CN104148118B - A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports - Google Patents
A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports Download PDFInfo
- Publication number
- CN104148118B CN104148118B CN201410392968.3A CN201410392968A CN104148118B CN 104148118 B CN104148118 B CN 104148118B CN 201410392968 A CN201410392968 A CN 201410392968A CN 104148118 B CN104148118 B CN 104148118B
- Authority
- CN
- China
- Prior art keywords
- reactor
- temperature
- inert gas
- water
- boehmite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title abstract description 28
- 150000004820 halides Chemical class 0.000 title abstract description 14
- 239000011261 inert gas Substances 0.000 claims abstract description 16
- 229910001593 boehmite Inorganic materials 0.000 claims abstract description 10
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims abstract description 10
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000010926 purge Methods 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- -1 halide silicon tetrachloride Chemical class 0.000 claims description 7
- 239000005049 silicon tetrachloride Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 229910001679 gibbsite Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 235000014121 butter Nutrition 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 22
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 8
- 230000005587 bubbling Effects 0.000 abstract description 6
- 238000001354 calcination Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 80
- 229910052757 nitrogen Inorganic materials 0.000 description 40
- 239000011148 porous material Substances 0.000 description 38
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于材料制备领域的技术领域,具体涉及一种利用水反应性卤化物制备孔径集中分布的改性氧化铝的方法。The invention belongs to the technical field of material preparation, and in particular relates to a method for preparing modified alumina with concentrated pore size distribution by utilizing water-reactive halides.
背景技术Background technique
多孔载体在吸附、催化、分离以及微电子等高新技术领域都有广泛的应用。多孔载体的孔径分布是影响介质在孔道内扩散的关键因素,在催化材料领域对催化剂的活性、选择性和热稳定性有重要的影响,对吸附剂等分离材料的分离性能亦有重要影响。因此开发高效、稳定、简单的孔径分布调控方法是这个领域的核心挑战。Porous supports are widely used in high-tech fields such as adsorption, catalysis, separation and microelectronics. The pore size distribution of the porous carrier is a key factor affecting the diffusion of the medium in the pores. In the field of catalytic materials, it has an important impact on the activity, selectivity and thermal stability of the catalyst, and also has an important impact on the separation performance of separation materials such as adsorbents. Therefore, developing an efficient, stable, and simple method for regulating the pore size distribution is a core challenge in this field.
在载体合成、成型阶段的孔径分布调节主要是通过调节成孔粒子的尺寸和堆积方式实现,可通过添加合适的模板剂和/或调控合适的制备条件对孔径分布进行调节,但这些方法存在着其不可忽视的缺陷,如合成成本较高,模板剂污染严重,不容易实现大规模工业化生产等。对已成型的载体可通过合适的化学处理(酸处理、碱处理、水蒸气处理等)、水热处理等后处理的方式进行孔径分布调节,但这些方法会对载体本身的结构造成一定的破坏,如压碎强度下降等,且存在产生大量废水,作用机理复杂,难实现工业化等亟待解决的问题(D.L.Trimm,etal.,Appliedcatalysis,1986,21(2),215-238.)。The pore size distribution adjustment in the carrier synthesis and molding stages is mainly realized by adjusting the size and packing mode of the pore-forming particles. The pore size distribution can be adjusted by adding suitable templates and/or adjusting suitable preparation conditions, but these methods have Its disadvantages cannot be ignored, such as high synthesis cost, serious pollution of template agent, and it is not easy to realize large-scale industrial production. The pore size distribution of the formed carrier can be adjusted by appropriate chemical treatment (acid treatment, alkali treatment, water vapor treatment, etc.), hydrothermal treatment and other post-treatment methods, but these methods will cause certain damage to the structure of the carrier itself. For example, the crushing strength is reduced, and there are problems to be solved urgently such as the generation of a large amount of waste water, the complicated mechanism of action, and the difficulty of industrialization (D.L.Trimm, et al., Appliedcatalysis, 1986, 21(2), 215-238.).
