CN1299986C - Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn - Google Patents
Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn Download PDFInfo
- Publication number
- CN1299986C CN1299986C CNB2004100890372A CN200410089037A CN1299986C CN 1299986 C CN1299986 C CN 1299986C CN B2004100890372 A CNB2004100890372 A CN B2004100890372A CN 200410089037 A CN200410089037 A CN 200410089037A CN 1299986 C CN1299986 C CN 1299986C
- Authority
- CN
- China
- Prior art keywords
- organic
- silicon
- zeolite
- solid acid
- inorganic carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 77
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 74
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 61
- 239000010703 silicon Substances 0.000 title claims abstract description 61
- 239000011973 solid acid Substances 0.000 title claims abstract description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 title claims abstract description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract 11
- 230000001413 cellular effect Effects 0.000 title claims 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 239000002808 molecular sieve Substances 0.000 claims abstract description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims abstract description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 4
- 238000003746 solid phase reaction Methods 0.000 claims abstract description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract 5
- 238000000926 separation method Methods 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims 1
- 238000010671 solid-state reaction Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 13
- 239000012229 microporous material Substances 0.000 abstract description 9
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000010574 gas phase reaction Methods 0.000 abstract description 3
- 238000009396 hybridization Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 125000003172 aldehyde group Chemical group 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 27
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 20
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 18
- 239000007795 chemical reaction product Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 10
- 239000000758 substrate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- -1 alkaline earth metal cations Chemical class 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229920006324 polyoxymethylene Polymers 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013335 mesoporous material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于微孔材料技术领域,具体涉及一种新颖全硅有机无机杂化沸石固体酸及其制备方法。该材料在催化、吸附及碱性分离等方面有广泛应用前景。The invention belongs to the technical field of microporous materials, and in particular relates to a novel all-silicon organic-inorganic hybrid zeolite solid acid and a preparation method thereof. The material has wide application prospects in catalysis, adsorption and alkaline separation.
背景技术Background technique
传统的固体酸包含很多种,比如天然存在的粘土类矿物和沸石,氧化硅、氧化铝等金属氧化物,硫化物、硫酸盐、硝酸盐等无机物质。它们作为酸性催化剂都具有不同的酸性中心和不同的选择性。氧化铝的酸性中心是由于脱水形成的未完全配位的铝原子,在773K和993K左右存在两个酸性极大值;沸石的酸性中心主要是骨架的Brnsted酸部位和Lewis酸部位,其中阳离子的不同以及硅铝比的不同会导致不同的酸强度。通常通过引入其它的中心原子或者碱土金属阳离子,可以调变沸石的固体酸性。但是一方面无机原子的引入很容易引起催化体系的污染,另一方面无机离子在水溶液中很容易流失,所以会导致沸石酸性的不稳定。Traditional solid acids include many kinds, such as naturally occurring clay minerals and zeolites, metal oxides such as silica and alumina, and inorganic substances such as sulfides, sulfates, and nitrates. As acid catalysts, they all have different acid sites and different selectivities. The acidic centers of alumina are incompletely coordinated aluminum atoms formed by dehydration, and there are two acidic maxima at around 773K and 993K; the acidic centers of zeolites are mainly Brnsted acid sites and Lewis acid sites of the framework, of which Different cations and different silicon-aluminum ratios lead to different acid strengths. Usually, the solid acidity of zeolite can be tuned by introducing other central atoms or alkaline earth metal cations. However, on the one hand, the introduction of inorganic atoms can easily cause the pollution of the catalytic system, and on the other hand, the inorganic ions are easily lost in aqueous solution, which will lead to the instability of the acidity of the zeolite.
近些年来由于有机无机杂化有序介孔材料(PMOs)在催化,离子交换,半导体,化学传感以及纳米分子筛等方面的广泛应用而受到越来越多人的关注。有机基团的引入可以改变材料的很多性质,比如吸附分离性质,表面性质甚至电化学及机械等性质。In recent years, organic-inorganic hybrid ordered mesoporous materials (PMOs) have attracted increasing attention due to their wide applications in catalysis, ion exchange, semiconductors, chemical sensing, and nanomolecular sieves. The introduction of organic groups can change many properties of materials, such as adsorption and separation properties, surface properties, and even electrochemical and mechanical properties.
