[go: up one dir, main page]

CN1237598C - Method for forming metal capacitors in damascene process - Google Patents

Method for forming metal capacitors in damascene process Download PDF

Info

Publication number
CN1237598C
CN1237598C CN 01130733 CN01130733A CN1237598C CN 1237598 C CN1237598 C CN 1237598C CN 01130733 CN01130733 CN 01130733 CN 01130733 A CN01130733 A CN 01130733A CN 1237598 C CN1237598 C CN 1237598C
Authority
CN
China
Prior art keywords
layer
copper
forming
insulating layer
copper wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 01130733
Other languages
Chinese (zh)
Other versions
CN1402325A (en
Inventor
徐震球
李世达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN 01130733 priority Critical patent/CN1237598C/en
Publication of CN1402325A publication Critical patent/CN1402325A/en
Application granted granted Critical
Publication of CN1237598C publication Critical patent/CN1237598C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for forming metal capacitor in damascene process. Before forming the metal thin film capacitor, the copper damascene process is used to fabricate the interconnect underneath. The bottom electrode of the capacitor is formed in a damascene process, which is also used to form the conductive line and plug. And forming an anti-reflection layer on the insulating layer for isolating the dual damascene structure, wherein the anti-reflection layer can also be used as a hard mask layer, a grinding stop layer and an etching stop layer, and then the anti-reflection layer is connected on the anti-reflection layer, another insulating layer and a metal layer are sequentially formed, and photoetching is carried out to form an upper electrode and a capacitor insulating layer. After the capacitor is completed, the copper damascene process is continued to fabricate the interconnect thereon. The method has the advantages of reducing the photoetching steps and manufacturing cost of the integrated circuit with the built-in capacitor, reducing the integrated circuit with the built-in capacitor, easily controlling the manufacturing process of the integrated circuit with the built-in capacitor and manufacturing the integrated circuit with the built-in capacitor by using a copper process so as to reduce the RC delay.

Description

在镶嵌制程中形成金属电容器的方法Method for forming metal capacitors in damascene process

技术领域technical field

本发明是有关于一种形成内含电容器的集成电路,特别是有关于一种在镶嵌制程中形成金属电容器的方法。The present invention relates to forming integrated circuits with built-in capacitors, and more particularly to a method of forming metal capacitors in a damascene process.

背景技术Background technique

众所周知,电容器可以与各种集成电路相整合。例如可以作为解耦合电容器(decoupling Capacitors),以用来改善电压调节(voltage regulation)和提供功率分布(power distr ibution)的抗杂讯能力(noise immunity)。亦可以应用在类比/逻辑电路、类比一数位转换器、混合型讯号(mixedsignal)、或是射频(radio frequency)电路操作等等。It is well known that capacitors can be integrated with various integrated circuits. For example, they can be used as decoupling capacitors to improve voltage regulation and provide noise immunity for power distribution. It can also be applied in analog/logic circuit, analog-digital converter, mixed signal (mixedsignal), or radio frequency (radio frequency) circuit operation, etc.

图1-图4所示,为传统制造内含电容器20的半导体元件的方法,图1所示,为在绝缘层12上沉积铝金属层,随后进行光刻蚀刻制程,图案化成铝金属层14a和14b。其中绝缘层12包括一些形成于硅基底上和基底中的元件(未绘示)。接着,在铝金属层14a和14b以及绝缘层12上形成绝缘层16,并于此绝缘层16中并形成钨插塞(tungsten plug;W-plug)18与铝金属层14a电性连接。之后,于钨插塞18和绝缘层16上依序沉积金属层/介电层/金属层,并进行光刻蚀刻后,形成第一导电板21、介电层22和第二导电板23,因而构成电容器20,如图2所示。其中,第一导电板21(即下电极)经由钨插塞18与铝金属层14a连接。继续于电容器20和绝缘层16上方沉积另一层绝缘层26,并同时于绝缘层26和其下方的绝缘层16中形成钨插塞28a和28b,如图3所示。继续在绝缘层26以及钨插塞28a和28b上方沉积另一层铝金属层,并进行光刻蚀刻制程后,形成铝金属层34a和34b,如图4所示。其中铝金属层34a经由钨插塞28a与第一导电板23(即上电极),而铝金属层34b经由钨插塞28b与下层的铝金属层14b电性连接。其主要缺陷在于:As shown in FIGS. 1-4, it is a traditional method of manufacturing a semiconductor element containing a capacitor 20. As shown in FIG. 1, an aluminum metal layer is deposited on the insulating layer 12, followed by a photolithographic etching process, and patterned into an aluminum metal layer 14a and 14b. The insulating layer 12 includes some elements (not shown) formed on and in the silicon substrate. Next, an insulating layer 16 is formed on the aluminum metal layers 14 a and 14 b and the insulating layer 12 , and a tungsten plug (tungsten plug; W-plug) 18 is formed in the insulating layer 16 to be electrically connected to the aluminum metal layer 14 a. Afterwards, a metal layer/dielectric layer/metal layer is sequentially deposited on the tungsten plug 18 and the insulating layer 16, and after photolithographic etching, the first conductive plate 21, the dielectric layer 22 and the second conductive plate 23 are formed, A capacitor 20 is thus constituted, as shown in FIG. 2 . Wherein, the first conductive plate 21 (ie, the lower electrode) is connected to the aluminum metal layer 14a via the tungsten plug 18 . Continue to deposit another insulating layer 26 over the capacitor 20 and the insulating layer 16 , and simultaneously form tungsten plugs 28 a and 28 b in the insulating layer 26 and the insulating layer 16 below it, as shown in FIG. 3 . Continue to deposit another aluminum metal layer on the insulating layer 26 and the tungsten plugs 28 a and 28 b, and perform photolithography and etching process to form aluminum metal layers 34 a and 34 b, as shown in FIG. 4 . The aluminum metal layer 34a is electrically connected to the first conductive plate 23 (ie, the upper electrode) through the tungsten plug 28a, and the aluminum metal layer 34b is electrically connected to the lower aluminum metal layer 14b through the tungsten plug 28b. Its main flaws are:

在上述的制程中,需要额外的光刻步骤来形成电容器20,才能将电容器20整合至集成电路中,因此,增加了整个半导体制程的成本。In the above process, an additional photolithography step is required to form the capacitor 20 to integrate the capacitor 20 into an integrated circuit, thus increasing the cost of the entire semiconductor process.