水反应性卤化物可与水和/或羟基反应生成相应的氧化物(或氢氧化物),利用水蒸气与水反应性卤化物的化学气相沉积反应对多孔膜材料修饰,已经取得了一定的进展(M.Niwa,etal.,JournalofPhysicsandChemistryofSolids,1989,50(5):487-496.),但该方法通常需要在真空条件下进行,且存在水蒸气的通入量难以控制等问题,较难实现多孔载体孔结构性质和表面性质的可控调变。利用水反应性卤化物与分子筛等多孔载体的高温反应(高于300℃)对多孔载体进行表面改性的研究也已经取得了一定的进展(M.W.Anderson,etal.,Zeolites,1986,6(6):455-466.),但在高温反应会导致多孔载体骨架的严重破坏,如脱铝等,难以实现多孔载体孔结构性质和表面性质的可控调变。利用水反应性卤化物(四氯化硅、四氯化钛等)与氧化铝载体前躯物(拟薄水铝石、勃姆石等)焙烧过程中产生的水反应,在较低温度下同时实现多孔氧化铝载体孔径分布和表面性质调变的方法未见报道。Water-reactive halides can react with water and/or hydroxyl groups to form corresponding oxides (or hydroxides). The chemical vapor deposition reaction of water vapor and water-reactive halides has been used to modify porous membrane materials, and certain achievements have been made. Progress (M.Niwa, et al., Journal of Physics and Chemistry of Solids, 1989,50(5):487-496.), but this method usually needs to be carried out under vacuum conditions, and there are problems such as difficult control of the amount of water vapor, which is difficult Realize the controllable modulation of the pore structure properties and surface properties of the porous carrier. Some progress has been made in surface modification of porous supports by using high-temperature reactions (higher than 300°C) between water-reactive halides and porous supports such as molecular sieves (M.W.Anderson, et al., Zeolites, 1986, 6 (6 ):455-466.), but the reaction at high temperature will lead to serious damage to the framework of the porous support, such as dealumination, etc., and it is difficult to achieve controllable modulation of the pore structure and surface properties of the porous support. Utilize the reaction of water generated during the roasting process of water-reactive halides (silicon tetrachloride, titanium tetrachloride, etc.) A method for simultaneously realizing the modulation of the pore size distribution and surface properties of porous alumina supports has not been reported.
发明内容Contents of the invention
本发明的目的在于提供一种孔径集中分布改性氧化铝的制备方法。本发明提供的方法可利用工业上副产的水反应性卤化物(如多晶硅产业副产的四氯化硅等),成本低廉,工艺简单,污染小,容易实现工业化,在调控孔径分布的可同时,实现对多孔载体表面性质的调控,具有广泛的应用前景。The object of the present invention is to provide a method for preparing modified alumina with concentrated pore size distribution. The method provided by the invention can utilize water-reactive halides (such as silicon tetrachloride, which is a by-product of the polysilicon industry) in industry, and has low cost, simple process, little pollution, and easy industrialization. At the same time, the control of the surface properties of porous supports can be achieved, which has broad application prospects.
