume reaction containers |
AU2011239534B2 (en) | 2010-04-16 | 2015-01-22 | Opko Diagnostics, Llc | Feedback control in microfluidic systems |
DE102010028012A1 (de) * | 2010-04-21 | 2011-10-27 | Qiagen Gmbh | Flüssigkeitssteuerung für Mikrodurchflusssystem |
USD645971S1 (en) | 2010-05-11 | 2011-09-27 | Claros Diagnostics, Inc. | Sample cassette |
KR101324405B1 (ko) * | 2010-06-28 | 2013-11-01 | 디아이씨 가부시끼가이샤 | 마이크로 믹서 |
US8980185B2 (en) | 2010-08-26 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate |
WO2012034270A1 (zh) * | 2010-09-14 | 2012-03-22 | Peng Xingyue | 一种微流路芯片系列微器件的结构 |
WO2012045012A2 (en) | 2010-09-30 | 2012-04-05 | Raindance Technologies, Inc. | Sandwich assays in droplets |
JP5907979B2 (ja) * | 2010-10-28 | 2016-04-26 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 補助チャネルおよびバイパス・チャネルを含むマイクロ流体デバイス |
EP3859011A1 (en) | 2011-02-11 | 2021-08-04 | Bio-Rad Laboratories, Inc. | Methods for forming mixed droplets |
EP3736281A1 (en) | 2011-02-18 | 2020-11-11 | Bio-Rad Laboratories, Inc. | Compositions and methods for molecular labeling |
GB201103917D0 (en) | 2011-03-08 | 2011-04-20 | Univ Leiden | Apparatus for and methods of processing liquids or liquid based substances |
ES2617599T3 (es) | 2011-04-15 | 2017-06-19 | Becton, Dickinson And Company | Termociclador microfluídico de exploración en tiempo real y métodos para termociclado sincronizado y detección óptica de exploración |
DE202012013668U1 (de) | 2011-06-02 | 2019-04-18 | Raindance Technologies, Inc. | Enzymquantifizierung |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
JP5902426B2 (ja) * | 2011-09-22 | 2016-04-13 | シャープ株式会社 | 送液装置及び送液方法 |
TWI494567B (zh) * | 2011-10-13 | 2015-08-01 | Univ Nat Cheng Kung | 血液凝固偵測晶片、裝置及偵測方法 |
EP2773892B1 (en) | 2011-11-04 | 2020-10-07 | Handylab, Inc. | Polynucleotide sample preparation device |
US8622605B2 (en) | 2011-11-25 | 2014-01-07 | Nec Corporation | Fluid mixing device |
BR112014018995B1 (pt) | 2012-02-03 | 2021-01-19 | Becton, Dickson And Company | sistemas para executar ensaio automatizado |
KR101933752B1 (ko) | 2012-03-05 | 2018-12-28 | 오와이 아크틱 파트너스 에이비 | 전립선 암의 위험성 및 전립선 부피를 예측하는 방법 및 장치 |
US9022950B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9060724B2 (en) | 2012-05-30 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
CA2881685C (en) | 2012-08-14 | 2023-12-05 | 10X Genomics, Inc. | Microcapsule compositions and methods |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
GB2505706A (en) * | 2012-09-10 | 2014-03-12 | Univ Leiden | Apparatus comprising meniscus alignment barriers |
WO2014058945A1 (en) | 2012-10-11 | 2014-04-17 | Bullington Gregory J | Systems and methods for delivering a fluid to a patient with reduced contamination |
US20150306597A1 (en) * | 2012-11-16 | 2015-10-29 | Lightstat, Llc | Redundant microfluidic measurement techniques |
US10772548B2 (en) | 2012-12-04 | 2020-09-15 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
WO2014091334A2 (en) | 2012-12-13 | 2014-06-19 | Koninklijke Philips N.V. | Fluidic system with fluidic stop. |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
