CN1324334C - Motion platform mechanism suitable for optical waveguide automatic-packaging robot system - Google Patents
Motion platform mechanism suitable for optical waveguide automatic-packaging robot system Download PDFInfo
- Publication number
- CN1324334C CN1324334C CNB2005101275074A CN200510127507A CN1324334C CN 1324334 C CN1324334 C CN 1324334C CN B2005101275074 A CNB2005101275074 A CN B2005101275074A CN 200510127507 A CN200510127507 A CN 200510127507A CN 1324334 C CN1324334 C CN 1324334C
- Authority
- CN
- China
- Prior art keywords
- motion platform
- motion
- micro
- piezoelectric ceramics
- macro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 137
- 230000007246 mechanism Effects 0.000 claims abstract description 60
- 239000000919 ceramic Substances 0.000 claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 238000004806 packaging method and process Methods 0.000 claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明公开了一种适用于光波导自动封装机器人系统的运动平台机构,该平台机构是由宏动平台机构、微动圆盘、微动臂、六个压电陶瓷和三个电机构成,微动圆盘上安装有三个压电陶瓷,微动臂上安装有另外三个压电陶瓷,宏动平台机构上安装有三个电机,微动圆盘通过沉头孔安装在宏动平台机构的Z轴运动平台上,微动圆盘的锥销安装在微动臂的销孔内。本发明的运动平台机构采用一个宏动平台和两个微动平台相结合的“宏-微”机构形式解决了高精度和大行程的矛盾;三自由度的宏动平台采用模块化结构设计,降低了加工成本,有利于系统的重构;由微动圆盘和微动臂组成的六自由度微动平台应用柔性铰链替代传统的运动副,并采用并联机构形式从而实现了亚微米级定位精度目标。
The invention discloses a motion platform mechanism suitable for an optical waveguide automatic packaging robot system. The platform mechanism is composed of a macro motion platform mechanism, a micro motion disc, a micro motion arm, six piezoelectric ceramics and three motors. Three piezoelectric ceramics are installed on the moving disc, three other piezoelectric ceramics are installed on the micro-moving arm, three motors are installed on the macro-moving platform mechanism, and the micro-moving disc is installed on the Z of the macro-moving platform mechanism through the counterbore. On the shaft movement platform, the taper pin of the micro-motion disk is installed in the pin hole of the micro-motion arm. The motion platform mechanism of the present invention adopts the "macro-micro" mechanism form combining a macro-motion platform and two micro-motion platforms to solve the contradiction between high precision and large stroke; the three-degree-of-freedom macro-motion platform adopts a modular structure design, It reduces the processing cost and is conducive to the reconstruction of the system; the six-degree-of-freedom micro-motion platform composed of a micro-motion disk and a micro-arm uses a flexible hinge to replace the traditional kinematic pair, and uses a parallel mechanism to achieve sub-micron positioning Accuracy target.
Description
技术领域technical field
本发明涉及一种运动平台机构,更具体地说,是指一种适用于光波导自动封装机器人系统的运动平台机构。The invention relates to a motion platform mechanism, more specifically, a motion platform mechanism suitable for an optical waveguide automatic packaging robot system.
背景技术Background technique
通信时代的来临使得光电子器件的需求大大增加,但难度较大的封装技术成为限制其应用的瓶颈。光波导的封装涉及光纤阵列和波导器件的六维精密对准,难度较大。由于波导器件中的通光通道只有数微米大小,因此用于此类器件对接的耦合封装机器人系统必须具有亚微米级别的定位精度才可以实现准确、可靠的对接操作。The advent of the communication era has greatly increased the demand for optoelectronic devices, but the difficult packaging technology has become a bottleneck limiting its application. The packaging of optical waveguides involves six-dimensional precision alignment of fiber arrays and waveguide devices, which is difficult. Since the optical channel in the waveguide device is only a few microns in size, the coupling packaging robot system used for the docking of such devices must have sub-micron level positioning accuracy to achieve accurate and reliable docking operations.
目前,大部分的封装系统的平台机构采用丝杠(滑动丝杠或滚珠丝杠)传动结构、电机(步进电机或交流伺服电机)驱动。由于受加工水平和加工成本所限,丝杠传动时其间隙的存在不可避免,运动平台很难达到亚微米级定位精度要求;还有些采用微驱动部件(如压电陶瓷、磁致伸缩等驱动器)构成的微动平台,但这类机构的行程较小、运动范围很受限,在实际使用过程中对夹具及初始位置的要求非常苛刻,有时难以满足。因而,如何解决大行程与高精度的矛盾是设计光波导自动封装机器人系统运动平台的过程中要解决的一个重要难题。At present, the platform mechanism of most packaging systems adopts a screw (sliding screw or ball screw) transmission structure and a motor (stepping motor or AC servo motor) to drive. Due to the limitation of processing level and processing cost, the existence of gaps in the screw drive is inevitable, and it is difficult for the motion platform to meet the requirements of sub-micron positioning accuracy; ) composed of a micro-motion platform, but the stroke of this type of mechanism is small and the range of motion is very limited. In the actual use process, the requirements for the fixture and the initial position are very strict, and sometimes it is difficult to meet. Therefore, how to solve the contradiction between large stroke and high precision is an important problem to be solved in the process of designing the motion platform of the optical waveguide automatic packaging robot system.