Shiyou Guan等报道(J.Am.Chem.Soc.2000,122,5660-5661)用含BTME((CH3O)3Si-CH2-CH2-Si(OCH3)3)-ATME(CnH2n+1N+(CH3)3)-NaOH-H2O的体系在368K原位合成了含有(Si-CH2-CH2-Si)结构的有机无机杂化介孔分子筛。但在酸性质方面并未报道有特殊的性质。Shiyou Guan et al. reported (J.Am.Chem.Soc.2000, 122, 5660-5661) to use BTME((CH 3 O) 3 Si-CH 2 -CH 2 -Si(OCH 3 ) 3 )-ATME(C The system of n H 2n+1 N + (CH 3 ) 3 )-NaOH-H 2 O synthesized organic-inorganic hybrid mesoporous molecular sieves containing (Si-CH 2 -CH 2 -Si) structure in situ at 368K. However, no special properties have been reported in terms of acid properties.
与传统的固体酸性沸石以及有机无机杂化有序介孔材料都不同,全硅有机无机杂化沸石固体酸既具有可调变的稳定的固体酸性和良好的孔道结构,同时由于其酸性中心与以上二者都不同,不会发生污染和流失。作为催化剂具有高活性、高选择性、反应条件温和、产物易于分离等优点,可望成为新一代环境友好催化材料。在吸附和碱性有机分子分离等方面具有很强的应用前景。Different from traditional solid acidic zeolites and organic-inorganic hybrid ordered mesoporous materials, the all-silicon organic-inorganic hybrid zeolite solid acid not only has adjustable and stable solid acidity and good pore structure, but also because of its acid center and The above two are different, pollution and loss will not occur. As a catalyst, it has the advantages of high activity, high selectivity, mild reaction conditions, and easy separation of products, and is expected to become a new generation of environmentally friendly catalytic materials. It has strong application prospects in adsorption and separation of basic organic molecules.
发明内容Contents of the invention
本发明的目的在于提出一种催化性能好、制造成本低的新颖全硅有机无机杂化沸石固体酸及其制备方法。The purpose of the present invention is to propose a novel all-silicon organic-inorganic hybrid zeolite solid acid with good catalytic performance and low manufacturing cost and a preparation method thereof.
本发明提出的全硅有机无机杂化沸石固体酸,是含氧全硅微孔材料中1-20%的骨架氧由醛类有机官能基团替代而获得,其中醛基为RCHO,这里R为C0-C2的烃类,如甲醛、丙醛等。The all-silicon organic-inorganic hybrid zeolite solid acid proposed by the present invention is obtained by replacing 1-20% of the skeleton oxygen in the oxygen-containing all-silicon microporous material with an aldehyde organic functional group, wherein the aldehyde group is RCHO, and R here is C 0 -C 2 hydrocarbons, such as formaldehyde, propionaldehyde, etc.
上述全硅有机无机杂化沸石固体酸中,所述骨架含氧全硅微孔材料是指晶态的不含铝的全硅沸石分子筛。In the above-mentioned all-silicon organic-inorganic hybrid zeolite solid acid, the oxygen-containing all-silicon microporous material in the skeleton refers to a crystalline aluminum-free all-silicon zeolite molecular sieve.
上述全硅有机无机杂化沸石固体酸微孔材料的制备方法如下:The preparation method of the above-mentioned all-silicon organic-inorganic hybrid zeolite solid acid microporous material is as follows:
将骨架含氧的全硅微孔基底材料与有机碳杂化剂-醛类的固体或者溶液混合,置于反应釜中进行水热反应,温度20-200℃,时间1.5-50小时,得到全硅沸石固体酸微孔材料。Mix the all-silicon microporous substrate material with oxygen-containing skeleton and the solid or solution of organic carbon hybridization agent-aldehydes, and place it in a reaction kettle for hydrothermal reaction at a temperature of 20-200°C for 1.5-50 hours to obtain a full-body Silica zeolite solid acid microporous material.