CA2894694C (en) | 2012-12-14 | 2023-04-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
KR20230003659A (ko) | 2013-02-08 | 2023-01-06 | 10엑스 제노믹스, 인크. | 폴리뉴클레오티드 바코드 생성 |
US9588027B2 (en) | 2013-03-13 | 2017-03-07 | UPKO Diagnostics, LLC | Mixing of fluids in fluidic systems |
JP2013137327A (ja) * | 2013-03-28 | 2013-07-11 | Medimate Holding B V | マイクロ流体的測定デバイス |
EP2994750B1 (en) | 2013-05-07 | 2020-08-12 | PerkinElmer Health Sciences, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
PL2999959T3 (pl) * | 2013-05-23 | 2022-01-10 | Qorvo Us, Inc. | Dwuczęściowy zespół płynowy |
US10449541B2 (en) | 2013-09-30 | 2019-10-22 | Agency For Science, Technology And Research | Microfluidic device |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
SG10201501925YA (en) * | 2014-03-14 | 2015-10-29 | Agency Science Tech & Res | Microfluidic Devices And Methods For Controlling A Microfluidic Device |
BR112016023625A2 (pt) | 2014-04-10 | 2018-06-26 | 10X Genomics, Inc. | dispositivos fluídicos, sistemas e métodos para encapsular e particionar reagentes, e aplicações dos mesmos |
US11305236B2 (en) | 2014-06-13 | 2022-04-19 | Gattaco Inc. | Surface tension driven filtration |
US10532325B2 (en) | 2014-06-13 | 2020-01-14 | GattaCo, Inc | Capillary pressure re-set mechanism and applications |
AU2015279548B2 (en) | 2014-06-26 | 2020-02-27 | 10X Genomics, Inc. | Methods of analyzing nucleic acids from individual cells or cell populations |
CA2953469A1 (en) | 2014-06-26 | 2015-12-30 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
WO2016002847A1 (ja) | 2014-07-01 | 2016-01-07 | 株式会社ニコン | 流体デバイス、流体の制御方法、検査デバイス、検査方法、及び流体デバイスの製造方法 |
JP2017532042A (ja) | 2014-10-29 | 2017-11-02 | 10エックス ゲノミクス,インコーポレイテッド | 標的化核酸配列決定のための方法及び組成物 |
US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US10279345B2 (en) | 2014-12-12 | 2019-05-07 | Opko Diagnostics, Llc | Fluidic systems comprising an incubation channel, including fluidic systems formed by molding |
BR112017014902A2 (pt) | 2015-01-12 | 2018-03-13 | 10X Genomics Inc | processos e sistemas para a preparação de bibliotecas de sequenciamento de ácido nucleico e bibliotecas preparadas usando os mesmos |
EP3262407B1 (en) | 2015-02-24 | 2023-08-30 | 10X Genomics, Inc. | Partition processing methods and systems |
JP2018505688A (ja) | 2015-02-24 | 2018-03-01 | 10エックス ゲノミクス,インコーポレイテッド | 標的化核酸配列包括度(coverage)のための方法 |
CA2981990A1 (en) | 2015-04-09 | 2016-10-13 | Axela Inc. | Disposable bioassay cartridge and method of performing multiple assay steps and fluid transfer within the cartridge |
US10537862B2 (en) * | 2015-06-29 | 2020-01-21 | Imec Vzw | Valve-less mixing method and mixing device |
USD804682S1 (en) | 2015-08-10 | 2017-12-05 | Opko Diagnostics, Llc | Multi-layered sample cassette |
US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
ES2926495T3 (es) | 2015-12-04 | 2022-10-26 | 10X Genomics Inc | Métodos y composiciones para el análisis de ácidos nucleicos |
WO2017100457A1 (en) | 2015-12-11 | 2017-06-15 | Opko Diagnostics, Llc | Fluidic systems involving incubation samples and/or reagents |