然而,上述以铝金属来整合内连线制程和电容器制程已渐渐无法适应目前对提高元件积集度以及资料传输速度的要求。因此,以具有高导电性的金属铜作为导线,来降低RC延迟(RC delay),成为目前的发展趋势。但是,铜金属无法以干蚀刻的方式来定义图案,其原因在于铜金属与氯气电浆气体反应生成的氯化铜(CuCl2)的沸点极高(约1500℃),因此铜导线的制作需以镶嵌制程(dama scene process)来进行。However, the integration of the interconnection process and the capacitor process with aluminum metal has gradually failed to meet the current requirements for increasing component integration and data transmission speed. Therefore, it is a current development trend to reduce RC delay (RC delay) by using metal copper with high conductivity as a wire. However, copper metal cannot be used to define patterns by dry etching. The reason is that the copper chloride (CuCl 2 ) produced by the reaction of copper metal with chlorine plasma gas has a very high boiling point (about 1500 ° C), so the production of copper wires requires It is performed by a dama scene process.

发明内容Contents of the invention

本发明的主要目的是提供一种在镶嵌制程中形成金属电容器的方法,通过在形成薄膜电容器之前,于第一绝缘层中形成第一铜导线和第二铜导线,且至少于第一和第二铜导线上形成第一密封层。接着于第一密封层上依序形成第二绝缘层及抗反射层,在形成金属电容器时,仅需额外一道光刻蚀刻步骤,克服现有技术的弊端,达到减少制造内含电容器的集成电路的光刻蚀刻步骤及减少制造成本的目的。The main object of the present invention is to provide a method for forming a metal capacitor in a damascene process, by forming a first copper wire and a second copper wire in a first insulating layer before forming a film capacitor, and at least less than the first and second copper wires A first sealing layer is formed on the two copper wires. Then, the second insulating layer and the anti-reflection layer are sequentially formed on the first sealing layer. When forming a metal capacitor, only one additional photolithography and etching step is required, which overcomes the disadvantages of the existing technology and achieves the reduction in the production of integrated circuits with built-in capacitors. The photolithographic etching steps and the purpose of reducing manufacturing costs.

本发明的第二目的是提供一种在镶嵌制程中形成金属电容器的方法,达到使用较少的光刻蚀刻步骤来形成含电容器的集成电路的目的。A second object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of forming integrated circuits containing capacitors with fewer photolithography and etching steps.

本发明的第三目的是提供一种在镶嵌制程中形成金属电容器的方法,达到降低内含电容器的集成电路的目的。A third object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of reducing the number of integrated circuits containing capacitors.

本发明的第四目的是提供一种在镶嵌制程中形成金属电容器的方法,达到容易控制的内含电容器的集成电路的制程的目的。A fourth object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of easily controllable manufacturing process of integrated circuits containing capacitors.

本发明的第五目的是提供一种在镶嵌制程中形成金属电容器的方法,达到使用铜制程来制造内含电容器的集成电路,以降低RC延迟的目的。A fifth object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of using a copper process to manufacture integrated circuits containing capacitors and reduce RC delay.

本发明的目的是这样实现的:一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:The purpose of the present invention is achieved in that a method for forming a metal capacitor in a damascene process is characterized in that it at least includes the following steps:

(1)提供一第一绝缘层;(1) providing a first insulating layer;

(2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer;

(3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires;

(4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer;

(5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer;

(6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、一第二铜插塞、一第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) forming a dual damascene structure comprising a first copper plug, a second copper plug, a third copper wire and a fourth copper wire in the antireflection layer, the second insulating layer and the first sealing layer, wherein The first copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire;

(7)于该抗反射层、第三铜导线和第四铜导线上形成一第三绝缘层;(7) forming a third insulating layer on the anti-reflection layer, the third copper wire and the fourth copper wire;

(8)于该第三绝缘层上形成一金属层;(8) forming a metal layer on the third insulating layer;

(9)于该抗反射层作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层;(9) patterning the metal layer and the third insulating layer on the anti-reflective layer as an etching stop layer, so as to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire;

(10)于该抗反射层和该上电极上形成一第四绝缘层;(10) forming a fourth insulating layer on the antireflection layer and the upper electrode;

(11)于该第四绝缘层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(11) Forming a dual damascene structure comprising a third copper plug, a fourth copper plug, a fifth copper wire and a sixth copper wire in the fourth insulating layer, wherein the third copper plug is used to connect the first Five copper wires and an upper electrode, the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire;

(12)至少于该第五和第六铜导线上形成一第二密封层。(12) Forming a second sealing layer on at least the fifth and sixth copper wires.

该抗反射层的材质是择自氮氧化硅或碳化硅中的至少一种。该第三绝缘层的材质是择自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝中的至少一种。该第三绝缘层的厚度介于100埃至1200埃之间。该金属层的材质是择自钛、氮化钛、钽、氮化钽、铝或铝铜合金中的至少一种。该金属层的厚度介于100埃至2000埃之间。The material of the anti-reflection layer is at least one selected from silicon oxynitride or silicon carbide. The material of the third insulating layer is at least one selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or aluminum oxide. The thickness of the third insulating layer is between 100 angstroms and 1200 angstroms. The material of the metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum or aluminum-copper alloy. The thickness of the metal layer is between 100 angstroms and 2000 angstroms.