将醛类杂化剂的固体或者溶液置于反应釜底层,基底材料置于上层,利用加热时产生的蒸汽与基底材料发生气/固相反应,制备得全硅沸石固体酸微孔材料。The solid or solution of the aldehyde hybridization agent is placed in the bottom layer of the reactor, the base material is placed in the upper layer, and the steam generated during heating is used for gas/solid phase reaction with the base material to prepare the all-silica zeolite solid acid microporous material.
上述方法中,所述骨架含氧的全硅微孔基底材料可采用商品全硅沸石分子筛,例如:全硅MF1沸石、全硅FER沸石等基底材料与醛类有机碳杂化剂水热反应或发生气/固相反应,制得全硅有机无机碳杂化沸石固体酸微孔材料。以甲醛作用的MFI沸石为例,如图1,2,3所示,作用后的MFI沸石保持了完美的骨架和开放的孔道,NH3-TPD证明其具有很强的酸性质。In the above method, the oxygen-containing all-silicon microporous substrate material of the skeleton can adopt commercial all-silica zeolite molecular sieves, such as: all-silicon MF1 zeolite, all-silicon FER zeolite and other substrate materials are hydrothermally reacted with an aldehyde organic carbon hybrid agent or A gas/solid phase reaction occurs to prepare an all-silicon organic-inorganic carbon hybrid zeolite solid acid microporous material. Taking MFI zeolite treated with formaldehyde as an example, as shown in Figures 1, 2 and 3, the treated MFI zeolite maintains a perfect framework and open pores, and NH 3 -TPD proves that it has strong acid properties.
本发明的微孔材料作为催化剂、吸附分离剂具有高活性、高选择性、反应条件温和、产物易分离等诸多优越性。The microporous material of the present invention has many advantages such as high activity, high selectivity, mild reaction conditions, easy separation of products and the like as a catalyst and an adsorption separation agent.
本发明材料的制备方法简便,反应条件温和,生产成本低,得到的全硅有机无机杂化沸石固体酸可作为催化剂、吸附剂以及碱性分离剂,适用范围广,具有良好的工业应用前景。The preparation method of the material of the invention is simple, the reaction conditions are mild, and the production cost is low. The obtained all-silicon organic-inorganic hybrid zeolite solid acid can be used as a catalyst, an adsorbent and an alkaline separating agent, has a wide application range and has good industrial application prospects.
附图说明Description of drawings
图1是MFI型沸石经甲醛作用后的XRD图。Figure 1 is the XRD pattern of MFI zeolite treated with formaldehyde.
图2是MFI沸石经甲醛作用后的NH3-TPD图。Figure 2 is the NH 3 -TPD diagram of MFI zeolite treated with formaldehyde.
图3是MFI沸石经甲醛作用后的正己烷吸附图。Fig. 3 is the n-hexane adsorption diagram of MFI zeolite after the action of formaldehyde.
具体实施方式Detailed ways
下面通过实施实例进一步描述本发明:The present invention is further described below by implementing examples:
实施例1:Example 1:
基底全硅MFI型沸石按以下步骤与甲醛作用,制备全硅MFI型有机无机碳杂化沸石固体酸:The substrate all-silicon MFI type zeolite reacts with formaldehyde according to the following steps to prepare the all-silicon MFI type organic-inorganic carbon hybrid zeolite solid acid:
1、将聚甲醛的固体在90℃~150℃加热解聚,用液氮收集。1. Heat the polyoxymethylene solid at 90°C to 150°C for depolymerization, and collect it with liquid nitrogen.
2、将甲醛单体的蒸气导入盛有全硅MFI沸石的容器中,室温反应2h得到反应产物,反应产物经过滤,洗涤,烘干,得到全硅MFI型有机无机碳杂化沸石固体酸。2. Introduce the vapor of formaldehyde monomer into a container filled with all-silicon MFI zeolite, and react at room temperature for 2 hours to obtain a reaction product. The reaction product is filtered, washed, and dried to obtain an all-silicon MFI organic-inorganic carbon hybrid zeolite solid acid.