发明内容Contents of the invention
本发明的目的是提供一种适用于光波导自动封装机器人系统的运动平台机构,所述运动平台机构采用三自由度宏动平台和六自由度微动平台相结合的并联结构,这样既保证了运动平台机构末端输出的大范围运动又确保其精确定位;宏动平台设计成模块化结构,有利于机构重构和加工要求;六自由度微动平台由三自由度微动圆盘和三自由度微动臂组成,将微动圆盘设计成柔性平面3-RRR并联机构型式,采用依靠材料弹性变形的柔性铰链代替传统的运动副消除了运动副固有的间隙、摩擦等缺陷,利用线切割加工方法制造成一体化构件,并采用具有纳米级分辨率的压电陶瓷作为驱动器驱动三个柔性运动支链结构,因而末端输出即锥销中心点具有高运动精度;将微动臂设计成基于柔性铰链的3-RPS并联结构形式,每个运动支链由一体化加工的移动副构成,通过精密装配,并采用具有纳米级分辨率的压电陶瓷作为驱动器,机构的末端能够实现高精度输出。这样就有效地保证了待封装波导间的精确对准,从而实现波导器件的最佳耦合效果。The object of the present invention is to provide a motion platform mechanism suitable for the optical waveguide automatic packaging robot system, the motion platform mechanism adopts a parallel structure combining a three-degree-of-freedom macro-motion platform and a six-degree-of-freedom micro-motion platform, which not only ensures The large-range motion output by the end of the motion platform mechanism ensures its precise positioning; the macro-motion platform is designed as a modular structure, which is conducive to mechanism reconstruction and processing requirements; the six-degree-of-freedom micro-motion platform consists of a three-degree-of-freedom micro-motion disc and a three-freedom The micro-motion disc is designed as a flexible planar 3-RRR parallel mechanism type, and the flexible hinge relying on the elastic deformation of the material is used instead of the traditional kinematic pair to eliminate the inherent gap and friction of the kinematic pair. The processing method is made into an integrated component, and piezoelectric ceramics with nanoscale resolution are used as the driver to drive three flexible motion branch chain structures, so the terminal output, that is, the center point of the taper pin, has high motion accuracy; the micro-moving arm is designed based on The 3-RPS parallel structure of the flexible hinge, each motion branch chain is composed of an integrally processed moving pair, through precise assembly, and using piezoelectric ceramics with nanoscale resolution as the driver, the end of the mechanism can achieve high-precision output . In this way, the precise alignment between the waveguides to be packaged is effectively ensured, thereby realizing the best coupling effect of the waveguide device.
本发明是一种适用于光波导自动封装机器人系统的运动平台机构,由宏动平台机构、微动圆盘、微动臂、六个压电陶瓷和三个电机构成,微动圆盘上安装有三个压电陶瓷,微动臂上安装有另外三个压电陶瓷,宏动平台机构上安装有三个电机,微动圆盘通过沉头孔安装在宏动平台机构的Z轴运动平台上,微动圆盘的锥销安装在微动臂的销孔内。The invention is a motion platform mechanism suitable for optical waveguide automatic packaging robot system, which is composed of a macro motion platform mechanism, a micro motion disc, a micro motion arm, six piezoelectric ceramics and three motors, and is installed on the micro motion disc There are three piezoelectric ceramics, three other piezoelectric ceramics are installed on the micro-moving arm, three motors are installed on the macro-moving platform mechanism, and the micro-moving disc is installed on the Z-axis motion platform of the macro-moving platform mechanism through the counterbore. The taper pin of the micro-motion disc is installed in the pin hole of the micro-motion arm.