另一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:Another method for forming a metal capacitor in a damascene process is characterized in that it at least includes the following steps:

(1)提供一第一绝缘层;(1) providing a first insulating layer;

(2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer;

(3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires;

(4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer;

(5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer;

(6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、第二铜插塞、第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) Forming a dual damascene structure including a first copper plug, a second copper plug, a third copper wire, and a fourth copper wire in the antireflection layer, the second insulating layer, and the first sealing layer, wherein the first copper plug a copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire;

(7)于该抗反射层、第三铜导线和第四铜导线上形成一第二密封层;(7) forming a second sealing layer on the anti-reflection layer, the third copper wire and the fourth copper wire;

(8)于该第二密封层上形成第三绝缘层;(8) forming a third insulating layer on the second sealing layer;

(9)于该第三绝缘层上形成一金属层;(9) forming a metal layer on the third insulating layer;

(10)于该第二密封层上作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层,其中该第二密封层的一部分也作为该电容器绝缘层;(10) On the second sealing layer as an etch stop layer, pattern the metal layer and the third insulating layer to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire, wherein the A portion of the second sealing layer also serves as the capacitor insulating layer;

(11)于该第二密封层和该上电极上形成一第四绝缘层;(11) forming a fourth insulating layer on the second sealing layer and the upper electrode;

(12)于该第四绝缘层和该第二密封层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(12) Forming a dual damascene structure including a third copper plug, a fourth copper plug, a fifth copper wire, and a sixth copper wire in the fourth insulating layer and the second sealing layer, wherein the third copper plug The plug is used to connect the fifth copper wire and the upper electrode, and the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire;

(13)至少于该第五和第六铜导线上形成一第三密封层。(13) A third sealing layer is formed on at least the fifth and sixth copper wires.

下面结合较佳实施例并配合附图详细说明。The following describes in detail in conjunction with preferred embodiments and accompanying drawings.

附图说明Description of drawings

图1-图4是传统将电容器整合至集成电路中的流程剖面示意图。1 to 4 are schematic cross-sectional views of the traditional process of integrating capacitors into integrated circuits.

图5-图12是本发明的实施例1的在镶嵌制程中形成金属电容器的流程剖面示意图。5-12 are schematic cross-sectional views of the process of forming a metal capacitor in a damascene process according to Embodiment 1 of the present invention.

图13-图20是本发明的实施例2的在镶嵌制程中形成金属电容器的流程剖面示意图。13-20 are schematic cross-sectional views of the process of forming a metal capacitor in a damascene process according to Embodiment 2 of the present invention.

具体实施方式Detailed ways

实施例1Example 1

参阅图5-图12,详细说明本发明第一较佳实施例的一种在镶嵌制程中形成金属电容器的方法。Referring to FIGS. 5-12 , a method for forming a metal capacitor in a damascene process according to a first preferred embodiment of the present invention will be described in detail.

参阅图5,于绝缘层102上形成另一层绝缘层106,其中绝缘层102中可能包括其他内连线,而绝缘层102下方包括形成于基底上和基底中的元件,为了能清楚描述本发明的内容,这些底层的电路元件并未在图中显示。利用镶嵌制程于绝缘层106中形成厚度约为2000至6000埃的铜导线104a和104b。举例来说,在绝缘层106中形成沟槽后,形成一层顺应性的阻障层(未绘示)后,填入铜金属,之后进行化学机械研磨,以磨除多余的铜金属和阻障层。接着至少在铜导线104a和104b上形成密封层108,在图中是以形成全面性的密封层108为例,其厚度约为100-400埃左右,其材质可以是氮化硅(SiN)或碳化硅(SiC)Referring to FIG. 5, another insulating layer 106 is formed on the insulating layer 102, wherein the insulating layer 102 may include other interconnection lines, and the insulating layer 102 includes elements formed on and in the substrate. In order to clearly describe this Invention, these underlying circuit elements are not shown in the drawings. Copper wires 104 a and 104 b are formed in the insulating layer 106 with a thickness of about 2000 to 6000 angstroms by using a damascene process. For example, after trenches are formed in the insulating layer 106, a compliant barrier layer (not shown) is formed, copper is filled, and then chemical mechanical polishing is performed to remove excess copper and barrier layers. barrier layer. Then at least the sealing layer 108 is formed on the copper wires 104a and 104b. In the figure, the comprehensive sealing layer 108 is taken as an example, its thickness is about 100-400 angstroms, and its material can be silicon nitride (SiN) or Silicon carbide (SiC)

接着,于密封层108上依序形成绝缘层110和抗反射层112。在形成双镶嵌结构时,抗反射层112可作为硬掩模,在形成铜导线时,抗反射层112可作为研磨终止层;在形成金属电容器的上电极时,抗反射层112可作为蚀刻终止层。用于形成抗反射层112的材质可为氮氧化硅(SiON)或碳化硅(SiC)。抗反射层112的厚度约为100-600埃左右。Next, an insulating layer 110 and an anti-reflection layer 112 are sequentially formed on the sealing layer 108 . When forming a dual damascene structure, the anti-reflection layer 112 can be used as a hard mask, when forming copper wires, the anti-reflection layer 112 can be used as a grinding stop layer; when forming the upper electrode of a metal capacitor, the anti-reflection layer 112 can be used as an etching stop layer. The material used to form the anti-reflection layer 112 may be silicon oxynitride (SiON) or silicon carbide (SiC). The thickness of the anti-reflection layer 112 is about 100-600 angstroms.

在抗反射层112、绝缘层110和密封层108中形成双镶嵌图案,此图案是由介层窗孔114a和114b以及沟槽116a和116b所构成,其中介层窗孔114b会暴露出铜导线104b的表面,而介层窗孔114a会暴露出铜导线104a的表面。A dual damascene pattern is formed in the anti-reflective layer 112, the insulating layer 110 and the sealing layer 108. The pattern is composed of vias 114a and 114b and trenches 116a and 116b, wherein the via 114b exposes the copper wire 104b The surface of the copper wire 104a is exposed by the via hole 114a.

参阅图6,在抗反射层112、介层窗孔114a和114b以及沟槽116a和116b表面形成顺应性的阻障层(未绘示)。在阻障层上沉积铜金属,并填入介层窗孔114a和114b以及沟槽116a和116b中。利用化学机械研磨制程移除多余的部分,并配合以抗反射层112作为研磨终止层,以形成由铜插塞120a和120b以及铜导线122a和122b所构成的双镶嵌结构。其中,铜导线122a是作为金属电容器的下电极。Referring to FIG. 6 , a conformable barrier layer (not shown) is formed on the surface of the anti-reflective layer 112 , the via holes 114 a and 114 b , and the trenches 116 a and 116 b. Copper metal is deposited on the barrier layer and filled in vias 114a and 114b and trenches 116a and 116b. A chemical mechanical polishing process is used to remove excess parts, and the anti-reflective layer 112 is used as a polishing stop layer to form a dual damascene structure composed of copper plugs 120a and 120b and copper wires 122a and 122b. Wherein, the copper wire 122a is used as the lower electrode of the metal capacitor.