为实现上述目的,本发明采用如下技术方案:一种孔径集中分布改性氧化铝的制备方法是利用水反应性卤化物与氧化铝载体前躯物表面和孔道中的吸附水和焙烧分解生成的水反应,生成相应的纳米级的固体氧化物,从而覆盖、堵塞、调变多孔氧化铝载体孔径分布和表面性质。所述的方法包括以下步骤:In order to achieve the above object, the present invention adopts the following technical scheme: a preparation method of modified alumina with concentrated pore size distribution is formed by utilizing water-reactive halides and adsorbed water on the surface and channels of alumina carrier precursors and roasting decomposition Water reacts to generate corresponding nano-scale solid oxides, thereby covering, blocking, and modulating the pore size distribution and surface properties of the porous alumina carrier. Described method comprises the following steps:
(1)将氧化铝载体前驱物装填在反应器中,用干燥的惰性气体,在室温~50℃下吹扫0.5~24h,惰性气体的空速为100~10000h-1;(1) Load the alumina carrier precursor in the reactor, and purge with dry inert gas at room temperature~50℃ for 0.5~24h, and the space velocity of the inert gas is 100~10000h -1 ;
(2)以空速为100~10000h-1的惰性气体为吹扫气,反应器压力为0.1~0.3MPa(绝压),反应器以2~10℃/min的升温速率进行升温,当反应器温度升至40~100℃时,以惰性气体鼓泡的方式,携带水反应性卤化物与氧化铝载体前躯物相互作用,鼓泡器温度为30~150℃,惰性气体的空速为100~1000h-1;当反应器温度升至110~170℃时,切换干燥的惰性气体进行吹扫;当反应器温度升至350~650℃时,停止升温,在350~650℃下焙烧2~8h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体。(2) Use an inert gas with a space velocity of 100~10000h -1 as the purge gas, the reactor pressure is 0.1~0.3MPa (absolute pressure), and the reactor is heated at a heating rate of 2~10°C/min. When the reaction When the temperature of the bubbler rises to 40~100°C, inert gas bubbles are used to carry water-reactive halides to interact with the precursor of the alumina carrier. The temperature of the bubbler is 30~150°C, and the space velocity of the inert gas is 100~1000h -1 ; when the temperature of the reactor rises to 110~170°C, switch to dry inert gas for purging; when the temperature of the reactor rises to 350~650°C, stop heating and roast at 350~650°C for 2 After ~8h, cool to room temperature to obtain a porous alumina carrier with concentrated pore size distribution.
惰性气体为氮气、氦气、氩气中的一种或多种。The inert gas is one or more of nitrogen, helium and argon.
优选的,所述氧化铝载体前驱物为拟薄水铝石、勃姆石、三水铝石中的一种或多种。Preferably, the alumina carrier precursor is one or more of pseudoboehmite, boehmite, and gibbsite.
优选的,所述水反应性卤化物为四氯化硅、四氯化钛、四氯化锡、四氯化锗中的一种。Preferably, the water-reactive halide is one of silicon tetrachloride, titanium tetrachloride, tin tetrachloride and germanium tetrachloride.
优选的,所述惰性气体为氮气、氩气中的一种或多种。Preferably, the inert gas is one or more of nitrogen and argon.
优选的,所述的反应器为耐腐蚀固定床反应器、耐腐蚀流化床反应器中的一种。Preferably, the reactor is one of a corrosion-resistant fixed-bed reactor and a corrosion-resistant fluidized-bed reactor.
优选的,所述步骤(1)中,吹扫温度为室温,吹扫时间为0.2~0.3h。Preferably, in the step (1), the purging temperature is room temperature, and the purging time is 0.2-0.3h.
优选的,所述步骤(1)和(2)中,惰性气体的空速为200~400h-1。Preferably, in the steps (1) and (2), the space velocity of the inert gas is 200~400h -1 .
优选的,所述步骤(2)中,反应器的压力为0.1~0.2MPa。Preferably, in the step (2), the pressure of the reactor is 0.1-0.2 MPa.
优选的,所述步骤(2)中,反应器的升温速率为2~5℃/min。Preferably, in the step (2), the heating rate of the reactor is 2-5° C./min.
优选的,所述步骤(2)中,鼓泡器温度为35~100℃,开启鼓泡的温度为50~90℃,停止鼓泡的温度为120~150℃。Preferably, in the step (2), the temperature of the bubbler is 35-100°C, the temperature for starting the bubbling is 50-90°C, and the temperature for stopping the bubbling is 120-150°C.
优选的,所述步骤(2)中,焙烧温度为450~550℃,焙烧时间为4~6h。Preferably, in the step (2), the calcination temperature is 450-550° C., and the calcination time is 4-6 hours.
所述的改性氧化铝为孔径集中分布的氧化物/氧化铝复合载体,所述的氧化物为氧化硅、氧化钛、氧化锡、氧化锗中的一种或多种的复合氧化物。The modified alumina is an oxide/alumina composite carrier with concentrated pore size distribution, and the oxide is one or more composite oxides of silicon oxide, titanium oxide, tin oxide, and germanium oxide.
