CN1205656C - Intermetallic dielectric structure and fabrication method thereof - Google Patents
Intermetallic dielectric structure and fabrication method thereof Download PDFInfo
- Publication number
- CN1205656C CN1205656C CN 02127646 CN02127646A CN1205656C CN 1205656 C CN1205656 C CN 1205656C CN 02127646 CN02127646 CN 02127646 CN 02127646 A CN02127646 A CN 02127646A CN 1205656 C CN1205656 C CN 1205656C
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- metal layers
- dielectric structure
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种金属层间介电结构的氧化物盖层,特别有关于一种以高密度电浆-源射频(HDP-SRF)的化学气相沉积方法所制作的氧化物盖层,可解决金属层的伸张应力过大而导致氧化物盖层产生裂缝缺陷的问题。The present invention relates to an oxide capping layer of a metal interlayer dielectric structure, in particular to an oxide capping layer produced by a high-density plasma-source radio frequency (HDP-SRF) chemical vapor deposition method, The method can solve the problem that the excessive tensile stress of the metal layer causes crack defects in the oxide cover layer.
技术背景technical background
在超大型集成电路ultra-large-scale Integration(ULSI)制程中,多重金属内连线结构是将许多金属导线制作于不同层中,用来提升元件的电路表现以及电路的功能复杂性。早期在金属层间介电质(inter-metaldielectric,IMD)的发展,集中在间隙充填及平坦化等问题的改善,而随着高密度电浆化学气相沉积(high density plasma CVD,HDPCVD)的改进及化学机械研磨(CMP)诸种方法被提出,上述问题已逐渐被克服,因此当前的发展着重于如何降低IMD层的介电系数,以提升电路的整体运算速度。In the ultra-large-scale integration (ULSI) process, the multi-metal interconnection structure is to make many metal wires in different layers to improve the circuit performance of components and the functional complexity of the circuit. The early development of inter-metal dielectric (inter-metaldielectric, IMD) focused on the improvement of gap filling and planarization, and with the improvement of high density plasma chemical vapor deposition (high density plasma CVD, HDPCVD) Various methods such as chemical mechanical polishing (CMP) and chemical mechanical polishing (CMP) have been proposed, and the above problems have been gradually overcome. Therefore, the current development focuses on how to reduce the dielectric coefficient of the IMD layer to increase the overall operation speed of the circuit.
对于尺寸大于0.4μm的半导体元件而言,电路的RC时间延迟是由前段制程所决定,其包括有CMOS的驱动电容和负载电阻(load resistance)。但是,随着元件尺寸缩小至0.35μm以下,前段制程的RC时间延迟会随之减少,而后段制程所引发的RC时间延迟会随之增加。为了改善这个问题,一种方式是以铜线取代传统铝线来降低金属层的电阻值,另一种方式是使用低介电常数的介电质来制作IMD层,其可以有效降低电容值。目前在0.35μm以下的CMOS电路制程中,已被整合使用的低介电常数的介电质材料是氟掺杂的二氧化硅(fluorinatedSiO2,FSG),其整体介电常数约为3.5,可籍由HDPCVD或PECVD制程填补0.35微米以下的金属线之间的隙缝。但是FSG内的氟离子的稳定性不佳,因此会在FSG层表面上沉积一氧化物盖层,以防止氟离子扩散所导致的插塞的阻值变高及导线腐蚀的问题。For semiconductor devices with a size greater than 0.4 μm, the RC time delay of the circuit is determined by the front-end process, which includes the CMOS drive capacitor and load resistance. However, as the device size shrinks below 0.35 μm, the RC time delay of the front-end process will decrease, while the RC time delay caused by the back-end process will increase accordingly. In order to improve this problem, one way is to replace the traditional aluminum wire with copper wire to reduce the resistance value of the metal layer, and another way is to use a low dielectric constant dielectric material to make the IMD layer, which can effectively reduce the capacitance value. At present, in the CMOS circuit process below 0.35μm, the low dielectric constant dielectric material that has been integrated and used is fluorine-doped silicon dioxide (fluorinatedSiO 2 , FSG), and its overall dielectric constant is about 3.5, which can Fill the gap between metal lines below 0.35 micron by HDPCVD or PECVD process. However, the stability of the fluorine ions in the FSG is poor, so an oxide capping layer is deposited on the surface of the FSG layer to prevent the problems of high plug resistance and wire corrosion caused by the diffusion of fluorine ions.