上述的双镶嵌制程,除了用于形成铜插塞120a和120b以及铜导线122b外,亦用于形成下电极122a。因此,不需要额外的光刻蚀刻制程来形成下电极122a,再者,下电极122a是与铜导线122b位于同一平面。The aforementioned dual damascene process is not only used to form the copper plugs 120a and 120b and the copper wire 122b, but also used to form the bottom electrode 122a. Therefore, no additional photolithographic etching process is required to form the lower electrode 122a, moreover, the lower electrode 122a is located on the same plane as the copper wire 122b.

接着于抗反射层112以及铜导线122a和122b上形成绝缘层124,此绝缘层124是作为金属电容器的电容器绝缘层。绝缘层124的厚度约为100-1200埃左右,然而实际的厚度仍需视电容器的应用及其所需的电容量而定。绝缘层124的材质可为氮化硅(Si3N4)、氮氧化硅(SiON)、碳化硅(SiC)、氧化钽(TaO2)、氧化锆(ZrO2)、氧化铪(HfO2)、氧化铝(Al2O3)、或其他具有高介电常数的材质。Next, an insulating layer 124 is formed on the anti-reflection layer 112 and the copper wires 122a and 122b, and the insulating layer 124 is a capacitor insulating layer as a metal capacitor. The thickness of the insulating layer 124 is about 100-1200 angstroms, but the actual thickness depends on the application of the capacitor and its required capacitance. The insulating layer 124 can be made of silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), silicon carbide (SiC), tantalum oxide (TaO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ). , aluminum oxide (Al 2 O 3 ), or other materials with high dielectric constant.

参阅图7,于绝缘层124上形成金属层126,此金属层126是将用以形成金属电容器的上电极,其厚度约为100-2000埃左右。上述的金属层126的材质可为钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、铝、铝铜合金(AlCu)等。Referring to FIG. 7, a metal layer 126 is formed on the insulating layer 124. The metal layer 126 is used to form the upper electrode of the metal capacitor, and its thickness is about 100-2000 angstroms. The material of the above metal layer 126 can be titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), aluminum, aluminum copper alloy (AlCu) and the like.

接着参阅图8,定义金属层126和绝缘层124,以形成上电极126和电容器绝缘层124,其方法为进行光刻蚀刻制程,直至暴露出作为蚀刻终止层的抗反射层112为止。Referring next to FIG. 8 , the metal layer 126 and the insulating layer 124 are defined to form the upper electrode 126 and the capacitor insulating layer 124 by performing a photolithographic etching process until the anti-reflection layer 112 serving as an etching stop layer is exposed.

根据上述的步骤,在形成金属电容器128时,仅需额外一道光刻蚀刻步骤。因此,可以减少制造内含电容器的集成电路的光刻蚀刻步骤,亦可以减少制造成本。According to the above-mentioned steps, when forming the metal capacitor 128 , only one additional photolithography and etching step is required. Therefore, it is possible to reduce photolithography and etching steps for manufacturing integrated circuits containing capacitors, and also reduce manufacturing costs.

所形成的下电极122a的区域大致与上电极126的区域相对应,且上电极126的区域需大于或等于下电极122a的区域。下电极122a、绝缘层124和上电极126则构成电容器128。The area of the formed lower electrode 122 a roughly corresponds to the area of the upper electrode 126 , and the area of the upper electrode 126 needs to be greater than or equal to the area of the lower electrode 122 a. The lower electrode 122 a , the insulating layer 124 and the upper electrode 126 form a capacitor 128 .

接着参阅图9,于抗反射层112和金属电容器128上方形成一层毯覆式牺牲绝缘层130。接着对此牺牲绝缘层130进行平坦化的制程,例如化学机械研磨制程,使绝缘层130的表面不受其下方的电容器128所造成的地形起伏的影响,而变成图10所示的具有平坦表面的绝缘层130’,以利于后续制程的进行。Referring next to FIG. 9 , a blanket sacrificial insulating layer 130 is formed on the anti-reflection layer 112 and the metal capacitor 128 . Then carry out a planarization process on the sacrificial insulating layer 130, such as a chemical mechanical polishing process, so that the surface of the insulating layer 130 will not be affected by the topographical fluctuations caused by the capacitor 128 below it, and become flat as shown in FIG. The insulating layer 130' on the surface facilitates the subsequent process.

参阅图11、12,接着进行另一道双镶嵌制程,于绝缘层130’中形成双镶嵌的图案,此图案是由沟槽134a和134b以及介层窗孔132a和132b所构成。其中,介层窗孔132b会暴露出欲做电性接触的导线122b的表面,介层窗孔132a会暴露出欲做电性接触的上电极126的表面。Referring to FIGS. 11 and 12 , another dual damascene process is then performed to form a dual damascene pattern in the insulating layer 130', which is composed of trenches 134a and 134b and via holes 132a and 132b. Wherein, the via hole 132b exposes the surface of the wire 122b to be electrically contacted, and the via hole 132a exposes the surface of the upper electrode 126 to be electrically contacted.

如图12所示,于绝缘层130’、沟槽134a和134b以及介层窗孔132a和132b的表面形成一层顺应性的阻障层(未绘示)。并于阻障层上沉积铜金属,且填入沟槽134a和134b,以及介层窗孔I32a和132b中。之后进行化学机械研磨,以磨除多余的铜金属和阻障层,而于双镶嵌图案中形成铜导线138a和138b以及铜插塞136a和136b。之后于铜导线138a和138b以及绝缘层130’上方覆盖一层密封层140,其材质可为氮化硅或碳化硅。于是,上电极126经由铜插塞136a与铜导线138a电性连接,而铜导线122b则经由铜插塞136b与铜导线138b电性连接。As shown in FIG. 12 , a compliant barrier layer (not shown) is formed on the surfaces of the insulating layer 130', the trenches 134a and 134b, and the via holes 132a and 132b. Copper metal is deposited on the barrier layer and filled into the trenches 134a and 134b and the vias I32a and 132b. CMP is then performed to remove excess copper metal and barrier layer to form copper traces 138a and 138b and copper plugs 136a and 136b in the dual damascene pattern. After that, a sealing layer 140 is covered on the copper wires 138a and 138b and the insulating layer 130', and its material can be silicon nitride or silicon carbide. Therefore, the upper electrode 126 is electrically connected to the copper wire 138a through the copper plug 136a, and the copper wire 122b is electrically connected to the copper wire 138b through the copper plug 136b.