本发明的显著优点在于:Significant advantage of the present invention is:
(1)本发明首次利用水反应性卤化物与氧化铝载体前躯物焙烧过程中产生的水反应制备改性氧化铝,操作工艺简单。(1) For the first time, the present invention utilizes water-reactive halides to react with water generated during the roasting process of alumina carrier precursors to prepare modified alumina, and the operation process is simple.
(2)本发明可利用工业上副产的水反应性卤化物(如多晶硅产业副产的四氯化硅等),成本低廉,符合实际生产需要,易于大规模的推广应用。(2) The present invention can utilize industrial by-products of water-reactive halides (such as silicon tetrachloride, which is a by-product of the polysilicon industry), with low cost, meets actual production needs, and is easy to popularize and apply on a large scale.
(3)本发明不破坏多孔载体的主体结构。(3) The present invention does not destroy the main structure of the porous carrier.
(4)金属和/或非金属氧化物的可控引入,可在调控孔径分布的同时实现对多孔载体表面性质的调控。(4) The controllable introduction of metal and/or non-metal oxides can control the surface properties of porous supports while regulating the pore size distribution.
(5)本发明方法制备的多孔载体孔径分布在4nm以下的孔容较少,集中于4~10nm,适用于制备中等介孔范围的催化剂载体、吸附剂载体等。(5) The porous carrier prepared by the method of the present invention has less pore volume with a pore size distribution of less than 4 nm, concentrated in 4-10 nm, and is suitable for preparing catalyst carriers, adsorbent carriers, etc. in the medium mesopore range.
具体实施方式detailed description
下面通过具体实例对本发明所述的多孔载体孔径分布调控方法作进一步说明。The method for regulating the pore size distribution of the porous carrier according to the present invention will be further described through specific examples below.
实施例1:将0.5kg拟薄水铝石(中国铝业山东分公司生产,P-DF-03,灼减≤24%)装填在搪玻璃固定床反应器中,用干燥的氮气在40℃下吹扫0.2h,氮气的空速为300h-1;以干燥的氮气为吹扫气,反应器压力为0.1MPa(绝压),固定床反应器以2℃/min的升温速率进行升温,当反应器温度升至50℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化硅与拟薄水铝石相互作用,鼓泡器温度为35℃,氮气的空速为300h-1;当反应器温度升至120℃时,切换干燥的氮气进行吹扫;当反应器温度升至450℃时,停止升温,在450℃下焙烧5h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 1: Fill 0.5kg of pseudo-boehmite (produced by Aluminum Corporation of China Shandong Branch, P-DF-03, ignition loss ≤ 24%) in a glass-lined fixed-bed reactor, and use dry nitrogen at 40°C Under purge for 0.2h, the space velocity of nitrogen is 300h -1 ; dry nitrogen is used as purge gas, the reactor pressure is 0.1MPa (absolute pressure), and the temperature of the fixed bed reactor is raised at a rate of 2°C/min. When the temperature of the reactor rises to 50°C, nitrogen bubbles are used to carry the water-reactive halide silicon tetrachloride to interact with pseudo-boehmite. The temperature of the bubbler is 35°C, and the space velocity of nitrogen is 300h -1 ; when the reactor temperature rises to 120°C, switch to dry nitrogen for purging; when the reactor temperature rises to 450°C, stop heating, and after roasting at 450°C for 5h, cool to room temperature to obtain a concentrated pore size The distributed porous alumina carrier, its pore structure parameters are shown in Table 1.
实施例2:将0.5kg勃姆石(淄博百大化工有限公司生产,BD-BS03,氧化铝含量≥83%))装填在搪玻璃固定床反应器中,用干燥的氮气在35℃下吹扫0.5h,氮气的空速为400h-1;以干燥的氮气为吹扫气,反应器压力为0.12MPa(绝压),固定床反应器以4℃/min的升温速率进行升温,当反应器温度升至60℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化钛与勃姆石相互作用,鼓泡器温度为35℃,氮气的空速为400h-1;当反应器温度升至130℃时,切换干燥的氮气进行吹扫;当反应器温度升至550℃时,停止升温,在350℃下焙烧8h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 2: Fill 0.5kg boehmite (manufactured by Zibo Baida Chemical Co., Ltd., BD-BS03, alumina content ≥ 83%) into a glass-lined fixed-bed reactor, blow with dry nitrogen at 35°C Sweep for 0.5h, the space velocity of nitrogen is 400h -1 ; dry nitrogen is used as the sweeping gas, the reactor pressure is 0.12MPa (absolute pressure), the temperature of the fixed bed reactor is raised at a rate of 4°C/min, when the reaction When the temperature of the bubbler rises to 60°C, nitrogen bubbles are used to carry the water-reactive halide titanium tetrachloride to interact with boehmite. The temperature of the bubbler is 35°C, and the space velocity of nitrogen is 400h -1 ; When the temperature of the reactor rises to 130°C, switch to dry nitrogen for purging; when the temperature of the reactor rises to 550°C, stop the temperature rise, and after calcination at 350°C for 8 hours, cool to room temperature to obtain porous oxide with concentrated pore size distribution. Aluminum carrier, its pore structure parameters are shown in Table 1.
实施例3:将0.5kg勃姆石(淄博百大化工有限公司生产,BD-BS03,氧化铝含量≥83%)装填在搪玻璃固定床反应器中,用干燥的氮气在40℃下吹扫0.5h,氮气的空速为300h-1;以干燥的氮气为吹扫气,反应器压力为0.15MPa(绝压),固定床反应器以10℃/min的升温速率进行升温,当反应器温度升至50℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化锡与勃姆石相互作用,鼓泡器温度为50℃,氮气的空速为600h-1;当反应器温度升至150℃时,切换干燥的氮气进行吹扫;当反应器温度升至550℃时,停止升温,在550℃下焙烧4h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 3: Pack 0.5kg of boehmite (manufactured by Zibo Baida Chemical Co., Ltd., BD-BS03, with alumina content ≥ 83%) in a glass-lined fixed-bed reactor, and purge with dry nitrogen at 40°C 0.5h, the space velocity of nitrogen is 300h -1 ; dry nitrogen is used as the purge gas, the reactor pressure is 0.15MPa (absolute pressure), the temperature of the fixed bed reactor is raised at a rate of 10°C/min, when the reactor When the temperature rises to 50°C, the water-reactive halide tin tetrachloride interacts with boehmite in the form of nitrogen bubbling, the temperature of the bubbler is 50°C, and the space velocity of nitrogen is 600h -1 ; when the reaction When the temperature of the reactor rises to 150°C, switch to dry nitrogen for purging; when the temperature of the reactor rises to 550°C, stop heating up, and after calcination at 550°C for 4 hours, cool to room temperature to obtain porous alumina with concentrated pore size distribution The carrier, its pore structure parameters are shown in Table 1.
实施例4:将0.5kg三水铝石(淄博耀和铝业有限公司生产,HP,Al含量为64.5%)装填在搪玻璃固定床反应器中,用干燥的氮气在40℃下吹扫0.5h,氮气的空速为500h-1;以干燥的氮气为吹扫气,反应器压力为0.2MPa(绝压),固定床反应器以4℃/min的升温速率进行升温,当反应器温度升至60℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化锗与三水铝石相互作用,鼓泡器温度为35℃,氮气的空速为400h-1;当反应器温度升至150℃时,切换干燥的氮气进行吹扫;当反应器温度升至650℃时,停止升温,在550℃下焙烧8h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 4: Pack 0.5 kg of gibbsite (manufactured by Zibo Yaohe Aluminum Co., Ltd., HP, with an Al content of 64.5%) in a glass-lined fixed-bed reactor, and purge 0.5 kg with dry nitrogen at 40 ° C. h, the space velocity of nitrogen is 500h -1 ; dry nitrogen is used as the purge gas, the reactor pressure is 0.2MPa (absolute pressure), and the fixed bed reactor is heated at a heating rate of 4°C/min. When the reactor temperature When the temperature rises to 60°C, the water-reactive halide germanium tetrachloride is carried to interact with gibbsite by nitrogen bubbling, the temperature of the bubbler is 35°C, and the space velocity of nitrogen is 400h -1 ; when the reaction When the temperature of the reactor rises to 150°C, switch to dry nitrogen for purging; when the temperature of the reactor rises to 650°C, stop heating up, and after calcination at 550°C for 8 hours, cool to room temperature to obtain porous alumina with concentrated pore size distribution The carrier, its pore structure parameters are shown in Table 1.