US11440008B2 (en) | 2016-04-14 | 2022-09-13 | Hewlett-Packard Development Company, L.P. | Microfluidic device with capillary chamber |
WO2017197338A1 (en) | 2016-05-13 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
JP6772582B2 (ja) * | 2016-06-27 | 2020-10-21 | コニカミノルタ株式会社 | インクジェットヘッド及びインクジェット記録装置 |
FR3058995B1 (fr) * | 2016-11-18 | 2021-02-19 | Commissariat Energie Atomique | Procede et systeme de commande d'un dispositif microfluidique |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10011872B1 (en) | 2016-12-22 | 2018-07-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
WO2018140966A1 (en) | 2017-01-30 | 2018-08-02 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
EP3445876B1 (en) | 2017-05-26 | 2023-07-05 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US20180340169A1 (en) | 2017-05-26 | 2018-11-29 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
FR3068027B1 (fr) * | 2017-06-26 | 2023-03-10 | Commissariat Energie Atomique | Dispositif microfluidique a plusieurs chambres en parallele |
EP3678762A1 (en) * | 2017-09-06 | 2020-07-15 | Waters Technologies Corporation | Fluid mixer |
US11185830B2 (en) | 2017-09-06 | 2021-11-30 | Waters Technologies Corporation | Fluid mixer |
CN111051523B (zh) | 2017-11-15 | 2024-03-19 | 10X基因组学有限公司 | 功能化凝胶珠 |
US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
US11369959B2 (en) * | 2017-12-13 | 2022-06-28 | Nikon Corporation | Fluidic device |
EP3775271B1 (en) | 2018-04-06 | 2025-03-12 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
US11274886B2 (en) | 2019-03-08 | 2022-03-15 | Hamilton Sundstrand Corporation | Heat exchanger header with fractal geometry |
US11359864B2 (en) | 2019-03-08 | 2022-06-14 | Hamilton Sundstrand Corporation | Rectangular helical core geometry for heat exchanger |
US11280550B2 (en) | 2019-03-08 | 2022-03-22 | Hamilton Sundstrand Corporation | Radially layered helical core geometry for heat exchanger |
WO2020218234A1 (ja) * | 2019-04-22 | 2020-10-29 | 積水化学工業株式会社 | チップ及び流体の合流方法 |
WO2020218439A1 (ja) * | 2019-04-25 | 2020-10-29 | 京セラ株式会社 | 流路デバイス、カートリッジ及び測定システム |
CA3047880A1 (en) | 2019-06-25 | 2020-12-25 | Run Ze R. Z. G. Gao | Air microfluidics and air minifluidics enabled active compression apparel |
US12186751B2 (en) | 2019-06-28 | 2025-01-07 | 10X Genomics, Inc. | Devices and systems incorporating acoustic ordering and methods of use thereof |
WO2021014683A1 (ja) * | 2019-07-19 | 2021-01-28 | アルプスアルパイン株式会社 | 流体撹拌装置 |
CN114207433B (zh) | 2019-08-12 | 2025-01-14 | 沃特世科技公司 | 用于色谱系统的混合器 |
WO2021040624A1 (en) * | 2019-08-30 | 2021-03-04 | Agency For Science, Technology And Research | A microfluidic device and a method of manufacturing thereof |
US11268770B2 (en) | 2019-09-06 | 2022-03-08 | Hamilton Sunstrand Corporation | Heat exchanger with radially converging manifold |
US12059679B2 (en) | 2019-11-19 | 2024-08-13 | 10X Genomics, Inc. | Methods and devices for sorting droplets and particles |
US11988647B2 (en) | 2020-07-07 | 2024-05-21 | Waters Technologies Corporation | Combination mixer arrangement for noise reduction in liquid chromatography |
US11898999B2 (en) | 2020-07-07 | 2024-02-13 | Waters Technologies Corporation | Mixer for liquid chromatography |