后续的铜制程仍继续进行,直至完成整个内连线的制造为止。由于其为现有技术,故不重述。Subsequent copper manufacturing process continues until the manufacture of the entire interconnection is completed. Since it is prior art, it will not be restated.

上述的绝缘层102、106、110和130的材质可以是低介电常数的绝缘材质,例如掺杂或未掺杂的氧化硅、低介电常数的旋涂式高分子、以及化学气相沉积式低介电常数材质。The material of the above-mentioned insulating layers 102, 106, 110 and 130 can be an insulating material with a low dielectric constant, such as doped or undoped silicon oxide, a spin-coated polymer with a low dielectric constant, and a chemical vapor deposition method. Low dielectric constant material.

实施例2Example 2

参阅图13-图20,是用以说明本发明较佳实施例2的一种在镶嵌制程中形成金属电容器的方法。Referring to FIG. 13-FIG. 20, it is used to illustrate a method of forming a metal capacitor in a damascene process according to the preferred embodiment 2 of the present invention.

首先参阅图13,于绝缘层202上形成另一层绝缘层206,其中绝缘层202中可能包括其他内连线,而绝缘层202下方包括形成于基底上和基底中的元件,为了能清楚描述本发明的内容,这些底层的电路元件并未在图中显示。利用镶嵌制程于绝缘层206中形成厚度约为2000至6000埃的铜导线204a和204b。举例而言,在绝缘层206中形成沟槽后,形成一层顺应性的阻障层(未绘示)后,填入铜金属,之后进行化学机械研磨,以磨除多余的铜金属和阻障层。接着至少在铜导线204a和204b上形成密封层208,在图中是以形成全面性的密封层208为例,其厚度约为100-400埃左右,其材质可以是氮化硅(SiN)或碳化硅(SiC)。Referring first to FIG. 13, another insulating layer 206 is formed on the insulating layer 202, wherein the insulating layer 202 may include other interconnection lines, and the insulating layer 202 includes elements formed on and in the substrate, for clarity of description In the context of the present invention, these underlying circuit elements are not shown in the drawings. Copper wires 204a and 204b are formed in the insulating layer 206 with a thickness of approximately 2000-6000 angstroms by using a damascene process. For example, after trenches are formed in the insulating layer 206, a compliant barrier layer (not shown) is formed, copper is filled, and then chemical mechanical polishing is performed to remove excess copper and barriers. barrier layer. Then at least the sealing layer 208 is formed on the copper wires 204a and 204b. In the figure, it is taken to form a comprehensive sealing layer 208 as an example, its thickness is about 100-400 angstroms, and its material can be silicon nitride (SiN) or Silicon carbide (SiC).

接着,于密封层208上依序形成绝缘层210和抗反射层212。在形成双镶嵌结构时,抗反射层212可作为硬掩模;在形成铜导线时,抗反射层212可作为研磨终止层。用于形成抗反射层212的材质可为氮氧化硅(SiON)或碳化硅(SiC)。抗反射层212的厚度约为100-600埃左右。Next, an insulating layer 210 and an anti-reflection layer 212 are sequentially formed on the sealing layer 208 . When forming a dual damascene structure, the anti-reflection layer 212 can be used as a hard mask; when forming copper wires, the anti-reflection layer 212 can be used as a polishing stop layer. The material used to form the antireflection layer 212 may be silicon oxynitride (SiON) or silicon carbide (SiC). The thickness of the anti-reflection layer 212 is about 100-600 angstroms.

在抗反射层212、绝缘层210和密封层208中形成双镶嵌图案,此图案是由介层窗孔214a和214b以及沟槽216a和216b所构成,其中介层窗孔214b会暴露出铜导线204b的表面,而介层窗孔214a会暴露出铜导线204a的表面。A dual damascene pattern is formed in the anti-reflection layer 212, the insulating layer 210, and the sealing layer 208. The pattern is composed of vias 214a and 214b and trenches 216a and 216b, wherein the via 214b exposes the copper wire 204b The surface of the copper wire 204a is exposed by the via hole 214a.

接着参阅图14,在抗反射层212、介层窗孔和214b以及沟槽216a和216b表面形成顺应性的阻障层(未绘示)。在阻障层上沉积铜金属,并填入介层窗孔214a和214b以及沟槽216a和216b中。利用化学机械研磨制程移除多余的部分,并配合以抗反射层212作为研磨终止层,以形成由铜插塞220a和220b以及铜导线222a和222b所构成的双镶嵌结构。其中,铜导线222a是作为金属电容器的下电极。Referring next to FIG. 14 , a compliant barrier layer (not shown) is formed on the surface of the anti-reflection layer 212 , the via holes and 214 b , and the trenches 216 a and 216 b. Copper metal is deposited on the barrier layer and filled in vias 214a and 214b and trenches 216a and 216b. A chemical mechanical polishing process is used to remove excess parts, and the anti-reflection layer 212 is used as a polishing stop layer to form a dual damascene structure composed of copper plugs 220a and 220b and copper wires 222a and 222b. Wherein, the copper wire 222a is used as the lower electrode of the metal capacitor.

上述的双镶嵌制程,除了用于形成铜插塞220a和220b以及铜导线222b外,亦用于形成下电极222a。因此,不需要额外的光刻蚀刻制程来形成下电极222a。再者,下电极222a是与铜导线222b位于同一平面。The aforementioned dual damascene process is not only used to form the copper plugs 220a and 220b and the copper wire 222b, but also used to form the bottom electrode 222a. Therefore, no additional photolithographic etching process is required to form the lower electrode 222a. Furthermore, the lower electrode 222a is located on the same plane as the copper wire 222b.