实施例5:将0.5kg拟薄水铝石(中国铝业山东分公司生产,P-DF-03,灼减≤24%)装填在搪玻璃固定床反应器中,用干燥的氮气在45℃下吹扫0.2h,氮气的空速为300h-1;以干燥的氮气为吹扫气,反应器压力为0.25MPa(绝压),固定床反应器以5℃/min的升温速率进行升温,当反应器温度升至50℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化钛与拟薄水铝石相互作用,鼓泡器温度为45℃,氮气的空速为300h-1;当反应器温度升至120℃时,切换干燥的氮气进行吹扫;当反应器温度升至500℃时,停止升温,在650℃下焙烧2h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 5: Fill 0.5kg of pseudo-boehmite (produced by Aluminum Corporation of China Shandong Branch, P-DF-03, ignition loss ≤ 24%) in a glass-lined fixed-bed reactor, and use dry nitrogen at 45°C Purge down for 0.2h, the space velocity of nitrogen is 300h -1 ; dry nitrogen is used as purge gas, the reactor pressure is 0.25MPa (absolute pressure), and the temperature of the fixed bed reactor is raised at a rate of 5°C/min. When the temperature of the reactor rises to 50°C, the water-reactive halide titanium tetrachloride interacts with the pseudo-boehmite by nitrogen bubbling, the temperature of the bubbler is 45°C, and the space velocity of nitrogen is 300h -1 ; when the reactor temperature rises to 120°C, switch to dry nitrogen for purging; when the reactor temperature rises to 500°C, stop heating, and after roasting at 650°C for 2h, cool to room temperature to obtain a concentrated pore size The distributed porous alumina carrier, its pore structure parameters are shown in Table 1.
实施例6:将0.5kg拟薄水铝石(中国铝业山东分公司生产,P-DF-03,灼减≤24%)装填在耐腐蚀处理的流化床反应器中,用干燥的氮气在35℃下流化处理0.5h,氮气的空速为5000h-1;以干燥的氦气为吹扫气,反应器压力为0.3MPa(绝压),流化床反应器反应器以8℃/min的升温速率进行升温,当反应器温度升至50℃时,以氮气鼓泡的方式,携带水反应性卤化物四氯化硅与拟薄水铝石相互作用,鼓泡器温度为30℃,氮气的空速为8000h-1;当反应器温度升至150℃时,切换干燥的氮气进行吹扫;当反应器温度升至450℃时,停止升温,在450℃下继续流化6h后,冷却至室温,制得孔径集中分布的多孔氧化铝载体,其孔结构参数见表1。Example 6: Fill 0.5kg of pseudo-boehmite (produced by Aluminum Corporation of China Shandong Branch, P-DF-03, ignition loss ≤ 24%) in a corrosion-resistant fluidized bed reactor, and use dry nitrogen Fluidized treatment at 35°C for 0.5h, nitrogen space velocity is 5000h -1 ; dry helium is used as purge gas, reactor pressure is 0.3MPa (absolute pressure), fluidized bed reactor is 8°C/ The temperature was raised at a heating rate of min. When the temperature of the reactor rose to 50°C, nitrogen bubbles were used to carry the water-reactive halide silicon tetrachloride to interact with pseudo-boehmite, and the temperature of the bubbler was 30°C. , the space velocity of nitrogen is 8000h -1 ; when the temperature of the reactor rises to 150°C, switch to dry nitrogen for purging; , and cooled to room temperature to prepare a porous alumina carrier with concentrated pore size distribution, and its pore structure parameters are shown in Table 1.