JP7483892B2 (ja) | 2020-07-29 | 2024-05-15 | 京セラ株式会社 | 流路デバイス |
US11209222B1 (en) | 2020-08-20 | 2021-12-28 | Hamilton Sundstrand Corporation | Spiral heat exchanger header |
CN116194767A (zh) | 2020-09-22 | 2023-05-30 | 沃特世科技公司 | 连续流混合器 |
CN112619719B (zh) * | 2020-12-04 | 2022-03-29 | 深圳先进技术研究院 | 用于数字pcr的液滴生成微型装置 |
CN112937122B (zh) * | 2021-01-28 | 2022-11-11 | 华中科技大学 | 一种均匀喷射的电喷印喷头及系统 |
CN114534812B (zh) * | 2022-03-25 | 2025-03-25 | 天津威高医疗科技有限公司 | 一种微流控系统及其微通道的定量装置 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3191623A (en) * | 1963-02-21 | 1965-06-29 | Romald E Bowles | Passive pure fluid component |
US3327726A (en) * | 1964-06-24 | 1967-06-27 | Foxboro Co | Fluid switch system |
US3417770A (en) * | 1965-06-07 | 1968-12-24 | Electro Optical Systems Inc | Fluid amplifier system |
US3799742A (en) | 1971-12-20 | 1974-03-26 | C Coleman | Miniaturized integrated analytical test container |
US3993062A (en) | 1975-11-03 | 1976-11-23 | Baxter Laboratories, Inc. | Hydrophobic valve |
US4426451A (en) | 1981-01-28 | 1984-01-17 | Eastman Kodak Company | Multi-zoned reaction vessel having pressure-actuatable control means between zones |
US4618476A (en) | 1984-02-10 | 1986-10-21 | Eastman Kodak Company | Capillary transport device having speed and meniscus control means |
US4676274A (en) * | 1985-02-28 | 1987-06-30 | Brown James F | Capillary flow control |
US4963498A (en) | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
US4756884A (en) | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4946795A (en) | 1987-08-27 | 1990-08-07 | Biotrack, Inc. | Apparatus and method for dilution and mixing of liquid samples |
US4868129A (en) | 1987-08-27 | 1989-09-19 | Biotrack Inc. | Apparatus and method for dilution and mixing of liquid samples |
US5077017A (en) | 1987-11-05 | 1991-12-31 | Biotrack, Inc. | Integrated serial dilution and mixing cartridge |
US5104813A (en) | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5051182A (en) | 1989-10-06 | 1991-09-24 | Ying Wang | Hydrophobic microporus membrane |
US5119116A (en) | 1990-07-31 | 1992-06-02 | Xerox Corporation | Thermal ink jet channel with non-wetting walls and a step structure |
US5230866A (en) | 1991-03-01 | 1993-07-27 | Biotrack, Inc. | Capillary stop-flow junction having improved stability against accidental fluid flow |
US5223219A (en) | 1992-04-10 | 1993-06-29 | Biotrack, Inc. | Analytical cartridge and system for detecting analytes in liquid samples |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5296375A (en) | 1992-05-01 | 1994-03-22 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5486335A (en) | 1992-05-01 | 1996-01-23 | Trustees Of The University Of Pennsylvania | Analysis based on flow restriction |
US5304487A (en) | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US5726026A (en) | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5378504A (en) | 1993-08-12 | 1995-01-03 | Bayard; Michel L. | Method for modifying phase change ink jet printing heads to prevent degradation of ink contact angles |
DE4405005A1 (de) * | 1994-02-17 | 1995-08-24 | Rossendorf Forschzent | Mikro-Fluiddiode |