实施例2:Example 2:
基底MFI型沸石按以下步骤与甲醛作用,制备全硅MFI型有机无机碳杂化沸石固体酸:The base MFI type zeolite reacts with formaldehyde according to the following steps to prepare the all-silicon MFI type organic-inorganic carbon hybrid zeolite solid acid:
1、将聚甲醛的固体置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Put the polyoxymethylene solid on the bottom of the reactor, and the base material on the upper layer, separated by a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅MFI型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon MFI organic-inorganic carbon hybrid zeolite solid acid.
实施例3:Example 3:
基底MFI型沸石按以下步骤与乙醛作用,制备全硅MFI型沸石固体酸:Substrate MFI type zeolite reacts with acetaldehyde according to the following steps to prepare all-silicon MFI type zeolite solid acid:
1、将乙醛的溶液与全硅MFI型沸石混合置于反应釜中。或将乙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the acetaldehyde solution with all-silicon MFI zeolite and place it in the reaction kettle. Or put the acetaldehyde solution on the bottom of the reaction kettle, put the base material on the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅MFI型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon MFI organic-inorganic carbon hybrid zeolite solid acid.
实施例4:Example 4:
基底MFI型沸石按以下步骤与丙醛作用,制备全硅MFI型有机无机碳杂化沸石固体酸:The base MFI type zeolite reacts with propionaldehyde according to the following steps to prepare all-silicon MFI type organic-inorganic carbon hybrid zeolite solid acid:
1、将丙醛的溶液与全硅MFI型沸石混合置于反应釜中。或将丙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the solution of propionaldehyde with all-silicon MFI zeolite and place it in the reaction kettle. Or place the solution of propionaldehyde in the bottom layer of the reaction kettle, place the base material in the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅MFI型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon MFI organic-inorganic carbon hybrid zeolite solid acid.
实施例5:Example 5:
基底FER型沸石按以下步骤与甲醛作用,制备全硅FER型有机无机碳杂化固体酸:The base FER type zeolite reacts with formaldehyde according to the following steps to prepare all-silicon FER type organic-inorganic carbon hybrid solid acid:
1、聚甲醛的固体在90℃~150℃加热解聚,用液氮收集。1. The solid of polyoxymethylene is depolymerized by heating at 90°C to 150°C, and collected with liquid nitrogen.
2、将甲醛单体的蒸气导入盛有全硅FER型沸石的容器中,室温进行吸附反应2h得到反应产物,反应产物经过滤,洗涤,烘干,得到全硅FER型有机无机碳杂化沸石固体酸。2. Introduce the vapor of formaldehyde monomer into a container containing all-silicon FER type zeolite, carry out adsorption reaction at room temperature for 2 hours to obtain the reaction product, and the reaction product is filtered, washed, and dried to obtain all-silicon FER type organic-inorganic carbon hybrid zeolite solid acid.
实施例6:Embodiment 6:
基底FER型沸石按以下步骤与甲醛作用,制备全硅FER型有机无机碳杂化沸石固体酸:The substrate FER type zeolite reacts with formaldehyde according to the following steps to prepare all-silicon FER type organic-inorganic carbon hybrid zeolite solid acid:
1、将聚甲醛的固体置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Put the polyoxymethylene solid on the bottom of the reactor, and the base material on the upper layer, separated by a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅FER型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon FER organic-inorganic carbon hybrid zeolite solid acid.
实施例7:Embodiment 7:
基底FER型沸石按以下步骤与乙醛作用,制备全硅FER型有机无机碳杂化沸石固体酸:The base FER type zeolite reacts with acetaldehyde according to the following steps to prepare all-silicon FER type organic-inorganic carbon hybrid zeolite solid acid:
1、将乙醛的溶液与全硅FER型沸石混合置于反应釜中。或将乙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the acetaldehyde solution with all-silicon FER zeolite and place it in the reaction kettle. Or put the acetaldehyde solution on the bottom of the reaction kettle, put the base material on the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅FER型沸石有机无机碳杂化固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon FER type zeolite organic-inorganic carbon hybrid solid acid.
