CN1302914A - Technology for smelting Mo-contained alloy steel with molybdenum oxide - Google Patents
Technology for smelting Mo-contained alloy steel with molybdenum oxide Download PDFInfo
- Publication number
- CN1302914A CN1302914A CN 00129982 CN00129982A CN1302914A CN 1302914 A CN1302914 A CN 1302914A CN 00129982 CN00129982 CN 00129982 CN 00129982 A CN00129982 A CN 00129982A CN 1302914 A CN1302914 A CN 1302914A
- Authority
- CN
- China
- Prior art keywords
- molybdenum oxide
- molybdenum
- smelting
- furnace
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000476 molybdenum oxide Inorganic materials 0.000 title claims abstract description 51
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000003723 Smelting Methods 0.000 title claims abstract description 40
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 10
- 238000005516 engineering process Methods 0.000 title description 9
- 238000000034 method Methods 0.000 claims abstract description 37
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 22
- 239000011733 molybdenum Substances 0.000 claims abstract description 22
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 20
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 238000010891 electric arc Methods 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 6
- 238000005275 alloying Methods 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 9
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 3
- 241001062472 Stokellia anisodon Species 0.000 abstract description 7
- 238000009628 steelmaking Methods 0.000 abstract description 2
- 238000006722 reduction reaction Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 238000009835 boiling Methods 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- 229910000997 High-speed steel Inorganic materials 0.000 description 6
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 6
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 5
- 238000011946 reduction process Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229910001182 Mo alloy Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 241001417490 Sillaginidae Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009845 electric arc furnace steelmaking Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于冶金炼钢方法领域。特别适用于采用氧化钼直接合金化冶炼含钼合金钢的方法。该方法是将氧化钼与还原剂经破碎混匀后按比例加入到大于600℃炉温的电弧炉内,再加废钢原料进行冶炼含钼合金钢。该方法与现有技术相比,具有冶炼时间短,钼收得率高,操作安全和经济等特点。
The invention belongs to the field of metallurgical steelmaking methods. It is especially suitable for the method of directly alloying molybdenum oxide to smelt molybdenum-containing alloy steel. In the method, molybdenum oxide and reducing agent are crushed and mixed, and then added in proportion to an electric arc furnace with a furnace temperature greater than 600°C, and scrap steel raw materials are added to smelt molybdenum-containing alloy steel. Compared with the prior art, the method has the characteristics of short smelting time, high molybdenum yield, safe and economical operation, and the like.
Description
本发明属于冶金炼钢方法领域。特别适用于采用氧化钼直接合金化冶炼含钼合金钢的方法。The invention belongs to the field of metallurgical steelmaking methods. It is especially suitable for the method of directly alloying molybdenum oxide to smelt molybdenum-containing alloy steel.
采用氧化钼代替钼铁冶炼含钼合金钢工艺能降冶炼成本,已取得了一定的成效。但是在目前使用过程中感觉到,采用氧化钼代替钼铁冶炼含钼合金钢生产工艺中,氧化钼的还原反应速度较慢,废钢熔清时仍有一定量钼没有被还原,使冶炼的时间增长。另外的不足之处还有在冶炼时,由于碳氧的激烈反应,容易使渣出现大沸腾现象。如采用硅铁做还原剂,氧化钼的加入量较大时,在冶炼过程中,渣量增加很多,影响操作。因此通过实践得到,采用现有技术对氧化钼直接合金化冶炼含钼合金钢,一般只能冶炼低钼钢,氧化钼的加入量一般仅使钢中的增钼量在2%以下,而钼的收得率也只有90%左右。Using molybdenum oxide instead of ferromolybdenum to smelt molybdenum-containing alloy steel can reduce smelting costs and has achieved certain results. However, in the current use process, it is felt that in the production process of using molybdenum oxide instead of ferromolybdenum to smelt molybdenum-containing alloy steel, the reduction reaction speed of molybdenum oxide is relatively slow, and there is still a certain amount of molybdenum that has not been reduced when the scrap steel is melted, which increases the smelting time. . Another disadvantage is that during smelting, due to the intense reaction of carbon and oxygen, it is easy to cause large boiling phenomenon in the slag. If ferrosilicon is used as the reducing agent, when the amount of molybdenum oxide added is large, the amount of slag will increase a lot during the smelting process, which will affect the operation. Therefore, it has been obtained through practice that using the existing technology to directly alloy smelt molybdenum-containing alloy steel with molybdenum oxide, generally only low-molybdenum steel can be smelted. The recovery rate is only about 90%.