US5846396A (en) * | 1994-11-10 | 1998-12-08 | Sarnoff Corporation | Liquid distribution system |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5958344A (en) * | 1995-11-09 | 1999-09-28 | Sarnoff Corporation | System for liquid distribution |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5726404A (en) | 1996-05-31 | 1998-03-10 | University Of Washington | Valveless liquid microswitch |
US6083763A (en) | 1996-12-31 | 2000-07-04 | Genometrix Inc. | Multiplexed molecular analysis apparatus and method |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
KR100351531B1 (ko) | 1997-04-25 | 2002-09-11 | 캘리퍼 테크놀로지스 코포레이션 | 기하형상이 개선된 채널을 채용하는 미소 유체 장치 |
US5980719A (en) | 1997-05-13 | 1999-11-09 | Sarnoff Corporation | Electrohydrodynamic receptor |
US5910287A (en) | 1997-06-03 | 1999-06-08 | Aurora Biosciences Corporation | Low background multi-well plates with greater than 864 wells for fluorescence measurements of biological and biochemical samples |
US5922604A (en) | 1997-06-05 | 1999-07-13 | Gene Tec Corporation | Thin reaction chambers for containing and handling liquid microvolumes |
US6090251A (en) | 1997-06-06 | 2000-07-18 | Caliper Technologies, Inc. | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5900130A (en) | 1997-06-18 | 1999-05-04 | Alcara Biosciences, Inc. | Method for sample injection in microchannel device |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US5992820A (en) | 1997-11-19 | 1999-11-30 | Sarnoff Corporation | Flow control in microfluidics devices by controlled bubble formation |
CN1085896C (zh) | 1997-12-19 | 2002-05-29 | 王纪三 | 充电电池的电极和电极制造方法及其设备 |
US6123798A (en) | 1998-05-06 | 2000-09-26 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
EP1084391A4 (en) | 1998-06-08 | 2006-06-14 | Caliper Life Sciences Inc | MICROFLUIDIC DEVICES, SYSTEMS AND METHODS FOR REALIZING INTEGRATED REACTIONS AND SEPARATIONS |
US6086740A (en) | 1998-10-29 | 2000-07-11 | Caliper Technologies Corp. | Multiplexed microfluidic devices and systems |
US6261431B1 (en) | 1998-12-28 | 2001-07-17 | Affymetrix, Inc. | Process for microfabrication of an integrated PCR-CE device and products produced by the same |
-
1999
- 1999-10-13 BR BR9914554A patent/BR9914554A/pt not_active IP Right Cessation
- 1999-10-13 US US09/417,691 patent/US6296020B1/en not_active Expired - Fee Related
- 1999-10-13 JP JP2000576283A patent/JP2002527250A/ja active Pending
- 1999-10-13 CA CA 2347182 patent/CA2347182C/en not_active Expired - Fee Related
- 1999-10-13 KR KR1020017004575A patent/KR20010089295A/ko not_active Application Discontinuation
- 1999-10-13 CN CN99812094A patent/CN1326549A/zh active Pending
- 1999-10-13 AU AU64268/99A patent/AU763497B2/en not_active Ceased
- 1999-10-13 WO PCT/US1999/023729 patent/WO2000022436A1/en not_active Application Discontinuation
- 1999-10-13 EP EP19990951938 patent/EP1125129A1/en not_active Withdrawn
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1638871B (zh) * | 2002-02-26 | 2010-12-29 | 西门子医疗保健诊断公司 | 通过离心力和/或毛细力精确输送和操作流体的方法和装置 |
CN100560208C (zh) * | 2003-01-23 | 2009-11-18 | 伯林格-英格尔海姆显微部件股份公司 | 分配液体剂量的微型液流装置和方法以及具有该微型液流装置的试样支架 |