接着于抗反射层212以及铜导线222a和222b上形成密封层223,其厚度约为100-400埃左右。此密封层223是作为扩散阻障层,以避免铜原子的迁移;此密封层223亦可于形成上电极时作为蚀刻终止层;还可作为一部分的电容器绝缘层。其材质可为氮化硅或碳化硅。Next, a sealing layer 223 is formed on the anti-reflection layer 212 and the copper wires 222a and 222b, with a thickness of about 100-400 angstroms. The sealing layer 223 is used as a diffusion barrier layer to avoid the migration of copper atoms; the sealing layer 223 can also be used as an etching stop layer when forming the upper electrode; it can also be used as a part of the capacitor insulating layer. Its material can be silicon nitride or silicon carbide.

继续于密封层223上形成一层高介电常数的绝缘层224。而密封层223在此可提高绝缘层224和下电极222a之间的附着力。绝缘层224是作为另一部分的电容器绝缘层。绝缘层224的厚度约为100-1200埃左右,然而实际的厚度仍需视电容器的应用及其所需的电容量而定。绝缘层224的材质可为氮化硅、氮氧化硅、碳化硅(SiC)、氧化钽(TaO2)、氧化锆(ZrO2)、氧化铪(HfO2)、氧化铝(Al2O3)或其他具有高介电常数的材质。Continue to form an insulating layer 224 with a high dielectric constant on the sealing layer 223 . Here, the sealing layer 223 can improve the adhesion between the insulating layer 224 and the lower electrode 222a. The insulating layer 224 is a capacitor insulating layer as another part. The thickness of the insulating layer 224 is about 100-1200 angstroms, but the actual thickness depends on the application of the capacitor and its required capacitance. The insulating layer 224 can be made of silicon nitride, silicon oxynitride, silicon carbide (SiC), tantalum oxide (TaO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ). or other materials with a high dielectric constant.

参阅图15,于绝缘层224上形成金属层226,此金属层226是将用以形成金属电容器的上电极,其厚度约为100-2000埃左右。上述的金属层226的材质可为钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、铝、铝铜合金(AlCu)等。Referring to FIG. 15, a metal layer 226 is formed on the insulating layer 224. The metal layer 226 is used to form the upper electrode of the metal capacitor, and its thickness is about 100-2000 angstroms. The material of the above metal layer 226 can be titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), aluminum, aluminum copper alloy (AlCu) and the like.

接着参阅图16,定义金属层226和绝缘层224,以形成上电极226和部分的电容器绝缘层225,其方法为进行光刻蚀刻制程,直至暴露出作为蚀刻终止层的抗反射层223为止。Referring next to FIG. 16, the metal layer 226 and the insulating layer 224 are defined to form the upper electrode 226 and a part of the capacitor insulating layer 225. The method is to perform a photolithographic etching process until the anti-reflection layer 223 as an etching stop layer is exposed.

根据上述的步骤,在形成金属电容器228时,仅需额外一道光刻蚀刻步骤。因此,可以减少制造内含电容器228的集成电路的光刻蚀刻步骤,亦可以减少制造成本。According to the above steps, when forming the metal capacitor 228 , only one additional photolithographic etching step is required. Therefore, the photolithography and etching steps for manufacturing the integrated circuit containing the capacitor 228 can be reduced, and the manufacturing cost can also be reduced.

电容器绝缘层225包括绝缘层224和密封层223。所形成的下电极222a的区域大致与上电极226的区域相对应,而且金属电容器228的电容量亦控制于下电极222a和上电极226的重叠面积。下电极222a、绝缘层225和上电极226则构成电容器228。The capacitor insulating layer 225 includes an insulating layer 224 and a sealing layer 223 . The formed area of the lower electrode 222 a roughly corresponds to the area of the upper electrode 226 , and the capacitance of the metal capacitor 228 is also controlled by the overlapping area of the lower electrode 222 a and the upper electrode 226 . The lower electrode 222 a , the insulating layer 225 and the upper electrode 226 form a capacitor 228 .

参阅图17,于密封层223和金属电容器228上方形成一层毯覆式牺牲绝缘层230。接着对此牺牲绝缘层230进行平坦化的制程,例如化学机械研磨制程,使绝缘层230变成图18所示的具有平坦表面的绝缘层230’,以利于后续制程的进行。Referring to FIG. 17 , a blanket sacrificial insulating layer 230 is formed over the sealing layer 223 and the metal capacitor 228 . Then planarize the sacrificial insulating layer 230, such as a chemical mechanical polishing process, so that the insulating layer 230 becomes the insulating layer 230' with a flat surface as shown in FIG. 18, so as to facilitate subsequent processes.

参阅图19、20,接着进行另一道双镶嵌制程,于绝缘层230’和密封层223中形成双镶嵌的图案,此图案是由沟槽234a和234b以及介层窗孔232a和232b所构成。其中,介层窗孔232b会暴露出欲做电性接触的导线222b的表面,介层窗孔232a会暴露出欲做电性接触的上电极226的表面。Referring to FIGS. 19 and 20, another dual damascene process is then performed to form a dual damascene pattern in the insulating layer 230' and the sealing layer 223. This pattern is composed of trenches 234a and 234b and via holes 232a and 232b. Wherein, the via hole 232b exposes the surface of the wire 222b to be electrically contacted, and the via hole 232a exposes the surface of the upper electrode 226 to be electrically contacted.

