[go: up one dir, main page]

CN1297066C - 电动机驱动装置 - Google Patents

电动机驱动装置 Download PDF

Info

Publication number
CN1297066C
CN1297066C CNB2004100550845A CN200410055084A CN1297066C CN 1297066 C CN1297066 C CN 1297066C CN B2004100550845 A CNB2004100550845 A CN B2004100550845A CN 200410055084 A CN200410055084 A CN 200410055084A CN 1297066 C CN1297066 C CN 1297066C
Authority
CN
China
Prior art keywords
mentioned
motor
voltage
motor drive
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100550845A
Other languages
English (en)
Other versions
CN1571264A (zh
Inventor
植田光男
中田秀树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1571264A publication Critical patent/CN1571264A/zh
Application granted granted Critical
Publication of CN1297066C publication Critical patent/CN1297066C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
    • H02M5/42Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
    • H02M5/44Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
    • H02M5/453Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/50Urns with devices for keeping beverages hot or cool
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/425Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/048Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC supply for only the rotor circuit or only the stator circuit
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/06Filters or strainers for coffee or tea makers ; Holders therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4403Constructional details
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/54Water boiling vessels in beverage making machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Food Science & Technology (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Valve Device For Special Equipments (AREA)
  • Seal Device For Vehicle (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种电动机驱动装置,包括连接单相交流电源(1)的单相整流电路(3),连接该单相整流电路(3)并向电动机(2)施加电流和电压的变换器电路(4),和控制该变换器电路(4)的变换器控制部(5b);变换器控制部(5b)为了使变换器输入电压Vpn与单相交流电源(1)的电压的绝对值|v|相等而控制电流,该电流提供给作为变换器电路(4)的输出的电动机(2)。在不具有大容量电容器的变换器驱动的电动机驱动装置(101b)中,抑制因受向内部寄生电容充电的电流和来自电动机(2)的再生电流的影响而引起流过单相交流电源的电流波形变形并使输入功率因数和驱动效率恶化的情况产生。

Description

电动机驱动装置
技术领域
本发明涉及一种电动机驱动装置,特别涉及一种通过由单相整流电路和变换器构成的系统来驱动电动机的电动机驱动装置。
背景技术
常规使用的现有电动机驱动装置是通过由单相整流电路和变换器构成的系统来驱动电动机的装置。这里,单相整流电路具有用于改善功率因数的电抗器(未图示)和平滑该电路的输出电压的平滑电容器。
在这种现有的电动机驱动装置中,上述平滑电容器和用于改善功率因数的电抗器使用大容量的元件,存在电动机驱动装置的成本、寿命、效率、重量、尺寸等问题。像这样在平滑电容器和用于改善功率因数的电抗器上使用大容量的元件是为了避免因从电源流入电动机驱动装置的电流波形的变形而导致的功率因数劣化。换句话说,在电动机驱动装置中,如果平滑电容器和用于改善功率因数的电抗器的值变小,因从电源流入电动机驱动装置的电流波形的变化而导致功率因数劣化,并伴随这种变化而增大高次谐波成分,因此,该电动机驱动装置就不能满足国际高次谐波规则,即IEC(国际电工委员会:InternationalElectrotechnical Commission)高次谐波规则。
因此,人们正在考虑急剧减少平滑电容器和用于改善功率因数的电抗器(reactor)的容量并进一步改善电动机驱动装置的输入功率因数的方法(例如,参照专利文献1)。
说明有关使用此方法的电动机驱动装置(第1现有技术)。
图11是说明上述文献1记载的电动机驱动装置的方框图。
此电动机驱动装置100具有以单相交流电源1为输入的单相整流电路3、连接该单相整流电路3并向电动机2输出电流和电压的变换器电路4。
这里,上述单相整流电路3具有串联的第1和第2二极管31和32、串联的第3和第4二极管33和34。第1和第3二极管31和33的负极连接在一起,它们的共同连接点作为单相整流电路3的一侧的输出节点3a。第2和第4二极管32和34的正极连接连接在一起,它们的共同连接点作为单相整流电路3的另一侧的输出节点3b。该单相整流电路3两侧的输出节点3a和3b之间连接有平滑电容器12a。此外,在上述第1和第2二极管31和32的连接点3C处连接单相交流电源1的一侧的输出端子,在上述第3和第4二极管33和34的连接点3d处连接单相交流电源1的另一侧的输出端子。
此外,上述变换器电路4具有串联的第1和第2开关元件41和42,串联的第3和第4开关元件43和44,串联的第5和第6开关元件45和46。第1、第3、第5开关元件41、43、45的一端(高电位侧端子)共同连接,该共同连接点(一侧的输入节点)连接上述单相整流电路3的一侧的输出节点3a。第2、第4、第6的开关元件42、44、46的另一端(低电位侧端子)共同连接,该共同连接点(另一侧的输入节点)连接上述单相整流电路3的另一侧的输出节点3b。此外,上述第1~第6开关元件41~46分别具有反向并联的第1~第6二极管51~56。并且,上述第1和第2开关元件41和42的连接点4a作为变换器电路4的第1输出节点;上述第3和第4开关元件43和44的连接点4b作为变换器电路4的第2输出节点;上述第5和第6开关元件45和46的连接点4c作为变换器电路4的第3输出节点。上述变换器电路4的第1~第3的输出节点4a~4c分别作为电动机2的三相输入的各相的输入节点。
上述电动机驱动装置100具有根据单相交流电源1输出的电压的绝对值|v|、从外部输入的指令扭矩To和在单相整流电路3和变换器4之间流过的电流(直流耦合电流)idc输出电流指令值io的电流指令运算部件14,和根据和实际流过电动机2的电流i向上述变换器电路4的各开关元件41~46的栅极输出驱动信号(栅极信号)Sg的电流控制部15。
通过单相交流电源1的输出电压v的绝对值|v|调制来自外部的指令扭矩To来形成调制扭矩波形,当上述直流耦合电流idc的波形成为与该调制扭矩波形相同的波形时,上述电流指令运算部件14计算出电流指令值io。比较通过电流指令运算部件14计算出的电流指令值io与实际在电动机中流动的电流i,当其无偏差时,上述电流控制部15就向变换器电路4输出栅极信号Sg、控制该变换器电路4。再有,此电流控制部15实际上也对作为控制对象的电流i进行三相两相变换等的控制。
在上述的这种电动机驱动装置(第1现有技术)100中,流过单相整流电路3和变换器电路4之间的直流耦合电流idc成为单相交流电源1与输出电压v的绝对值|v|相同的波形,就改善了单相交流电源1的电流波形,提高了功率因数。为此,就能够减小平滑电容器和用于改善功率因数的电抗器的容量。
但是,一旦减小平滑电容器的容量,变换器电路4的输入电压就会发生波动,结果,变换器电路4的输入电压的电平就会变低,例如,就会出现无法得到施加到DC无刷电动机上的所需电压的情况。
因此,在变换器电路的输出电压已饱和时,提出了一种使输出电压相位超前的电动机驱动装置(第2现有技术)(例如,参照专利文件2)。
在输出电动机驱动电压的变换器电路的输出电压已饱和时,即变换器的输出电压的电平大于输入电压的电平时,此电动机驱动装置(第2现有技术)通过使电动机驱动电压(变换器输出电压)的相位超前,就可以使无刷电动机处于所谓的弱磁场状态,使无刷电动机所需的驱动电压的电平变小。据此,即使变换器电路4的输入电压变小,也能避免变换器电路4的输出电压饱和,就能够持续驱动电动机。
专利文献1
特开2002-51589号公告(第1图)
专利文献2
特开平10-150795号公告(第3~5页、第1图)
然而,作为第1现有技术的电动机驱动装置100中,由于没有考虑向平滑电容器12a充电的电流,因此使用输入电源电压的绝对值并且仅仅当电动机的驱动电流的波形与该输入电源电压的波成为相同波形时调制电动机的驱动电流,就降低了功率因数改善的效果。
此外,在上述第1现有技术中,电动机的驱动电流的调制由于是通过使单相整流电路3和变换器电路4之间流过的直流耦合电流idc的波形与指令扭矩To的调制的波形相一致来进行的,因此必须检测上述直流耦合电流idc。而且,根据直流耦合电流idc和指令扭矩To的调制波形来计算出电流指令值io,当该计算出的电流指令值io与实际的驱动电流i没有偏差时调整施加到变换器电路4中的栅极信号Sg,因此电动机驱动电流的控制就非常复杂。
而且,在上述第1现有技术中,由于通过交流电源的输出波形积极地调制电动机的驱动电流,所以作为通过交流电源的输出波形调制的电动机的输出扭矩,在高负荷区域就可能发生大的噪声和振动。并且,由于调制电动机驱动电流,就应当考虑当通过此电动机驱动装置来控制电动机输出时的临界扭矩的减少。
此外,在上述第1现有技术中,由于利用电源电压v的绝对值|v|来调制指令扭矩To,所以必须检测电源电压的瞬时值,其结果是根据检测出模拟值的AD转换器和它的AD转换输出,就必须在检测上述瞬时值的微型计算机中进行处理,其结果就成为引起成本上升的主要原因。
另一方面,在作为第2现有技术的电动机驱动装置中,在变换器电路的输出电压饱和并且比电动机的感应电压高的情况下,维持向电动机供给的电流使输出电压的相位超前,这样就降低了电动机的效率。即,因电动机内存在的电抗成分的影响,变换器电路的输出电压即使比电动机感应电压低,在一定时间内电动机驱动电流也会继续流动,同时产生扭矩。此时,使变换器电路的的输出电压有超前角,其输出电流和输出电压的相位差增大,就会使电动机的驱动效率下降。并且,为避免变换器电路的输出电压的饱和使该输出电压的相位超前,在技术上也存在非常困难的问题。
此外,在上述第2现有技术中也存在根本的问题。即,电动机的再生电流为流动状态下,变换器电路的输入电压比充电时高,认为变换器电路的输出电压不饱和。此时,再生电流流动,即使在供给电动机的电压的相位必定超前的区域中,由于输出电压不饱和,因此电动机驱动装置就停止使变换器电路的输出电压的相位超前的超前角的动作,其结果就会担心产生使再生电流不能停止的现象。
而且,在上述第2现有技术中,即使进行变换器电路的输出电压的超前角的调整,维持该变换器输出电压比电动机感应电压低的状态时,一旦超过维持此状态的一定时间,就会因从电动机向变换器电路流过反方向电流而再生电力。由于产生此再生电力的电流在电动机中进行制动,就使电动机的驱动效率下降。并且,在此再生期间,由于没有从单相交流电源向变换器电路供给电流,所以单相交流电源的电流波形就会变形,就会存在变换器电路的输入功率因数下降的问题。
发明内容
为了解决上述问题,本发明的目的在于提供一种电动机驱动装置,该电动机驱动装置能够通过控制电动机的驱动电流或驱动电压来抑制因从电源供给的电流的波形变形而使功率因数减小,并能使作为电路结构上所必需的阻抗,特别是容量阻抗减小,并且能通过简单的结构来进行电动机驱动电流或电动机驱动电压的控制,以保持电动机驱动的高效率、且有效地抑制功率因数的下降,能满足IEC高次谐波规则。
本发明1是一种电动机驱动装置,用于驱动电动机,其特征在于包括:以单相交流电源作为输入的整流电路;变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和变换器控制部,为了驱动上述电动机而控制上述变换器电路,上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,在上述电源电压推定部推定的电源电压从零电压向峰值电压变化时,使上述变换器电路的输出电流或输出电压的值变小的第1控制,以及在上述电源电压推定部推定的电源电压从峰值电压向零电压变化时,使上述变换器电路的输出电流或输出电压的值变大的第2控制中,上述变换器控制部至少进行其中的一种控制。
本发明2是一种电动机驱动装置,用于驱动电动机,其特征在于包括;以单相交流电源作为输入的整流电路;变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和变换器控制部,为了驱动上述电动机而控制上述变换器电路,上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,上述变换器控制部具有变换器输入电压检测部,用于检测向上述变换器电路输入的电压,比较上述电源电压推定部推定的电源电压的绝对值与上述变换器输入电压检测部检测的变换器输入电压,在上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器的输出电流或输出电压的值变大的第1控制,以及上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器的输出电流或输出电压的值变小的第2控制中,上述变换器控制部至少进行其中的一种控制。
本发明3是一种根据本发明2所述的电动机驱动装置,其特征在于:上述电动机为DC无刷电动机,上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的相位超前的控制,上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的相位滞后的控制。
本发明4是一种根据本发明2所述的电动机驱动装置,其特征在于:上述电动机为感应电动机,上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的角速度变小的控制,上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的角速度变大的控制。
本发明5是一种根据本发明2所述的电动机驱动装置,其特征在于:上述电源电压推定部,具有定时检测部,根据上述变换器输入电压检测部检测出的变换器输入电压来检测变换器输入电压取最大值的定时,根据上述定时检测部检测出的定时和来自此时的上述变换器输入电压检测部的检测输出即变换器输入电压值,来推定上述单相交流电源的电压。
本发明6是一种根据本发明1所述的电动机驱动装置,其特征在于:上述电源电压推定部具有:电阻电路,对电源电压进行电阻分压;光电耦合器,连接于该电阻电路的输出;以及零交叉检测部,基于上述光电耦合器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,从上述零交叉检测部检测出的零交叉定时和上述单相交流电源的已知电压来推定上述单相交流电源的电压。
本发明7是一种根据本发明2所述的电动机驱动装置,其特征在于:上述电源电压推定部具有:电阻电路,对电源电压进行电阻分压;光电耦合器,连接于该电阻电路的输出;以及零交叉检测部,基于上述光电耦令器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,从上述零交叉检测部检测出的零交叉定时和上述变换器输入电压检测部检测出的变换器输入电压来推定上述单相交流电源的电压。
本发明8是一种根据本发明1或者本发明2所述的电动机驱动装置,其特征在于:上述整流电路具有电容器,由来自上述电动机的再生电流进行充电。
本发明9是一种根据本发明1或者本发明2所述的电动机驱动装置,其特征在于:上述整流电路具有电感器,用于遮断在变换器电路中产生的噪音。
本发明10是一种压缩机,包括产生动力的电动机和驱动该电动机驱动装置,其特征在于,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置。
本发明11是一种空调机,包括具有产生动力的电动机的压缩机,其特征在于:包括驱动上述压缩机的电动机的电动机驱动装置;该电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明12是一种电冰箱,包括具有产生动力的电动机的压缩机,其特征在于:包括驱动上述压缩机的电动机的电动机驱动装置;该电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明13是一种电动洗衣机,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:上述电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明14是一种送风机,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:上述电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明15是一种电动吸尘器,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:上述电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明16是一种电动干燥机,包括具有产生动力的电动机的压缩机,其特征在于:包括驱动上述压缩机的电动机的电动机驱动装置,上述电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
本发明17是一种热泵热水供应器,包括具有产生动力的电动机的压缩机,其特征在于:包括驱动上述压缩机的电动机的电动机驱动装置,上述电动机驱动装置为本发明1或者本发明2所述的电动机驱动装置。
根据本发明1,由于具有如下特征,即在驱动电动机的电动机驱动装置中,包括以单相交流电源作为输入的整流电路;变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和变换器控制部,为了驱动上述电动机而控制上述变换器电路,上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,在上述电源电压推定部推定的电源电压从零电压向峰值电压变化时,使上述变换器电路的输出电流或输出电压的值变小的第1控制,以及在上述电源电压推定部推定的电源电压从峰值电压向零电压变化时,使上述变换器电路的输出电流或输出电压的值变大的第2控制中,上述变换器控制部至少进行其中的一种控制,所以通过对作为变换器电路的输出的电动机的驱动电流或驱动电压进行控制,就能轻微地抑制因电源供给电流的波形变形而导致的功率因数的下降,就能减小在电路结构中所必需的阻抗,特别是使容性阻抗减小。
此外,在本发明中,由于对应于电源电压推定部推定的电源电压使变换器电路的输出电流或输出电压值改变,所以与通过交流电源的输出波形调制电动机驱动电流的现有功率因数改善方法(第1现有技术)相比较,就能通过简单的结构实现对电动机驱动电流或驱动电流的控制。
此外,在本发明中,由于对应于推定的电源电压控制变换器电路的输出电流或输出电压,所以变换器电路的控制,与对应于电动机的感应电压控制电动机的驱动电压的相位的现有的功率因数改善方法(第2现有技术)不同,考虑到从电动机向变换器电路的再生电流,能够避免因再生电流的产生而导致的电动机驱动效率降低和输入功率因数的劣化。
结果,利用简单的电路结构就能够在保持电动机驱动的高效率的同时,有效地抑制功率因数的降低,获得满足IEC高次谐波规则的电动机驱动装置。
根据本发明2,由于具有如下特征,即在电动机驱动装置中,所述电动机驱动装置用于驱动电动机,其特征在于包括;以单相交流电源作为输入的整流电路;变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和变换器控制部,为了驱动上述电动机而控制上述变换器电路,上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,上述变换器控制部具有变换器输入电压检测部,用于检测向上述变换器电路输入的电压,比较上述电源电压推定部推定的电源电压的绝对值与上述变换器输入电压检测部检测的变换器输入电压,在上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器的输出电流或输出电压的值变大的第1控制,以及上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器的输出电流或输出电压的值变小的第2控制中,上述变换器控制部至少进行其中的一种控制,所以当变换器输入电压与单相交流电源的电压的绝对值几乎相等时,通过变换器电路的反馈控制就使从单相交流电源流入变换器电路的电流的通电的幅度变宽。其结果,即使因温度变化等外界干扰而产生电动机驱动电流的波动,也能在高度保持电动机的驱动效率的同时,有效地抑制输入功率因数的降低。
根据本发明3,由于具有如下特征,即在本发明2记载的电动机驱动装置中,上述电动机为DC无刷电动机,上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的相位超前的控制,上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的相位滞后的控制,所以通过对作为变换器电路输出的电动机驱动电流或驱动电压的控制,就能够轻微地抑制因来自电源供给的电流波形的变形而使功率因素降低,特别地能够使来自DC无刷电动机的再生电流减少,提高电动机的驱动效率。其结果,通过简单的结构,就可以在保持电动机的驱动高效率的同时,有效地抑制输入功率因数的降低,能够获得适合DC无刷电动机并满足IEC高次谐波规制的电动机驱动装置。
根据本发明4,由于具有如下特征,即在本发明2记载的电动机驱动装置中,上述电动机为感应电动机,上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的角速度变小的控制,上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的角速度变大的控制,所以通过对作为变换器电路输出的电动机驱动电流或驱动电压的控制,就能够轻微地抑制因来自电源供给的电流波形的变形而使功率因素降低,特别是能使来自感应电动机的再生电流减少,提高电动机的驱动效率。其结果,通过简单的结构,就可以在保持电动机的驱动高效率的同时,有效地抑制输入功率因数的降低,能够得到适合感应电动机并满足IEC高次谐波规制的电动机驱动装置。
根据本发明5,由于具有如下特征,即在本发明2记载的电动机驱动装置中,上述电源电压推定部,具有定时检测部,根据上述变换器输入电压检测部检测出的变换器输入电压来检测变换器输入电压取最大值的定时,根据上述定时检测部检测出的定时和来自此时的上述变换器输入电压检测部的检测输出即变换器输入电压值,来推定上述单相交流电源的电压,所以即使不采用进行电源电压监控的电路,利用元件数量更少的电路结构也能具有简单地推定单相交流电源的电压波形的效果。
根据本发明6,具有如下特征,即在本发明1所述的电动机驱动装置中,上述电源电压推定部具有:电阻电路,对电源电压进行电阻分压;光电耦合器,连接于该电阻电路的输出;以及零交叉检测部,基于上述光电耦合器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,从上述零交叉检测部检测出的零交叉定时和上述单相交流电源的已知电压来推定上述单相交流电源的电压。
根据本发明7,具有如下特征,即在本发明1所述的电动机驱动装置中,上述电源电压推定部具有:电阻电路,对电源电压进行电阻分压;光电耦合器,连接于该电阻电路的输出;以及零交叉检测部,基于上述光电耦合器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,从上述零交叉检测部检测出的零交叉定时和上述变换器输入电压检测部检测出的变换器输入电压来推定上述单相交流电源的电压。
根据本发明8,由于具有如下特征,即在本发明1或者本发明2记载的电动机驱动装置中,上述整流电路具有电容器,由来自上述电动机的再生电流进行充电,能够抑制在电动机停止时和变换器电路的开关动作停止时发生的变换器输入电压的上升,具有防止元件等被破坏的效果。
根据本发明9,由于具有如下特征,即在本发明1或者本发明2记载的电动机驱动装置中,上述整流电路具有电感器,用于遮断在变换器电路中产生的噪音,所以减少在单相交流电源产生的开关噪音,能得到进一步改善输入功率因数和电流波形的电动机驱动装置。
根据本发明10,作为一种包括产生动力的电动机和驱动该电动机的电动机驱动装置的压缩机,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有上述特征,所以在抑制因从电源供给的电流的波形变形而引起的功率因数的下降的同时,也能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和高频规则的同时,也能使压缩机中的电动机驱动装置小型化、轻型化,乃至能够提高压缩机的设计自由度,使其价格便宜。
根据本发明11,作为一种包括具有产生动力的电动机的压缩机的空调机,包括驱动上述压缩机的电动机的电动机驱动装置,该电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以在抑制因从电源供给的电流的波形变形而引起的功率因数的下降的同时,也能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使空调机中的电动机驱动装置小型化、轻型化,乃至能够提高空调机的设计自由度,使其价格便宜。
根据本发明12,作为一种包括具有产生动力的电动机的压缩机的电冰箱,包括驱动上述压缩机的电动机的电动机驱动装置;该电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以在抑制因从电源供给的电流的波形变形而引起的功率因数的下降的同时,也能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电冰箱中的电动机驱动装置小型化、轻型化,乃至能够提高电冰箱的设计自由度,使其价格便宜。
根据本发明13,作为一种包括产生动力的电动机和驱动该电动机的电动机驱动装置的电动洗衣机,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动洗衣机中的电动机驱动装置小型化、轻型化,乃至能够提高电动洗衣机的设计自由度,使其价格便宜。
根据本发明14,作为一种包括产生动力的电动机和驱动该电动机的电动机驱动装置的送风机,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使送风机中的电动机驱动装置小型化、轻型化,乃至能够提高送风机的设计自由度,使其价格便宜。
根据本发明15,作为一种包括产生动力的电动机和驱动该电动机的电动机驱动装置的电动吸尘器,上述电动机驱动装置是本发明1或者2所述的电动机驱动装置,由于具有该其特征,所以能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动吸尘器中的电动机驱动装置小型化、轻型化,乃至能够提高电动吸尘器的设计自由度,使其价格便宜。
根据本发明16,作为一种包括具有产生动力的电动机的压缩机的电动干燥机,包括驱动上述压缩机的电动机的电动机驱动装置,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动干燥机中的电动机驱动装置小型化、轻型化,乃至能够提高电动干燥机的设计自由度,使其价格便宜。
根据本发明17,作为一种包括具有驱动上述压缩机的电动机的电动机驱动装置的热泵热水供应器,上述电动机驱动装置是本发明1或者本发明2所述的电动机驱动装置,由于具有该特征,所以能够减小电动机驱动装置中的电容器和电感的值。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使热泵热水供应器中的电动机驱动装置小型化、轻型化,乃至能够提高热泵热水供应器的设计自由度,使其价格便宜。
附图说明
图1是说明根据本发明实施形态1的电动机驱动装置100a的方框图。
图2(a)是说明上述实施形态1的电动机驱动装置100a的动作示意图,示出了在未进行实施形态1的电动机驱动电流的控制的情况下的电流波形和电压波形。
图2(b)是说明上述实施形态1的电动机驱动装置100a的动作示意图,示出了在进行实施形态1的电动机驱动电流的控制的情况下的电流波形和电压波形。
图3是说明根据本发明实施形态2的电动机驱动装置100b的方框图。
图4是说明根据本发明实施形态3的电动机驱动装置100c的方框图。
图5(a)是说明上述实施形态3的电动机驱动装置100c的动作示意图,示出了在未进行实施形态3的电动机驱动电流的控制的情况下的电流波形和电压波形。
图5(b)是说明上述实施形态3的电动机驱动装置100c的动作示意图,示出了在进行实施形态3的电动机驱动电流的控制的情况下的电流波形和电压波形。
图6是说明根据本发明实施形态4的电动机驱动装置100d的方框图。
图7是说明根据本发明实施形态5的电动机驱动装置100e的方框图。
图8是说明根据本发明实施形态6的电动机驱动装置100f的方框图。
图9是说明根据本发明实施形态7的电动机驱动装置100g的方框图。
图10是说明根据本发明实施形态8的电动机驱动装置100h的方框图。
图11是说明现有的电动机驱动装置的方框图。
图12是说明根据本发明实施形态9的空调机250的模式图。
图13是说明根据本发明实施形态10的电冰箱260的模式图。
图14是说明根据本发明实施形态11的电动洗衣机270的模式图。
图15是说明根据本发明实施形态12的送风机280的模式图。
图16是说明根据本发明实施形态13的电动吸尘器290的模式图。
图17是说明根据本发明实施形态14的电动干燥机360的模式图。
图18是说明根据本发明实施形态15的热泵热水供应器380的模式图。
附图符号说明
1单相交流电源;
2电动机
3单相整流电路
3a,3b,4a,4b输出节点
3c、3d输入节点
4变换器电路
5a,5b,5c,5d,5e,5f变换器控制部
6a,6e,6f电源电压推定部
7a,7b,7c,7d驱动信号产生部分
8变换器输入电压检测部
9DC无刷电动机
10感应电动机
11零交检测电路
12电容器
13电感
31~34,51~56二极管
41~46开关元件
100a,100b,100c,100d,100e,100f,100g,100h电动机驱动装置
250空调机
250a,260a,360a,380a压缩机
250b,260b,277,283,294,360b,380b电动机驱动控制部
251室内侧热交换器
251a,252a,262a,280,362a,382a送风机
251b,252b,262b,382b,385b温度传感器
252室外侧热交换器
253,263,363,383节流装置
254四通阀
255室内机
256室外机
260电冰箱
261,361冷凝器
262冷藏室蒸发室
270电动洗衣机
274洗衣兼脱水机
276,282,293电动机
281风扇
290电动吸尘器
291电动送风机
295集尘室
296软管
360电动干燥机
362蒸发器
380热泵热水供应器
381a冷冻循环装置
381b贮热水槽
382空气热交换器
385水热交换器
387泵
388贮热水容器
Amd电动机电流的振幅值
Csp单相交流电源的输出电流
i电动机电流
idc直流耦合电流
io电流指令值
Pmd电动机电流的超前角值
Sg驱动信号(栅极信号)
Svm1,Svm2电压监控信号
To指令扭矩
v单相交流电源电压
|v|单相交流电源电压的绝对值
Vpn变换器电路的输入电压
ω。转速指令
具体实施方式
以下,说明本发明的实施形态。
(实施形态1)
图1是用于说明根据本发明实施形态1的电动机驱动装置的方框图。
本发明实施形态1的电动机驱动装置100a是以单相交流电源1为输入并利用三相交流的输出按所需频率来驱动电动机2。在本实施形态1中,上述电动2机称作感应电动机、DC无电刷的电动机、磁阻电动机等,但不限于这些种类。此外,在此,上述电动机驱动装置100a作为驱动在空调机中装载的冷却剂进行循环的压缩机的电动机的装置。
以下,详细说明构成上述电动机驱动装置100a的单相整流电路3、变换器电路4以及变换器控制部5a。
单相整流电路3以单相交流电源1为输入,向变换器电流4供给直流电压。此外,变换器电路4根据从变换器控制部5输出的驱动信号Sg,将从单相整流电路3输出的直流电压转换成三相交流电压,向电动机2供给三相交流电压和三相交流电流。
在此,上述单相整流电路3和变换器电路4与现有电动机驱动装置100是相同的结构,上述单相整流电路3由整流二极管31~34构成,变换器电路4由开关元件41~46和反向并联到各开关元件的二极管51~56构成。
再有,虽然此变换器电路4是三相全桥电路,但该变换器电路4也可以由能够输出三相交流的那样的任何一种电路构成。例如,上述变换器电路4还可以是采用电容器来构成相当于上述三相交流输出中的单相的电路部分。此外,上述变换器电路4也可以是对应于各开关元件附加上缓冲器电路的电路。
变换器控制部5a是按使用者所期望的转速来驱动电动机2、向变换器电路4供给驱动信号Sg的部分,并由电源电压推定部6a和驱动信号发生部7a构成。
电源电压推定部6a是根据单相交流电源1的输出电压(以下也称为电源电压)的监视信号Svm1来推定电源电压波形并输出显示该波形信号的部分。在本发明实施形态1中,此电源电压推定部6a通过电阻分压等直接检测从单相交流电源1输出的交流电压(电源电压)并求出输出电压波形的电路结构。作为此电源电压检测方法,可以认为是利用微型计算机将检测电源电压所得到的模拟值进行AD转换并输出显示该电源电压的方法。此外,在单相交流电源1和上述电源电压推定部6a之间需要绝缘的情况下,可以在上述电源电压推定部6a中使用变压器等绝缘电路。
驱动信号产生部7a是根据来自电动机驱动装置100a外部输入的转速指令ω0和上述推定的电源电压v的波形来控制变换器电路4的部分。具体地,上述驱动信号产生部7a从转速指令ω0中计算出对构成驱动电路4的各开关元件41~46进行通电的脉冲信号的PWM(脉宽调制(pulse width modulation))幅度,与向电动机2供给三相电流一样,将具有计算出的PWM幅度的脉冲信号作为驱动信号Sg输出到变换器电路4。此外,上述驱动信号产生部7a进行第1控制和第2控制,第1控制是在电源电压v从0向峰值变化的工作区中减少向电动机2供给的电流(电动机驱动电流),第2控制是在电源电压v从峰值向0变化的工作区中增加向电动机2供给的电流(电动机驱动电流)。再有,驱动信号产生部7a也可以进行上述第1控制和上述第2控制中的一种控制。此外,在此实施形态1中,作为上述第1控制的对象,电源电压v从0向峰值变化的工作区是电源电压v从0向正峰值变化的工作区和电源电压v从0向负峰值变化的工作区的两个区域。此外,作为上述第2控制的对象,电源电压v从峰值向0变化的工作区是电源电压v从正峰值向0变化的工作区和电源电压v从负峰值向0变化的工作区的两个区域。通过由此控制电动机的驱动电流,就能够使从单相交流电源1流入到电动机驱动装置100a的电流的波形变好,并改善输入的功率因数。
再有,增加(或减少)上述电动机驱动电流的具体方法有利用增加(或缩减)脉冲信号的PWM宽度、使供给电动机2的电压变大(或变小)的方法,以及实际检测出流入电动机2的电流并通过使此电流值变大(或变小)来控制上述脉冲信号的PWM宽度的方法。
下面,说明有关操作。
通过单相整流电路3的整流、从单相整流电路3向变换器电路4输出直流电压作为单相交流电源1的输出的交流电压。在变换器电路4中,通过来自驱动信号产生部7a的驱动信号Sg,对各开关元件41~46进行开启、关闭操作,从该变换器电路4输出电动机驱动电流。利用来自变换器电路的电动驱动电流驱动电动机2。
此时,根据电源电压的监视信号Svm1,在电源电压推定部6a中推定出电源电压v的波形,并将表示该波形的信号输出到上述驱动信号产生部7a。
根据来自外部的转速指令ω0和电源电压v的波形,在该驱动信号产生部7a中产生施加到上述开关元件41~46栅极的作为驱动信号Sg的脉冲信号。
以下,简单说明上述驱动信号产生部7a的具体的基本操作。
上述电动机2为感应电动机的情况下,驱动信号产生部7a根据来自指令转速ω0和感应电动机的特性计算出驱动电动机必须的电压电平、使振幅电平与该计算出的电压电平相一致并形成频率与上述指令的转速相一致的基准正弦波形、将该正弦波与表示开关元件的工作频率的开关操作基频的三角波进行比较,决定出上述脉冲信号的PWM幅度。在此,在上述感应电动机的特性中,利用VF函数表示电动机的转速及其驱动电压电平的关系。
此外,上述电动机2为DC无电刷电动机的情况下,驱动信号产生部7a根据电动机的相位及供给电动机的三相驱动电流、相对于变换器电路4进行电流分流控制、决定出上述脉冲信号的PWM幅度。即,驱动信号产生部7a根据检测电动机相位的相位检测装置(未图示)的检测输出和检测电动机驱动电流的驱动电流检测装置(未图示)的检测输出、决定出用于三相驱动电流波形根据上述检测的电动机相位形成的电流波形的脉冲信号的PWM的幅度。
再有,对应于驱动电动机2的种类,通常此驱动信号产生部7a的基本操作可以是各种各样的,在此实施形态1中,驱动信号产生部7a的基本操作无论对应于哪种电动机都没有问题。
而且,上述驱动信号产生部7a进行第1控制和第2控制,第1控制是在电源电压v在从0向峰值变化的工作区内,减少供给电动机2的电流(电动机驱动电流),以调整脉冲信号的PWM幅度;第2控制是在电源电压v在从峰值向0变化的工作区内,增加供给电动机2的电流(电动机驱动电流),以调整脉冲信号的PWM幅度。
通过上述这种控制电动机驱动电流,改善了电动机驱动装置的输入功率因数,其理由列举出以下。
在从单相交流电源1流入电动机驱动装置100a的电流中,不仅包括电动机2的消耗电流,还包括存在于变换器电路4中的寄生电容、用于降低开关噪音的构成缓冲器电路的电容器或使输入电压平滑化而连接到变换器电路4输入端的电容器等的充电放电电流。即,电源电压从0向峰值变化时,充电电流从单相交流电源1流入上述电容器,相反,电源电压从峰值向0变化时,放电电流从上述电容器流出。如果电动机2的消耗电流比上述充放电电流小或相等时,上述充放电电流就在从单相交流电源1流入电动机驱动装置100的电流中占绝大部分,它就成为电动机驱动电路的输入电流的波形变形的主要因素。
因此,根据本实施形态1,对从单相交流电源1供给电动机驱动装置100a的电流,由于考虑到了上述充放电电流的变化,因此就能改善从单相交流电源1流入变换器电路4的电流波形。
下面,举例说明使用本实施形态1的实际上电动机2为DC无刷电动机的情况下的电动机驱动装置100a时的单相交流电源1输出的电流波形的变化。
图2(b)示出了进行控制本实施形态1的电动机驱动电流的情况下的电压波形和电流波形,图2(a)示出了未进行上述电动机驱动电流的控制情况下的电压波形和电流波形。
图中,|v|为单相交流电源1的电压的绝对值,Vpn为变换器电路4的输入电压,Cps为从单相交流电源1输出的电流,Amd为输入到电动机2的电流的振幅值。
从图2(b)可以看出在本实施形态1的电动机驱动装置100a中,在充电电流流入电容器、电源电压v由0向峰值变化的工作区内,减少了输入到电动机2的电流的振幅值Amd,在从电容器流出放电电流、电源电压v由峰值向0变化的工作区内,增加了输入到电动机2的电流的振幅值Amd。
其结果,使变换器电路4的输入电压Vpn的波形与单相交流电源1的输出电压的绝对值|v|的波形相互近似,也加宽了从单相交流电源1的输出电流Cps的导通宽度,改善了输入电压Vpn的波形。
在本实施形态1中,电动机驱动装置100a的输入功率因数从0.4上升到0.9。
在本实施形态1中,包括连接到单相交流电源1的单相整流电路3、连接到该单相整流电路3向电动机2输出电流和电压的变换器电路4、控制变换器电路4的变换器控制部5a,由于通过变换器控制部5a、在电源电压v由0向峰值变化的工作区内减少了供给电动机2的电流(电动机驱动电流),在电源电压v由峰值向0变化的工作区内增加供给电动机2的电流(电动机驱动电流),所以使单相交流电源1的输出电流就趋于平稳。
就是说,在单相交流电源由0向峰值上升的区域内,变换器电路4不仅从单相交流电源1向电动机供给电流、还向寄生电容流入充电电流,在此区域内,通过减少供给电动机的电流量,就能够抑制从单相交流电源流入变换器电路4的电流的增加。此外,相反地,在电源电压由峰值向0下降的区域内,变换器电路4不仅减少供给电动机的电流、还产生了来自寄生电容的放电电流,就减少了从单相交流电源流入变换器电路4的电流,在此区域内,通过增加供给电动机的电流,就能够抑制从单相交流电源流入变换器电路4的电流的减少。其结果,就能够使单相交流电源的输出电流趋于正常化。
此外,由于对应于电源电压推定部6a推定出的电源电压改变了变换器电路的输出电流值,与根据交流电源的输出波形来调制电动机驱动电流的现有的功率因数改善方法(第1现有技术)相比,可以通过简单的结构来实现电动机的驱动电流或驱动电压的控制。
此外,由于对应于推定出的电源电压来控制变换器电路的输出电流,变换器电路的控制不同于对应于电动机的感应电压控制电动机驱动电压的相位的现有的功率因数改善方法(第2现有技术),考虑到由电动机向变换器电路引起的再生电流,能避免因再生电流的产生导致的电动机驱动效率的下降和输入功率因数的劣化。
其结果,通过简单的电路构成,在保持电动机的高驱动效率的同时,有效地抑制了功率因数的下降,并能够获得满足IEC高次谐波规则的电动机驱动装置。
再有,在本实施形态1中,如图2(b)所示,虽然正弦波的相位向π~2π区间一侧发生位移,使输入到电动机2的电流的振幅值Amd的波形成为0~π区间的波形形状,但向电动机电流的振幅值Amd的波形并不仅限于图2(b)所示的图形,也可是矩形波和三角形波。
此外,在本实施形态1中,虽然变换器控制部5a直接控制供给电动机的电流,但变换器控制部的控制并不限定于此,变换器控制部5a也可控制供给电动机的电压。
例如,变换器控制部5a也可进行第1控制和第2控制中至少一种控制,第1控制是在电源电压v由0向峰值变化的工作区内减少供给电动机2电压(电动机驱动电压)的控制,第2控制是在电源电压v由峰值向0变化的工作区内增加供给电动机2电压(电动机驱动电压)的控制。使在此情况下,也具有上述实施形态1的相同效果。
此外,在上述实施形态1中,作为上述第1控制的对象,电源电压v由0向峰值变化的工作区可为电源电压v从0向正峰值变化的工作区和电源电压v从0向负峰值变化的工作区当中的任一工作区,作为上述第2控制的对象的工作区,也可是电源电压v从正峰值向0变化的工作区和电源电压v从负峰值向0变化的工作区当中的任一工作区。
(实施形态2)
图3是用于说明根据本实施形态2的电动机驱动装置的方框图。
本实施形态2的电动机驱动装置100b以单相交流电源1为输入、利用三相交流输出按所要求的频率来驱动电动机2,具有:与单相交流电源1相连接的单相整流电路3、与该单相整流电路3连接、向电动机2输出驱动电流和驱动电压的变换器电路4以及控制该变换器电路4的变换器控制部5b。
并且,本实施形态2的电动机驱动装置100b中的单相整流电路3和变换器电路4与上述实施形态1的电动机驱动装置100a中的组成是相同的结构。
下面,详细说明上述电动机驱动装置100b的变换器控制部5b。
变换器控制部5b按使用者所希望的转速驱动电动机2、向变换器电路4供给驱动信号Sg,由电源电压推定部6a、变换器输入电压检测部8和驱动信号产生部7b构成。
在此,电源电压推定部6a与上述实施形态1的电动机驱动装置100中的电源电压推定部是相同的结构。
变换器输入电压检测部8通过电阻分压等将输入到变换器电路4的电压作为模拟值进行直接检测、使用微型计算机将检测的模拟值进行AD转换并输出。但是,变换器输入电压检测部8中的具体的输入电压的检测方法并不限于此。
驱动信号产生部7b从转速指令ω0中计算出使构成变换器电路4的各开关元件导通的脉冲信号的PWM幅度,将具有计算出的PWM幅度的脉冲信号作为驱动信号Sg输出到上述变换器电路4。
此外,当计算出PWM幅度时,此驱动信号产生部7b就将电源电压推定部6a推定出的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测出的变换器输入电压Vpn进行比较,在变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等的状态下,决定上述PWM幅度。
具体地,此驱动信号产生部7b在变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的数值时、沿增加供给电动机2电流的方向改变PWM幅度,另一方面在变换器输入电压Vpn的电平取比电源电压的绝对值|V|小的数值时、沿减少供给电动机2电流的方向改变PWM幅度。此外,这里当变换器输入电压Vpn与电源电压的绝对值|v|相等时,驱动信号产生部7b就维持根据转速指令决定的PWM幅度。再有,当变换器输入电压Vpn与电源电压的绝对值|v|相等时,驱动信号产生部7b也可仅按预定量减少向电动机2供给的电流。这是因为当变换器输入电压Vpn取比电源电压的绝对值|v|的数值大时,如果增加供给电动机2的电流,结果就会使在电动机2中产生的扭矩增加,当电动机转速超过指令转速的转速时,结果就会因转速减少、必然会减少整体的电流值。
此外,虽然供给电动机2的电流量的增减量的最简单方法是由变换器输入电压Vpn和电源电压的绝对值|v|的差值决定、实际上由在电动机2中流动的平均电流决定,但决定向电动机供给电流量增减量的方法并不仅限于此方法,也可以是当变换器输入电压Vpn和电源电压的绝对值|v|为相等波形时、用供给电动机的电流量的增减量将这些差分电压加以反馈来决定该增减量的方法。
下面,说明有关操作。
在本实施形态2的电动机驱动装置100b中,单相整流电路3和变换器电路4与实施形态1的电动机驱动装置100a的电路进行相同操作、利用变换器电路4的输出来驱动电动机2。
此时,在电源电压推定部6a中,根据电源电压的监控信号Svm1,推定出电源电压v的波形,将表示该波形的信号输出到上述驱动信号产生部7b。
此外,在变换器输入电压检测部8中,根据变换器电路4的输入电压的监控信号Svm2,检测出变换器输入电压Vpn,将表示该变换器输入电压的信号输出到上述驱动信号产生部7b。
在该驱动信号产生部7b中,根据来自外部的转速指令ω0、电源电压v的波形和变换器输入电压Vpn,产生施加到上述开关元件41~46的栅极的作为上述驱动信号Sg的脉冲信号。
当此驱动信号产生部7b计算出驱动信号Sg的PWM的幅度时,将通过电源电压推定部6a推定出的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测出的变换器输入电压Vpn进行比较,当变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等时,决定上述PWM幅度。
具体地,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的值时,驱动信号产生部7b沿增加供给电动机2电流的方向改变PWM的幅度。另一方面,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|小的值时,驱动信号产生部7b就沿减少供给电动机2电流的方向改变PWM的幅度。此外,当变换器输入电压Vpn与电源电压的绝对值|v|相等时,驱动信号产生部7b就通过转速指令维持所决定的PWM幅度。
然后,描述通过控制根据本实施形态2的电动机驱动电流、可改善从单相交流电源1流入电动机驱动装置100b的电流的波形并提高功率因数的装置。
首先,说明未进行控制本实施形态2中对应于变换器输入电压Vpn和电源电压的绝对值的比较结果的电动机驱动电流的情况。
由于在单相交流电源1和变换器电路4之间插入单相整流电路3,当变换器电路4的输入电压比单相交流1的输出电压的绝对值高时,就没有电流流向单相交流电源1。为此,从单相交流电源1中就没有电流流向电动机驱动装置100b,就不能产生作为电源输出电流为0的非导通区域。另一方面,当变换器电路4的输入电压比电源电压的绝对值低时,单相交流电源1不仅有电动机的驱动电流流入到变换器电路4,而且形成了流入变换器电路输入一侧的寄生电容的充电电流,在整流电路3中,就形成了超过驱动电动机所需电流的电流。其结果,来自电源的输出电流的波形就会变形,就降低了电动机驱动装置100b的输入功率因数。
其次,说明进行控制根据本实施形态2的对应于变换器输入电压Vpn和电源电压的绝对值的比较结果的电动机驱动电流的情况。
在本实施形态2中,变换器电路的输入电压Vpn比单相交流电源1的电压v的绝对值高时,在整流电路中没有电流流过的期间,驱动信号产生部7b就沿增加供给电动机2电流的方向改变向变换器电路4输出的驱动信号Sg的PWM幅度。据此,使变换器输入电压Vpn的电平变小、就延迟了整流电路的导通时间。
此外,在实施形态2中,上述变换器输入电压比电源电压的绝对值低时,在整流电路中流过超过所需的电动机驱动电流的电流期间,驱动信号产生部7b就沿减少电动机驱动电流的方向改变向变换器电路4输出的驱动信号Sg的PWM幅度。据此,使变换器输入电压Vpn的电平变大,就抑制了整流电路中流过超过所需的电动机驱动电流的电流。
其结果,良好地校正了从电源供给电动机驱动装置的电流的波形,并能改善该电动机驱动装置的输入功率因数。
根据本实施形态2,包括连接到单相交流电源1的单相整流电路3、连接到该单相整流电路3的向电动机2输出电流和电压的变换器电路4以及控制变换器电路4的变换器控制部5b,变换器控制部5b将通过电源电压推定部6a推定的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测的变换器输入电压Vpn进行比较,当变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等时,变换器控制部5b就沿增加或减少电动机电流的方向改变驱动信号Sg的PWM幅度,在利用交流电源的输出电压的波形来调制电动机驱动电流的波形的同时,对应于电动机的感应电压就进行了电动机驱动电压超前角的调整,就能够改善输入功率因数,就能获得IEC高次谐波规则的高效的电动机驱动装置。再有,在此实施形态2中,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的值时,驱动信号产生部7b进行沿增加供给电动机2电流的方向改变PWM幅度的第1控制,并且当变换器输入电压Vpn的电平取比电源电压的绝对值|v|小的值时,驱动信号产生部7b进行沿减少供给电动机2电流的方向改变PWM幅度的第2控制,上述驱动信号产生部7b也可只进行上述第1控制和第2控制之一的控制。
此外,在此实施形态2中,变换器控制部不仅控制作为变换器电路的输出电流直接供给电动机的电流,而且变换器控制部也可控制作为变换器电路的输出电压的供给电动机的电压。
例如,电动机驱动装置100b也可在变换器电路4的输入电压Vpn的波形成为与单相交流电源1的电压输出的绝对值|v|相同的波形时控制供给电动机2的电压。即使在此情况下,也具有与上述实施形态2的相同效果。
(实施形态3)
图4是用于说明根据本实施形态3的电动机驱动装置的方框图。
本发明实施形态3的电动机驱动装置100c以单相交流电源1为输入,利用三相交流输出、按所要求的频率来驱动DC无刷电动机9。
下面,详细说明构成上述电动机驱动装置100c的单相整流电路3、变换器电路4、及变换器控制部5c。
在此,单相整流电路3和变换器电路4与上述实施形态2的电动机驱动装置100b中的电路是相同结构。
变换器控制部5c按使用者所希望的转速驱动DC无刷电动机9、向变换器电路4供给驱动信号Sg,由电源电压推定部6a、变换器输入电压检测部8和驱动信号产生部7c构成。
在此,电源电压推定部6a和变换器输入电压检测部8与上述实施形态2的电动机驱动装置100b中的部分是相同的结构。
驱动信号产生部7c根据来自外部的转速指令ω0计算出使构成变换器电路4的各开关元件导通的脉冲信号的PWM幅度,将具有计算出的PWM幅度的脉冲信号作为驱动信号Sg输出到上述变换器电路4。
此外,此驱动信号产生部7c将通过电源电压推定部6a推定出的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测的变换器输入电压Vpn进行比较,在变换器输入电压Vpn的波形与电源电压v的绝对值|v|的波形趋于相等的状态下,决定上述PWM幅度。具体地,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|的数值大时,该驱动信号产生部7c沿向DC无刷电动机9供给电流的超前方向改变PWM的幅度。
这是考虑到,当变换器输入电压Vpn比电源电压的绝对值|v|的值大时,与变换器电路4的输出电压相比,DC无刷电动机9的感应电压变高,使再生电流流动,相反,就对位于变换器电路4的输入侧的寄生电容和位于缓冲器电路的电容器或用于平滑连接的电容器进行充电,由此电动机驱动电流的相位就沿滞后方向变化。
此外,当变换器输入电压Vpn的电平比电源电压的绝对值|v|的值小时,驱动信号产生部7c就沿滞后于供给DC无刷电动机9电流的相位方向改变PWM的幅度。
这是考虑到,当变换器输入电压Vpn取比电源电压的绝对值|v|小的值时,与变换器电路4的输出电压相比,DC无刷电动机9的感应电压变低,由此电动机电流的相位就沿超前方向变化。
此外,当变换器输入电压Vpn的电平限与电源电压的绝对值|v|相等的值时,供给DC无刷电动机9电流的相位没有变化,驱动信号产生部7c就根据转速指令来维持决定的PWM幅度。
再有,调整供给DC无刷电动机9的电流的相位的相位调整量即相位超前量或相位滞后量的最简单方法是通过变换器输入电压Vpn和电源电压的绝对值|v|的差值、实际上由在DC无刷电动机9流动的平均电流来进行决定,但上述相位调整量的决定并不限于此方法,也可以是当变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等时以相位调整量将这些差电压加以反馈来决定出相位调整量的方法。
下面,说明有关操作。
在本实施形态3的电动机驱动装置100c中,单相整流电路3和变换器电路4与实施形态1的电动机驱动装置100a的电路进行相同操作,利用来自变换器电路4的输出来驱动电动机2。
此时,在变换器控制部5c中,利用电源电压推定部6a推定电源电压v的波形而且利用变换器输入电压检测部8来检测变换器输入电压Vpn。并且,在该驱动信号产生部7c中,根据来自外部的转速指令ω0、电源电压v的波形和变换器输入电压Vpn,产生施加到上述开关元件41~46栅极的作为上述驱动信号Sg的脉冲信号。
即,在该驱动信号产生部7c中,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的值时,沿超前供给DC无刷电动机9电流的相位方向改变PWM幅度。另一方面,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|小的值时,沿滞后供给DC无刷电动机9电流的相位方向改变PWM的幅度。此外,当变换器输入电压Vpn的电平取与电源电压的绝对值|v|相等的值时,驱动信号产生部7c供给DC无刷电动机9的电流相位没有变化并根据转速指令来维持所决定的PWM幅度。
通过控制这种供给电动机的电流,就可以使从单相交流电源1流入电动机驱动装置100c的电流的波形变好,并改善功率因数。
简单说明此功率因数改善的装置,如果从DC无刷电动机9向变换器电路4流入再生电流、就对位于变换器电路4输入一侧的寄生电容充电、由于位于整流电路3a前部的单相交流电源1的电压的绝对值升高,当变换器电路的输入电压比电源电压的绝对值高的情况下,就会流动再生电流。因此,在再生电流流动期间,如果驱动DC无刷电动机的电流变大,驱动信号产生部7c就将相位提前。据此,就减少了DC无刷电动机的感应电压,减少制动DC无刷电动机的再生电流,就能够使在DC无刷电动机中产生的扭矩上升,提高效率。此外,通过减少上述再生电流,使变换器电路的输入电压基本上等于电源电压的绝对值和波形,就能够增大存在于单相交流电源和变换器电路之间的整流电路中的导通时间。
另一方面,当上述变换器输入电压比电源电压的绝对值低的情况下,在整流电路中就会流动超过电动机驱动所必要电流的电流。因此,这样,在流动超过电动机驱动所必要电流的电流期间,驱动信号产生部7c驱动DC无刷电动机的电流就会减少并使其相位滞后。据此,变换器输入电压Vpn的电平就会变大,在整流电路中就能够抑制超过电动机驱动的必要电流的电流流动。
其结果,就良好地校正了从电源供给电动机驱动装置的电流的波形,就能够改善该电动机驱动装置的输入功率因数。
其次,举例说明使用本实施形态3的电动机驱动装置100c时的单相交流电源1输出的电流波形的变化的实验。
图5(b)示出了实施控制本实施形态3的电动机电流的情况下的电流波形和电压波形,图5(a)示出了未进行上述电动机电流控制的情况下的电流波形和电压波形。
图中,|v|为单相交流电源1的电压的绝对值,Vpn为变换器电路4的输入电压,Cps为从单相交流电源1输出的电流,Pmd为输入到DC无刷电动机9的电流的超前角数值。
从图5(b)和图5(a)中可以看出,在本实施形态3的电动机驱动装置100c中,当变换器电路4的输入电压Vpn在比单相交流电源1的电压值的绝对值|v|高的工作区内,输入到DC无刷电动机9的电流的超前角数值Pmd就会增加,当变换器电路4的输入电压Vpn在比单相交流电源1的电压值的绝对值|v|小的工作区内,输入到DC无刷电动机9的电流的超前角数值Pmd就会变小。
在图5(b)中,与图5(a)相比,可以看出变换器电路4的输入电压Vpn的波形与单相交流电源1的电压的绝对值|v|的波形相近似,来自单相交流电源1的输出电流的导通宽度就会増加,从而改善了输入电压的波形。
在本实施形态3中,电动机驱动装置100c的输入功率因数从0.8上升到0.9。
这样,在本实施形态3中,包括:连接单相交流电源1的单相整流电路3,与该单相整流电路3的输出相连接、产生电动机2的驱动电流的变换器电路4和控制变换器电路4的变换器控制部5c;将变换器控制部5c通过电源电压推定部6a推定出的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测出的变换器输入电压Vpn进行比较,由于当变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形相等时沿电动机电流相位超前或滞后方向改变上述PWM幅度,所以根据电源电压的波形来调制电动机驱动电流的波形,就能够对应于电动机感应电压来调整电动机驱动电压的超前角,就能够改善驱动DC无刷电动机的电动机驱动装置的输入功率因数。据此,就能够有效地驱动DC无刷电动机,获得IEC高次谐波规则的简单电路结构的电动机驱动装置。
再有,在本实施形态3中,如图5(b)所示,由矩形波状来改变输入到DC无刷电动机9电流的超前角数值Pmd,但电动机电流的超前角数值的波形并不仅限于图5(b)所示的波形,也可为正弦波和三角波。
此外,在本实施形态3中,变换器控制部不仅控制作为变换器电路的输出电流并向电动机供给电流的相位,而且变换器控制部也可控制作为变换器电路的输出电压并向电动机供给电压的相位。在此情况下,也可得到与实施形态3相同的效果。
此外,在上述实施形态3中,虽然当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的数值时,驱动信号产生部7c就进行沿向电动机2供给电流的相位超前的方向改变PWM幅度的上述第1控制,并且当变换器输入电压Vpn的电平取比电源电压的绝对值|v|、的数值时,驱动信号产生部7c就进行沿向电动机2供给电流的相位滞后的方向改变PWM幅度的第2控制,但是驱动信号产生部7c也可进行上述第1控制和第2控制中的任一方面的控制。
(实施形态4)
图6是用于说明根据本发明的实施形态4的电动机驱动装置的方框图。
本实施形态4的电动机驱动装置100d以单相整流电源1为输入,利用三相交流输出以任意的频率来驱动感应电动机10。
下面,详细说明构成上述电动机驱动装置100c的单相整流电路3、变换器电路4和变换器控制部5d。
在此,单相整流电路3和变换器电路4与上述实施形态2的电动机驱动装置100b中的电路相同。
变换器控制部5d向变换器电路4供给驱动信号Sg,以便按使用者所希望的转速来驱动感应电动机10,变换器控制部5d变换器由电源电压推定部6a、变换器输入电压检测部8和驱动信号产生部7d构成。
在此,电源电压推定部6a和变换器输入电压检测部8与上述实施形态2的电动机驱动装置100b中的相同。驱动信号产生部7d从转速指令ω0中计算出使构成变换器电路4的各开关元件导通的脉冲信号的PWM幅度、将具有该算出的PWM幅度的脉冲信号作为驱动信号Sg进行输出。此外,此驱动信号产生部7d将通过电源电压推定部6推定出的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测的变换器输入电压Vpn加以比较,当变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等的状态时,决定出上述PWM幅度。
具体地,当变换器输入电压Vpn取比电源电压的绝对值|v|大的数值时,该驱动信号产生部7d按减小供给感应电动机10电流的角速度的方向改变PWM幅度。
这是因为,当变换器输入电压Vpn取比电源电压的绝对值|v|大的值时,与变换器电路4的输出电压相比,感应电动机10的感应电压就会变高,就会流动再生电流,相反,就对位于变换器电路4的输入侧的寄生电容和位于缓冲器电路的电容器或用于平滑而连接的电容器进行充电,由此电动机驱动电流的角速度就向增大的方向变化。
另一方面,当变换器输入电压Vpn取比电源电压的绝对值|v|小的数值时,驱动信号产生部7d就按增加供给感应电动机10电流的角速度的方向改变PWM幅度。
这是因为,当变换器输入电压Vpn取比电源电压的绝对值|v|小的值时,与变换器电路4的输出电压相比,感应电动机10的感应电压就会变低,由此电动机驱动电流的角速度就向减小的方向变化。
再有,在此,当变换器输入电压Vpn的电平取与电源电压的绝对值|v|相等的数值时,上述驱动信号产生部7d就根据转速来维持决定的PWM幅度。
此外,供给感应电动机10的电流的角速度的调整量的最简单方法是由变换器输入电压Vpn和电源电压的绝对值|v|的差值、实际由流过感应电动机10的平均电流来决定,但角速度调整量的决定并不限于此方法,也可以是当变换器输入电压Vpn的波形与电源电压的绝对值|v|的成为相同的波形时以角速度调整量将这些差电压加以反馈来决定角速度调整量的方法。
下面说明有关操作。
在此实施形态4的电动机驱动装置100d中,单相整流电路3和变换器电路4与实施形态1的电动机驱动装置100a的电路进行相同操作,利用来自变换器电路4的输出来驱动电动机2。
此时,在变换器控制部5d中,利用电源电压推定部6a来推定电源电压v的波形而且利用变换器输入电压检测部8来检测变换器输入电压Vpn。并且,在该驱动信号产生部7d中,根据来自外部的转速指令ω0、电源电压v和变换器输入电压Vpn,产生施加到上述开关元件41~46的栅极的作为上述驱动信号Sg的脉冲信号。
即,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的值时,驱动信号产生部7d就沿供给感应电动机10的电流的角速度减小的方向改变PWM幅度。另一方面,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|小的值时,驱动信号产生部7d就沿供给感应电动机10的电流的角速度增大的方向改变PWM的幅度。此外,当变换器输入电压Vpn的电平取与电源电压的绝对值|v|相等的值时,驱动信号产生部7d就根据转速指令来维持所决定的PWM幅度。
这样,通过控制供给电动机的电流,就可以使从单相交流电源1流入电动机驱动装置100d的电流的波形变好。
下面,简单说明改善功率因数的装置。
就是说,如果从感应电动机10向变换器电路4流入再生电流、就对位于变换器电路4输入一侧的寄生电容充电,由于与整流电路之前的单相交流电源的电压的相比升高了变换器电路的输入电压,因此在变换器电路的输入电压比电源电压的绝对值高的情况下,就会流动再生电流。因此,在流动再生电流期间,驱动信号产生部7d就会与驱动感应电动机的电流变大一样使其角速度变小。据此,就会减少在感应电动机上产生的感应电压,就会减少制动感应电动机的再生电流,使在感应电动机中产生的扭矩上升并提高电动机的驱动效率。此外,通过减少上述再生电流,使变换器电路的输入电压基本上等于电源电压的绝对值和波形,就能够延长存在于单相交流电源和变换器电路之间的整流电路的导通时间。
另一方面,当上述变换器输入电压比电源电压的绝对值低的情况下,在整流电路中就会流动超过电动机驱动的所必要电流的电流。因此,这样,在流过超过电动机驱动所必要电流的电流的期间,由于驱动感应电动机的电流变小,驱动信号产生部7d就会使其角速度增大。据此,变换器输入电压Vpn的电平就会增加,在整流电路中就能够抑制流过超过电动机驱动的必要电流的电流。
其结果,就能够良好地校正从电源供给电动机驱动装置的电流的波形,并能够改善该电动机驱动装置的输入功率因数。
因此,在本实施形态4中,包括与单相交流电源1连接的单相整流电路3、与该单相整流电路3输出相连接并产生电动机2驱动电流的变换器电路4和控制变换器电路4的变换器控制部5d,变换器控制部5d对通过电源电压推定部6a推定的电源电压v的绝对值|v|与通过变换器输入电压检测部8检测的变换器输入电压Vpn进行比较,而且在变换器输入电压Vpn的波形与电源电压的绝对值|v|的波形趋于相等时,沿增加或减少电动机电流的角速度的方向改变驱上述PWM幅度,所以利用电源电压的输出电压的波形来调制电动机驱动电流的波形的同时,就能够对应于电动机的感应电压调整电动机驱动电压的超前角,就能够改善驱动感应电动机的电动机驱动装置的输入功率因数。据此,能够有效地驱动感应电动机,就能够获得消除了IEC高次谐波规则的简单电路构成的电动机驱动装置。
再有,在此实施形态4中,变换器控制部不仅控制作为变换器电路的输出电流供给电动机的电流的角速度,而且变换器控制部也可控制作为变换器电路的输出电压供给电动机的电压的角速度。在此情况下,也可以获得与实施形态4相同的效果。
在此实施形态4中,当变换器输入电压Vpn的电平取比电源电压的绝对值|v|大的值时,驱动信号产生部7d进行沿供给电动机2的电流的角速度减小的方向改变PWM幅度的第1控制,并且当变换器输入电压Vpn的电平取比电源电压的绝对值|v|小的值时,驱动信号产生部7d就进行沿供给电动机2的电流的角速度增大的方向改变PWM幅度的第2控制,上述驱动信号产生部7d也可进行上述第1控制和第2控制之中的任意控制。
(实施形态5)
图7是用于说明根据本发明的实施形态5的电动机驱动装置的方框图。
本实施形态5的电动机驱动装置100e包括:连接单相整流电源1的单相整流电路3,与该单相整流电路3连接并向电动机输出驱动电流和驱动电压的变换器电路4和控制该变换器电路4的变换器控制部5e。
在此,上述单相整流电路3和变换器电路4与实施形态2的电动机驱动装置100b中的电路是相同结构。除了取代实施形态2的变换器控制部5a中的电源电压推定部6a之外,上述变换器控制部5e包括利用单相交流电源1的零交叉定时的推定电源电压v的电源电压推定部6e。再有,上述变换器控制部5e的变换器输入电压检测部8及驱动信号产生部7b与上述实施形态2的装置相同。
下面,说明上述电源电压推定部6e。
构成此电源电压推定部6e的零交检测电路11是一种检测单相交流电源1的零交叉的定时的电路。具体地,此电源电压推定部6e具有通过电阻分压电源电压的电阻电路和与该电阻电路的输出连接的光电耦合器,此电源电压推定部6e根据光电耦合器的输出,获得电源电压的全波整流的矩形波,把该矩形波的上升沿和下降沿作为零交叉定时进行检测。
但是,由于利用这种光电耦合器,因此不仅能检测实际电源电压的零交叉定时,也能检测当在光电耦合器中流动电流时电源电压成为最小电压值的定时。在这种情况下,从1个光电耦合器的输出的上升沿定时和下一个上升沿定时开始,获得单相电源1的电压周期的同时,通过从上升沿定时和下降沿定时中获得单相电源1的电压达到峰值时的定时,就能够从电源电压周期和上升沿定时或下降沿定时中获得正确的零交叉定时。
上述电源电压推定部6e利用零交检测电路11来检测零交叉定时并利用变换器输入电压检测部8来检测变换器输入电压Vpn的波峰值,并推定出从电源电压1输出的正弦波电压v。在此情况下,即使在因任何影响改变电源电压的振幅值的情况下,也能正确地推定出电源电压,提供高精度的控制。
下面说明其操作。
在这种结构的实施形态5的电动机驱动装置100e中,单相整流电路3和变换器电路4与实施形态2的电路进行相同操作。
并且,在上述电源电压推定部6e中,利用零交检测电路11来检测电源电压的零交叉定时,利用变换器输入电压检测部8来检测的变换器输入电压Vpn的波峰值和该检测的电源电压的零交叉定时,推定出电源电压的波形。
并且,驱动信号产生部7b与实施形态2相同,根据来自外部的转速指令ω0、电源电压v的波形和变换器输入电压Vpn,决定出施加到上述开关元件41~46的栅极的脉冲信号的PWM幅度,并输出具有已决定PWM幅度的作为上述驱动信号Sg的脉冲信号。
这样,在本实施形态5的电动机驱动装置100e中,包括上述电源电压推定部11、检测上述单相交流电源1的零交叉定时的零交检测电路,由于从上述零交检测电路检测的零交叉定时中推定出单相整流电源的电压,所以除了实施形态2的效果之外,即使不使用对电源电压的监控信号进行AD转换的AD转换器等所谓的高价格的元件,也能具有容易推定出单相交流电源的电压的效果。
再有,在上述实施形态5中,虽然除了替代实施形态2的电动机驱动装置100b的电源电压推定部6a之外,电动机驱动装置100e包括使用单相交流电源1的零交叉定时来推定电源电压v的电源电压推定部6e,包括这种电源电压推定部6e的电动机驱动装置并不仅限于实施形态2,也可以是实施形态3或实施形态4的电动机驱动装置。
此外,在上述实施的形态5中,上述电源电压推定部6e将零交叉定时、变换器输入电压Vpn的波峰值作为推定电源电压的波形,上述电源电压推定部6e也可以从零交叉定时、单相交流电源1的已知的电压波峰值中推定出电源电压的波形。包括这种电源电压推定部6e的电动机驱动装置并不仅限于实施形态2中的,也可以是实施形态1、3或4中任一种电动机驱动装置。
(实施形态6)
图8是用于说明根据本发明的实施形态6的电动机驱动装置的方框图。
本实施形态6的电动机驱动装置100f包括连接到单相整流电源1的单相整流电路3、连接到该单相整流电路3并向电动机输出驱动电流和驱动电压的变换器电路4和控制该变换器电路4的变换器控制部5f。
在此,上述单相整流电路3和变换器电路4与实施形态2的电动机驱动装置100b中的电路是相同结构。上述变换器控制部5f包括替代实施形态2的变换器控制部5a中的电源电压推定部6a、利用变换器电路4的输入电压Vpn来推定电源电压波形的电源电压推定部6f。此外,上述变换器控制部5f的变换器输入电压检测部8及驱动信号产生部7b与上述实施形态2的装置相同。
下面,说明上述电源电压推定部6f。
电源电压推定部6f从利用变换器输入电压检测部8检测出的变换器输入电压Vpn的波峰值(峰值电平)的定时中推测出电源电压波峰值(峰值电平)的定时,从此定时、变换器输入电压的波峰值中推定出作为电源电压波形的正弦波电压。
下面说明其操作。
在这种结构的实施形态6的电动机驱动装置100f中,单相整流电路3和变换器电路4与实施形态2的电路进行相同操作。
并且,在上述电源电压推定部6f中,根据利用变换器输入电压检测部8检测出的变换器输入电压Vpn、检测出其波峰值(峰值电平)的定时,从该检测定时中推测出电源电压的波峰值(峰值电平)的定时,从该推定出的作为电源电压峰值电平的定时、变换器输入电压的波峰值中推定出作为电源电压波形的正弦波电压。
并且,驱动信号产生部7b与实施形态2相同,根据来自外部的转速指令ω0、上述推定的电源电压v的波形和上述变换器输入电压Vpn,决定施加到变换器电路的开关元件41~46的栅极的脉冲信号的PWM幅度,输出作为变换器电路4的驱动信号Sg的具有已决定的PWM幅度的脉冲信号。
这样,在本实施形态6中,由于电源电压推定部6f根据利用变换器输入电压检测部检测出的变换器输入电压,检测出当变换器输入电压为最大值时的定时,从该检测出的定时和此时变换器输入电压的值中推定出上述单相交流电源的电压,因此除了附加上实施形态2的效果、不作为进行电源电压的监控的电路之外,还具有由部件个数少的电路构成、能够容易推定出单相交流电源电压波形的效果。
再有,在本实施形态6中,电源电压检测部6f取变换器输入电压Vpn的波峰值(峰值电平)为定时和变换器输入电压的波峰值中推定出电源电压的波形,本电源电压检测部6f也可从取变换器输入电压Vpn的波峰值(峰值电平)作为定时和单相交流电源1的已知的电压波峰值中推定出电源电压的波形。
此外,在上述实施形态6中,替代实施形态2的电动机驱动装置100b的电源电压推定部6a,电动机驱动装置100f包括利用变换器电路4的输入电压Vpn来推定出电源电压的波形的电源电压推定部6f,包含了这种电源电压推定部6f的电动机驱动装置不仅限于实施形态2中的结构,也可以是实施形态3或4中任意一种的电动机驱动装置。
(实施形态7)
图9是用于说明本发明的实施形态7的电动机驱动装置的方框图。
本实施形态7的电动机驱动装置100g是一种在实施形态1的电动机驱动装置100a的单相整流电路3的输出一侧附加有用来自电动机的再生电流充电的小容量的电容器12,该电容器12连接到上述单相整流电路3的一侧的输出端子3a和另一侧的输出端子3b之间。
本实施形态7的电动机驱动装置100g的其它结构与实施形态1的电动机100a的其它结构相同。
在此,上述电容器12的容量根据电动机再生电流、只要能避免装置损伤程度的容量即可。例如,电动机驱动装置作为用于家庭的空调机使用的控制压缩机的电动机的情况下,上述电容器12的容量优选为0.1F~50μF范围内。此值是从相对于电动机的电感的容量、变换器输入电压而允许的最大变化量和流过电动机的电流的最大值中求出的最小值。再有,此电容器12的容量与图11所示的现有的电动机驱动装置100中的平滑电容器12a的容量相比,大小约为它的1/1000。
就是说,当电动机中流动最大电流时,从电动机内部的电感容量中求出电动机保持的能量。并且,根据作为电动机的再生电流给电容器充电时所产生的此能量使电容器的端子电压上升到所允许的某种程度,以决定出上述电容器的容量。
具体地,设定流过电动机的最大电流为Im、电动机内部的电感为Lm、电容器的端子电压上升的额定电压值为Vm,上述电容器的容量Cm就由Cm>Lm·Im·Im/Vm/Vm决定。
下面,说明其操作。
在本实施形态7的电动机驱动装置100g中,由于单相整流电路3、变换器电路4、变换器控制部5a与实施形态1的电路进行相同操作,因此下面只说明不同于实施形态1的操作。
当电动机2停止时和在变换器电路4的开关动作停止的时候,就会在变换器电路4的输入一侧再生流过电动机2的电流。当此再生电流增加时,变换器电路4的输入一侧的电压就会成为过电压,就会发生损伤电动机驱动装置的情况。
如图9所示,在本实施形态7的电动机驱动装置100g中,由于在单相整流电路3的输出一侧,即变换器电路4的输入一侧添加有电容器12,当电动机2停止等时,来自电动机2的再生电流就给电容器12进行充电,利用上述再生电流就能够抑制变换器电路4的输入电压的上升。
据此,由于利用在电动机停止等时产生的电动机再生电流,因此就能够防止电动机驱动装置受到损坏,并能够实现更加安全的电动机驱动控制装置。
这样,在本实施形态7中,由于在实施形态1的电动机驱动装置100a的整流电路3a的输出一侧添加有将来自上述电动机的再生电流进行充电的电容器,除了附加上实施形态1的效果之外,还能够抑制在电动机的停止时和变换器电路的开关动作停止时产生的变换器输入电压的上升,具有防止元件等遭到破坏的效果。
再有,上述实施形态7中,示出了在实施形态1的电动机驱动装置100a的整流电路3的输出一侧添加有将来自上述电动机的再生电流进行充电的电容器,附加了这样电容器的电动机驱动装置并不仅限于实施形态1的装置,也可以是实施形态2至6中的任一种电动机驱动装置。
(实施形态8)
图10是用于说明根据本发明的实施形态8的电动机驱动装置的方框图。
本实施形态8的电动机驱动装置100h是在实施形态1的电动机驱动装置100a的单相整流电路3和单相交流电源13之间插入了电感13,该电感13串联连接在单相交流电源1和单相整流电路3之间。
并且,本实施形态8的电动机驱动装置100h的其它结构与实施形态1的电动机100a的其它结构相同。
在此,上述电感13的容量可以去除随变换器电路的开关操作所产生的开关电流噪音,只要电源电流无变形的波形的数值即可。例如,电动机驱动装置作为驱动用于家庭空调机使用的压缩机的电动机的情况下,上述电感13的值优选0.01mH~4.0mH范围内。此值与在变换器电路4的载波频率的倒数成正比,为了能抑制载波成分的高次谐波而决定该值。再有,与在现有的电动机驱动装置中使用的用来改善功率因数的电感器的电感值相比,此电感13的值的大小约为它的1/1000。
具体地,设定希望衰减的量为-X[dB]、圆周率为π、载波频率为f(Hz)时,上述电感的值Lr由满足10×log(2×π×f×Lr)>X的值来决定。
下面,说明其操作。在本实施形态8的电动机驱动装置100h中,由于单相整流电路3、变换器电路4、变换器控制部5a与实施形态1的电路进行相同操作,因此下面只说明不同于实施形态1的有关操作。
单相交流电源1的输出电流受到变换器电路4的开关操作的影响,开关电流与噪音重叠。
如图10所示,在本实施形态8的电动机驱动装置100h中,由于在单相交流电源1和单相整流电路3之间插入电感13,使在变换器电路4产生的噪音被遮断,降低了重叠在电源的输出电流中的电源噪音。据此,就抑制了单相交流电源1的输出电流波形的变形,改善了输入电流的功率因数。
这样,在本实施形态8中,在实施形态1的电动机驱动装置100a的整流电路3的输入和单相交流电源1之间插入了用于遮断在上述变换器电路4产生噪音的电感13,除了附加上实施形态1的效果之外,还能够降低重叠在单相交流电源1的输出的开关噪音,据此,就能够具有提高输入电流功率因数、改善电流波形的效果。
而且,在本实施形态8中,虽然在实施形态1的电动机驱动装置100a的整流电路3和单相交流电源1之间插入了用于遮断在变换器电路4产生的噪音的电感13,但具有这种电感的电动机驱动装置并不局限于实施形态1,也可以是实施形态2至6中的任意的电动机驱动装置。
再有,虽然在上述实施形态7中,电动机驱动装置在构成电动机驱动装置的单相整流电路的输出一侧附加有电容器,在上述实施形态8中,电动机驱动装置在构成电动机驱动装置的单相整流电路和电源之间插入有电容器,但是电动机驱动装置也可同时包括上述电容器和电感。
在这种情况下,由于形成了由电感和电容器构成的串联电路,会产生谐振现象。此谐振频率一般由公知的1/2π(LC)得到,由电感和电容器的容量决定。因此,谐振频率对于电源就会变成高于作为高次谐波规则对象的频率,只要决定出电感和电容器的容量,就能够提供产生更少噪音的电动机控制装置。
还有,本发明的各实施形态的电动机驱动装置不限定于在空调机中使用的驱动控制压缩机的电动机的装置,只要通过使用变换器电路来驱动控制电动机的装置,都可以作为驱动控制任意种类机器的电动机的装置。
例如,可适用于上述各实施形态的电动机驱动装置的机器,包括:装载了产生电动机和其驱动电流的变换器电路的电冰箱、电动洗衣机、电动干燥机、电动吸尘器、送风器等机器。无论哪种机器,通过将变换器电路小型化、轻型化,都能提高设计的自由度,提供低价的机器等,并且效果是不能预测的。
下面,具体地说明使用了实施形态1的电动机和电动机驱动装置的机器——空调机、电冰箱、电动洗衣机、送风机、电动吸尘器、电动干燥机、热泵热水器。
(实施形态9)
图12是说明根据本发明的实施形态9的空调机的方框图。
本实施形态9的空调机250具有室内机255和室外机256,是一种进行冷暖房间调节的空调机。
此空调机250具有使冷却剂在室内机255和室外机256之间循环的压缩机250a,以电压源1为输入、驱动该压缩机250a的电动机的电动机驱动装置250b。在此,电源1、压缩机250a的电动机和电动机驱动装置250b分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同。
此外,上述空调机250具有形成冷却剂循环路径的四通阀254、节流装置253、室内侧热交换器251和室外侧热交换器252。在此,室内侧热交换器251构成上述室内机255,节流装置253、室外侧热交换器252、压缩机250a,四通阀254和电动机驱动装置250b构成上述室外机256。
上述室内侧热交换器251,具有用于提高热交换能力的送风机251a、测量该热交换器251的温度或其周围温度的温度传感器251b。上述室外侧热交换器252具有用于提高热交换能力的送风机252a、测量该热交换器252的温度或其周围温度的温度传感器252b。
并且,在此实施形态9中,在上述室内侧热交换器251和室外侧热交换器252之间的冷却剂路径中配置有压缩机250a和四通阀254。即,此空调机250利用四通阀,使冷却剂沿箭头A方向流动,将通过室外侧热交换器252的冷却剂吸入压缩机250a,从该压缩机250a吐出的冷却剂向室内侧热交换器251供给的状态;冷却剂沿箭头B方向流动,将通过室内侧热交换器251的冷却剂吸入压缩机250a,从该压缩机250a吐出的冷却剂向室内侧热交换器252供给的状态的转换。此外,上述节流装置253同时具有节流循环的冷却剂的流量的节流作用和自动调节冷却剂流量的阀门的作用。即,节流装置253,将冷却剂处于循环的冷却剂循环路径的状态中,节流从冷凝器向蒸发器输送的液态冷却剂的流量,使该液态冷却剂膨胀的同时,向蒸发器适量地供给所需要量的冷却剂。
再有,上述室内侧热交换器251作为暖气运转中的冷凝器、冷气运转中的蒸发器进行工作,上述室外侧热交换器252作为暖气运转中的蒸发器、冷气运转中的冷凝器进行工作。在冷凝器中,流过内部的高温高压的冷却剂气体利用送入的空气吸取热量,慢慢液化,在冷凝器出口附近成为高压液态冷却剂。这与冷却剂在大气中散发热量液化一样。此外,在蒸发器中通过节流装置253流入低温低压的液态冷却剂。在此状态下,向蒸发器一送入房间内的空气,液态冷却剂从空气中吸取大量的热量,蒸发并变为低温低压气体冷却剂。通过蒸发器吸取大量的热量的空气从空调机的吹风口变为冷风并散发出去。
并且,在此空调机250中,根据空调机的运转状态,即对于空调机设定的目标温度、实际的室温和外界温度来设定电动机的指令转速,电动机驱动装置250b与实施形态1的装置相同,根据该设定的指令转速来控制压缩机250a的电机转速。
下面,说明其操作。
本实施形态9的空调机250中,从电动机驱动装置250b向压缩机250a一施加驱动电压,冷却剂就在冷却剂循环路径内加以循环,在室内机255的热交换器251和室外机256的热交换器252进行热交换。即,上述空调机250中,通过利用压缩机250a使封闭在冷却剂循环闭路中的冷却剂进行循环,在冷却剂的循环闭路内形成众所周知的热泵循环。据此,室内是暖气或冷气。
例如,在进行空调机250的暖气运转时,通过使用者的操作,按冷却剂沿箭头A表示的方向流动设定上述四通阀254。此时,室内侧热交换器251作为冷凝器工作,通过按上述冷却剂循环路径的冷却剂的循环,释放热量。据此,使室内变暖。
相反,在进行空调机250的冷气运转时,通过使用者的操作,按冷却剂沿箭头B表示的方向流动设定上述四通阀254。此时,室内侧热交换器251作为蒸发器工作,通过按上述冷却剂循环路径的冷却剂的循环,吸收周围空气的热量。据此,使室内变冷。
在此,在空调机250中针对空调机设定的目标温度、实际的室温和外界温度来决定指令转速,与实施形态1中相同,根据该指令转速,利用电动机驱动装置250b来控制压缩机250a的电机转速。据此,在空调机250中进行适合的冷暖气操作。
这样,在本实施形态9的空调器250中,以驱动作为压缩机250a的动力源的电动机的电动机驱动装置与实施形态1中的电动驱动装置相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,使单相交流电源1的输出电流正常化,在抑制因从电源供给的电流的波形变形而引起的功率因数的下降的同时还能使电动机驱动装置中的电容器和电感的数值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,还能使空调机中的电动机驱动装置小型化、轻型化,乃至能提高空调机的设计自由度,使其价格便宜。
(实施形态10)
图13是说明根据本发明的实施形态10的电冰箱的方框图。
本实施形态10的电冰箱260由压缩机260a、电动机驱动装置260b、冷凝器261、冷藏室蒸发器262和节流装置263构成。
在此,压缩机260a、冷凝器261、节流装置263和冷藏室蒸发器262形成冷却剂循环路径,电动机驱动装置260b以电源1为输入,驱动作为上述压缩机260a的驱动源。再有,上述电源1、压缩机260a的电动机和电动机驱动装置260b,分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同。
节流装置263与上述实施形态9的空调机250的节流装置253相同,冷却剂在冷却剂循环路径中以循环状态,节流从冷凝器261送出的液态冷却剂的流量,使该液态冷却剂膨胀的同时,向冷藏室蒸发器262适量地供给所必需量的冷却剂。
冷凝器261使流过其内部的高温高压的冷却剂气体冷凝,向外界气体释放出冷却剂的热量。送入该冷凝器261的冷却剂气体通过外界气体吸取热量慢慢液化,在冷凝器的出口附近变成高压的液态冷却剂。
冷藏室蒸发器262使低温的冷却剂液体蒸发,进行电冰箱内部的冷却。此冷藏室蒸发器262具有用于提高热交换效率的送风机262a、检测箱内温度的温度传感器262b。
并且,此电冰箱260中,根据电冰箱的运转状态,即对于电冰箱设定的目标温度和电冰箱内的温度,设定指令转速,电动机驱动装置260b与实施形态1相同,根据该设定的指令转速来控制压缩机260a的电动机的转速。
下面,说明其操作。
本实施形态10的电冰箱260中,从电动机驱动装置260b向压缩机260a的电动机一施加驱动电压Vd,驱动压缩机260a,冷却剂就在冷却剂循环路径内按箭头C的方向循环并在冷凝器261和冷藏室蒸发器262进行热交换。据此,使电冰箱内冷却。
即,冷凝器261中成为液态的冷却剂,通过在节流装置263节流其流量而发生膨胀,形成低温冷却剂液体。并且,向冷藏室蒸发器262送入低温液态冷却剂,在冷藏室蒸发器262中,低温冷却剂液体蒸发,进行电冰箱内的冷却。此时,在冷藏室蒸发器262中,通过送风机262a强制送入冷藏室内的空气,在冷藏室262进行高效的热交换。
此外,在此实施形态10的电冰箱260中,根据针对该电冰箱260相对于设定的目标温度和电冰箱内的室温外界温度决定指令转速,该电动机驱动装置260b与实施形态1中的装置相同,根据该设定的指令转速来控制压缩机260a的电动机的转速。据此,在电冰箱260中,将电冰箱内的温度保持在目标温度。
这样,在本实施形态10的电冰箱260中,驱动作为压缩机260a的动力源的电动机的电动机驱动装置与实施形态1中的结构相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就使单相交流电源1的输出电流正常化,在抑制因从电源供给的电流的波形变形而引起的功率因数的下降的同时,也能使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电冰箱中的电动机驱动装置小型化、轻型化,乃至能提高电冰箱的设计自由度,使其价格便宜。
(实施形态11)
图14是说明根据本发明的实施形态11的电动洗衣机的方框图。
本实施形态11的电动洗衣机270具有洗衣机外框271,在洗衣机外框271内通过悬挂棒272悬挂有外槽273。在该外槽273内,设置自由旋转的洗衣兼脱水槽274,在该洗衣兼脱水槽274的底部,安装有自由旋转的搅拌翼275。
在上述洗衣机外框271内的外槽273的下侧,配置有洗衣兼脱水槽274和使搅拌翼275旋转的电动机276,此外,在洗衣机外框271内安装有以外部的电压源1为输入、驱动上述电动机276的电动机驱动装置277。
在此,上述电源1、电动机276和电动机驱动装置277分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同。在上述电动机驱动装置277,对应于使用者的操作,从控制电动洗衣机270工作的微型计算机(未图示)中输入表示指令转速的转速指令。
下面,说明其操作。
本实施形态11的电动洗衣机270中,使用者进行规定的操作,从微型计算机向电动机驱动装置277输入转速指令,从电动机驱动装置277向电动机276施加驱动电压。并且,通过电动机276的驱动,使搅拌翼275或洗衣兼脱水槽274旋转,进行洗衣兼脱水槽274内的衣服等的洗涤和脱水。
此时,此实施形态11的电动洗衣机270中,根据来自微型计算机的转速指令所表示的指令转速,与实施形态1相同,通过电动机驱动装置277控制电动机转速。据此,在电动洗衣机270中,对应于洗衣量和脏污程度进行操作。
这样,在本实施形态11的电动洗衣机270中,驱动作为动力源的电动机276为电动机驱动装置与实施形态1中的结构相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就能使单相交流电源1的输出电流正常化,就能够使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动洗衣机中的电动机驱动装置小型化、轻型化,乃至能提高电冰箱的设计自由度,使其价格便宜。
(实施形态12)
图15是说明根据本发明的实施形态12的送风机的方框图。
本实施形态12的送风机280具有风扇281、旋转驱动该风扇281的电动机282、以电压源1为输入驱动上述电动机282的电动机驱动装置283。
在此,上述电源1、上述电动机282和电动机驱动装置283分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同;在上述电动机驱动装置283中,对应于使用者的操作,从控制送风机280工作的微型计算机(未图示)中输入表示指令转速的转速指令。
下面,说明其操作。
在本实施形态12的送风机280中,使用者进行规定的操作,从微型计算机向电动机驱动装置283输入转速指令,从电动机驱动装置283向电动机282施加驱动电压。并且,通过电动机282的驱动,使风扇281旋转,进行送风。
此时,在此实施形态12的送风机280中,根据来自微型计算机的转速指令,与实施形态1中的操作相同,通过电动机驱动装置283控制电动机282的输出。据此,在送风机280中,进行进风量和风的强度的调整。
这样,在本实施形态12的送风机280中,驱动作为动力源的电动机282为电动机驱动装置与实施形态1中的装置相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就能使单相交流电源1的输出电流正常化,也能使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使送风机中的电动机驱动装置小型化、轻型化,乃至能提高送风机的设计自由度,使其价格便宜。
(实施形态13)
图16是说明根据本发明的实施形态13的电动吸尘器的方框图。
本实施形态13的电动吸尘器290具有在底面形成吸引口的床用吸入工具297、吸引空气的吸尘器本体290a、一端与床用吸入工具297连接且另一端与吸尘器本体连接的吸尘软管296。
上述吸尘器本体290a由在前部吸尘软管296一端开口的集尘室295、配置在该集尘室295后部的电动送风机291构成。
电动送风机291由相对于该集尘室295的后部设置的风扇292、使该风扇旋转的电动机293、以电压源1为输入驱动该电动机293的电动机驱动装置294构成,通过风扇292的旋转吸引上述空气,进行送风。
在此,上述电源1、上述电动机293和电动机驱动装置294分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同;在上述电动机驱动装置294中,对应于使用者的操作,从控制电动吸尘器290工作的微型计算机(未图示)中输入表示指令转速的转速指令。
下面,说明其操作。
在本实施形态13的电动吸尘器290中,使用者进行规定的操作,从微型计算机向电动机驱动装置294输入转速指令,从电动机驱动装置294向电动机293施加驱动电压。并且,通过电动机293的驱动,使风扇292旋转,在吸尘器本体290a内部产生吸引力。此吸尘器本体290a内产生的吸引力通过软管296作用于设置在床用吸入工具297底部的吸引口(未图示),从床用吸入工具297的吸引口吸引被清扫面的灰尘,在吸尘器本体290a的集尘室295内进行集尘。
此时,在此实施形态13的电动吸尘器290中,根据来自微型计算机的转速指令,与实施形态1的操作相同,通过电动机驱动装置294控制电动机293的转速。据此,在电动吸尘器290中,进行吸引力的强度的调整。
这样,在本实施形态13的电动吸尘器290中,驱动作为动力源的电动机293的电动机驱动装置与实施形态1中的装置相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就能使单相交流电源1的输出电流正常化,也能使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动吸尘器中的电动机驱动装置小型化、轻型化,乃至能提高电动吸尘器的设计自由度,使其价格便宜。
(实施形态14)
图17是说明根据本发明的实施形态14的电动干燥机的方框图。
本实施形态14的电动干燥机360由压缩机360a、电动机驱动装置360b、冷凝器361、蒸发器362和节流装置363构成。
在此,压缩机360a、冷凝器361、节流装置363和蒸发器362形成冷却剂循环路径,电动机驱动装置360b以电压源1为输入驱动作为上述压缩机360a的驱动源的电动机。再有,上述电压源1、压缩机360a的电动机和电动机驱动装置360b分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同。
节流装置263与上述实施形态9的空调机的250的节流装置253相同,将冷却剂处于循环的冷却剂循环路径的状态中,节流从冷凝器361送出的液态冷却剂的流量,使该液态冷却剂膨胀的同时,向蒸发器362适量地供给所需要量的冷却剂
冷凝器361,使流过内部的高温高压的冷却剂气体冷凝,向外界放出冷却剂的热量。送入该冷凝器361的冷却剂气体通过外界气体,吸取热量,慢慢液化,在冷凝器出口附近成为高压液态冷却剂。
蒸发器362使低温的冷却剂液体蒸发,进行干燥机内的除湿。此蒸发器362具有用于提高除湿效率的送风机362a。
并且,此干燥机360中,电动机驱动装置360b根据干燥机的运转状态、即针对干燥机设定的除湿度和干燥机内部的湿度,控制压缩机360a的电动机的输出。
下面,说明其操作。
在本实施形态14的电动干燥机360中,由电动机驱动装置360b给压缩机360a的电动机施加驱动电压Vd,驱动压缩机360a,冷却剂就在冷却剂循环路径内按箭头E的方向循环,在冷凝器361和蒸发器362进行热交换。据此,进行干燥机内的除湿。
即,在此电动干燥机360中,在冷凝器361中成为液态冷却剂,通过在节流装置363节流其流量而发生膨胀,形成低温冷却剂液体。并且,向蒸发器362一送入低温液态冷却剂,在蒸发器362,蒸发低温冷却剂液体,进行干燥机内的除湿。具体地,干燥机内的湿空气在达到露点温度以下时冷却,水分变成冷凝水,再次加热(再加热)已除去水分的空气。此时,在蒸发器中,通过送风机强制送入干燥机内的空气,在蒸发器中进行高效率地热交换,加以除湿。
这样,在本实施形态14的电动干燥机360中,驱动作为压缩机360a的动力源的电动机的电动机驱动装置与实施形态1中的装置相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就使单相交流电源1的输出电流正常化,依据由电源供给的电流波形的变形来抑制功率因数的降低的同时,也能使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使电动干燥机中的电动机驱动装置小型化、轻型化,乃至能提高电动干燥机的设计自由度,使其价格便宜。
(实施形态15)
图18是说明根据本发明的实施形态15的热泵热水器的方框图。
本实施形态15的热泵热水供应器380具有:加热供给水、排出温水的冷却循环装置381a,贮存从冷却循环装置381a排出的温水的贮热水槽381b,连接这些的水管386a、386b、387a和387b。
上述冷却循环装置381a在具有形成冷却剂循环路径的压缩机380a、空气热交换器382、节流装置383和水热交换器385的同时,还具有以电压源1为输入驱动该压缩机380a的电动机的电动机驱动装置380b。
在此,上述电压源1、压缩机380a的电动机和电动机驱动装置380b分别与上述实施形态1的单相交流电源1、电动机2和电动机驱动装置100a相同。
节流装置383与上述实施形态9的空调机的250的节流装置253相同,节流从水热交换器385向空气热交换器382送出的液态冷却剂的流量,使该液态冷却剂膨胀。
水热交换器385作为加热向冷却循环装置381a供给水的冷凝器,具有检测加热过的水的温度的温度传感器385a。空气热交换器382作为吸收来自周围空气的热的蒸发器,具有用于提高热交换能力的送风机382a和检测周围温度的温度传感器382b。
再有,附图中的384是通过压缩机380a、热水交换器385、节流装置383和空气热交换器382沿形成的冷却剂循环路径使上述冷却剂循环的冷却剂配管。在该冷却剂配管384中,将从压缩机380a吐出的冷却剂,绕过水热交换器385和节流装置383,连接供给空气热交换器382的除霜旁路管384a,在该旁路(BYPASS)管384a的一部分设置除霜旁路阀门384b。
上述贮热水槽381b具有贮存水或温水的贮热水容器388。从外部向该贮热水容器388内供给水的送水管388c连接到该贮热水容器388的进水口388c1,从贮热水容器388向浴槽供给热水的浴槽送水管388d连接到上述贮热水容器388的热水出口388d1。此外,将在该容器388贮存的热水供给外部的送热水管389连接到上述贮热水容器388的水出入口388a。
上述贮热水容器388和冷却循环装置381a的水热交换器385通过配管386a、386b、387a、387b相连接,在贮热水容器388和水热交换器385之间形成水循环通路。
在此,水配管386b作为将水从贮热水容器388向水热交换器385供给的配管,其一端连接贮热水容器388的出水口388b,另一端通过连接体(JOINT)部分387b1连接水热交换器385的进水侧配管387b。此外,在此水配管386的一端安装有用于排出贮热水容器388内的水或温水的排水阀门388b1。上述水配管386a作为将热从水热交换器385向贮热水容器388返回的配管,其一端连接贮热水容器388的水出入口388a,其另一端通过连接体部分387a1连接水热交换器385的排出侧配管387a。
并且,在水热交换器385的进水侧配管387b部分设置有使水在上述水循环通路内循环的泵387。
而且,在此送热水供应器380中,根据热水供应器的运转状态,即针对热水供应器设定的目标温度、从贮热水槽381b向冷却循环装置381a的水热交换器385a供给的水的温度和和外界温度,决定压缩机380a的电动机的指令转速,电动机驱动装置380b根据指令转速决定压缩机380a的电动机所要求的电动机输出。
下面,说明其操作。
将来自电动机驱动装置380b的驱动电压Vd施加到压缩机380a的电动机,驱动压缩机380a,通过压缩机380a压缩的高温冷却剂就按箭头F的方向进行循环,即通过冷却剂配管384供给水热交换器385。此外,驱动水循环通路的泵387就从贮热水容器388将水供给热水交换器385。
并且,在热水交换器385中,在冷却剂和从贮热水容器388供给的水之间进行热交换,热从冷却剂向水移动。即加热供给的水,将加热后的水供给贮热水容器388。此时,用冷凝温度传感器385a监测加热后的水的温度。
此外,在水热交换器385中,冷却剂通过热交换冷凝,利用节流装置383节流冷凝了的液态冷却剂的流量,使其膨胀,并送入空气热交换器382。在热水供应器380中,该空气热交换器382作为蒸发器工作。即,该空气热交换器382,通过送风机382a吸收来自送入的外界空气,使低温冷却剂液体蒸发。此时,利用温度传感器382b监测上述空气热交换器382的周围的气体温度。
此外,在冷却循环装置381a中,在空气热交换器382结霜的情况下,开启除霜旁路阀门384b,高温的冷却剂通过除霜旁路管384a供给空气热交换器382。据此,对空气热交换器382进行除霜。
另一方面,在贮热水槽381b中,通过配管387a和386a从冷却循环装置381a的水热交换器385供给温水,将供给的温水贮存在贮热水容器388内。贮热水容器388内的温水,按照需要,通过送热水管389向外部供水。特别地,向浴槽送热水的情况下,通过浴槽利用送热水管388d将贮水容器内的温水供给浴槽。
此外,在贮热水容器388内的水或温水的蓄水量处于一定量以下时,就通过送水管388c从外部补充水。
并且,在此实施形态10的热水供应器380中,利用电动机驱动装置380b,根据针对热水供应器380设定的温水的目标温度、向水热交换器385a供给水的温度和外界温度来决定电动机的指令转速,与实施形态1中的操作相同,根据该指令转速,利用电动机驱动装置380b来控制压缩机380a的电动机转速。据此,在热水供应器380中,进行目标温度的温水供给。
这样,在本实施形态15的热泵热水供应器380中,驱动作为压缩机380a的动力源的电动机的电动机驱动装置与实施形态1中的装置相同,由于使用了使供给电动机的电流在电源电压v由0变为峰值的工作区内减少、在电源电压v从峰值变为0的工作区内增加的电动机驱动装置,因此就使单相交流电源1的输出电流正常化,依据由电源供给的电流波形的变形,在抑制功率因数的降低的同时,也能使电动机驱动装置中的电容器和电感的值变小。据此,在满足输入功率因数的制约和IEC高频率规则的同时,也能使热泵热水器中的电动机驱动装置小型化、轻型化,乃至能提高热泵热水器的设计自由度,使其价格便宜。
再有,在上述实施形态9至15中,驱动作为动力源的电动机的电动机驱动装置与实施形态1的电动机驱动装置相同,实施形态9至15的机器的电动机驱动装置也可以与实施形态2至8中的任一种电动机驱动装置相同。
产业上的可利用性
本发明的电动机驱动装置不用一方面调制电动机驱动电流的波形,一方面进行向电动机输出的驱动电压的超前角调整,就能改善输入功率因数,它作为感应电动机、DC无刷电动机、磁阻电动机等的电动机驱动装置是极其有用的装置。

Claims (17)

1、一种电动机驱动装置,用于驱动电动机,其特征在于包括:
以单相交流电源作为输入的整流电路;
变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和
变换器控制部,为了驱动上述电动机而控制上述变换器电路,
上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,
按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,
在上述电源电压推定部推定的电源电压从零电压向峰值电压变化时,使上述变换器电路的输出电流或输出电压的值变小的第1控制,以及在上述电源电压推定部推定的电源电压从峰值电压向零电压变化时,使上述变换器电路的输出电流或输出电压的值变大的第2控制中,上述变换器控制部至少进行其中的一种控制。
2、一种电动机驱动装置,用于驱动电动机,其特征在于包括;
以单相交流电源作为输入的整流电路
变换器电路,连接于上述整流电路,并向上述电动机输出电流和电压;和
变换器控制部,为了驱动上述电动机而控制上述变换器电路,
上述变换器控制部具有电源电压推定部,用以推定上述单相交流电源的电压,
按照上述电源电压推定部推定的电源电压,来使上述变换器电路输出的电流或电压的值变化,
上述变换器控制部具有变换器输入电压检测部,用于检测向上述变换器电路输入的电压,
比较上述电源电压推定部推定的电源电压的绝对值与上述变换器输入电压检测部检测的变换器输入电压,在上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器的输出电流或输出电压的值变大的第1控制,以及上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器的输出电流或输出电压的值变小的第2控制中,上述变换器控制部至少进行其中的一种控制。
3、根据权利要求2所述的电动机驱动装置,其特征在于:
上述电动机为DC无刷电动机,
上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的相位超前的控制,
上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的相位滞后的控制。
4、根据权利要求2所述的电动机驱动装置,其特征在于:
上述电动机为感应电动机,
上述第1控制为当上述变换器输入电压比上述推定的电源电压的绝对值高时,使上述变换器电路的输出电流或输出电压的角速度变小的控制,
上述第2控制为当上述变换器输入电压比上述推定的电源电压的绝对值低时,使上述变换器电路的输出电流或输出电压的角速度变大的控制。
5、根据权利要求2所述的电动机驱动装置,其特征在于:
上述电源电压推定部,
具有定时检测部,根据上述变换器输入电压检测部检测出的变换器输入电压来检测变换器输入电压取最大值的定时,
根据上述定时检测部检测出的定时和来自此时的上述变换器输入电压检测部的检测输出即变换器输入电压值,来推定上述单相交流电源的电压。
6、根据权利要求1所述的电动机驱动装置,其特征在于:
上述电源电压推定部具有:
电阻电路,对电源电压进行电阻分压;
光电耦合器,连接于该电阻电路的输出;以及
零交叉检测部,基于上述光电耦合器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,
从上述零交叉检测部检测出的零交叉定时和上述单相交流电源的已知电压来推定上述单相交流电源的电压。
7、根据权利要求2所述的电动机驱动装置,其特征在于:
上述电源电压推定部具有:
电阻电路,对电源电压进行电阻分压;
光电耦合器,连接于该电阻电路的输出;以及
零交叉检测部,基于上述光电耦合器的输出,得到对电源电压全波整流的矩形波,以该矩形波的上升沿和下降沿为上述单相交流电源的零交叉定时并对其进行检测,
从上述零交叉检测部检测出的零交叉定时和上述变换器输入电压检测部检测出的变换器输入电压来推定上述单相交流电源的电压。
8、根据权利要求1或者2所述的电动机驱动装置,其特征在于:
上述整流电路具有电容器,由来自上述电动机的再生电流进行充电。
9、根据权利要求1或者2所述的电动机驱动装置,其特征在于;
上述整流电路具有电感器,用于遮断在变换器电路中产生的噪音。
10、一种压缩机,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
11、一种空调机,包括具有产生动力的电动机的压缩机,其特征在于:
包括驱动上述压缩机的电动机的电动机驱动装置;
该电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
12、一种电冰箱,包括具有产生动力的电动机的压缩机,其特征在于:
包括驱动上述压缩机的电动机的电动机驱动装置;
该电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
13、一种电动洗衣机,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
14、一种送风机,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
15、一种电动吸尘器,包括产生动力的电动机和驱动该电动机的电动机驱动装置,其特征在于:
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
16、一种电动干燥机,包括具有产生动力的电动机的压缩机,其特征在于:
包括驱动上述压缩机的电动机的电动机驱动装置,
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
17、一种热泵热水供应器,包括具有产生动力的电动机的压缩机,其特征在于:
包括驱动上述压缩机的电动机的电动机驱动装置,
上述电动机驱动装置为权利要求1或者2所述的电动机驱动装置。
CNB2004100550845A 2003-04-14 2004-04-14 电动机驱动装置 Expired - Fee Related CN1297066C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP109395/2003 2003-04-14
JP2003109395 2003-04-14

Publications (2)

Publication Number Publication Date
CN1571264A CN1571264A (zh) 2005-01-26
CN1297066C true CN1297066C (zh) 2007-01-24

Family

ID=33487041

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100550845A Expired - Fee Related CN1297066C (zh) 2003-04-14 2004-04-14 电动机驱动装置

Country Status (7)

Country Link
US (1) US7292004B2 (zh)
EP (1) EP1503491B1 (zh)
KR (1) KR100639447B1 (zh)
CN (1) CN1297066C (zh)
AT (1) ATE442695T1 (zh)
DE (1) DE602004023037D1 (zh)
ES (1) ES2331610T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420116B (zh) * 2007-02-08 2013-12-21 Fujitsu General Ltd 相位檢測方法及裝置、同步電動機的控制方法及裝置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938179B2 (ja) * 2004-11-18 2007-06-27 松下電器産業株式会社 交流電源直結型ブラシレスdcモータおよびそれを搭載した電気機器
FI121803B (fi) * 2005-05-03 2011-04-15 Vacon Oyj Taajuusmuuttajan valvontajärjestely
JP4839844B2 (ja) * 2006-01-12 2011-12-21 日産自動車株式会社 電力変換器の制御方法およびそれを用いたハイブリッド電力変換システム
WO2007108185A1 (ja) * 2006-03-15 2007-09-27 Mitsubishi Electric Corporation 電動機駆動装置及び圧縮機駆動装置
JP4678340B2 (ja) * 2006-06-19 2011-04-27 パナソニック電工株式会社 荷電粒子供給装置
JP2008035688A (ja) * 2006-06-26 2008-02-14 Sanyo Electric Co Ltd 電動機の駆動装置
JP2008095909A (ja) * 2006-10-16 2008-04-24 Hitachi Ltd 電動ブレーキ装置
KR101341234B1 (ko) * 2007-06-01 2013-12-12 엘지전자 주식회사 청소기 및 그 구동 방법
JP4687730B2 (ja) * 2008-03-06 2011-05-25 パナソニック株式会社 送風装置およびそれを搭載した電気機器
JP2009219268A (ja) * 2008-03-11 2009-09-24 Daikin Ind Ltd 電力変換装置
JP5358990B2 (ja) * 2008-03-21 2013-12-04 株式会社明電舎 電力変換装置
JP5178400B2 (ja) * 2008-08-28 2013-04-10 株式会社東芝 洗濯乾燥機
JP5026553B2 (ja) * 2010-04-22 2012-09-12 ファナック株式会社 Ac/dcコンバータの変換動作モードを動的に切替える機能を有するモータ駆動装置
EP2479886B1 (en) * 2011-01-19 2016-11-02 KIH-utveckling AB Method for controlling operation of an electric motor in a height-adjustable furniture arrangement
JP5149410B2 (ja) * 2011-02-10 2013-02-20 ファナック株式会社 交流電源の電源特性に応じてモータの出力を制限するモータ駆動制御装置
US9246432B2 (en) 2011-02-14 2016-01-26 Beckman Coulter, Inc. Regenerative braking safety system and method of use
EP2824815B1 (en) * 2012-03-05 2020-09-16 Fuji Electric Co., Ltd. Power conversion device
US8988026B2 (en) * 2012-07-31 2015-03-24 Rockwell Automation Technologies, Inc. Single phase operation of a three-phase drive system
CN103928981A (zh) * 2014-04-25 2014-07-16 上海电气集团股份有限公司 变桨控制系统用伺服驱动器与备用电源的一体化结构
CN107249824B (zh) * 2015-03-31 2021-05-11 工机控股株式会社 电动工具
JP6321593B2 (ja) * 2015-08-21 2018-05-09 ファナック株式会社 回生電流の時間的変化を抑制する機能を備えたモータ駆動装置
US9667189B2 (en) * 2015-08-27 2017-05-30 Abb Schweiz Ag Control of electrically excited synchronous machine drives for ride through and controlled braking operations
CN105790649A (zh) * 2015-11-20 2016-07-20 李先虎 使用交流电源的三相直流无刷电机驱动器
US9712056B1 (en) 2016-01-19 2017-07-18 Goodrich Corporation Three-phase power switching for ungrounded wye circuits
DE102016218334B4 (de) 2016-09-23 2020-03-05 Siemens Aktiengesellschaft Motorvorrichtung für einen Schalterantrieb eines elektrischen Schalters
JP6373434B1 (ja) * 2017-03-24 2018-08-15 三菱電機株式会社 交流回転電機の制御装置
RU177672U1 (ru) * 2017-07-19 2018-03-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Симисторный редуктор, ведомый сетью однофазного переменного напряжения, для двухфазного асинхронного двигателя
JP7357204B2 (ja) * 2018-07-18 2023-10-06 パナソニックIpマネジメント株式会社 電動工具、制御方法、プログラム
FR3100505B1 (fr) * 2019-09-11 2021-09-24 Foundation Brakes France Actionneur electrique d’un systeme de freinage d’un vehicule routier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07337088A (ja) * 1994-06-07 1995-12-22 Daikin Ind Ltd インバータ
CN1124072A (zh) * 1994-03-01 1996-06-05 电气联合股份有限公司 控制感应电动机的方法和装置
CN1200847A (zh) * 1995-10-06 1998-12-02 株式会社日立制作所 电动机控制器
JP2000308353A (ja) * 1999-04-20 2000-11-02 Sanyo Electric Co Ltd 電源装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574389A (en) * 1978-11-27 1980-06-04 Fanuc Ltd Drive circuit for permanent magnet type dc motor
US4473790A (en) * 1983-01-03 1984-09-25 General Electric Company Control circuit for suppression of line resonances in current feedback pulse width modulation control systems with a minimum d-c filter
US4876637A (en) * 1988-03-22 1989-10-24 Kabushiki Kaisha Toshiba Power converter and method of controlling the same
US5646499A (en) * 1994-08-25 1997-07-08 Matsushita Electric Industrial Co.,Ltd. Inverter control apparatus
US6002220A (en) * 1996-08-22 1999-12-14 Hitachi, Ltd. Electric power storage air-conditioning system
JPH10150795A (ja) 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
US6046554A (en) * 1998-02-13 2000-04-04 General Electric Company Method and apparatus for calibrating a permanent-magnet motor using back EMF measurement
TW528847B (en) * 1998-06-18 2003-04-21 Hitachi Ltd Refrigerator
US6254353B1 (en) * 1998-10-06 2001-07-03 General Electric Company Method and apparatus for controlling operation of a submersible pump
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
US6504338B1 (en) * 2001-07-12 2003-01-07 Varidigm Corporation Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124072A (zh) * 1994-03-01 1996-06-05 电气联合股份有限公司 控制感应电动机的方法和装置
JPH07337088A (ja) * 1994-06-07 1995-12-22 Daikin Ind Ltd インバータ
CN1200847A (zh) * 1995-10-06 1998-12-02 株式会社日立制作所 电动机控制器
JP2000308353A (ja) * 1999-04-20 2000-11-02 Sanyo Electric Co Ltd 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420116B (zh) * 2007-02-08 2013-12-21 Fujitsu General Ltd 相位檢測方法及裝置、同步電動機的控制方法及裝置

Also Published As

Publication number Publication date
EP1503491A2 (en) 2005-02-02
CN1571264A (zh) 2005-01-26
EP1503491A3 (en) 2006-01-11
ATE442695T1 (de) 2009-09-15
DE602004023037D1 (de) 2009-10-22
KR100639447B1 (ko) 2006-10-26
ES2331610T3 (es) 2010-01-11
EP1503491B1 (en) 2009-09-09
US20040245961A1 (en) 2004-12-09
KR20040089579A (ko) 2004-10-21
US7292004B2 (en) 2007-11-06

Similar Documents

Publication Publication Date Title
CN1297066C (zh) 电动机驱动装置
CN1507145A (zh) 电动机控制装置
CN1619936A (zh) 换流器电路和电动机驱动装置
CN1571265A (zh) 电动机驱动装置
CN1604455A (zh) 电动机驱动装置
CN1129743C (zh) 空调机
CN1175543C (zh) 串联补偿器
CN1297067C (zh) 电机装置
CN1183654C (zh) 电源装置及使用了该电源的空调机
CN1065993C (zh) 电源转换系统
CN1063887C (zh) 高效率的电机装置及电机的控制方法
CN1131987C (zh) 沸腾和冷凝制冷剂的冷却装置
CN1048594C (zh) 电力变换系统
CN1405964A (zh) 电力变换装置
CN1477767A (zh) 电动机驱动控制装置
CN1083474C (zh) 在热力循环中使用的改进的非共沸工作介质
CN1783698A (zh) 相电流检测方法、逆变器控制方法、电动机控制方法及其装置
CN1232897A (zh) 脱水兼用洗衣机
CN1613173A (zh) 功率因数改善变换器及其控制方法
CN1357966A (zh) 电源装置和使用该电源装置的空气调节器
CN1864033A (zh) 空气调节装置
CN1617435A (zh) 开关电源电路
CN101031758A (zh) 换气装置、空调系统、换气系统及建筑物
CN1491474A (zh) 具有由发动机驱动的发电机的电力系统
CN1792665A (zh) 电气化铁路交流馈电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070124

Termination date: 20180414

CF01 Termination of patent right due to non-payment of annual fee