CN100531915C (zh) * | 2003-01-23 | 2009-08-26 | 伯林格-英格尔海姆显微部件股份公司 | 在时间间隔期间切断液流的微型液流开关 |
CN101632947B (zh) * | 2003-12-20 | 2012-08-08 | 伯林格-英格尔海姆显微部件股份公司 | 用于无气泡地填充至少一个用于排出液体的系统的微结构装置 |
CN101297200B (zh) * | 2005-10-28 | 2014-11-05 | 爱科来株式会社 | 送液方法及其所使用的液盒 |
CN105344389B (zh) * | 2008-05-16 | 2018-01-02 | 哈佛大学 | 微流体系统、方法和装置 |
US10029256B2 (en) | 2008-05-16 | 2018-07-24 | President And Fellows Of Harvard College | Valves and other flow control in fluidic systems including microfluidic systems |
CN105344389A (zh) * | 2008-05-16 | 2016-02-24 | 哈佛大学 | 微流体系统、方法和装置 |
CN102123786B (zh) * | 2008-08-19 | 2014-06-25 | 拜奥默里克斯公司 | 混合移液管 |
WO2010118637A1 (zh) * | 2009-04-14 | 2010-10-21 | Huang Yanyi | 微流分配装置、其制备方法及用途 |
CN102298069B (zh) * | 2010-06-24 | 2014-09-24 | 洹艺科技股份有限公司 | 用于微型化流体输送及分析系统的一致性阀操作的阀结构 |
CN102298069A (zh) * | 2010-06-24 | 2011-12-28 | 洹艺科技股份有限公司 | 用于微型化流体输送及分析系统的一致性阀操作的阀结构 |
CN105443450A (zh) * | 2010-09-14 | 2016-03-30 | 彭兴跃 | 一种微流路芯片系列微器件的结构 |
CN105443450B (zh) * | 2010-09-14 | 2017-10-17 | 彭兴跃 | 一种微流路芯片系列微器件的结构 |
CN103167910A (zh) * | 2010-10-29 | 2013-06-19 | 霍夫曼-拉罗奇有限公司 | 用于分析样品液的微流体元件 |
CN103167910B (zh) * | 2010-10-29 | 2016-12-07 | 霍夫曼-拉罗奇有限公司 | 用于分析样品液的微流体元件 |
CN105074426A (zh) * | 2012-11-19 | 2015-11-18 | 通用医疗公司 | 用于集成复用光度测定模块的系统和方法 |
US11851647B2 (en) | 2013-03-14 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Capillary barriers for staged loading of microfluidic devices |
CN105190280B (zh) * | 2013-03-14 | 2019-07-09 | 小利兰·斯坦福大学托管委员会 | 用于微流体装置分段装载的毛细屏障 |
US10787660B2 (en) | 2013-03-14 | 2020-09-29 | The Board Of Trustees Of The Leland Stanford Junior University | Capillary barriers for staged loading of microfluidic devices |
CN110243637B (zh) * | 2013-03-14 | 2022-06-24 | 小利兰·斯坦福大学托管委员会 | 用于微流体装置分段装载的毛细屏障 |
CN105190280A (zh) * | 2013-03-14 | 2015-12-23 | 小利兰·斯坦福大学托管委员会 | 用于微流体装置分段装载的毛细屏障 |
CN110243637A (zh) * | 2013-03-14 | 2019-09-17 | 小利兰·斯坦福大学托管委员会 | 用于微流体装置分段装载的毛细屏障 |
US10233441B2 (en) | 2013-03-14 | 2019-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | Capillary barriers for staged loading of microfluidic devices |
US9975123B2 (en) | 2013-12-19 | 2018-05-22 | Ge Healthcare Bio-Sciences Ab | Laminated microfluidic device with membrane valves |
CN105813753A (zh) * | 2013-12-19 | 2016-07-27 | 通用电气健康护理生物科学股份公司 | 具有隔膜阀的分层微流体装置 |
CN105813753B (zh) * | 2013-12-19 | 2018-03-30 | 通用电气健康护理生物科学股份公司 | 具有隔膜阀的分层微流体装置及其制造方法 |
US11141708B2 (en) | 2015-04-03 | 2021-10-12 | National Institute Of Advanced Industrial Science And Technology | Cell culture apparatus and cell culture method |
CN107532131A (zh) * | 2015-04-03 | 2018-01-02 | 国立研究开发法人产业技术总合研究所 | 细胞培养装置及细胞培养方法 |
CN107532131B (zh) * | 2015-04-03 | 2021-11-02 | 国立研究开发法人产业技术总合研究所 | 细胞培养装置及细胞培养方法 |
US10822603B2 (en) | 2016-01-29 | 2020-11-03 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
US10415030B2 (en) | 2016-01-29 | 2019-09-17 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
US11674132B2 (en) | 2016-01-29 | 2023-06-13 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
US12006496B2 (en) | 2016-01-29 | 2024-06-11 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