如图20所示,于绝缘层230’、沟槽234a和234b以及介层窗孔232a和232b的表面形成一层顺应性的阻障层(未绘示)。并于阻障层上沉积铜金属,且填入沟槽234a和234b以及介层窗孔232a和232b中。之后进行化学机械研磨,以磨除多余的铜金属和阻障层,而于双镶嵌图案中形成铜导线238a和238b以及铜插塞236a和236b。之后于铜导线238a和238b以及绝缘层230’上方覆盖一层密封层240,其材质可为氮化硅或碳化硅。于是,上电极226经由铜插塞236a与铜导线238a电性连接,而铜导线222b则经由铜插塞236b与铜导线238b电性连接。As shown in FIG. 20 , a compliant barrier layer (not shown) is formed on the surfaces of the insulating layer 230', the trenches 234a and 234b, and the via holes 232a and 232b. Copper metal is deposited on the barrier layer and filled into the trenches 234a and 234b and the via holes 232a and 232b. Chemical mechanical polishing is then performed to remove excess copper metal and barrier layer to form copper traces 238a and 238b and copper plugs 236a and 236b in the dual damascene pattern. After that, a sealing layer 240 is covered on the copper wires 238a and 238b and the insulating layer 230', and its material can be silicon nitride or silicon carbide. Therefore, the upper electrode 226 is electrically connected to the copper wire 238a through the copper plug 236a, and the copper wire 222b is electrically connected to the copper wire 238b through the copper plug 236b.

后续的铜制程仍继续进行,直至完成整个内连线的制造为止。Subsequent copper manufacturing process continues until the manufacture of the entire interconnection is completed.

上述的绝缘层202、206、210和230的材质可以是低介电常数的绝缘材质(例如掺杂或未掺杂的氧化硅)、低介电常数的旋涂式高分子、以及化学气相沉积式低介电常数材质等The above insulating layers 202, 206, 210 and 230 can be made of low dielectric constant insulating material (such as doped or undoped silicon oxide), low dielectric constant spin-on polymer, and chemical vapor deposition Type low dielectric constant material, etc.

虽然本发明以较佳实施例揭露如上,然其并非用以限制本发明,任何熟习此项技艺者,在不脱离本发明的精神和范围内,所做更动与润饰,都属于本发明的保护范围之内。Although the present invention is disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any changes and modifications made by those skilled in the art without departing from the spirit and scope of the present invention belong to the present invention. within the scope of protection.

Claims (12)

1、一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:1. A method for forming a metal capacitor in a damascene process, characterized in that it at least comprises the following steps: (1)提供一第一绝缘层;(1) providing a first insulating layer; (2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer; (3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires; (4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer; (5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer; (6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、一第二铜插塞、一第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) forming a dual damascene structure comprising a first copper plug, a second copper plug, a third copper wire and a fourth copper wire in the antireflection layer, the second insulating layer and the first sealing layer, wherein The first copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire; (7)于该抗反射层、第三铜导线和第四铜导线上形成一第三绝缘层;(7) forming a third insulating layer on the anti-reflection layer, the third copper wire and the fourth copper wire; (8)于该第三绝缘层上形成一金属层;(8) forming a metal layer on the third insulating layer; (9)于该抗反射层作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层;(9) patterning the metal layer and the third insulating layer on the anti-reflective layer as an etching stop layer, so as to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire; (10)于该抗反射层和该上电极上形成一第四绝缘层;(10) forming a fourth insulating layer on the antireflection layer and the upper electrode; (11)于该第四绝缘层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(11) Forming a dual damascene structure comprising a third copper plug, a fourth copper plug, a fifth copper wire and a sixth copper wire in the fourth insulating layer, wherein the third copper plug is used to connect the first Five copper wires and an upper electrode, the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire; (12)至少于该第五和第六铜导线上形成一第二密封层。(12) Forming a second sealing layer on at least the fifth and sixth copper wires. 2、根据权利要求1所述的在镶嵌制程中形成金属电容器的方法,其特征是:该抗反射层的材质是择自氮氧化硅或碳化硅中的至少一种。2. The method for forming a metal capacitor in a damascene process according to claim 1, wherein the material of the anti-reflection layer is at least one selected from silicon oxynitride or silicon carbide. 3、根据权利要求1所述的在镶嵌制程中形成金属电容器的方法,其特征是:该第三绝缘层的材质是择自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝中的至少一种。3. The method for forming a metal capacitor in a damascene process according to claim 1, wherein the material of the third insulating layer is selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, At least one of hafnium oxide or aluminum oxide. 4、根据权利要求1所述的在镶嵌制程中形成金属电容器的方法,其特征是:该第三绝缘层的厚度介于100埃至1200埃之间。4. The method for forming a metal capacitor in a damascene process according to claim 1, wherein the thickness of the third insulating layer is between 100 angstroms and 1200 angstroms. 5、根据权利要求1所述的在镶嵌制程中形成金属电容器的方法,其特征是:该金属层的材质是择自钛、氮化钛、钽、氮化钽、铝或铝铜合金中的至少一种。5. The method for forming a metal capacitor in a damascene process according to claim 1, wherein the material of the metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum or aluminum-copper alloy at least one. 6、根据权利要求1所述的在镶嵌制程中形成金属电容器的方法,其特征是:该金属层的厚度介于100埃至2000埃之间。6. The method for forming a metal capacitor in a damascene process according to claim 1, wherein the thickness of the metal layer is between 100 angstroms and 2000 angstroms. 7、一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:7. A method for forming a metal capacitor in a damascene process, characterized in that it at least includes the following steps: (1)提供一第一绝缘层;(1) providing a first insulating layer; (2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer; (3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires; (4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer; (5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer; (6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、第二铜插塞、第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) Forming a dual damascene structure including a first copper plug, a second copper plug, a third copper wire, and a fourth copper wire in the antireflection layer, the second insulating layer, and the first sealing layer, wherein the first copper plug a copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire; (7)于该抗反射层、第三铜导线和第四铜导线上形成一第二密封层;(7) forming a second sealing layer on the anti-reflection layer, the third copper wire and the fourth copper wire; (8)于该第二密封层上形成第三绝缘层;(8) forming a third insulating layer on the second sealing layer; (9)于该第三绝缘层上形成一金属层;(9) forming a metal layer on the third insulating layer; (10)于该第二密封层上作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层,其中该第二密封层的一部分也作为该电容器绝缘层;(10) On the second sealing layer as an etch stop layer, pattern the metal layer and the third insulating layer to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire, wherein the A portion of the second sealing layer also serves as the capacitor insulating layer; (11)于该第二密封层和该上电极上形成一第四绝缘层;(11) forming a fourth insulating layer on the second sealing layer and the upper electrode; (12)于该第四绝缘层和该第二密封层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(12) Forming a dual damascene structure including a third copper plug, a fourth copper plug, a fifth copper wire, and a sixth copper wire in the fourth insulating layer and the second sealing layer, wherein the third copper plug The plug is used to connect the fifth copper wire and the upper electrode, and the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire; (13)至少于该第五和第六铜导线上形成一第三密封层。(13) A third sealing layer is formed on at least the fifth and sixth copper wires. 8、根据权利要求7所述的在镶嵌制程中形成金属电容器的方法,其特征是:该抗反射层的材质是择自氮氧化硅或碳化硅中的至少一种。8. The method for forming a metal capacitor in a damascene process according to claim 7, wherein the material of the anti-reflection layer is at least one selected from silicon oxynitride or silicon carbide. 9、根据权利要求7所述的在镶嵌制程中形成金属电容器的方法,其特征是:该第三绝缘层的材质是择自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝中的至少一种。9. The method for forming a metal capacitor in a damascene process according to claim 7, wherein the material of the third insulating layer is selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, At least one of hafnium oxide or aluminum oxide. 10、根据权利要求7所述的在镶嵌制程中形成金属电容器的方法,其特征是:该第三绝缘层的厚度介于100埃至1200埃之间。10. The method for forming a metal capacitor in a damascene process according to claim 7, wherein the thickness of the third insulating layer is between 100 angstroms and 1200 angstroms. 11、根据权利要求7所述的在镶嵌制程中形成金属电容器的方法,其特征是:该金属层的材质是择自钛、氮化钛、钽、氮化钽、铝或铝铜合金中的至少一种。11. The method for forming a metal capacitor in a damascene process according to claim 7, wherein the material of the metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum or aluminum-copper alloy at least one. 12、根据权利要求7所述的在镶嵌制程中形成金属电容器的方法,其特征是:该金属层的厚度介于100埃至2000埃之间。12. The method for forming a metal capacitor in a damascene process according to claim 7, wherein the thickness of the metal layer is between 100 angstroms and 2000 angstroms.
CN 01130733 2001-08-22 2001-08-22 Method for forming metal capacitors in damascene process Expired - Lifetime CN1237598C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 01130733 CN1237598C (en) 2001-08-22 2001-08-22 Method for forming metal capacitors in damascene process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 01130733 CN1237598C (en) 2001-08-22 2001-08-22 Method for forming metal capacitors in damascene process