请参阅图1,其显示一般的IMD结构的剖面示意图。于前段制程制作完成之后,一半导体硅基底10内包含有未显示元件及电路,并覆盖有一介电层12。而于后段制程中,先在介电层12的表面上定义形成复数个第一金属层14I,其材质可采用AlCu,可做为第一层内连导线。然后于介电层12以及第一金属层14I的整个表面上均匀覆盖一富含硅的氧化物(silicon-rich oxide,SRO)层16,随后利用HDPCVD方法沉积一HDP-FSG层18,可填满第一金属层14I之间的空隙。跟著,利用PECVD方法沉积一PE-FSG层20,可补偿HDP-FSG层18表面的凸起与凹陷的不平整。最后,藉由CMP方法将PE-FSG层20表面平坦化直至达到IMD结构所需的厚度,再利用PECVD制程于PE-FSG层20表面上沉积一氧化物盖层22,便大致制作完成IMD结构。后续可于IMD结构的平坦表面上制作复数个第二金属层14II,以作为第二层内连导线。Please refer to FIG. 1 , which shows a schematic cross-sectional view of a general IMD structure. After the pre-production process is completed, a semiconductor silicon substrate 10 includes components and circuits not shown, and is covered with a dielectric layer 12 . In the back-end process, a plurality of first metal layers 14I are defined and formed on the surface of the dielectric layer 12. The material of the first metal layer 14I can be AlCu, which can be used as the first layer of interconnecting wires. Then uniformly cover a silicon-rich oxide (silicon-rich oxide, SRO) layer 16 on the entire surface of the dielectric layer 12 and the first metal layer 14I, and then utilize a HDPCVD method to deposit a HDP-FSG layer 18, which can be filled Fill the space between the first metal layer 14I. Next, a PE-FSG layer 20 is deposited by PECVD, which can compensate the unevenness of the protrusions and depressions on the surface of the HDP-FSG layer 18 . Finally, the surface of the PE-FSG layer 20 is planarized by CMP until it reaches the required thickness of the IMD structure, and then an oxide capping layer 22 is deposited on the surface of the PE-FSG layer 20 by PECVD process, and the IMD structure is roughly completed. . Subsequently, a plurality of second metal layers 14II can be formed on the flat surface of the IMD structure to serve as second-layer interconnection wires.
然而,在上述IMD结构中,金属层14具有极高的伸张应力(tensile stress),约达+3~5E9dyne/cm2,而HDP-FSG层18的压缩应力仅达8E8dyne/cm2,PE-FSG层20的压缩应力仅达-1.5E9dyne/cm2,氧化物盖层22的压缩应力仅达-7E8dyne/cm2。由此可知,IMD结构中的堆叠氧化物结构的总压缩应力远小于金属层14的伸张应力,因此非常容易在氧化物盖层22产生裂缝(crack)问题,尤其是在小间隙的金属层14附近,上述的各个氧化层(16、18、20、22)越容易发生裂缝现象。而且,随着半导体硅基底10表面上的IMD结构堆叠数目增加,内连导线的堆叠层数也随之增加时,所有金属层14所产生的伸张应力的累积值,将会远大于所有氧化层(16、18、20、22)的压缩应力累积值,而且如此慢慢逐层增加的净应力,最后会导致严重的氧化层裂缝问题。However, in the above IMD structure, the metal layer 14 has a very high tensile stress (tensile stress), about +3-5E9dyne/cm 2 , while the compressive stress of the HDP-FSG layer 18 is only up to 8E8dyne/cm 2 , PE- The compressive stress of the FSG layer 20 is only -1.5E9 dyne/cm 2 , and the compressive stress of the oxide capping layer 22 is only -7E8 dyne/cm 2 . It can be seen that the total compressive stress of the stacked oxide structure in the IMD structure is much smaller than the tensile stress of the metal layer 14, so it is very easy to generate cracks in the oxide capping layer 22, especially in the metal layer 14 with small gaps. Nearby, the above-mentioned oxide layers (16, 18, 20, 22) are more prone to cracking. Moreover, as the number of stacked IMD structures on the surface of the semiconductor silicon substrate 10 increases, and the number of stacked layers of interconnecting wires also increases, the cumulative value of the tensile stress produced by all metal layers 14 will be much greater than that of all oxide layers. (16, 18, 20, 22) of compressive stress cumulative value, and such a net stress increasing slowly layer by layer, will eventually lead to serious oxide layer cracking problems.