所述宏动平台机构由底座、X轴运动平台、Y轴运动平台、Z轴运动平台、X轴驱动电机、Y轴驱动电机、Z轴驱动电机和连接弯板构成;X轴运动平台安装在底座上,X轴驱动电机安装在X轴运动平台上;Y轴运动平台安装在X轴运动平台上,Y轴驱动电机安装在Y轴运动平台上;连接弯板的平行面安装在Y轴运动平台上,连接弯板的垂直面上安装有Z轴运动平台,Z轴驱动电机安装在Z轴运动平台上,Z轴运动平台的顶部设有丝杠孔;The macro-motion platform mechanism is composed of a base, an X-axis motion platform, a Y-axis motion platform, a Z-axis motion platform, an X-axis drive motor, a Y-axis drive motor, a Z-axis drive motor and a connecting bent plate; the X-axis motion platform is installed on On the base, the X-axis drive motor is installed on the X-axis motion platform; the Y-axis motion platform is installed on the X-axis motion platform, and the Y-axis drive motor is installed on the Y-axis motion platform; the parallel surface connecting the bending plate is installed on the Y-axis motion platform. On the platform, a Z-axis motion platform is installed on the vertical surface connecting the bent plate, the Z-axis drive motor is installed on the Z-axis motion platform, and the top of the Z-axis motion platform is provided with a screw hole;
所述微动圆盘是8~15mm厚的薄形铜材质圆盘,其盘体上端面的盘心部位设有锥销,并以锥销为中心点且按120°均布设有结构相同的运动支链A、运动支链B和运动支链C;每个运动支链上的长形腔与盘缘之间设有沉头孔;盘体的盘缘上设有切口A、切口B、切口C,每个切口的切口面上设有螺纹孔;The fretting disc is a thin copper disc with a thickness of 8 to 15 mm. The center of the upper end surface of the disc body is provided with a taper pin, and with the taper pin as the center point, the same structure is arranged at an angle of 120°. Movement branch chain A, movement branch chain B and movement branch chain C; countersunk holes are provided between the elongated cavity on each movement branch chain and the edge of the plate; the edge of the plate body is provided with cutout A, cutout B, Notch C, each notch is provided with a threaded hole on the notch surface;
所述运动支链A是采用线切割方式加工成的一体构件,运动支链A上设有供安装压电陶瓷的长形腔、五条沟缝和九个通孔,五条沟缝与九个通孔构成位移放大的支点杠杆结构;The motion branch chain A is an integrated component processed by wire cutting. The motion branch chain A is provided with a long cavity for installing piezoelectric ceramics, five grooves and nine through holes, five grooves and nine through holes. The hole constitutes a fulcrum lever structure for displacement amplification;
所述微动臂,由底板、顶板、移动副A、移动副B、移动副C、压电陶瓷A、压电陶瓷B、压电陶瓷C和分别用于安装三个压电陶瓷的安装盘构成,顶板上设有三个槽口和安装孔;The micro-moving arm is composed of a bottom plate, a top plate, a moving pair A, a moving pair B, a moving pair C, piezoelectric ceramics A, piezoelectric ceramics B, piezoelectric ceramics C and mounting plates for installing three piezoelectric ceramics respectively There are three notches and mounting holes on the top plate;
所述移动副A是采用线切割方式加工成的一体构件,移动副A的底端是连接板,连接板上通过一柔性铰链连接有支撑矩形框;支撑矩形框的上边的端部上下分别切割成两个半圆形组成的左切槽和右切槽,支撑矩形框的上边的下部中心设有球窝;支撑矩形框的下边中心位置处设有供安装压电陶瓷A的螺纹孔;支撑矩形框的底边的端部上下分别切割成两个半圆形组成的左切槽和右切槽,支撑矩形框的底边上设有与连接板的工艺孔相对应的孔;支撑矩形框的左边上端顶部的装配面上设有安装孔,支撑矩形框的左边上部与支撑矩形框的上边左端的接合处是等效柔性球铰。The moving pair A is an integrated component processed by wire cutting. The bottom end of the moving pair A is a connecting plate, and a supporting rectangular frame is connected to the connecting plate through a flexible hinge; the upper end of the supporting rectangular frame is cut up and down respectively. The left and right slots are formed into two semicircles, and the lower center of the upper side of the supporting rectangular frame is provided with a ball socket; the center of the lower side of the supporting rectangular frame is provided with a threaded hole for installing piezoelectric ceramic A; the supporting The end of the bottom of the rectangular frame is cut up and down into two semicircular left and right slots, and the bottom of the supporting rectangular frame is provided with a hole corresponding to the process hole of the connecting plate; the supporting rectangular frame Mounting holes are provided on the assembly surface at the top of the left upper end, and the joint between the left upper part of the support rectangular frame and the upper left end of the support rectangular frame is an equivalent flexible ball joint.