对比例1:将0.5kg拟薄水铝石(中国铝业山东分公司生产,P-DF-03,灼减≤24%)装填在固定床反应器中,用干燥的氮气在40℃下吹扫0.2h,氮气的空速为300h-1;以干燥的氮气为吹扫气,反应器压力为0.1MPa(绝压),固定床反应器以2℃/min的升温速率,升温至450℃,并在450℃下保持4h,然后冷却至室温,制得氧化铝载体的孔结构参数见表1。Comparative example 1: Fill 0.5kg of pseudo-boehmite (produced by Aluminum Corporation of China Shandong Branch, P-DF-03, ignition loss ≤ 24%) in a fixed-bed reactor, and blow it with dry nitrogen at 40°C Sweep for 0.2h, the space velocity of nitrogen is 300h -1 ; dry nitrogen is used as the sweeping gas, the reactor pressure is 0.1MPa (absolute pressure), and the temperature of the fixed bed reactor is raised to 450°C at a heating rate of 2°C/min , and kept at 450°C for 4h, and then cooled to room temperature. The pore structure parameters of the prepared alumina carrier are shown in Table 1.
以上所述的实施例仅为本发明的几种实施方式,描述较为具体和详细,但并不能理解为对本发明专利范围的限制。所用化学品均为市售商品。应当指明,对本领域的普通技术人员来说,在以本发明构思为基础上,可做出若干改进,这些都是属于本发明的保护范围。因此,本发明专利的保护范围以所附的权利要求为准。The above-mentioned embodiments are only several implementation modes of the present invention, and the descriptions are more specific and detailed, but should not be construed as limiting the patent scope of the present invention. All chemicals used are commercially available. It should be noted that for those skilled in the art, some improvements can be made on the basis of the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention shall be determined by the appended claims.
表1氧化铝载体的孔结构参数Table 1 Pore structure parameters of alumina support
上述实施例说明,本发明所述方法制备的改性氧化铝具有集中的孔径分布,4nm以下的孔容较少,分布在4~10nm范围的孔容占总孔容的百分比大于70%,与对比例相比,有显著提高,而且操作过程简单,能适用于氧化铝、氧化硅、分子筛等多孔载体的孔结构和表面性质的调变过程。The above examples illustrate that the modified alumina prepared by the method of the present invention has a concentrated pore size distribution, the pore volume below 4nm is less, and the pore volume distributed in the range of 4-10nm accounts for more than 70% of the total pore volume, which is comparable to Compared with the comparative example, the method has obvious improvement, and the operation process is simple, and can be applied to the modulation process of the pore structure and surface properties of porous carriers such as alumina, silicon oxide and molecular sieve.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392968.3A CN104148118B (en) | 2014-08-12 | 2014-08-12 | A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392968.3A CN104148118B (en) | 2014-08-12 | 2014-08-12 | A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104148118A CN104148118A (en) | 2014-11-19 |
CN104148118B true CN104148118B (en) | 2016-05-11 |
Family
ID=51873858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410392968.3A Expired - Fee Related CN104148118B (en) | 2014-08-12 | 2014-08-12 | A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104148118B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0950638A1 (en) * | 1997-07-15 | 1999-10-20 | Japan Energy Corporation | Pseudoboehmite powder for catalyst carrier and process for preparing the same |
CN1636874A (en) * | 2004-12-02 | 2005-07-13 | 复旦大学 | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn |
CN101704537A (en) * | 2009-11-09 | 2010-05-12 | 中国海洋石油总公司 | Method for preparing aluminum oxide with bimodal pore distribution |
CN101856610A (en) * | 2010-06-10 | 2010-10-13 | 沈阳化工大学 | A method for preparing silicon, zinc co-doped titanium dioxide mesoporous material |
CN103172097A (en) * | 2013-04-11 | 2013-06-26 | 北京化工大学 | Pseudo-boehmite with large specific surface area and preparation method and application thereof |
-
2014
- 2014-08-12 CN CN201410392968.3A patent/CN104148118B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0950638A1 (en) * | 1997-07-15 | 1999-10-20 | Japan Energy Corporation | Pseudoboehmite powder for catalyst carrier and process for preparing the same |