本发明的目的是提出一种氧化钼还原快、收得率高、成本低、综合性能好的氧化钼冶炼钼合金钢的方法。The object of the present invention is to propose a method for smelting molybdenum alloy steel with molybdenum oxide with fast reduction, high yield, low cost and good comprehensive performance.
根据本发明的目的,我们所提出的采用氧化钼直接合金化冶炼含钼合金钢的方法,其特征是将氧化钼与还原剂均破碎成粒度为≤5mm的颗粒后再进行混合料和装炉,混合料是将还原剂与氧化钼按重量比为0.15-0.40∶1配料混匀后,再将已配好的混合料与废钢原料装入炉内温度≥600℃的电弧炉中进行冶炼。在本发明冶炼方法中的其他特征还有上述还原剂是指碳和碳化硅中的任意一种或两种之和。装炉是将氧化钼与还原剂的混合料填装在电弧炉内底部后再装废钢原料。According to the purpose of the present invention, the method for smelting molybdenum-containing alloy steel by direct alloying of molybdenum oxide proposed by us is characterized in that molybdenum oxide and reducing agent are all broken into particles with a particle size of ≤5mm before mixing and charging. The mixed material is mixed evenly with the reducing agent and molybdenum oxide in a weight ratio of 0.15-0.40:1, and then the prepared mixed material and scrap steel raw materials are put into an electric arc furnace with a furnace temperature ≥ 600°C for smelting. Other features in the smelting method of the present invention are that the above-mentioned reducing agent refers to any one or the sum of both of carbon and silicon carbide. Furnace loading is to fill the mixture of molybdenum oxide and reducing agent in the bottom of the electric arc furnace and then load the scrap steel raw material.
本发明冶炼方法的工作原理是与原料装炉时的炉内温度,混合料的配比与粒度以及它们之间的化学反应有关。在本发明方法中,氧化钼的主要成份为MoO3,在冶炼过程中,氧化钼可与碳,碳化硅等物质发生化学反应后生成钼再进入钢液中,其反应有:The working principle of the smelting method of the present invention is related to the temperature in the furnace when the raw materials are loaded into the furnace, the proportioning and particle size of the mixture and the chemical reaction between them. In the method of the present invention, the main component of molybdenum oxide is MoO 3 . During the smelting process, molybdenum oxide can chemically react with carbon, silicon carbide and other substances to generate molybdenum and then enter molten steel. The reactions include:
根据热力学计算表明,碳、碳化硅等在500℃以上就有可能与MoO3发生化学反应。但是化学反应不仅仅取决于热力学,更重要的是与反应动力学有关。MoO3的还原速度首先与还原剂种类有关,其次取决于反应面积。反应面积越大,则反应速度越快。氧化钼的还原过程又可分为低温下固态MoO3与固态还原剂的还原反应,高温下炉渣中MoO3与钢液之间的还原作用。当氧化钼的块度较大时,低温下的化学反应由于接触面积太小而体现不出来,因此反应将以高温还原为主,也就是反应进行的较晚。如果氧化钼的粒度较小,将它与还原剂混合,就会大大提高反应面积,从而使MoO3在较低温度下反应,即可实现在冶炼早期完成还原反应。氧化钼在冶炼早期还原与在冶炼后期还原相比,能降低炉渣沸腾强度、缩短冶炼时间和提高钼的收得率。According to thermodynamic calculations, it is possible for carbon, silicon carbide, etc. to react chemically with MoO3 above 500 °C. But chemical reactions are not only determined by thermodynamics, but more importantly, by reaction kinetics. The reduction rate of MoO3 is firstly related to the type of reducing agent, and secondly depends on the reaction area. The larger the reaction area, the faster the reaction rate. The reduction process of molybdenum oxide can be divided into the reduction reaction between solid MoO 3 and solid reducing agent at low temperature, and the reduction between MoO 3 in slag and molten steel at high temperature. When the blockiness of molybdenum oxide is large, the chemical reaction at low temperature cannot be reflected because the contact area is too small, so the reaction will be dominated by high temperature reduction, that is, the reaction proceeds late. If the particle size of molybdenum oxide is small, mixing it with a reducing agent will greatly increase the reaction area, so that MoO3 can react at a lower temperature, and the reduction reaction can be completed in the early stage of smelting. The reduction of molybdenum oxide at the early stage of smelting can reduce the boiling intensity of slag, shorten the smelting time and increase the yield of molybdenum compared with the reduction at the later stage of smelting.