本发明运动平台机构的优点在于:(1)采用一个宏动平台和两个微动平台相结合的“宏-微”机构解决了高精度和大行程的矛盾;(2)三自由度的宏动平台采用模块化结构设计,降低了加工成本,有利于系统的重构;(3)微动圆盘和微动臂采用并联机构模型实现了亚微米级定位精度;(4)“宏-微”机构具有跨尺度操作能力,能够在宏观尺度和微观尺度下进行作业;(5)封装多通道光波导芯片时能实现快速、精确的对准操作;(6)微动平台采用压电陶瓷驱动从而实现了运动的快速性和精确性。The advantages of the motion platform mechanism of the present invention are: (1) the "macro-micro" mechanism that combines a macro-motion platform and two micro-motion platforms solves the contradiction between high precision and large stroke; (2) a three-degree-of-freedom macro The moving platform adopts a modular structure design, which reduces the processing cost and is conducive to the reconstruction of the system; (3) the micro-moving disc and the micro-moving arm adopt a parallel mechanism model to achieve sub-micron positioning accuracy; (4) "macro-micro "The mechanism has the ability to operate across scales, and can operate at the macro-scale and micro-scale; (5) Fast and precise alignment operations can be achieved when packaging multi-channel optical waveguide chips; (6) The micro-motion platform is driven by piezoelectric ceramics So as to realize the rapidity and precision of the movement.
附图说明Description of drawings
图1是本发明运动平台机构的宏动平台机构结构图。Fig. 1 is a structural diagram of the macro-motion platform mechanism of the motion platform mechanism of the present invention.
图2A是本发明运动平台机构的微动圆盘结构图。Fig. 2A is a structure diagram of a micro-motion disc of the motion platform mechanism of the present invention.
图2B是运动支链的杠杆结构示意图。Fig. 2B is a schematic diagram of the lever structure of the kinematic branch.
图2C是运动支链A的结构与杠杆示意图。Fig. 2C is a schematic diagram of the structure and levers of the kinematic branch A.
图3A是本发明运动平台机构的微动臂结构图。Fig. 3A is a structural diagram of the micro-arm of the motion platform mechanism of the present invention.
图3B是本发明运动平台机构的移动副A结构图。Fig. 3B is a structural diagram of the moving pair A of the moving platform mechanism of the present invention.
图中:1.宏动平台机构 101.底座 102.螺纹孔 103.X轴驱动电机In the figure: 1. Macro
104.X轴运动平台 105.丝杠孔 106.Y轴驱动电机104.
107.Y轴运动平台 108.平行面 109.连接弯板107. Y-
110.Z轴驱动电机 111.安装孔 112.Z轴运动平台 113.垂直面110. Z-
2.微动圆盘 201.上端面 202.锥销 203.沉头孔 204.盘缘2. Micro-motion disc 201. Upper face 202. Taper pin 203. Countersunk hole 204. Plate edge
205.球窝 206.球窝 210.运动支链A 211.长形腔 212.螺纹孔205.
213.第一刚性杆 214.切口A 215.第三刚性杆 219.第二刚性杆213. First Rigid Rod 214.
220.运动支链B 224.切口B 230.运动支链C 234.切口C 235.切边面220. Motion branch B 224.
236.螺纹孔 241.沟缝 242.沟缝 243.沟缝 244.沟缝236. Threaded
245.沟缝 251.通孔 252.通孔 253.通孔 254.通孔245.
255.通孔 256.通孔 257.通孔 258.通孔 259.通孔255. Through
260.通孔 3.微动臂 301.底板 302.销孔 303.凸缘260. Through hole 3. Micro arm 301. Bottom plate 302. Pin hole 303. Flange
304.顶板 305.安装孔 306.槽口A 310.移动副A304. Top plate 305. Mounting hole 306. Notch A 310. Moving pair A
311.压电陶瓷A 312.安装盘 316.槽口B 320.移动副B311. Piezoelectric ceramic A 312. Mounting plate 316. Notch B 320. Moving pair B
321.压电陶瓷B 322.安装盘 326.槽口C 330.移动副C321. Piezoelectric ceramic B 322. Mounting plate 326. Notch C 330. Moving pair C