Publications (2)

Publication Number Publication Date
CN1402325A CN1402325A (en) 2003-03-12
CN1237598C true CN1237598C (en) 2006-01-18

Family

ID=4670099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01130733 Expired - Lifetime CN1237598C (en) 2001-08-22 2001-08-22 Method for forming metal capacitors in damascene process

Country Status (1)

Country Link
CN (1) CN1237598C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720039A (en) * 2014-12-04 2016-06-29 中芯国际集成电路制造(上海)有限公司 Interconnection structure and forming method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502218B2 (en) * 2005-11-09 2009-03-10 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-terminal capacitor
US7960838B2 (en) 2005-11-18 2011-06-14 United Microelectronics Corp. Interconnect structure
US7365009B2 (en) 2006-01-04 2008-04-29 United Microelectronics Corp. Structure of metal interconnect and fabrication method thereof
CN100514596C (en) * 2006-01-13 2009-07-15 联华电子股份有限公司 Method and structure for manufacturing metal interconnects
CN102420103B (en) * 2011-05-26 2013-09-11 上海华力微电子有限公司 Copper Damascus process MIM (metal-insulator-metal) capacitor structure and manufacturing process
CN111199953B (en) 2018-11-16 2022-04-08 无锡华润上华科技有限公司 A kind of MIM capacitor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720039A (en) * 2014-12-04 2016-06-29 中芯国际集成电路制造(上海)有限公司 Interconnection structure and forming method therefor

Also Published As

Publication number Publication date
CN1402325A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
CN1177365C (en) Semiconductor device and manufacturing method thereof
CN1276499C (en) Structural reinforcement of highly porous low k dielectric films by cu diffusion barrier structures
CN1197159C (en) Semiconductor device with capactor and its producing method
CN1599028A (en) Metal-insulator-metal capacitor and interconnecting structure
CN1507033A (en) Capacitor and its manufacturing method
CN1783476A (en) Interconnect structure of integrated circuit
CN1933153A (en) Semiconductor element and method of manufacturing metal-insulated-metal capacitors in a damascene structure
TW201810591A (en) Semiconductor device and method for manufacturing the same
CN1434509A (en) Dual damascene metal interconnection structure and manufacturing method thereof
CN101030552A (en) Integrated circuit manufacturing method, metal-insulating layer-metal capacitor forming method
CN1574334A (en) Integrated circuit and its forming method and electronic component
CN1815714A (en) Semiconductor device and method for fabricating the same
US6495448B1 (en) Dual damascene process
CN1881558A (en) Dual damascene structure, interconnect structure and manufacturing method thereof
CN1815711A (en) Interconnect structure and method of forming the same
CN1949502A (en) Semiconductor device and integrated circuit device
CN1187823C (en) Semi-conductor device and its producing method
CN1677643A (en) Method for manufacturing semiconductor device having damascene structure with air gap
CN1237598C (en) Method for forming metal capacitors in damascene process
CN1707788A (en) Semiconductor device and manufacturing method thereof
US6410386B1 (en) Method for forming a metal capacitor in a damascene process
US20020190299A1 (en) Metal capacitor in damascene structures
CN1750249A (en) Semiconductor device in integrated circuit and manufacturing method thereof
CN1248303C (en) Method for forming metal capacitor by damascene process and product thereof
CN1201386C (en) Method for forming metal capacitor by damascene process and product thereof

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: LIANHUA ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: XITONG SCIENCE AND TECHNOLOGY CO LTD

Effective date: 20050408

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050408

Address after: Hsinchu Science Industrial Park, Taiwan

Applicant after: United Microelectronics Corporation

Address before: Hsinchu Science Industrial Park, Taiwan

Applicant before: Xitong Science & Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060118

CX01 Expiry of patent term