CN1636874A (en) * | 2004-12-02 | 2005-07-13 | 复旦大学 | Organic and inorganic carbon hybridized silicon zeolite solid acid cellular material and its prepn |
CN101704537A (en) * | 2009-11-09 | 2010-05-12 | 中国海洋石油总公司 | Method for preparing aluminum oxide with bimodal pore distribution |
CN101856610A (en) * | 2010-06-10 | 2010-10-13 | 沈阳化工大学 | A method for preparing silicon, zinc co-doped titanium dioxide mesoporous material |
CN103172097A (en) * | 2013-04-11 | 2013-06-26 | 北京化工大学 | Pseudo-boehmite with large specific surface area and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104148118A (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2, 5-furandicarboxylic acid | |
CN102614911A (en) | One-step molding method of titanium silicalite molecular sieve | |
CN108554432A (en) | A kind of nitrogen co-doped graphene-supported palladium-based catalyst of phosphorus and preparation method and application | |
CN111253217B (en) | Method for preparing cyclohexanol by hydrating cyclohexene | |
CN114275790B (en) | Porous calcium silicate hydrate and preparation method thereof, adsorbent and application thereof | |
CN113101964B (en) | A kind of mesoporous cerium oxide photocatalyst and its preparation method and application | |
CN114570415A (en) | Pt @ hierarchical pore zeolite catalyst for preparing propylene by propane dehydrogenation and preparation method thereof | |
CN103263939A (en) | A kind of method for preparing Ni2P catalyst | |
CN110052274A (en) | A kind of method of bacteria cellulose controlledly synthesis multi-stage porous metal oxide catalyst | |
CN115228503A (en) | Preparation method of carbon nitride-based copper material for ozone catalytic oxidation water treatment | |
CN114939431A (en) | CN@ZrO 2 Composite material and application thereof in catalyzing CO 2 Application in cycloaddition reaction with epoxide | |
CN105521782A (en) | Preparation method of Cu nanoparticles-embedded ordered mesoporous carbon catalyst | |
CN110550612A (en) | Porous graphite phase carbon nitride nanosheet and preparation method and application thereof | |
CN113617334A (en) | Preparation method of metal organic framework material | |
CN102179268B (en) | Preparation of Ti-MCM-41 mesoporous material with functionalized ionic liquid and application thereof | |
CN107416859A (en) | A kind of preparation method and application of step hole Beta molecular sieves | |
CN102274743B (en) | High intercrystal poriness zeolite coating material on surface of porous silicon carbide carrier and preparation method thereof | |
CN104148118B (en) | A kind of method of utilizing the reactive halide of water to prepare modified aluminium oxide supports | |
Sasidharan et al. | Fabrication, characterization and catalytic oxidation of propylene over TS-1/Au membranes | |
KR101405306B1 (en) | Mesoporous nickel-alumina xerogel catalyst prepared using nano-carbon particle as a mould, preparation method thereof and production method of hydrogen by steam reforming of liquefied natural gas(lng) using said catalyst | |
CN110183677B (en) | Mesoporous Ru-MIL-125-NH2 catalyst prepared by supercritical fluid | |
CN111617765B (en) | Nickel-based nanocatalyst derived from hydrotalcite-montmorillonite composite material and its preparation method and application | |
CN101596463B (en) | Granular titanium-silicon molecular sieve catalyst and preparation method thereof | |
CN107497479B (en) | A method for preparing methyl methoxyacetate by synthesizing beta molecular sieve with cordierite as carrier | |
CN118663291B (en) | Gamma-Al2O3Catalyst for preparing C-F and its preparing process and use of methanol and method for synthesizing chloromethane by using hydrogen chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160511 |
|
CF01 | Termination of patent right due to non-payment of annual fee |