CN108698003B (zh) * | 2016-02-19 | 2021-02-02 | 珀金埃尔默健康科学有限公司 | 微流体混合装置、微流体模块和方法 |
US11504681B2 (en) | 2016-02-19 | 2022-11-22 | Perkinelmer Health Sciences, Inc. | Microfluidic mixing device and method |
CN108698003A (zh) * | 2016-02-19 | 2018-10-23 | 精密公司 | 微流体混合装置和方法 |
CN110622007A (zh) * | 2017-06-19 | 2019-12-27 | 积水化学工业株式会社 | 微流体器件 |
US11041150B2 (en) | 2017-08-02 | 2021-06-22 | Purigen Biosystems, Inc. | Systems, devices, and methods for isotachophoresis |
US11987789B2 (en) | 2017-08-02 | 2024-05-21 | Purigen Biosystems, Inc. | Systems, devices, and methods for isotachophoresis |
CN112368573A (zh) * | 2018-07-06 | 2021-02-12 | Qorvo美国公司 | 用于试剂盒的流体通道 |
CN113877646A (zh) * | 2021-11-08 | 2022-01-04 | 北京乐普智慧医疗科技有限公司 | 一种微流控分配芯片 |
Also Published As
Publication number | Publication date |
---|---|
KR20010089295A (ko) | 2001-09-29 |
AU763497B2 (en) | 2003-07-24 |
WO2000022436A1 (en) | 2000-04-20 |
EP1125129A1 (en) | 2001-08-22 |
JP2002527250A (ja) | 2002-08-27 |
AU6426899A (en) | 2000-05-01 |
US6296020B1 (en) | 2001-10-02 |
BR9914554A (pt) | 2001-06-26 |
CA2347182C (en) | 2004-06-15 |
CA2347182A1 (en) | 2000-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1326549A (zh) | 基于无源流体动力学的流体管路元件 | |
US20020036018A1 (en) | Fluid circuit components based upon passive fluid dynamics | |
CN105050718B (zh) | 形成相对单分散液滴的装置和方法 | |
US6591852B1 (en) | Fluid circuit components based upon passive fluid dynamics | |
KR101720683B1 (ko) | 마이크로유체성 회로 | |
US20150125947A1 (en) | Microfluidic device | |
US6883559B2 (en) | Method and apparatus for gradient generation | |
US20170128942A1 (en) | Size aternating injection into drops to facilitate sorting | |
US7681595B2 (en) | Microfluidic device capable of equalizing flow of multiple microfluids in chamber, and microfluidic network employing the same | |
EP2621631A1 (en) | Microfluidic device for production and collection of droplets of a fluid | |
US20230241614A1 (en) | Droplet microfluidic chip and method for producing microdroplets | |
JP2004061320A (ja) | マイクロ流体デバイスの送液方法 | |
CN101382538A (zh) | 自动分流的微流体装置 | |
Chen et al. | Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast | |
AU2018246009B2 (en) | Surface for directional fluid transport including against external pressure | |
US20170021352A1 (en) | Reconfigurable microfluidic systems: Microwell plate interface | |
Wang et al. | An electrode design for droplet dispensing with accurate volume in electro-wetting-based microfluidics | |
CN1930480A (zh) | 微流体装置和使用该装置的诊断分析设备 | |
KR100838129B1 (ko) | 미세 유체 소자 및 이를 구비한 진단 및 분석 장치 | |
US12109565B2 (en) | Microfluidic device and a method for provision of emulsion droplets | |
Kuang et al. | Droplet pair breakup in microfluidic expansion channel | |
KR100473364B1 (ko) | 미세 채널을 이용하여 유체를 혼합하는 미세 채널 장치 및그 방법 | |
JP3781709B2 (ja) | 化学分析装置 | |
MXPA01003692A (es) | Componentes de un circuito de fluido basado en la dinamica de fluidos pasivos | |
CN119140185A (zh) | 微流控芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
C10 | Entry into substantive examination | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |