CN1307937C - Signal peak point search device and method and its application in blood pressure measurement - Google Patents
Signal peak point search device and method and its application in blood pressure measurement Download PDFInfo
- Publication number
- CN1307937C CN1307937C CNB031366597A CN03136659A CN1307937C CN 1307937 C CN1307937 C CN 1307937C CN B031366597 A CNB031366597 A CN B031366597A CN 03136659 A CN03136659 A CN 03136659A CN 1307937 C CN1307937 C CN 1307937C
- Authority
- CN
- China
- Prior art keywords
- signal
- top point
- amplitude
- input
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000009530 blood pressure measurement Methods 0.000 title claims abstract description 20
- 230000036772 blood pressure Effects 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 43
- 230000006698 induction Effects 0.000 claims 4
- 230000001105 regulatory effect Effects 0.000 claims 4
- 230000008676 import Effects 0.000 claims 3
- 230000000052 comparative effect Effects 0.000 claims 1
- 238000013186 photoplethysmography Methods 0.000 abstract description 20
- 238000012545 processing Methods 0.000 abstract description 7
- 239000003990 capacitor Substances 0.000 abstract description 5
- 230000005611 electricity Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000035487 diastolic blood pressure Effects 0.000 description 3
- 230000035488 systolic blood pressure Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域technical field
本发明一般涉及信号测量技术,特别涉及一种在血压测量中用于搜寻人体所发放的诸如心电图信号(ECG)或光体积变化描记信号(PPG)的信号的顶端点的装置和方法以及其在血压测量中的应用。The present invention generally relates to signal measurement technology, and in particular to a device and method for searching the apex point of a signal such as an electrocardiogram signal (ECG) or a photoplethysmography signal (PPG) issued by a human body in blood pressure measurement and its application in blood pressure measurement. Application in blood pressure measurement.
背景技术Background technique
现今的血压计可分为破损式血压计和无破损式血压计两大类。因为破损式血压计在测量期间需要破损病患者的皮肤,容易造成细菌感染和血流不止。因此,为了安全、舒适及方便的缘故,一般医护人员和市民都愿意采用无破损式血压计作血压测量的工具。Today's sphygmomanometers can be divided into two categories: damaged sphygmomanometers and non-destructive sphygmomanometers. Because the damaged sphygmomanometer needs to damage the patient's skin during the measurement period, it is easy to cause bacterial infection and blood flow. Therefore, for the sake of safety, comfort and convenience, general medical staff and citizens are willing to use non-destructive sphygmomanometers as blood pressure measurement tools.
现今的无破损式血压计主要包括音调测定血压计(Tonometer)、脉搏血压计(Sphygmomanometer)以及光体积变化血压计(Photoplethysmographic meter)。Today's non-destructive sphygmomanometers mainly include Tonometer, Sphygmomanometer and Photoplethysmographic meter.
音调测定血压计利用一组压力感应器来测量病患者的血压信号波形,但是由于这种方法中所采用的感应器的价格较高并且容易受到测量位置的干扰,所以在市场上并不流行。Tone measuring sphygmomanometers use a set of pressure sensors to measure the patient's blood pressure signal waveform, but because the sensors used in this method are expensive and easily interfered by the measurement location, they are not popular in the market.
脉搏血压计的测量方法有两种,分别是听诊法(Auscultatory method)和振动法(Oscillometric method)。听诊法的原理在于收集何谓柯氏音(Korotkoff sounds)。振动法则需要腕带气囊的帮助来收集压力振动信号。其不足处在于重复使用脉搏血压计会使病患者的血管受压,使其准确性降低,不利于连续血压测量。There are two measurement methods of the pulse sphygmomanometer, namely the auscultatory method and the vibration method (Oscillometric method). The principle of auscultation is to collect what are called Korotkoff sounds. Vibration Law requires the help of wristband airbags to collect pressure vibration signals. Its disadvantage is that repeated use of the pulse sphygmomanometer will cause the patient's blood vessels to be compressed, which will reduce its accuracy and is not conducive to continuous blood pressure measurement.
光体积变化血压计主要分为两种,第一种光体积变化血压计通过光线的变化来确定血管内血液体积的变化,并由此找出相对的血压变化。这种方法假定血液体积变化和血压变化是相似的,但这种假设未经严格的实验证明。第二种光体积变化血压计则利用了血压与脉搏波速度(Pulsewave velocity)之间的关系。当血压上升时,由于血管的扩张造成血管变硬,从而使脉搏波速度上升。因此,只要找到脉搏波速度与血压之间的关系,就可以测出患者的血压。There are two main types of photovolume change sphygmomanometers. The first type of photovolume change sphygmomanometer determines the change of blood volume in blood vessels through the change of light, and thus finds out the relative blood pressure change. This approach assumes that changes in blood volume and blood pressure are similar, but this assumption has not been proven experimentally. The second type of photovolume change sphygmomanometer utilizes the relationship between blood pressure and pulse wave velocity. When blood pressure rises, blood vessels harden due to dilation of blood vessels, thereby increasing pulse wave velocity. Therefore, as long as the relationship between pulse wave velocity and blood pressure is found, the patient's blood pressure can be measured.
脉搏波速度可通过脉搏传送时间(Pulse Transit Time)来得到确定。而脉搏传送时间则可通过测量心电图信号与光体积变化描记信号的时间差而得到确定。在利用心电图信号与光体积变化描记信号的时间差进行脉搏传送时间测量时,通常的做法是,采用心电图信号中的R型波信号的顶端点以及光体积变化描记信号的顶端点以分别作为测量基点,并且计算这两个基点之间的时间差,从而确定出脉搏传送时间。Pulse wave velocity can be determined by pulse transit time (Pulse Transit Time). The pulse transit time can be determined by measuring the time difference between the ECG signal and the photoplethysmography signal. When using the time difference between the electrocardiogram signal and the photoplethysmography signal to measure the pulse transit time, the usual practice is to use the top point of the R-wave signal in the electrocardiogram signal and the top point of the photoplethysmography signal as the measurement base points respectively , and calculate the time difference between these two base points to determine the pulse transit time.
现有技术中已经有一些仪器能够利用上述方法进行脉搏传送时间的测量。但是,这些现有测量仪器的缺点在于,其用来执行信号顶端点搜寻的工作一般由诸如顶端点搜寻程序的复杂软件程序来完成,而复杂软件程序对信号处理器具有较高的要求,由此增加了整个仪器的开发成本,并且其开发时间也较长。There are already some instruments in the prior art that can use the above method to measure the pulse transit time. However, the shortcoming of these existing measuring instruments is that the work that they are used to perform the signal top point search is generally completed by a complex software program such as the top point search program, and the complex software program has higher requirements on the signal processor. This increases the development cost of the whole instrument, and its development time is also longer.
发明内容Contents of the invention
因此,本发明就是针对现有技术中的上述缺点而产生的,其目的是提供一种信号顶端点搜寻装置和方法及其在血压测量中的应用,它既能够使血压测量过程中的信号顶端点搜寻过程得到简化,同时还能保证有效地测量作为测量基点的信号顶端点出现的准确时间,进而利用测量基点之间的时间差距作为测量血压的参考指标。Therefore, the present invention is produced in view of the above-mentioned shortcomings in the prior art, and its purpose is to provide a signal top point search device and method and its application in blood pressure measurement, which can make the signal top point in the blood pressure measurement process The point search process is simplified, and at the same time, the accurate time at which the top point of the signal as the measurement base point appears can be effectively measured, and then the time gap between the measurement base points is used as a reference index for measuring blood pressure.
为了实现上述目的,根据本发明的第一个方面所述,它提供了一种信号顶端点搜寻装置,该装置包括:输入端,用于输入待测信号;电流转向检测电路,用于根据待测信号的输入电流方向而输出相应的信号;顶端点检测电路,用于检测待测信号的顶端点,使其输出信号的幅度尽量维持在顶端点附近,并使其输出信号接近为有一定幅度的直流信号;幅度调节电路,用于调节其输入信号的幅度;幅度比较电路,用于对其输入信号的幅度进行比较,并根据比较结果输出相应的信号;开关电路,用于在控制信号的控制下使其通过的信号被导通或切断;以及输出端,用于将信号输出至外部,In order to achieve the above object, according to the first aspect of the present invention, it provides a signal top point search device, which includes: an input terminal, used to input the signal to be tested; a current steering detection circuit, used to The input current direction of the measured signal and output the corresponding signal; the top point detection circuit is used to detect the top point of the signal to be tested, so that the amplitude of the output signal can be kept near the top point as much as possible, and the output signal can be close to a certain amplitude The DC signal; the amplitude adjustment circuit, used to adjust the amplitude of its input signal; the amplitude comparison circuit, used to compare the amplitude of its input signal, and output the corresponding signal according to the comparison result; the switch circuit, used in the control signal The signal passing through under the control is turned on or cut off; and the output terminal is used to output the signal to the outside,
其中,待测信号通过所述输入端、所述顶端点检测电路以及所述幅度调节电路被输入至所述幅度比较电路的一端,待测信号还通过所述输入端被直接连接至所述幅度比较电路的另一端,所述幅度比较电路对两个所述输入信号的幅度进行比较,并将比较结果信号输出至所述开关电路的控制端以作为其控制信号,所述开关电路根据该控制信号的控制,将来自所述输入端并经由所述电流转向检测电路输入的信号通过所述输出端输出至外部,或者切断所述电流转向检测电路与所述输出端的连接。Wherein, the signal to be measured is input to one end of the amplitude comparison circuit through the input end, the top point detection circuit and the amplitude adjustment circuit, and the signal to be measured is also directly connected to the amplitude comparison circuit through the input end. The other end of the comparison circuit, the amplitude comparison circuit compares the amplitudes of the two input signals, and outputs the comparison result signal to the control end of the switch circuit as its control signal, and the switch circuit according to the control The signal control is to output the signal from the input terminal through the current steering detection circuit to the outside through the output terminal, or cut off the connection between the current steering detection circuit and the output terminal.
在根据本发明第一个方面所述的信号顶端点搜寻装置中,由所述电流转向检测电路通过所述开关电路输出至所述输出端的信号为方型脉冲信号,所述方型脉冲信号与所述待测信号的顶端点具有对应的关系。In the signal top point search device according to the first aspect of the present invention, the signal output from the current steering detection circuit to the output terminal through the switch circuit is a square pulse signal, and the square pulse signal is the same as The top points of the signal to be tested have a corresponding relationship.
在本发明的实施例中,所述方型脉冲信号的下降沿对应于所述待测信号的顶端点。In an embodiment of the present invention, the falling edge of the square pulse signal corresponds to the top point of the signal to be tested.
在根据本发明所述的信号顶端点搜寻装置中,所述待测信号为能够反映出人体生理特征的信号。In the device for searching for a top point of a signal according to the present invention, the signal to be tested is a signal capable of reflecting physiological characteristics of a human body.
所述人体生理特征信号可以是心电图信号。在这种情况下,所述输入端被连接至心电图信号的感应器,并且此时所述装置测量的信号顶端点可以是心电图信号中的R型波信号的顶端点。The human physiological characteristic signal may be an electrocardiogram signal. In this case, the input terminal is connected to the sensor of the electrocardiogram signal, and the signal apex point measured by the device at this time may be the apex point of the R-wave signal in the electrocardiogram signal.
所述人体生理特征信号还可以是光体积变化描记信号。在这种情况下,所述输入端被连接至光体积变化描记信号的感应器,并且此时所述装置测量的信号顶端点为光体积变化描记信号的顶端点。The human physiological characteristic signal may also be a photoplethysmography signal. In this case, the input is connected to the sensor of the photoplethysmographic signal, and the top point of the signal measured by the device at this time is the top point of the photoplethysmographic signal.
在本发明的实施例中,所述顶端点检测电路包括第一运算放大器、第二运算放大器、二极管以及电容,In an embodiment of the present invention, the top point detection circuit includes a first operational amplifier, a second operational amplifier, a diode and a capacitor,
其中,所述第一运算放大器的同相输入端与所述装置的所述输入端相连,其反相输入端与所述第二运算放大器的反相输入端及输出端相连,所述第一运算放大器的输出端通过所述二极管连接至所述第二运算放大器的同相输入端,所述第二运算放大器的同相输入端通过所述电容接地。Wherein, the non-inverting input terminal of the first operational amplifier is connected with the input terminal of the device, and its inverting input terminal is connected with the inverting input terminal and the output terminal of the second operational amplifier, and the first operational amplifier The output terminal of the amplifier is connected to the non-inverting input terminal of the second operational amplifier through the diode, and the non-inverting input terminal of the second operational amplifier is grounded through the capacitor.
另外,在本发明的实施例中,所述装置的所述输出端可与外部信号处理器连接,用于对所述装置的输出信号进行处理。In addition, in the embodiment of the present invention, the output end of the device may be connected to an external signal processor for processing the output signal of the device.
根据本发明的第二个方面所述,它提供了一种利用上述装置进行信号顶端点搜寻的方法,该方法包括以下步骤:1)通过所述装置的所述输入端输入待测信号;2)利用所述电流转向检测电路对待测信号进行电流转向检测,并输出相应的信号;以及3)从所述电流转向检测电路输出的信号中选择出与待测信号的顶端点相关的信号并输出该信号。According to the second aspect of the present invention, it provides a method for searching the top point of a signal using the above-mentioned device, the method comprising the following steps: 1) inputting the signal to be tested through the input terminal of the device; 2. ) using the current steering detection circuit to detect the current steering of the signal to be tested, and output a corresponding signal; and 3) selecting a signal related to the top point of the signal to be tested from the signals output by the current steering detection circuit and outputting the signal.
所述方法进一步包括以下步骤:3-1)利用所述装置的所述顶端点检测电路检测待测信号的顶端点,使其输出信号的幅度尽量维持在顶端点附近,并使其输出信号接近为有一定幅度的直流信号;3-2)利用所述装置的所述幅度调节电路对所述顶端点检测电路的输出信号的幅度进行调节;3-3)利用所述装置的所述幅度比较电路对通过所述输入端输入的待测信号的幅度与所述顶端点检测电路的输出信号的幅度进行比较,并产生比较结果信号;以及3-4)利用所述比较结果信号作为控制信号对所述开关电路进行控制,以导通或者切断所述电流转向检测电路向所述装置的所述输出端输出的信号。The method further includes the following steps: 3-1) using the top point detection circuit of the device to detect the top point of the signal to be measured, so that the amplitude of its output signal is maintained near the top point as much as possible, and its output signal is close to the top point. It is a DC signal with a certain amplitude; 3-2) using the amplitude adjustment circuit of the device to adjust the amplitude of the output signal of the top point detection circuit; 3-3) using the amplitude comparison of the device The circuit compares the magnitude of the signal to be measured input through the input terminal with the magnitude of the output signal of the top point detection circuit, and generates a comparison result signal; and 3-4) using the comparison result signal as a control signal to The switch circuit is controlled to turn on or cut off the signal output by the current steering detection circuit to the output terminal of the device.
在根据本发明第二个方面所述的信号顶端点搜寻方法中,由所述电流转向检测电路通过所述开关电路输出至所述输出端的信号为方型脉冲信号,所述方型脉冲信号与所述待测信号的顶端点具有对应的关系。In the signal top point search method according to the second aspect of the present invention, the signal output from the current steering detection circuit to the output terminal through the switch circuit is a square-shaped pulse signal, and the square-shaped pulse signal is the same as The top points of the signal to be tested have a corresponding relationship.
在本发明的实施例中,所述方型脉冲信号的下降沿对应于所述待测信号的顶端点。In an embodiment of the present invention, the falling edge of the square pulse signal corresponds to the top point of the signal to be tested.
在根据本发明所述的信号顶端点搜寻方法中,所述待测信号为能够反映出人体生理特征的信号。In the signal top point search method according to the present invention, the signal to be tested is a signal that can reflect the physiological characteristics of a human body.
所述人体生理特征信号可以是心电图信号。在这种情况下,所述输入端被连接至心电图信号的感应器,并且此时所述装置测量的信号顶端点可以是心电图信号中的R型波信号的顶端点。The human physiological characteristic signal may be an electrocardiogram signal. In this case, the input terminal is connected to the sensor of the electrocardiogram signal, and the signal apex point measured by the device at this time may be the apex point of the R-wave signal in the electrocardiogram signal.
所述待测信号还可以是光体积变化描记信号。在这种情况下,所述输入端被连接至光体积变化描记信号的感应器,并且此时所述装置测量的信号顶端点为光体积变化描记信号的顶端点。The signal to be measured may also be a photoplethysmography signal. In this case, the input is connected to the sensor of the photoplethysmographic signal, and the top point of the signal measured by the device at this time is the top point of the photoplethysmographic signal.
另外,在本发明的实施例中,所述方法进一步包括利用与所述装置的所述输出端相连的外部信号处理器对所述装置的输出信号进行处理的步骤。In addition, in an embodiment of the present invention, the method further includes the step of processing the output signal of the device by using an external signal processor connected to the output terminal of the device.
根据本发明的第三个方面所述,它提供了一种利用上述装置进行血压测量的设备,所述设备包括:第一信号顶端点搜寻装置,用于对第一人体生物特征信号的顶端点进行搜寻;第二信号顶端点搜寻装置,用于对第二人体生物特征信号的顶端点进行搜寻;信号处理器,用于记录分别来自所述第一信号顶端点搜寻装置和所述第二信号顶端点搜寻装置的顶端点搜寻结果信号的时间基点,计算两个时间基点之间的时间差距,并根据所述时间差距计算出血压。According to the third aspect of the present invention, it provides a device for blood pressure measurement using the above-mentioned device, the device includes: a first signal apex point search device, used to search for the apex point of the first human body biometric signal search; the second signal apex point search device is used to search the apex point of the second human biometric signal; the signal processor is used to record the apex point search device and the second signal from the first signal respectively. The top point searching device searches for the time base point of the result signal, calculates the time gap between the two time base points, and calculates the blood pressure according to the time gap.
在根据本发明第三个方面所述的设备中,所述第一人体生物特征信号可以为心电图信号,而且,在这种情况下,所述顶端点为心电图信号中的R型波信号的顶端点。所述第二人体生物特征信号为光体积变化描记信号。In the device according to the third aspect of the present invention, the first human body biometric signal may be an electrocardiogram signal, and in this case, the apex point is the apex of an R-shaped wave signal in the electrocardiogram signal point. The second human body biometric signal is a photoplethysmography signal.
所述设备可还包括一个显示器,用于显示对血压的测量结果。The device may further include a display for displaying blood pressure measurements.
所述设备还包括有记忆体,用于保存计算血压所需的参数和公式。The device also includes a memory for storing parameters and formulas required for calculating blood pressure.
所述设备还可包括键盘输入装置,用于输入计算血压所需的参数。The device may also include keyboard input means for inputting parameters required for calculating blood pressure.
根据本发明的第四个方面所述,它提供了一种利用上述装置进行血压测量的方法,所述方法包括以下步骤:1)利用所述第一信号顶端点搜寻装置对心电图信号中的顶端点进行搜寻;2)利用所述第二信号顶端点搜寻装置对光体积变化描记信号的顶端点进行搜寻;3)利用所述信号处理器记录分别来自所述第一信号顶端点搜寻装置和所述第二信号顶端点搜寻装置的顶端点搜寻结果信号的时间基点,计算两个时间基点之间的时间差距;以及4)由所述信号处理器根据所述时间差距计算出血压。According to the fourth aspect of the present invention, it provides a method for measuring blood pressure using the above-mentioned device, the method comprising the following steps: 1) using the first signal apex point search device to search for the apex point in the electrocardiogram signal 2) use the second signal apex point search device to search for the apex point of the photoplethysmography signal; 3) use the signal processor to record the apex point search device and the apex point from the first signal respectively 4) calculating the blood pressure by the signal processor according to the time gap between the two time base points.
在根据本发明第四个方面所述的方法中,所述第一人体生物特征信号可以为心电图信号,而且,在这种情况下,所述顶端点为心电图信号中的R型波信号的顶端点。所述第二人体生物特征信号为光体积变化描记信号。In the method according to the fourth aspect of the present invention, the first human body biometric signal may be an electrocardiogram signal, and in this case, the top point is the top of the R-shaped wave signal in the electrocardiogram signal point. The second human body biometric signal is a photoplethysmography signal.
上述步骤4)中进一步包括根据保存在一记忆体中的参数和公式计算血压的步骤。The above step 4) further includes a step of calculating blood pressure according to parameters and formulas stored in a memory.
所述方法还可包括显示计算出来的血压的步骤。The method may further include the step of displaying the calculated blood pressure.
所述方法还可包括输入计算血压所需参数的步骤。The method may further comprise the step of inputting parameters required for calculating blood pressure.
本发明可应用于但不限于无破损式,连续式及无腕带气囊式血压计,由于简化了利用诸如信号顶端搜寻程序进行的后期信号处理,因此它对信号处理器的要求不高。与现有技术相比,本发明不但成本较低和省电,而且,由于程序得到了简化,所以其开发时间亦相对减少,从而大大增加成本效益。The present invention is applicable to but not limited to non-destructive, continuous and non-wristband balloon blood pressure monitors, since it simplifies post signal processing using procedures such as signal tip search, so it is less demanding on the signal processor. Compared with the prior art, the present invention not only has lower cost and saves electricity, but also, because the program is simplified, the development time is relatively reduced, thereby greatly increasing the cost-effectiveness.
附图说明Description of drawings
通过以下的详细文字说明并参考附图,本发明的上述目的、特征及优点将变得更加清楚,在以下的附图中:Through the following detailed description and with reference to the accompanying drawings, the above-mentioned purpose, features and advantages of the present invention will become more clear, in the following drawings:
图1为根据本发明实施例所述的信号顶端点搜寻装置的电路结构图;FIG. 1 is a circuit structure diagram of a signal top point search device according to an embodiment of the present invention;
图2为根据本发明实施例所述的信号顶端点搜寻方法的流程图;FIG. 2 is a flowchart of a method for searching a top point of a signal according to an embodiment of the present invention;
图3为本发明实施例中的信号波形图;Fig. 3 is a signal waveform diagram in an embodiment of the present invention;
图4为根据本发明实施例所述的血压测量设备的结构框图;Fig. 4 is a structural block diagram of a blood pressure measuring device according to an embodiment of the present invention;
图5为根据本发明实施例所述的血压测量方法的流程框图。Fig. 5 is a flowchart of a method for measuring blood pressure according to an embodiment of the present invention.
优选实施例的说明Description of the preferred embodiment
以下将参考附图本发明的各个实施例进行详细说明。Various embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
首先参考图1和图3对根据本发明实施例所述的信号顶端点搜寻装置进行说明。Firstly, referring to FIG. 1 and FIG. 3 , the device for searching a top point of a signal according to an embodiment of the present invention will be described.
图1为根据本发明实施例所述的信号顶端点搜寻装置的电路结构图。图3为本发明实施例中的信号波形图。如图1所示,该装置包括:输入端110,用于接收输入信号,输入信号可以来自心电图信号或是光体积变化描记信号,其典型的信号波形如图3中的310所示;与输入端110相连的电流转向检测电路120,其中包括运算放大器U1、电阻R1及电容C1,该电路用于感应输入电流的转向,从而输出方型脉冲信号,其输出的方型脉冲信号的典型信号波形如图3中的340所示,由于电流转向检测电路120在每次电流转向时均会输出方型脉冲信号,因此并不能代表输入信号的顶端点的位置(从图3中的310与340的对应关系可以看出),所以需要另加电路来搜寻顶端点;与输入端110相连的顶端点检测电路130,其内包括两个运算放大器U2和U3、二极管D1以及电容C2,该电路用于检测输入信号的顶端点并将其输出信号的幅度尽量维持在顶端点附近,使其输出信号接近为有一定幅度的直流信号,其典型的输出信号波形如图3中的320所示;与顶端点检测电路130的输出端相连的幅度调节电路140,其内设有一可变电阻VR1,用以调节顶端点信号的幅度,从而输出一种经调节幅度的直流信号,其典型信号波形如330所示;幅度比较电路150,其内设有一运算放大器U4,运算放大器U4的两个输入端分别与幅度调节电路140的输出端以及输入端110相连,电路150用于对经过幅度调节的直流信号与输入信号的幅度进行比较,如果输入信号的幅度大于经过幅度调节的直流信号,则它将输出方型脉冲信号,否则,它将使其输出端接地(即,使输出端保持低电平);开关电路160,其内设有晶体管Q1、两极真空D2管及一种电阻R2,晶体管Q1的基极通过电阻R2与幅度比较电路140的输出端相连以作为开关电路160的控制端,其栅极与电路转向检测电路120的输出端相连,其发射极通过二极管D2连接至输出端170,如果幅度比较电路150输出的信号为方型脉冲信号(高电平),则开关电路160将接通电流转向检测电路120与输出端170,如果幅度比较电路150的输出端接地(低电平),则开关电路160将切断电流转向检测电路120与输出端170的连接,这样,经过开关电路160的处理,就可以将图3所示波形340中的那些与顶端点无关的方型脉冲滤除,从而形成如350所示的典型波形;以及输出端170,它可将诸如方型脉冲信号350的信号传送给外部设备(如信号处理器)以做进一步处理。FIG. 1 is a circuit structure diagram of a signal top point search device according to an embodiment of the present invention. Fig. 3 is a signal waveform diagram in an embodiment of the present invention. As shown in Figure 1, the device includes: an
本发明人提请注意的是,虽然在上述说明中以具体电路结构的形式对本发明的实施例做出了说明,但这些说明不应被认为是对本发明的限制。对于本领域的普通技术人员来说,上述各个电路都可有多种公知的实现方法。例如,在Willis J.Tompkins and John G.Webster,EDS,“SignalProcessing-Hardware versus Software”(信号处理-硬件与软件),inDesign of Microcomputer-Based Medical Instrumentation,London,Prentice-Hall International,Inc.,1981;Sergio Franco,“Nonlinear Circuits”(非线性电路),in Design with Operational Amplifiers and AnalogIntegrated Circuits-2nd edition,New York,The McGraw-Hill Companies,1997以及M.J.Burke,“Low-power ECG amplifier/detector fordry-electrode heart rate monitoring”(用于干电极心率监测的低功率ECG放大器/探测器),Medical & Biological Engineering & Computing,vol.32,pp.678-83,1994等参考文献中就记载了上述各个电路的一些具体实现的例子。The inventor draws attention to the fact that although the embodiments of the present invention have been described in the form of specific circuit structures in the above description, these descriptions should not be regarded as limiting the present invention. For those of ordinary skill in the art, there may be various known implementation methods for each of the above circuits. For example, in Willis J. Tompkins and John G. Webster, EDS, "Signal Processing-Hardware versus Software", inDesign of Microcomputer-Based Medical Instrumentation, London, Prentice-Hall International, Inc., 1981 ; Sergio Franco, "Nonlinear Circuits", in Design with Operational Amplifiers and AnalogIntegrated Circuits-2 nd edition, New York, The McGraw-Hill Companies, 1997 and MJ Burke, "Low-power ECG amplifier/detector fordry- Electrode heart rate monitoring" (low-power ECG amplifier/detector for dry electrode heart rate monitoring), Medical & Biological Engineering & Computing, vol.32, pp.678-83, 1994 and other references have recorded the above circuits Some concrete implementation examples.
接下来将参考图1、图2和图3对根据本发明实施例所述的信号顶端点搜寻方法进行说明。Next, the method for searching for a top point of a signal according to an embodiment of the present invention will be described with reference to FIG. 1 , FIG. 2 and FIG. 3 .
图2为根据本发明实施例所述的信号顶端点搜寻方法的流程图。如图2所示,首先,在步骤210中,待测信号被输入,所输入的待测信号可以来自心电图信号或是光体积变化描记信号,其典型信号波形如图3中的310所示。然后,在步骤220中,待测信号被输入至电路转向检测电路120(见图1),并在步骤230中受到电流转向检测,随着电流产生如波形310的转向,转向检测电路120将相应地输出方型脉冲信号至开关电路160,其典型波形如340所示。由于电路转向检测电路120在每次电流转向均会输出方型脉冲信号,因此这些信号并不能代表输入信号的顶端点的位置,所以需要对这些信号做进一步的过滤,以滤除那些与顶端点无关的方型脉冲信号。与此同时,待测信号还被输入至顶端点检测电路130,在步骤240中,顶端点检测电路130对待测信号的顶端点进行检测,并输出顶端点信号。然后,在步骤250中,顶端点检测电路130输出的顶端点信号的幅度受到幅度调节电路140的调节,并被输出至幅度比较电路150。在步骤260中,幅度比较电路150对待测信号的幅度与幅度调节电路的输出信号的幅度进行比较,并根据比较结果输出一个控制信号。电路转向检测电路120与输出端170将在该控制信号的控制下被相应地连通或者切断,具体来说,如果待测信号的幅度大于幅度调节电路的输出信号的幅度,则开关电路160导通,进而开启电路转向检测电路的输出(步骤270),反之,则开关电路关闭,进而关闭电路转向检测电路的输出(步骤280)。最后,测量结果信号(具有诸如350所示的信号波形)通过输出端170被输出至诸如信号处理器的外部设备(步骤290)。FIG. 2 is a flowchart of a method for searching a top point of a signal according to an embodiment of the present invention. As shown in FIG. 2 , firstly, in
上述步骤240至260的目的是为了从电流转向检测电路所输出的方型脉冲信号中滤除那些与顶端点无关的信号。但是,本领域的普通技术人员应该明白,滤除非顶端点信号的技术手段并不仅限于上述的具体方法。例如,也可以采用低通和高通滤波器进行滤波的方法。由于心电图信号及光体积变化描记信号于本发明只周作顶端点的检察,其运用到的有效频谱大约在0.5赫兹到30赫兹之间。而噪音的频谱大多在直流或50赫兹附近,因此,可以采用低通和高通滤波器把非信号的噪音滤除。低通和高通滤波器的设计可参考例如以下文献:Sergio Franco,“ActiveFilters:Part I”(有源滤波器:第一章),in Design with Operational Amplifiersand Analog Integrated Circuits-2nd edition,New York,The McGraw-HillCompanies,1997.The purpose of the above-mentioned
以下将参考图4和图5对本发明所述装置在血压测量中的应用进行说明。The application of the device of the present invention in blood pressure measurement will be described below with reference to FIG. 4 and FIG. 5 .
图4是根据本发明实施例所述的血压测量设备的结构示意框图。如图4所示,一种根据本发明所述的血压测量设备主要由两个本发明所述的顶端点测量装置430和440以及信号处理器450组成。装置430可用于测量其由心电图信号感应器410所收集的心电图信号的顶端点,并将其顶端点的准确时间输出至信号处理器450以作为血压测量的一项参考指标。在确定顶端点的准确时间时,可以采用心电图信号中的R型波信号的顶端点作为基点。本发明电路440可用于测量由光体积变化描记信号感应器420所收集的光体积变化描记信号的顶端点,并将其顶端点的准确时间输出至信号处理器450以作为血压测量的另一项参考指标。在确定顶端点的准确时间时,可以采用光体积变化描记信号的顶端点作为基点。另外,在采用上述顶端点作为测量血压的基点时,可以采用本发明装置所输出的方型脉冲信号的下降沿边(见图3中的360)作为输入信号的顶端点的时间位置。信号处理器450利用装置430和440所收集的信号顶端点的准确时间分别作为基点,计算出两个时间基点之间的时间差,并利用血压与脉搏传送时间(即,上述时间差)的对应相关关系计算出血压。根据本实施例所述的血压测量设备还可包括,例如:输入键盘470,用于向信号处理器450手工输入血压测量所需的参数;记忆体460,用于存储进行血压测量所需的参数及计算公式;以及显示器480,用于向用户或医务人员报告血压测量的结果,等等。由于这些部件对本领域的普通技术人员来说都是公知的,故此不再赘述。Fig. 4 is a schematic block diagram of a blood pressure measuring device according to an embodiment of the present invention. As shown in FIG. 4 , a blood pressure measuring device according to the present invention is mainly composed of two apex point measuring devices 430 and 440 according to the present invention and a signal processor 450 . The device 430 can be used to measure the apex point of the ECG signal collected by the electrocardiogram signal sensor 410, and output the accurate time of the apex point to the signal processor 450 as a reference index for blood pressure measurement. When determining the exact time of the top point, the top point of the R-shaped wave signal in the electrocardiogram signal can be used as the base point. The circuit 440 of the present invention can be used to measure the top point of the photoplethysmography signal collected by the photoplethysmography signal sensor 420, and output the accurate time of the top point to the signal processor 450 as another item of blood pressure measurement reference indicator. When determining the exact time of the apex point, the apex point of the photoplethysmography signal can be used as the base point. In addition, when the above-mentioned top point is used as the base point for measuring blood pressure, the falling edge (see 360 in FIG. 3 ) of the square pulse signal output by the device of the present invention can be used as the time position of the top point of the input signal. The signal processor 450 uses the accurate time of the top points of the signals collected by the devices 430 and 440 as the base points respectively, calculates the time difference between the two time base points, and uses the corresponding correlation relationship between the blood pressure and the pulse transmission time (that is, the above-mentioned time difference) Calculate blood pressure. The blood pressure measurement device according to this embodiment may also include, for example: an input keyboard 470 for manually inputting parameters required for blood pressure measurement to the signal processor 450; memory 460 for storing parameters required for blood pressure measurement and calculation formulas; and a display 480 for reporting the results of blood pressure measurement to users or medical personnel, and the like. Since these components are well known to those skilled in the art, they will not be described in detail here.