采用本发明冶炼方法可以实现在电弧炉冶炼前期就能快速还原氧化钼,在废钢熔清前氧化钼的还原过程就可结束。通过试验证明,当温度高于600℃时,氧化钼就可以与还原剂发生还原反应,当温度升至1400℃时就可完成氧化钼的还原过程,还原时间约为17分钟。试验结果见附图,该附图为氧化钼还原率与时间、温度的关系表示图。在附图中,1为温度曲线,2为还原率曲线。By adopting the smelting method of the invention, the molybdenum oxide can be rapidly reduced in the early stage of electric arc furnace smelting, and the reduction process of the molybdenum oxide can be completed before the scrap steel is melted. It has been proved by experiments that when the temperature is higher than 600°C, molybdenum oxide can undergo a reduction reaction with the reducing agent, and when the temperature rises to 1400°C, the reduction process of molybdenum oxide can be completed, and the reduction time is about 17 minutes. The test results are shown in the accompanying drawing, which is a diagram showing the relationship between the reduction rate of molybdenum oxide and time and temperature. In the accompanying drawings, 1 is the temperature curve, and 2 is the reduction rate curve.
采用本发明氧化钼混合料直接合金化冶炼含钼合金钢的方法与现有技术相比较具有以下特点:Compared with the prior art, the method for directly alloying and smelting molybdenum-containing alloy steel by using the molybdenum oxide mixture of the present invention has the following characteristics:
(1)、低温快速还原技术加快了氧化钼还原过程,不使冶炼时间增长,能适应超高功率电弧炉炼钢工艺。(1) The low-temperature rapid reduction technology accelerates the reduction process of molybdenum oxide, does not increase the smelting time, and can adapt to the ultra-high-power electric arc furnace steelmaking process.
(2)、由于冶炼早期就能释入还原反应产生的大量气体,因此冶炼过程中出现大沸腾现象的可能性大大降低,从而提高了冶炼工艺的安全性。(2) Since a large amount of gas produced by the reduction reaction can be released in the early stage of smelting, the possibility of large boiling phenomenon during the smelting process is greatly reduced, thereby improving the safety of the smelting process.
(3)、本工艺采用碳粉或碳化硅作还原剂,因此冶炼过程渣量较少,降低冶炼过程的工人劳动强度。(3) This process uses carbon powder or silicon carbide as a reducing agent, so the amount of slag in the smelting process is less, and the labor intensity of workers in the smelting process is reduced.
(4)、利用上一炉电炉余热和电弧炉通电前期的热量损失作为氧化钼还原过程的能源,因此冶炼过程电耗不明显增加。(4) Use the residual heat of the previous electric furnace and the heat loss in the early stage of the electric arc furnace as the energy source for the molybdenum oxide reduction process, so the power consumption in the smelting process does not increase significantly.
(5)、本发明不仅可用于高钼合金钢(如高速钢),对冶炼低钼合金钢也将适用。(5) The present invention is not only applicable to high-molybdenum alloy steel (such as high-speed steel), but also applicable to smelting low-molybdenum alloy steel.
实施例1Example 1
不同工艺的对比实验,对比实验是在碳管炉中进行的采用碳粉还原氧化钼实验,设定钢中钼含量为5%,方案1是采用本发明的低温快速还原技术冶炼(将碳粉与氧化钼混匀后加入)。方案2是采用现有技术的不是低温还原技术冶炼方法(将氧化钼与碳粉分别加入)。实验是在同等条件下所测的氧化钼还原率,通过实验得出,采用方案1本发明低温还原技术在碳管炉中,虽然改变设定的氧化钼加入量分别使用钢中的钼含量为2%和5%,但每项钼的收得率均超过98%,在冶炼过程中未出现沸腾现象。而且本发明方法也适用碳化硅作为还原剂的实验,其结果相同。对比实验方案2,当不采用低温快速还原技术在冶炼过程中,发生大沸腾现象,泡沫渣密度为0.157g/cm3,而且氧化钼的收得率也较低。The comparative experiment of different technology, comparative experiment is to adopt carbon powder to reduce molybdenum oxide experiment carried out in carbon tube furnace, set molybdenum content in the steel as 5%,
实施例2Example 2
在装入量为20吨的电弧炉(变压器额定功率5,500kV.A)上进行用氧化钼冶炼高速钢工业实验,分别采用本发明方法(方案1)、不采用低温快速还原技术(方案2)两种方案冶炼W6Mo5Cr4V高速钢实验。并进行了用钼铁冶炼W6Mo5Cr4V钢的对比实验(方案3)。方案1共进行了4炉试验,方案2进行了1炉试验,而方案3用钼铁冶炼高速钢则属于传统工艺试验。方案1将氧化钼块与碳同时破碎成粒度在5mm以内的氧化钼细颗粒,与氧化钼的重量比例见表。方案2则用氧化钼块(块度大于100mm),碳粉与氧化钼的重量比也见表,方案1和方案2均在上一炉出钢完毕且补炉后加入电弧炉炉底,电弧炉炉膛温度在630℃-870℃。方案1氧化钼和还原剂混合后加入炉底,而方案2氧化钼加入炉底,碳粉放在它上方。实验结果如表所示,该表为采用本发明方法与现有技术方法实施例的对比表,在该表中所列的试验炉号1、2、3、4为方案1本发明方法的实施例,试验炉号5为方案2现有技术的实施例,试验炉号6为方案3现有技术的实施例。在表中所列还原剂,除试验炉号2为碳化硅,和试验炉号4为各50%的碳化硅+碳粉外,其余均为碳粉。表中后几项指标以方案3为标准。从表可见,采用本发明方法能取得良好的冶炼效果,不仅钼的收得率高,而且波动也最小,操作稳定。方案2不仅钼的收得率最低,而且收得率的波动也最大,操作不稳定,另外还容易发生炉渣大沸腾现象。除此之外,方案1还能取得可观的经济效益:例如钼铁(含钼56%)的价格是41,000元/吨、氧化钼(含钼52%)以28,600元/吨计算,考虑电耗和还原剂成本,方案1冶炼1吨W6Mo5Cr4V高速钢,可比方案3降低成本约1000元/吨左右。The industrial experiment of using molybdenum oxide to smelt high-speed steel was carried out on an electric arc furnace (transformer rated power 5,500kV.A) with a charging capacity of 20 tons, using the method of the present invention (Scheme 1) and not using the low-temperature rapid reduction technology (Scheme 2) Two schemes of smelting W6Mo5Cr4V high-speed steel experiments. And a comparative experiment of smelting W6Mo5Cr4V steel with ferromolybdenum was carried out (Scheme 3). A total of 4 heat tests were carried out for
表1冶炼W6Mo5cr4V高速钢工业实验结果
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00129982 CN1109771C (en) | 2000-10-18 | 2000-10-18 | Technology for smelting Mo-contained alloy steel with molybdenum oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00129982 CN1109771C (en) | 2000-10-18 | 2000-10-18 | Technology for smelting Mo-contained alloy steel with molybdenum oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1302914A true CN1302914A (en) | 2001-07-11 |
CN1109771C CN1109771C (en) | 2003-05-28 |
Family
ID=4593886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 00129982 Expired - Fee Related CN1109771C (en) | 2000-10-18 | 2000-10-18 | Technology for smelting Mo-contained alloy steel with molybdenum oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1109771C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413044B (en) * | 2008-11-28 | 2010-08-11 | 首钢总公司 | Alloy addition method for improving yield of ferromolybdenum |
WO2012002897A1 (en) * | 2010-06-30 | 2012-01-05 | Uddeholms Ab | Process for making a steel melt containing carbide forming elements from iron based raw material and a mineral containing the carbide forming element, an mixture for alloying steel and use of a mineral containing carbide forming elements for alloying a steel melt |
CN103468856A (en) * | 2013-08-23 | 2013-12-25 | 安阳钢铁股份有限公司 | Method for steel molybdenum alloying |
CN103627846A (en) * | 2013-11-21 | 2014-03-12 | 莱芜钢铁集团有限公司 | Method for performing direct alloying to molybdenum oxide for steelmaking |
CN104152789A (en) * | 2014-08-06 | 2014-11-19 | 江苏大学 | Preparation method of wear-resistant ductile cast iron ball mill lining board quenched by residual heat |
CN107245576A (en) * | 2017-06-30 | 2017-10-13 | 马鞍山华盛冶金科技发展有限公司 | A kind of preparation method of complex reducing agent and its method for smelting |
CN108179347A (en) * | 2018-01-29 | 2018-06-19 | 西华大学 | Method for smelting molybdenum-vanadium alloy steel through step-by-step reduction |
CN109023019A (en) * | 2018-08-01 | 2018-12-18 | 舞阳钢铁有限责任公司 | A kind of low cost smelts the production method of chrome-molybdenum steel |
-
2000
- 2000-10-18 CN CN 00129982 patent/CN1109771C/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413044B (en) * | 2008-11-28 | 2010-08-11 | 首钢总公司 | Alloy addition method for improving yield of ferromolybdenum |
WO2012002897A1 (en) * | 2010-06-30 | 2012-01-05 | Uddeholms Ab | Process for making a steel melt containing carbide forming elements from iron based raw material and a mineral containing the carbide forming element, an mixture for alloying steel and use of a mineral containing carbide forming elements for alloying a steel melt |
CN103468856A (en) * | 2013-08-23 | 2013-12-25 | 安阳钢铁股份有限公司 | Method for steel molybdenum alloying |
CN103627846A (en) * | 2013-11-21 | 2014-03-12 | 莱芜钢铁集团有限公司 | Method for performing direct alloying to molybdenum oxide for steelmaking |
CN103627846B (en) * | 2013-11-21 | 2015-10-28 | 莱芜钢铁集团有限公司 | The method of molybdenum oxide DIRECT ALLOYING steel-making |
CN104152789A (en) * | 2014-08-06 | 2014-11-19 | 江苏大学 | Preparation method of wear-resistant ductile cast iron ball mill lining board quenched by residual heat |
CN107245576A (en) * | 2017-06-30 | 2017-10-13 | 马鞍山华盛冶金科技发展有限公司 | A kind of preparation method of complex reducing agent and its method for smelting |
CN108179347A (en) * | 2018-01-29 | 2018-06-19 | 西华大学 | Method for smelting molybdenum-vanadium alloy steel through step-by-step reduction |
CN108179347B (en) * | 2018-01-29 | 2019-07-02 | 西华大学 | Method for smelting molybdenum-vanadium alloy steel through step-by-step reduction |
CN109023019A (en) * | 2018-08-01 | 2018-12-18 | 舞阳钢铁有限责任公司 | A kind of low cost smelts the production method of chrome-molybdenum steel |
Also Published As
Publication number | Publication date |
---|---|
CN1109771C (en) | 2003-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100364934B1 (en) | Method of making iron and steel | |
CN104131210A (en) | Method for producing ultra-low-phosphorus IF steel | |
CN103627846B (en) | The method of molybdenum oxide DIRECT ALLOYING steel-making | |
CN101177755A (en) | A method for smelting high-speed steel using oxide ore | |
CN102296153A (en) | Novel premelting dephosphorization agent for steel making and preparation method thereof | |
CN101892352A (en) | Arc furnace deep dephosphorization technology and deep dephosphorization agent thereof | |
CN101353751A (en) | Vanadium-silicon alloy and its preparation and application method | |
CN1302914A (en) | Technology for smelting Mo-contained alloy steel with molybdenum oxide | |
CN1470667A (en) | A Manganese Oxide Direct Alloying Steelmaking Process | |
CN104878159A (en) | Method for increasing yield of molten steel chromium in chromium ore direct-alloying | |
JP5477170B2 (en) | Method for producing sintered ore | |
CN101302569A (en) | Ultra high power direct-current arc furnace deoxidation furnace-protective agent, making method and use thereof | |
CN1039832C (en) | Dephosphorization agent for steel foam | |
CN106636540A (en) | Electric furnace steel making process capable of simultaneously and directly alloying manganese oxide and molybdenum oxide | |
CN116814900A (en) | Electric furnace smelting method for efficient dephosphorization | |
CN111961802B (en) | Process for smelting molten steel by using high-phosphorus iron ore as raw material | |
CN112853026B (en) | Manganese alloying method for converter smelting high manganese steel | |
CN116555520A (en) | Method for directly micro-alloying rare earth elements in blast furnace slag in steel | |
CN115096071A (en) | A method for reducing the consumption of lime in electric arc furnace steelmaking by recycling tailings | |
CN114908263A (en) | Preparation method of silicon-manganese alloy | |
CN1045477C (en) | Method for direct production of Si-Al-Ba-Ca-Fe alloy from ore | |
RU2153023C1 (en) | Method of processing raw materials containing manganese with recovery of metals | |
CN115927793B (en) | A phosphorus pig iron optimization composite agent for reducing iron-carbon pressure drop | |
CN103964510A (en) | Method for producing calcium ferrite by iron-electrode electric smelting of iron ore | |
CN103966398A (en) | Method for producing calcium ferrite from iron oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030528 Termination date: 20091118 |