有鉴于此,为了改善氧化层的裂缝缺陷,公知一种方法是采用以SiH4为反应气体的PECVD制程来制作氧化物盖层22,其可使氧化物盖层22的压缩应力提高至-1.83E9dyne/cm2,不过仍无法改善裂缝缺陷。另一种方法是采用TEOS为反应气体的PECVD制程来制作氧化物盖层22,其可使氧化物盖层22的压缩应力提高至-2.87E9dyne/cm2,其可改善裂缝现象,但却会因介电层12的氟扩散现象而发生气泡(bubble)问题。In view of this, in order to improve the crack defects of the oxide layer, a known method is to use SiH4 as the reaction gas PECVD process to make the oxide capping layer 22, which can increase the compressive stress of the oxide capping layer 22 to -1.83 E9dyne/cm 2 , but crack defects could not be improved. Another method is to use TEOS as the reactive gas PECVD process to make the oxide cap layer 22, which can increase the compressive stress of the oxide cap layer 22 to -2.87E9dyne/cm 2 , which can improve the crack phenomenon, but it will The bubble problem occurs due to the fluorine diffusion phenomenon in the dielectric layer 12 .
发明内容Contents of the invention
本发明的目的是提出一种金属层间介电结构的氧化物盖层,可使氧化物盖层以及金属层间介电层的压缩应力总值相当于金属层的伸张应力值,以解决常见的裂缝缺陷以及气泡问题。The object of the present invention is to propose an oxide capping layer of an inter-metal dielectric structure, which can make the total compressive stress value of the oxide capping layer and the inter-metal dielectric layer equal to the tensile stress value of the metal layer, to solve the common Crack defects and air bubbles.
本发明是一种金属层间介电结构,其特征在于包括有:The present invention is an inter-metal dielectric structure, characterized in that it includes:
复数个金属层,是定义形成于一半导体基底表面上;一金属层间介电层,覆盖该金属层以及该半导体基底的表面至一预定高度;以及由高密度电浆-源射频制程形成的一氧化物盖层,覆盖该金属层间介电层的表面。A plurality of metal layers are defined to be formed on the surface of a semiconductor substrate; an inter-metal dielectric layer covers the metal layer and the surface of the semiconductor substrate to a predetermined height; and is formed by a high-density plasma-source radio frequency process An oxide capping layer covers the surface of the inter-metal dielectric layer.
所述的金属层间介电结构,其中该金属层是由AlCu材料所构成。In the inter-metal dielectric structure, the metal layer is made of AlCu material.
所述的金属层间介电结构,其中该金属层间介电层包含有:The inter-metal dielectric structure, wherein the inter-metal dielectric layer includes:
一由高密度电浆化学气相沉积方法形成的第一氟掺杂的二氧化硅(HDP-FSG)层,覆盖该金属层以及该半导体基底的表面至一预定高度;以及a first fluorine-doped silicon dioxide (HDP-FSG) layer formed by high-density plasma chemical vapor deposition, covering the metal layer and the surface of the semiconductor substrate to a predetermined height; and
一由电浆强化式化学气相沉积方法形成的第二氟掺杂的二氧化硅(PE-FSG)层,覆盖该该第一氟掺杂的二氧化硅层至一预定高度。A second fluorine-doped silicon dioxide (PE-FSG) layer formed by plasma enhanced chemical vapor deposition method covers the first fluorine-doped silicon dioxide layer to a predetermined height.
所述的金属层间介电结构,其中该氧化物盖层的压缩应力可达-4E9--3E9dyne/cm2。In the inter-metal dielectric structure, the compressive stress of the oxide capping layer can reach -4E9--3E9 dyne/cm 2 .
所述的金属层间介电结构,另包含有一富含硅氧化物(SRO)层,覆盖该复数个金属层以及该半导体基底的表面。The inter-metal dielectric structure further includes a silicon-rich oxide (SRO) layer covering the plurality of metal layers and the surface of the semiconductor substrate.
所述的金属层间介电结构,其中该氧化物盖层的内部具有许多的悬浮键(dangling bond),足以截留扩散的氟离子,且可使该氧化物盖层具有极高的压缩应力,足以防止裂缝缺陷以及气泡问题。The inter-metal dielectric structure, wherein the oxide capping layer has a lot of dangling bonds inside, enough to trap the diffused fluorine ions, and make the oxide capping layer have extremely high compressive stress, Sufficient to prevent crack defects as well as bubble problems.