331.压电陶瓷C 332.安装盘 401.连接板 402.安装孔331. Piezoelectric ceramic C 332. Mounting plate 401. Connecting plate 402. Mounting hole
403.销孔 404.工艺孔 405.柔性铰链 408.螺纹孔 410.支撑矩形框403. Pin hole 404. Process hole 405. Flexible hinge 408. Threaded hole 410. Supporting rectangular frame
411.上边 412.左切槽 413.右切槽 414.下边 415.底边411. Top 412. Left Slot 413. Right Slot 414. Bottom 415. Bottom
416.左切槽 417.右切槽 418.左边 419.安装孔 420.装配面416. Left notch 417. Right notch 418. Left 419. Mounting hole 420. Assembly surface
421.等效柔性球铰 422.右边 423.球窝421. Equivalent flexible spherical hinge 422. Right 423. Ball socket
具体实施方式Detailed ways
下面将结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
一般光波导自动封装机器人系统包括运动控制系统(含运动平台机构)、高精度视觉系统、激光光源、光功率计和点胶固化系统。封装机器人在工作状态下,首先操作者利用高精度视觉系统获得输入光纤阵列、被封装波导以及输出光纤阵列的位置,并通过运动控制系统调节被封装波导的空间位姿,使其与输入光纤阵列和输出光纤阵列的位姿偏差逐渐缩小,直至光功率计检测到有一定的光通量输出;接着,通过计算机控制技术编制最佳光功率搜索算法并结合高精度运动平台控制待封装波导芯片运动至最佳光功率耦合位置,并控制运动平台使其到达该位置。然后,利用点胶固化系统把对准后的待封装件点胶、固化,成为最终的产品。A general optical waveguide automatic packaging robot system includes a motion control system (including a motion platform mechanism), a high-precision vision system, a laser light source, an optical power meter, and a glue dispensing and curing system. When the packaging robot is working, the operator first uses the high-precision vision system to obtain the positions of the input fiber array, the packaged waveguide and the output fiber array, and adjusts the spatial pose of the packaged waveguide through the motion control system so that it is in line with the input fiber array. The pose deviation from the output fiber array gradually decreases until the optical power meter detects a certain amount of luminous flux output; then, the optimal optical power search algorithm is compiled through computer control technology and combined with a high-precision motion platform to control the movement of the waveguide chip to be packaged to the maximum Optimal optical power coupling position, and control the motion platform to reach the position. Then, use the dispensing and curing system to dispense and cure the aligned parts to be packaged to become the final product.
本发明是一种适用于光波导自动封装机器人系统的运动平台机构,是采用三自由度宏动平台机构1和六自由度微动平台(由三自由度微动圆盘2和三自由度微动臂3组成)相结合的并联结构,有效地保证了末端输出的大范围运动,同时也确保其精确定位。运动平台机构由宏动平台机构1、微动圆盘2、微动臂3、六个压电陶瓷和三个电机构成,其中微动圆盘2上安装有三个压电陶瓷,微动臂3上安装有另外三个压电陶瓷,宏动平台机构1上安装有三个电机,微动圆盘2通过沉头孔203安装在宏动平台机构1的Z轴运动平台112上,微动圆盘2的锥销202安装在微动臂3的销孔302内。通过微动圆盘2的锥销202和微动臂3的销孔302的过盈连接配合实现了微动圆盘2和微动臂3的柔性连接。The invention is a motion platform mechanism suitable for optical waveguide automatic packaging robot system, which adopts a three-degree-of-freedom
在本发明中,宏动平台机构1采用模块化结构设计,有利于机构重构和加工要求。将微动圆盘2设计成具有柔性平面3-RRR并联机构的薄形圆盘,其厚度为8~15mm,优选厚度10mm左右,并利用铜材料弹性变形,实现了柔性铰链代替传统的运动副消除了运动副固有的间隙、摩擦等缺陷,采用线切割加工方法切割沟缝、通孔的设计制作一体化的三个结构相同的运动支链(即运动支链A 210、运动支链B220和运动支链C 230)实现了位移放大的支点杠杆结构。由于采用了具有纳米级分辨率的压电陶瓷(选用由德国Piezomechanik公司生产的Pst 150/7/40 VS12)作为驱动器驱动三个柔性运动支链结构,使锥销202中心点具有高运动精度。微动臂2设计成基于柔性铰链的3-RPS并联结构形式和模块化结构设计,并且每一个移动副结构为一体构件,通过精密装配能够实现高精度输出保证了待封装波导间的精确对准,从而实现波导器件的最佳耦合效果。In the present invention, the