实施例8:Embodiment 8:
基底FER型沸石按以下步骤与丙醛作用,制备全硅FER型有机无机碳杂化沸石固体酸:Substrate FER type zeolite reacts with propionaldehyde according to the following steps to prepare all-silicon FER type organic-inorganic carbon hybrid zeolite solid acid:
1、将丙醛的溶液与全硅FER型沸石混合置于反应釜中。或将丙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the solution of propionaldehyde with all-silicon FER zeolite and place it in the reaction kettle. Or place the solution of propionaldehyde in the bottom layer of the reaction kettle, place the base material in the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅FER型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon FER organic-inorganic carbon hybrid zeolite solid acid.
实施例9:Embodiment 9:
基底全硅BEA型(β型)沸石按以下步骤与甲醛作用,制备全硅BEA型有机无机碳杂化沸石固体酸:Substrate all-silicon BEA type (β-type) zeolite reacts with formaldehyde according to the following steps to prepare all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid:
1、甲醛的固体在90℃~150℃加热解聚,用液氮收集。1. The solid formaldehyde is depolymerized by heating at 90°C to 150°C and collected with liquid nitrogen.
2、将甲醛单体的蒸气导入盛有全硅BEA型沸石的容器中,室温进行吸附反应2h得到反应产物,反应产物经过滤,洗涤,烘干,得到全硅BEA型有机无机碳杂化沸石固体酸。2. Introduce the vapor of formaldehyde monomer into a container filled with all-silicon BEA-type zeolite, and carry out adsorption reaction at room temperature for 2 hours to obtain the reaction product, which is filtered, washed, and dried to obtain all-silicon BEA-type organic-inorganic carbon hybrid zeolite solid acid.
实施例10:Example 10:
基底BEA型沸石按以下步骤与甲醛作用,制备全硅BEA型有机无机碳杂化沸石固体酸:The base BEA type zeolite reacts with formaldehyde according to the following steps to prepare all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid:
1、将聚甲醛的固体置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Put the polyoxymethylene solid on the bottom of the reactor, and the base material on the upper layer, separated by a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅BEA型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid.
实施例11:Example 11:
基底BEA型沸石按以下步骤与乙醛作用,制备全硅BEA型有机无机碳杂化沸石固体酸:The base BEA type zeolite reacts with acetaldehyde according to the following steps to prepare all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid:
1、将乙醛的溶液与全硅BEA型沸石混合置于反应釜中。或将乙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the acetaldehyde solution with all-silicon BEA zeolite and place it in the reaction kettle. Or put the acetaldehyde solution on the bottom of the reaction kettle, put the base material on the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅BEA型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid.
实施例12:Example 12:
基底BEA型沸石按以下步骤与丙醛作用,制备全硅BEA型有机无机碳杂化沸石固体酸:The base BEA type zeolite reacts with propionaldehyde according to the following steps to prepare all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid:
1、将丙醛的溶液与全硅FER型沸石混合置于反应釜中。或将丙醛的溶液置于反应釜底层,基底材料置于上层,中间以筛网隔开。1. Mix the solution of propionaldehyde with all-silicon FER zeolite and place it in the reaction kettle. Or place the solution of propionaldehyde in the bottom layer of the reaction kettle, place the base material in the upper layer, and separate it with a screen in the middle.