本发明还提供一种金属层间介电结构的制作方法,包括下列步骤:The present invention also provides a method for fabricating an inter-metal dielectric structure, comprising the following steps:
定义形成多个金属层于一半导体基底表面上;形成一金属间介电层而覆盖该金属层以及该半导体基底的表面至一预定高度;以及藉由高密度电浆-源射频制程形成的一氧化物盖层,覆盖该金属层间介电层的表面。Define forming a plurality of metal layers on the surface of a semiconductor substrate; forming an intermetal dielectric layer to cover the metal layer and the surface of the semiconductor substrate to a predetermined height; and forming a An oxide capping layer covers the surface of the inter-metal dielectric layer.
形成该金属间介电层的步骤包括:藉由高密度电浆化学气相沉积方法形成的一第一氟掺杂的二氧化硅层,覆盖该金属层以及该半导体基底的表面至一预定高度;以及藉由电浆强化式化学气相沉积方法形成的一第二氟掺杂的二氧化硅层,覆盖该第一氟掺杂的二氧化硅层至一预定高度。The step of forming the intermetallic dielectric layer includes: forming a first fluorine-doped silicon dioxide layer by a high-density plasma chemical vapor deposition method, covering the metal layer and the surface of the semiconductor substrate to a predetermined height; And a second fluorine-doped silicon dioxide layer formed by plasma enhanced chemical vapor deposition method, covering the first fluorine-doped silicon dioxide layer to a predetermined height.
该氧化物覆盖的制作方法是在一高密度电浆化学气相沉积设备中进行该高密度电浆-源射频制程,其电源仅采用源射频产生器。The fabrication method of the oxide covering is to carry out the high-density plasma-source radio frequency process in a high-density plasma chemical vapor deposition equipment, and its power source only uses a source radio frequency generator.
该高密度电浆-源射频的源射频产生器的功率为1300-3100W。The power of the source radio frequency generator of the high density plasma-source radio frequency is 1300-3100W.
该高密度电浆-源射频的气体源SiH4的流量为82-15sccm。The high density plasma-source RF gas source SiH 4 has a flow rate of 82-15 sccm.
该高密度电浆-源射频的气体源O2的流量为150-27sccm。The gas source O2 flow rate of the high density plasma-source radio frequency is 150-27 sccm.
该氧化物盖层的压缩应力可达-4E9--3E9dyne/cm2。The compressive stress of the oxide capping layer can reach -4E9--3E9dyne/cm 2 .
所述的金属层间介电结构的制作方法,更包含形成一富含硅氧化物层而覆盖该多个金属层以及该半导体基底的表面。The manufacturing method of the inter-metal dielectric structure further includes forming a silicon-rich oxide layer to cover the plurality of metal layers and the surface of the semiconductor substrate.
该氧化物盖层的内部具有更多的悬浮键,足已截留扩散的氟离子,而且可以使该氧化物盖层具有极高的压缩应力,足已防止裂缝缺陷以及气泡等问题。The oxide capping layer has more suspended bonds inside, which is enough to trap the diffused fluorine ions, and can make the oxide capping layer have extremely high compressive stress, which is enough to prevent problems such as crack defects and air bubbles.
本发明使用高密度电浆-源射频(HDP-SRF)方法形成氧化物盖层,相对于以前的各种氧化物盖层的一个特征,可大幅提高氧化物盖层的压缩应力,以解决常见的裂缝缺陷以及气泡问题。The present invention uses the high-density plasma-source radio frequency (HDP-SRF) method to form the oxide capping layer. Compared with a feature of various oxide capping layers in the past, the compressive stress of the oxide capping layer can be greatly improved to solve the common Crack defects and air bubbles.
本发明使用高密度电浆-源射频(HDP-SRF)方法形成氧化物盖层,相对于以前的各种氧化物盖层的另一特征,可使氧化物盖层内部具有更多的悬浮键(dangling bond),足以截留扩散的氟离子。The present invention uses the high-density plasma-source radio frequency (HDP-SRF) method to form the oxide capping layer. Compared with another feature of the previous various oxide capping layers, the oxide capping layer can have more suspended bonds inside. (dangling bond), sufficient to trap diffused fluoride ions.
附图说明Description of drawings
图1是一般的IMD结构的剖面示意图;1 is a schematic cross-sectional view of a general IMD structure;
图2是本发明IMD结构的剖面示意图;Fig. 2 is a schematic cross-sectional view of an IMD structure of the present invention;
图3是本发明HDP-SRF制程所使用的HDPCVD设备的示意图。FIG. 3 is a schematic diagram of HDPCVD equipment used in the HDP-SRF process of the present invention.