参见图1所示,所述宏动平台机构1由底座101、X轴运动平台104、Y轴运动平台107、Z轴运动平台112、X轴驱动电机103、Y轴驱动电机106、Z轴驱动电机110和连接弯板109构成;X轴运动平台104安装在底座101上,X轴驱动电机103安装在X轴运动平台104上;Y轴运动平台107安装在X轴运动平台104上,Y轴驱动电机106安装在Y轴运动平台107上;连接弯板109的平行面108安装在Y轴运动平台107上,连接弯板109的垂直面113上安装有Z轴运动平台112,Z轴驱动电机110安装在Z轴运动平台112上,Z轴运动平台112的顶部设有丝杠孔105。X轴运动平台104、Y轴运动平台107和Z轴运动平台112上分别设有用于安装、固定用的安装孔111、螺纹孔102。丝杠孔在X轴运动平台104和Y轴运动平台107上同样设有,图中未示出。1, the
参见图2A所示,所述微动圆盘2是一薄形铜材质圆盘,其盘体上端面201的盘心部位设有锥销202,并以锥销202为中心点且按120°均布设有结构相同的运动支链A 210、运动支链B 220和运动支链C 230,每个运动支链与盘缘204之间设有用于将微动圆盘2与宏动平台机构1的Z轴运动平台112固定的沉头孔203;盘体的盘缘204上设有切口A 214、切口B 224、切口C 234,每个切口的切口面上设有螺纹孔,如,切口C 234的切口面235上设有螺纹孔236,这个螺纹孔236是供螺钉穿过并将压电陶瓷顶紧,起到安装压电陶瓷的目的。微动圆盘2上的这三个运动支链采用模块化设计,其结构、尺寸是相同的。以锥销202的中心点为圆心,以每120°布置一个运动支链,将三个运动支链均匀的以线切割方法切割沟缝和通孔形成的运动支链设计在圆盘上,其构成具有柔性平面3-RRR并联机构,使这三个运动支链无间隙运动,解决了运动支链在运动过程中的摩擦缺陷(参见图2B所示)。Referring to Fig. 2A, the fretting
参见图2C所示,所述运动支链A 210采用线切割方式加工成一体构件,运动支链A 210上设有供安装压电陶瓷的长形腔211、五条沟缝和十个通孔,五条沟缝与十个通孔构成位移放大的支点杠杆结构。沟缝241、通孔251、通孔252、沟缝242、通孔259与通孔260构成第三刚性杆215,通孔251与通孔252之间有一0.3~0.5mm厚的薄壁,其薄壁中心点为支点A1,通孔259与通孔260之间有一0.3~0.5mm厚的薄壁,其薄壁中心点为支点A2;通孔260、通孔259、沟缝242、通孔253、通孔254、通孔255、通孔256、沟缝243构成第二刚性杆219,沟缝243与长形腔211的共面上设有球窝206,通孔253与通孔254之间有一0.3~0.5mm厚的薄壁,其薄壁中心点为支点A3,通孔255与通孔256之间有一0.3~0.5mm厚的薄壁,其薄壁中心点为支点A4;沟缝243、通孔256、通孔255、沟缝245、通孔257、通孔258、沟缝244构成第一刚性杆213,通孔257与通孔258之间有一0.3~0.5mm厚的薄壁,其薄壁中心点为支点A5;当给压电陶瓷供电后,压电陶瓷在磁场的作用下将产生一定位移,使压电陶瓷的输出杆顶紧球窝206,从而为第一刚性杆213提供了一个力,这个力能够让运动支链A 210上的支点A1与支点A2形成的杠杆A1A2和支点A3与支点A2形成的杠杆A2A3按并联机构运动学规律运动,这样就形成了微动盘2的无缝隙运动,克服了摩擦产生的缺陷。Referring to Fig. 2C, the motion
在本发明中,微动圆盘2上的运动支链A 210、运动支链B 220和运动支链C230以锥销202为中心点120°转角对称分布;运动支链A 210上的支点A5是杠杆结构中的柔性铰链点,用于放大压电陶瓷施加的位移;支点A4是杠杆结构中的输出点,用于实现支点A3的输入转角,进而通过杠杆A2A3、杠杆A1A2使得支点A2、支点A1以并联机构运动学的规律运动。当安装于每一个运动支链上的压电陶瓷上电后,通过其压电陶瓷的输出杆与各自的球窝紧密接触来驱动各运动支链,从而使平台的末端输出点锥销202具有平面三自由度运动能力。In the present invention, the motion
在本发明中,与微动圆盘2上的全柔性机构(运动支链A 210、运动支链B 220和运动支链C 230)对应的运动学机构筒图如图2B所示,即通常所熟悉的平面并联3-RRR结构型式。图中,运动支链A 210、运动支链B 220和运动支链C 230以锥销202的中心点对称分布,在同一平面上这个全柔性机构能够完成两个移动和一个转动的平面三自由度运动。In the present invention, the kinematic mechanism diagram corresponding to the fully flexible mechanism (
参见图3A所示,所述微动臂3,由底板301、顶板304、移动副A 310、移动副B 320、移动副C 330、压电陶瓷A 311、压电陶瓷B 321、压电陶瓷C 331和供安装压电陶瓷的安装盘312、322、332构成,顶板304上设有三个槽口和安装孔305;顶板304上的槽口A 306、槽口B 316和槽口C 326的中心点构成一个等边三角形。当给三个槽口施加不同的位移时,顶板304的中心能够实现三个空间自由度的微动运动。Referring to Fig. 3A, the micro-moving arm 3 is composed of a bottom plate 301, a top plate 304, a moving pair A 310, a moving pair B 320, a moving pair C 330, a piezoelectric ceramic A 311, a piezoelectric ceramic B 321, and a piezoelectric ceramic C 331 and the mounting plates 312, 322, 332 for installing piezoelectric ceramics are formed, and the top plate 304 is provided with three notches and mounting holes 305; the notch A 306, the notch B 316 and the notch C 326 on the top plate 304 The center points form an equilateral triangle. When different displacements are applied to the three notches, the center of the top plate 304 can realize micro-movements in three spatial degrees of freedom.