图5为根据本发明实施例所述的血压测量方法的流程框图。如图5所示,当利用如图4所示的本发明设备进行血压测量时,在步骤510中,首先执行顶端检测算法,即,利用信号处理器450对通过本发明的线路430或440所输出的心电图信号的顶端脉冲跟光体积变化描记信号的顶端脉冲290进行运算,以计算出心电图信号及光体积变化描记信号的顶端点时间位置。然后,在步骤520中,信号处理器450根据心电图信号与光体积变化描记信号之间的时间差以确定出脉搏传送时间的值。接下来,在步骤530中,信号处理器450对脉搏传送时间的总数是否达到默认值(例如10)做出判断。使用单一的脉搏传送时间去决定血压会存在许多不稳定的因子,从而增加血压检测的误差。在本发明是基于10个脉搏传送时间的平均值。步骤530是需要被重复直到10个脉搏传送时间被检测。下一步,在步骤540中,信号处理器450根据在内存460中所顶先调测的方程式,并利用步骤530所计算的平均脉搏传送时间,从而计算出收缩压,平均压和舒张压。在决定收缩压,平均压和舒张压之后,数值被传送到步骤550。在步骤550中,如果血压值不在正常值范围内(例如收缩压大于240mmHg),则处理器450将在步骤560中发出错误信息。计算出来的收缩压、平均压和舒张压可通过显示器480被显示出来,也可通过诸如无线传输装置的通信装置被传送给远端以便于进一步的处理。如果需要另外的血压测量,则步骤570将重复步骤510、520、530、540、550和560。Fig. 5 is a flowchart of a method for measuring blood pressure according to an embodiment of the present invention. As shown in FIG. 5, when using the device of the present invention as shown in FIG. 4 to measure blood pressure, in step 510, firstly execute the apex detection algorithm, that is, use the signal processor 450 to detect the
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031366597A CN1307937C (en) | 2003-05-22 | 2003-05-22 | Signal peak point search device and method and its application in blood pressure measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031366597A CN1307937C (en) | 2003-05-22 | 2003-05-22 | Signal peak point search device and method and its application in blood pressure measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1548006A CN1548006A (en) | 2004-11-24 |
CN1307937C true CN1307937C (en) | 2007-04-04 |
Family
ID=34323414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031366597A Expired - Fee Related CN1307937C (en) | 2003-05-22 | 2003-05-22 | Signal peak point search device and method and its application in blood pressure measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1307937C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1985750B (en) * | 2005-12-21 | 2011-03-23 | 深圳迈瑞生物医疗电子股份有限公司 | Pulse wave detecting method and device by means of cardiac symbol signal |
EP2260886B1 (en) * | 2008-04-09 | 2013-10-30 | Asahi Kasei Kabushiki Kaisha | Blood pressure estimation apparatus and blood pressure estimation method |
CN108348178B (en) | 2015-11-26 | 2021-01-05 | 华为技术有限公司 | Blood pressure parameter detection method and user terminal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102111A (en) * | 1985-04-01 | 1987-02-04 | 耐尔科公司 | Detect improving one's methods and installing of light pulse |
JPH0489029A (en) * | 1990-08-02 | 1992-03-23 | Sony Corp | Blood pressure measuring device |
JPH08583A (en) * | 1994-06-22 | 1996-01-09 | Minolta Co Ltd | Apparatus for monitoring pulse wave transmission time |
-
2003
- 2003-05-22 CN CNB031366597A patent/CN1307937C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102111A (en) * | 1985-04-01 | 1987-02-04 | 耐尔科公司 | Detect improving one's methods and installing of light pulse |
JPH0489029A (en) * | 1990-08-02 | 1992-03-23 | Sony Corp | Blood pressure measuring device |
JPH08583A (en) * | 1994-06-22 | 1996-01-09 | Minolta Co Ltd | Apparatus for monitoring pulse wave transmission time |
Also Published As
Publication number | Publication date |
---|---|
CN1548006A (en) | 2004-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101210828B1 (en) | Apparatus and method improving accuracy of wrist blood pressure by using multiple bio-signal | |
CN110477890B (en) | Blood pressure calculation method and blood pressure measurement device | |
CN100346740C (en) | Blood pressure measuring device based on radial artery pulse information | |
US8282567B2 (en) | Method and system for determination of pulse rate | |
US20120157791A1 (en) | Adaptive time domain filtering for improved blood pressure estimation | |
US6669632B2 (en) | Apparatus and method for electronically predicting pleural pressure from pulse wave signals | |
CN102048526B (en) | FPGA (field-programmable gate array)-based cardiovascular parameter non-invasive detection device and control method | |
WO1990000029A1 (en) | Noninvasive continuous monitor of arterial blood pressure waveform | |
CN115500800B (en) | Wearable physiological parameter detection system | |
Vinciguerra et al. | Progresses towards a processing pipeline in photoplethysmogram (PPG) based on SiPMs | |
CN101032395A (en) | Blood pressure measurement method based on characteristic parameters of photoplethysmography signal in period domain | |
CN111166306A (en) | Physiological signal acquisition method, computer device and storage medium | |
JPS59181129A (en) | Hemomanometer | |
CN114431840A (en) | Pulse acquisition device, pulse acquisition method and system | |
Zhang et al. | A LabVIEW based measure system for pulse wave transit time | |
CN1582845A (en) | Blood pressure measurement method based on photoplethysmography signal with temperature compensation | |
CN1307937C (en) | Signal peak point search device and method and its application in blood pressure measurement | |
Nagy et al. | Low-cost photoplethysmograph solutions using the Raspberry Pi | |
CN104398248A (en) | Slope difference root mean square value algorithm for confirming systolic pressure in electronic sphygmomanometer | |
CN1552282A (en) | Blood pressure measuring method and device based on heart sound signals | |
CN108742574A (en) | A kind of noninvasive continuous BP measurement instrument | |
CN202104912U (en) | Early condition intelligent recognition monitor | |
CN101006919A (en) | Detection method of cardiac output under the high differential pressure and device thereof | |
CN2875319Y (en) | Electronic hemopiezometer for measuring blood viscosity, blood vessel elasticity and blood pressure simultaneously | |
CN214804680U (en) | Electronic blood pressure measuring instrument for measuring pressure difference of two arms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070404 Termination date: 20120522 |