符号说明Symbol Description
半导体硅基底10;Semiconductor silicon substrate 10;
介电层12;Dielectric layer 12;
第一金属层14I;first metal layer 14I;
SRO层16;SRO layer 16;
HDP-FSG层18;HDP-FSG layer 18;
PE-FSG层20;PE-FSG layer 20;
氧化物盖层22;oxide capping layer 22;
第二金属层14II;second metal layer 14II;
本发明技术:The technology of the present invention:
半导体硅基底30;Semiconductor silicon substrate 30;
介电层32;Dielectric layer 32;
第一金属层34I;first metal layer 34I;
SRO层36;SRO layer 36;
HDP-FSG层38;HDP-FSG layer 38;
PE-FSG层40;PE-FSG layer 40;
具体实施方式Detailed ways
请参阅图2,其显示本发明IMD结构的剖面示意图。于前段制程制作完成之后,一半导体硅基底30内包含有未显示元件及电路,并覆盖有一介电层32。而于后段制程中,先于介电层32的表面上定义形成复数个第一金属层34I,其材质可采用AlCu,可做为第一层内连导线。然后,于介电层32与第一金属层34I的整个表面上均匀覆盖一富含硅之氧化物(silicon-rich oxide,SRO)层36,随后利用HDPCVD方法沉积一HDP-FSG层38,可填满第一金属层34I之间的空隙。跟着,利用PECVD方法沉积一PE-FSG层40,可补偿HDP-FSG层38表面的凸起与凹陷的不平整,并可提供IMD结构所需的厚度。后续可利用CMP制程,将PE-FSG层40的表面平坦化。最后,于一HDPCVD设备中进行高密度电浆-源射频(HDP-SRF)制程,于PE-FSG层40表面上沉积一具有高压缩应力的氧化物盖层42,便大致制作完成IMD结构。后续可于IMD结构的平坦表面上制作复数个第二金属层34II,以作为第2层内连导线。Please refer to FIG. 2 , which shows a schematic cross-sectional view of the IMD structure of the present invention. After the pre-production process is completed, a semiconductor silicon substrate 30 includes components and circuits not shown, and is covered with a dielectric layer 32 . In the later stage of the process, a plurality of first metal layers 34I are defined and formed on the surface of the dielectric layer 32, and the material thereof can be AlCu, which can be used as the first layer of interconnecting wires. Then, a silicon-rich oxide (silicon-rich oxide, SRO) layer 36 is uniformly covered on the entire surface of the dielectric layer 32 and the first metal layer 34I, and then a HDP-FSG layer 38 is deposited by HDPCVD, which can be The gaps between the first metal layers 34I are filled. Next, a PE-FSG layer 40 is deposited by PECVD, which can compensate the unevenness of the protrusions and depressions on the surface of the HDP-FSG layer 38 and provide the required thickness for the IMD structure. Subsequently, the surface of the PE-FSG layer 40 can be planarized by using a CMP process. Finally, a high-density plasma-source radio frequency (HDP-SRF) process is performed in an HDPCVD equipment, and an oxide capping layer 42 with high compressive stress is deposited on the surface of the PE-FSG layer 40, and the IMD structure is roughly completed. Subsequently, a plurality of second metal layers 34II can be formed on the flat surface of the IMD structure to serve as second-layer interconnection wires.
请参阅图3,其显示本发明HDP-SRF制程所使用的HDPCVD设备的示意图。一HDPCVD设备50包含有一反应腔体52、一气体传输系统54、一排气系统56、一制程控制系统58、一偏压射屏(bias radio frequency,BRF)产生器60以及一源射频(source radio frequency,SRF)产生器62。在进行HDP-SRF制程时,关闭偏压射屏产生器60,仅开启使用源射频产生器62,在较佳实施例的制程条件为:源射频产生器62的功率为1300-3100w,气体源SiH4的流量为82-15sccm,气体源O2的流量为150-27sccm。经过实验结果得知,当HDP-SRF制程的气体源SiH4的流量为76-86sccm时,氧化物盖层42的压缩应力可达-4E9--3E9dyne/cm2,可使氧化物盖层42内部具有更多的悬浮键(dangling bond),足以截留扩散的氟离子,而且可以使氧化物盖层42具有极高的压缩应力,足以防止裂缝缺陷以及气泡等问题。Please refer to FIG. 3 , which shows a schematic diagram of the HDPCVD equipment used in the HDP-SRF process of the present invention. A HDPCVD device 50 includes a reaction chamber 52, a gas delivery system 54, an exhaust system 56, a process control system 58, a bias radio frequency (BRF) generator 60, and a source radio frequency (source radio frequency, SRF) generator 62. When carrying out the HDP-SRF process, close the bias screen generator 60, and only open the source radio frequency generator 62. The process conditions in a preferred embodiment are: the power of the source radio frequency generator 62 is 1300-3100w, and the gas source The flow rate of SiH4 is 82-15 sccm and the flow rate of gas source O2 is 150-27 sccm. According to the experimental results, when the flow rate of the gas source SiH 4 in the HDP-SRF process is 76-86 sccm, the compressive stress of the oxide capping layer 42 can reach -4E9--3E9dyne/cm 2 , which can make the oxide capping layer 42 There are more dangling bonds inside, enough to trap the diffused fluorine ions, and the oxide capping layer 42 can have extremely high compressive stress, enough to prevent problems such as crack defects and air bubbles.
以上所述,仅为本发明较佳的具体实施方式,然其并非用以限定本发明,任何熟悉此技艺的人在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护之内。因此本发明的保护范围应该以权利要求书的保护范围为准。The above description is only a preferred embodiment of the present invention, but it is not intended to limit the present invention. Any changes or substitutions that can be easily imagined by anyone familiar with the art within the technical scope disclosed in the present invention shall be covered. Within the protection of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02127646 CN1205656C (en) | 2002-08-06 | 2002-08-06 | Intermetallic dielectric structure and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02127646 CN1205656C (en) | 2002-08-06 | 2002-08-06 | Intermetallic dielectric structure and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1474438A CN1474438A (en) | 2004-02-11 |
CN1205656C true CN1205656C (en) | 2005-06-08 |
Family
ID=34143587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02127646 Expired - Lifetime CN1205656C (en) | 2002-08-06 | 2002-08-06 | Intermetallic dielectric structure and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1205656C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7221039B2 (en) * | 2004-06-24 | 2007-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Thin film transistor (TFT) device structure employing silicon rich silicon oxide passivation layer |
CN102815663B (en) * | 2011-06-08 | 2015-09-09 | 中芯国际集成电路制造(上海)有限公司 | The preparation method of semiconductor devices |
CN107346743B (en) * | 2016-05-06 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and its manufacturing method |
-
2002
- 2002-08-06 CN CN 02127646 patent/CN1205656C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1474438A (en) | 2004-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN2720636Y (en) | integrated circuit | |
CN1210799C (en) | Semiconductor device and its manufacture | |
CN1681104A (en) | Stable metal structure with tungsten plugs | |
CN101064251A (en) | Method for forming semiconductor structure and semiconductor structure | |
CN1324678C (en) | Inner dielectric layer of semiconductor component, semiconductor component and manufacturing method thereof | |
CN1815711A (en) | Interconnect structure and method of forming the same | |
CN1595634A (en) | Structures with improved interfacial strength of SiCOH dielectrics and method for preparing the same | |
CN1627477A (en) | Semiconductor device having metal-insulator-metal capacitor and method for fabricating the same | |
CN1949502A (en) | Semiconductor device and integrated circuit device | |
CN1881558A (en) | Dual damascene structure, interconnect structure and manufacturing method thereof | |
CN100517640C (en) | Semiconductor device manufacturing method and semiconductor device | |
CN1198015A (en) | Multilayer interconnect structure in semiconductor device and method of forming same | |
CN1893017A (en) | Method for preventing metal wire short circuit in semiconductor element | |
TWI229918B (en) | Method of forming an inter-metal dielectric layer in an interconnect structure | |
CN1205656C (en) | Intermetallic dielectric structure and fabrication method thereof | |
CN1906764A (en) | Gradient deposition of low-k cvd materials | |
CN1716546A (en) | Dielectric layer, its forming method and integrated circuit with the same | |
CN1492496A (en) | Process for forming multi-layer low dielectric constant dual damascene connection line | |
CN1237598C (en) | Method for forming metal capacitors in damascene process | |
CN2741182Y (en) | Semiconductor device | |
CN1959979A (en) | Semiconductor device and manufacturing method therof | |
CN1790661A (en) | Semiconductor structures and methods of forming them | |
CN1204605C (en) | Method for forming low dielectric constant material and product thereof | |
CN1279603C (en) | Method of Forming Dual Damascene Structures | |
KR100850137B1 (en) | Method for manufacturing the inter metal dielectric layers of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20050608 |
|
CX01 | Expiry of patent term |