2、将反应釜置于200℃烘箱中,在自生成压力下反应2天,反应产物经过滤,洗涤,烘干,得到全硅BEA型有机无机碳杂化沸石固体酸。2. Put the reaction kettle in an oven at 200°C, and react for 2 days under self-generated pressure. The reaction product is filtered, washed, and dried to obtain an all-silicon BEA type organic-inorganic carbon hybrid zeolite solid acid.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100890372A CN1299986C (en) | 2004-12-02 | 2004-12-02 | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100890372A CN1299986C (en) | 2004-12-02 | 2004-12-02 | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1636874A CN1636874A (en) | 2005-07-13 |
CN1299986C true CN1299986C (en) | 2007-02-14 |
Family
ID=34847538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100890372A Expired - Fee Related CN1299986C (en) | 2004-12-02 | 2004-12-02 | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1299986C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104148118B (en) * | 2014-08-12 | 2016-05-11 | 福州大学 | A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports |
CN111905801A (en) * | 2020-08-17 | 2020-11-10 | 鲁雪 | Visible-light-driven photocatalyst, and preparation method and application thereof |
CN114408938B (en) * | 2021-08-19 | 2024-07-19 | 复榆(张家港)新材料科技有限公司 | All-silicon FER zeolite and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051310A (en) * | 1988-05-20 | 1991-05-15 | 日本化学工业株式会社 | Method for maintaining activity of zeolite catalyst |
CN1436726A (en) * | 2003-02-25 | 2003-08-20 | 大连理工大学 | Prepn process of superfine zeolite powder |
-
2004
- 2004-12-02 CN CNB2004100890372A patent/CN1299986C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051310A (en) * | 1988-05-20 | 1991-05-15 | 日本化学工业株式会社 | Method for maintaining activity of zeolite catalyst |
US5068442A (en) * | 1988-05-20 | 1991-11-26 | Nitto Kagaku Kogyo Kabushiki Kaisha | Method for maintaining the activity of zeolite catalysts |
CN1436726A (en) * | 2003-02-25 | 2003-08-20 | 大连理工大学 | Prepn process of superfine zeolite powder |
Also Published As
Publication number | Publication date |
---|---|
CN1636874A (en) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105036152A (en) | Hollow H-ZSM-5 molecular sieve, and preparation method and application thereof | |
JP2021531162A (en) | Catalysts for producing ethylbenzene from ethanol and benzene, their production methods and applications | |
Wei et al. | A functionalized graphene oxide and nano-zeolitic imidazolate framework composite as a highly active and reusable catalyst for [3+ 3] formal cycloaddition reactions | |
CN107597186A (en) | A kind of short mesoporous solid alkali BG/Zr SBA 15 of the water resistance of catalytically synthesizing biological diesel oil preparation method | |
CN1299986C (en) | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn | |
CN85102764A (en) | Zeolite catalyst modified by rare earth preparation and application | |
CN1128004C (en) | Microwave heating to synthesize molecular sieve film | |
CN116022809A (en) | Method for preparing metal doped integral hierarchical pore nano beta zeolite | |
CN1349929A (en) | Mesoporous molecular sieve material with strong acidity and high hydrothermal stability and its prepn | |
CN1688510A (en) | Production method for zeolite shaped body and production method for zeolite layered composite | |
CN1260002C (en) | Process for preparing porous clay isomeric material | |
CN1966149A (en) | Catalyst for chloromethane conversion to produce low carbon olefin and its uses | |
CN110368985B (en) | Catalyst for 5-HMF synthesis and preparation method of 5-HMF | |
CN1108869C (en) | MeAPSO-35 molecular sieve and its synthesizing method | |
KR102168925B1 (en) | Process for the production of a zeolitic material employing elemental precursors | |
CN1387947A (en) | Low-carbon olefine synthesized C12-C18 ZrZSM-5 molecular sieve catalyst and its prepn | |
CN1197770C (en) | Synthetic porous crystalline MCM-71, its synthesis and use | |
CN1583254A (en) | Preparation of loaded molybdenum oxide catalyst for synthesis of phenyloxalate by ester interchange process | |
CN1608721A (en) | A method for evacuating and in-situ hydrothermally synthesizing type A molecular sieve membrane | |
WO2012029071A2 (en) | CATALYST COMPOSITION (ICaT-2) COMPRISING OF RARE EARTH METAL | |
CN1288083C (en) | Preparation of Mg alkali zeolite by vapor phase self crystallization | |
CN1500730A (en) | Method for synthesizing porous material mordenite membrane | |
KR102108791B1 (en) | Organic-Inorganic Hybrid Materials as Functional Catalysts, their preparation method and application for manufacturing organic carbonates | |
CN1600427A (en) | Preparation method of MCM-41/alumina composite material | |
CN1418815A (en) | Method for prepn. of porous material mordenite membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070214 Termination date: 20100104 |