参见图3B所示,所述移动副A 310采用线切割方式加工成一体构件,移动副A310的底端是连接板401,连接板401上有支撑矩形框410,支撑矩形框410的上边411的端部上下分别切割成两个半圆形组成的左切槽412和右切槽413,支撑矩形框410的上边411的下部中心设有球窝423;支撑矩形框410的下边414中心位置处设有供安装压电陶瓷A 311的螺纹孔408;支撑矩形框410的底边415的端部上下分别切割成两个半圆形组成左切槽416和右切槽417,支撑矩形框410的底边415上设有与连接板401上的工艺孔404相对应的孔(图中未画示出);支撑矩形框410的左边418上端顶部的装配面420上设有安装孔419,支撑矩形框410的左边418上部与支撑矩形框410的上边411左端的接合处设有等效柔性球铰421。每个移动副上的球窝都是供压电陶瓷的输出杆顶紧用的,进而为移动副提供驱动。Referring to Fig. 3B, the moving pair A 310 is processed into an integral member by wire cutting, the bottom end of the moving pair A310 is a connecting plate 401, a supporting rectangular frame 410 is arranged on the connecting plate 401, and an upper edge 411 of the supporting rectangular frame 410 is formed. The end is cut up and down into two semicircular left slits 412 and right slits 413 respectively, the lower center of the upper side 411 of the supporting rectangular frame 410 is provided with a ball socket 423; There is a threaded hole 408 for installing the piezoelectric ceramic A 311; the end of the bottom edge 415 of the supporting rectangular frame 410 is cut into two semicircles up and down respectively to form a left slit 416 and a right slit 417, and the bottom of the supporting rectangular frame 410 The edge 415 is provided with a hole corresponding to the process hole 404 on the connecting plate 401 (not shown in the figure); the mounting surface 420 on the top of the left side 418 of the supporting rectangular frame 410 is provided with an installation hole 419, and the supporting rectangular frame An equivalent flexible ball hinge 421 is provided at the joint between the upper part of the left side 418 of the frame 410 and the left end of the upper side 411 of the supporting rectangular frame 410 . The ball and socket on each moving pair is used for the output rod of piezoelectric ceramics to be tightened, and then provides driving for the moving pair.
在本发明中,微动臂3的顶板304、底板301和移动副A 310、移动副B 320、移动副C 330构成3-RPS机构的几何关系形式。当压电陶瓷上电后,通过压电陶瓷的输出杆顶紧球窝产生的力(即输出杆的伸缩性能)来控制移动副的上下运动,从而使固定安装在顶板304上的被封装件具有两个转动一个移动的空间三自由度运动能力。In the present invention, the top plate 304, the base plate 301, the moving pair A 310, the moving pair B 320, and the moving pair C 330 of the micro-moving arm 3 constitute the geometric relationship form of the 3-RPS mechanism. When the piezoelectric ceramic is powered on, the force generated by the output rod of the piezoelectric ceramic against the ball socket (that is, the expansion and contraction performance of the output rod) is used to control the up and down movement of the moving pair, so that the packaged part fixedly installed on the top plate 304 It has three-degree-of-freedom movement capabilities in space with two rotations and one movement.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101275074A CN1324334C (en) | 2005-12-05 | 2005-12-05 | Motion platform mechanism suitable for optical waveguide automatic-packaging robot system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101275074A CN1324334C (en) | 2005-12-05 | 2005-12-05 | Motion platform mechanism suitable for optical waveguide automatic-packaging robot system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1776471A CN1776471A (en) | 2006-05-24 |
CN1324334C true CN1324334C (en) | 2007-07-04 |
Family
ID=36766084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101275074A Expired - Fee Related CN1324334C (en) | 2005-12-05 | 2005-12-05 | Motion platform mechanism suitable for optical waveguide automatic-packaging robot system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1324334C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103104793B (en) * | 2013-01-25 | 2015-03-11 | 重庆大学 | Integrated type six degrees of freedom precision positioning platform |
CN103552061B (en) * | 2013-11-18 | 2015-07-15 | 山东理工大学 | Parallel micro-motion platform with one translational degree of freedom and two rotational degrees of freedom |
CN103884373B (en) * | 2014-02-26 | 2016-11-23 | 北京航空航天大学 | A kind of composite load simulator realizing multidimensional Based on Pure Bending Moment and pressure |
CN103883849A (en) * | 2014-03-28 | 2014-06-25 | 苏州大学 | Large-stoke nanometer positioning platform |
CN105291090B (en) * | 2015-10-30 | 2017-03-22 | 清华大学 | Parallel type macro-micro high-precision movement platform |
CN105404316A (en) * | 2015-12-21 | 2016-03-16 | 四川大学 | Array type position attitude fine tuning method |
CN111421523A (en) * | 2020-04-03 | 2020-07-17 | 清华大学 | Micro-motion platform |
CN113416628A (en) * | 2021-08-12 | 2021-09-21 | 天津大学 | Macro-micro combined cell clamping platform based on modularization |
CN116000968A (en) * | 2023-02-01 | 2023-04-25 | 一汽解放汽车有限公司 | Robot |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1086163C (en) * | 1999-09-30 | 2002-06-12 | 燕山大学 | Six-freedom parallel decoupling-structure jogging robot |
CN1383004A (en) * | 2002-06-13 | 2002-12-04 | 武汉光迅科技有限责任公司 | Automatic coupling package and angle compensated scan technique and system for waveguide device |
US6749390B2 (en) * | 1997-12-15 | 2004-06-15 | Semitool, Inc. | Integrated tools with transfer devices for handling microelectronic workpieces |
CN1614758A (en) * | 2003-11-04 | 2005-05-11 | 电子科技大学 | Precisively butting apparatus for photoelectric device package |
-
2005
- 2005-12-05 CN CNB2005101275074A patent/CN1324334C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749390B2 (en) * | 1997-12-15 | 2004-06-15 | Semitool, Inc. | Integrated tools with transfer devices for handling microelectronic workpieces |
CN1086163C (en) * | 1999-09-30 | 2002-06-12 | 燕山大学 | Six-freedom parallel decoupling-structure jogging robot |
CN1383004A (en) * | 2002-06-13 | 2002-12-04 | 武汉光迅科技有限责任公司 | Automatic coupling package and angle compensated scan technique and system for waveguide device |
CN1614758A (en) * | 2003-11-04 | 2005-05-11 | 电子科技大学 | Precisively butting apparatus for photoelectric device package |
Non-Patent Citations (3)
Title |
---|
光波导封装机器人系统研究现状 晁代宏等,仪器仪表学报,第25卷第4期 2004 * |
波导器件耦合对接设备USB接口的设计与开发 胡一达等,仪器仪表学报,第24卷第4期 2003 * |
波导器件耦合对接设备USB接口的设计与开发 胡一达等,仪器仪表学报,第24卷第4期 2003;光波导封装机器人系统研究现状 晁代宏等,仪器仪表学报,第25卷第4期 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1776471A (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104595642B (en) | A kind of two degrees of freedom Piezoelectric Driving nanopositioning stage | |
CN107464586B (en) | A three-degree-of-freedom large-stroke micro-positioning platform with decoupling of driving force | |
CN102854751B (en) | Focusing adjustment leveling mechanism of photolithographic machine and leveling mechanism of photolithographic machine | |
CN101770182B (en) | Three degrees of freedom flexible precision positioning table | |
CN1324334C (en) | Motion platform mechanism suitable for optical waveguide automatic-packaging robot system | |
CN101776851B (en) | Three DOF micro-positioning workbench for nano-imprint lithography system | |
CN105904443B (en) | A kind of two-freedom compliant parallel mechanism of mobile decoupling | |
CN101290808A (en) | A three-degree-of-freedom ultra-precision micro-motion table | |
CN105619428B (en) | A kind of combined type micro-clamp towards fiber phase alignment function | |
CN108615548A (en) | Novel three freedom meek parallel precise locating platform | |
CN104896268B (en) | A kind of Three Degree Of Freedom big stroke flexible nano locating platform | |
CN100340378C (en) | Six-freedom-degree precision positioning workbench | |
CN103056867B (en) | Flexible micro-moving manipulator | |
CN105643592A (en) | Symmetrical decoupling and single degree of freedom flexible operation mechanism | |
CN116343901B (en) | Three-degree-of-freedom micro-motion platform and working method | |
CN102496391B (en) | An assembled two-dimensional micro-displacement stage | |
CN1235405A (en) | Miniature monoblock precisive plane moving mechanism and device thereof | |
CN105690358B (en) | A kind of flexible micro-operation mechanism | |
CN110211627A (en) | High-precision large-stroke table space translation precisely locating platform effective greatly | |
CN205380661U (en) | Flexible operating device of symmetry decoupling zero single degree of freedom | |
CN117348349A (en) | Plane rotating mechanism, micro-motion platform and macro-micro motion platform for wafer photoetching | |
CN1788913A (en) | Automatic laser welding device for fibre-optical active component | |
CN2782326Y (en) | Six-freedom-degree precision positioning workbench | |
CN109949856B (en) | Modularized six-degree-of-freedom precise micro-motion mechanism based on flexible hinge | |
CN1298030C (en) | Precisively butting apparatus for photoelectric device package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |