CN1237598C - Method for forming metal capacitors in damascene process - Google Patents
Method for forming metal capacitors in damascene process Download PDFInfo
- Publication number
- CN1237598C CN1237598C CN 01130733 CN01130733A CN1237598C CN 1237598 C CN1237598 C CN 1237598C CN 01130733 CN01130733 CN 01130733 CN 01130733 A CN01130733 A CN 01130733A CN 1237598 C CN1237598 C CN 1237598C
- Authority
- CN
- China
- Prior art keywords
- layer
- copper
- forming
- insulating layer
- copper wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000003990 capacitor Substances 0.000 title claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 73
- 239000002184 metal Substances 0.000 title claims abstract description 73
- 230000008569 process Effects 0.000 title claims abstract description 54
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 169
- 229910052802 copper Inorganic materials 0.000 claims abstract description 88
- 239000010949 copper Substances 0.000 claims abstract description 88
- 230000009977 dual effect Effects 0.000 claims abstract description 23
- 238000005530 etching Methods 0.000 claims abstract description 21
- 238000007789 sealing Methods 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 7
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 claims description 5
- 230000003667 anti-reflective effect Effects 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 17
- 238000001259 photo etching Methods 0.000 abstract 2
- 239000010409 thin film Substances 0.000 abstract 1
- 230000004888 barrier function Effects 0.000 description 17
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 239000010937 tungsten Substances 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000005498 polishing Methods 0.000 description 6
- 238000007517 polishing process Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 2
- 241000530268 Lycaena heteronea Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000283014 Dama Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- JNSGIVNNHKGGRU-JYRVWZFOSA-N diethoxyphosphinothioyl (2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetate Chemical compound CCOP(=S)(OCC)OC(=O)C(=N/OC)\C1=CSC(N)=N1 JNSGIVNNHKGGRU-JYRVWZFOSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种形成内含电容器的集成电路,特别是有关于一种在镶嵌制程中形成金属电容器的方法。The present invention relates to forming integrated circuits with built-in capacitors, and more particularly to a method of forming metal capacitors in a damascene process.
背景技术Background technique
众所周知,电容器可以与各种集成电路相整合。例如可以作为解耦合电容器(decoupling Capacitors),以用来改善电压调节(voltage regulation)和提供功率分布(power distr ibution)的抗杂讯能力(noise immunity)。亦可以应用在类比/逻辑电路、类比一数位转换器、混合型讯号(mixedsignal)、或是射频(radio frequency)电路操作等等。It is well known that capacitors can be integrated with various integrated circuits. For example, they can be used as decoupling capacitors to improve voltage regulation and provide noise immunity for power distribution. It can also be applied in analog/logic circuit, analog-digital converter, mixed signal (mixedsignal), or radio frequency (radio frequency) circuit operation, etc.
图1-图4所示,为传统制造内含电容器20的半导体元件的方法,图1所示,为在绝缘层12上沉积铝金属层,随后进行光刻蚀刻制程,图案化成铝金属层14a和14b。其中绝缘层12包括一些形成于硅基底上和基底中的元件(未绘示)。接着,在铝金属层14a和14b以及绝缘层12上形成绝缘层16,并于此绝缘层16中并形成钨插塞(tungsten plug;W-plug)18与铝金属层14a电性连接。之后,于钨插塞18和绝缘层16上依序沉积金属层/介电层/金属层,并进行光刻蚀刻后,形成第一导电板21、介电层22和第二导电板23,因而构成电容器20,如图2所示。其中,第一导电板21(即下电极)经由钨插塞18与铝金属层14a连接。继续于电容器20和绝缘层16上方沉积另一层绝缘层26,并同时于绝缘层26和其下方的绝缘层16中形成钨插塞28a和28b,如图3所示。继续在绝缘层26以及钨插塞28a和28b上方沉积另一层铝金属层,并进行光刻蚀刻制程后,形成铝金属层34a和34b,如图4所示。其中铝金属层34a经由钨插塞28a与第一导电板23(即上电极),而铝金属层34b经由钨插塞28b与下层的铝金属层14b电性连接。其主要缺陷在于:As shown in FIGS. 1-4, it is a traditional method of manufacturing a semiconductor element containing a
在上述的制程中,需要额外的光刻步骤来形成电容器20,才能将电容器20整合至集成电路中,因此,增加了整个半导体制程的成本。In the above process, an additional photolithography step is required to form the
然而,上述以铝金属来整合内连线制程和电容器制程已渐渐无法适应目前对提高元件积集度以及资料传输速度的要求。因此,以具有高导电性的金属铜作为导线,来降低RC延迟(RC delay),成为目前的发展趋势。但是,铜金属无法以干蚀刻的方式来定义图案,其原因在于铜金属与氯气电浆气体反应生成的氯化铜(CuCl2)的沸点极高(约1500℃),因此铜导线的制作需以镶嵌制程(dama scene process)来进行。However, the integration of the interconnection process and the capacitor process with aluminum metal has gradually failed to meet the current requirements for increasing component integration and data transmission speed. Therefore, it is a current development trend to reduce RC delay (RC delay) by using metal copper with high conductivity as a wire. However, copper metal cannot be used to define patterns by dry etching. The reason is that the copper chloride (CuCl 2 ) produced by the reaction of copper metal with chlorine plasma gas has a very high boiling point (about 1500 ° C), so the production of copper wires requires It is performed by a dama scene process.
发明内容Contents of the invention
本发明的主要目的是提供一种在镶嵌制程中形成金属电容器的方法,通过在形成薄膜电容器之前,于第一绝缘层中形成第一铜导线和第二铜导线,且至少于第一和第二铜导线上形成第一密封层。接着于第一密封层上依序形成第二绝缘层及抗反射层,在形成金属电容器时,仅需额外一道光刻蚀刻步骤,克服现有技术的弊端,达到减少制造内含电容器的集成电路的光刻蚀刻步骤及减少制造成本的目的。The main object of the present invention is to provide a method for forming a metal capacitor in a damascene process, by forming a first copper wire and a second copper wire in a first insulating layer before forming a film capacitor, and at least less than the first and second copper wires A first sealing layer is formed on the two copper wires. Then, the second insulating layer and the anti-reflection layer are sequentially formed on the first sealing layer. When forming a metal capacitor, only one additional photolithography and etching step is required, which overcomes the disadvantages of the existing technology and achieves the reduction in the production of integrated circuits with built-in capacitors. The photolithographic etching steps and the purpose of reducing manufacturing costs.
本发明的第二目的是提供一种在镶嵌制程中形成金属电容器的方法,达到使用较少的光刻蚀刻步骤来形成含电容器的集成电路的目的。A second object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of forming integrated circuits containing capacitors with fewer photolithography and etching steps.
本发明的第三目的是提供一种在镶嵌制程中形成金属电容器的方法,达到降低内含电容器的集成电路的目的。A third object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of reducing the number of integrated circuits containing capacitors.
本发明的第四目的是提供一种在镶嵌制程中形成金属电容器的方法,达到容易控制的内含电容器的集成电路的制程的目的。A fourth object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of easily controllable manufacturing process of integrated circuits containing capacitors.
本发明的第五目的是提供一种在镶嵌制程中形成金属电容器的方法,达到使用铜制程来制造内含电容器的集成电路,以降低RC延迟的目的。A fifth object of the present invention is to provide a method for forming metal capacitors in a damascene process, so as to achieve the purpose of using a copper process to manufacture integrated circuits containing capacitors and reduce RC delay.
本发明的目的是这样实现的:一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:The purpose of the present invention is achieved in that a method for forming a metal capacitor in a damascene process is characterized in that it at least includes the following steps:
(1)提供一第一绝缘层;(1) providing a first insulating layer;
(2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer;
(3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires;
(4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer;
(5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer;
(6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、一第二铜插塞、一第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) forming a dual damascene structure comprising a first copper plug, a second copper plug, a third copper wire and a fourth copper wire in the antireflection layer, the second insulating layer and the first sealing layer, wherein The first copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire;
(7)于该抗反射层、第三铜导线和第四铜导线上形成一第三绝缘层;(7) forming a third insulating layer on the anti-reflection layer, the third copper wire and the fourth copper wire;
(8)于该第三绝缘层上形成一金属层;(8) forming a metal layer on the third insulating layer;
(9)于该抗反射层作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层;(9) patterning the metal layer and the third insulating layer on the anti-reflective layer as an etching stop layer, so as to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire;
(10)于该抗反射层和该上电极上形成一第四绝缘层;(10) forming a fourth insulating layer on the antireflection layer and the upper electrode;
(11)于该第四绝缘层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(11) Forming a dual damascene structure comprising a third copper plug, a fourth copper plug, a fifth copper wire and a sixth copper wire in the fourth insulating layer, wherein the third copper plug is used to connect the first Five copper wires and an upper electrode, the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire;
(12)至少于该第五和第六铜导线上形成一第二密封层。(12) Forming a second sealing layer on at least the fifth and sixth copper wires.
该抗反射层的材质是择自氮氧化硅或碳化硅中的至少一种。该第三绝缘层的材质是择自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝中的至少一种。该第三绝缘层的厚度介于100埃至1200埃之间。该金属层的材质是择自钛、氮化钛、钽、氮化钽、铝或铝铜合金中的至少一种。该金属层的厚度介于100埃至2000埃之间。The material of the anti-reflection layer is at least one selected from silicon oxynitride or silicon carbide. The material of the third insulating layer is at least one selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or aluminum oxide. The thickness of the third insulating layer is between 100 angstroms and 1200 angstroms. The material of the metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum or aluminum-copper alloy. The thickness of the metal layer is between 100 angstroms and 2000 angstroms.
另一种在镶嵌制程中形成金属电容器的方法,其特征是:它至少包括如下步骤:Another method for forming a metal capacitor in a damascene process is characterized in that it at least includes the following steps:
(1)提供一第一绝缘层;(1) providing a first insulating layer;
(2)于该第一绝缘层中形成一第一铜导线和一第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer;
(3)至少于该第一和第二铜导线上形成一第一密封层;(3) forming a first sealing layer at least on the first and second copper wires;
(4)于该第一密封层上形成一第二绝缘层;(4) forming a second insulating layer on the first sealing layer;
(5)于该第二绝缘层上形成一抗反射层;(5) forming an anti-reflection layer on the second insulating layer;
(6)于该抗反射层、第二绝缘层和第一密封层中形成包括第一铜插塞、第二铜插塞、第三铜导线和第四铜导线的双镶嵌结构,其中该第一铜插塞用以连接该第三铜导线和第一铜导线,该第二铜插塞用以连接该第四铜导线和第二铜导线;(6) Forming a dual damascene structure including a first copper plug, a second copper plug, a third copper wire, and a fourth copper wire in the antireflection layer, the second insulating layer, and the first sealing layer, wherein the first copper plug a copper plug is used for connecting the third copper wire and the first copper wire, and the second copper plug is used for connecting the fourth copper wire and the second copper wire;
(7)于该抗反射层、第三铜导线和第四铜导线上形成一第二密封层;(7) forming a second sealing layer on the anti-reflection layer, the third copper wire and the fourth copper wire;
(8)于该第二密封层上形成第三绝缘层;(8) forming a third insulating layer on the second sealing layer;
(9)于该第三绝缘层上形成一金属层;(9) forming a metal layer on the third insulating layer;
(10)于该第二密封层上作为一蚀刻终止层,将该金属层和第三绝缘层图案化,以于对应于该第三铜导线处形成一上电极和一电容器绝缘层,其中该第二密封层的一部分也作为该电容器绝缘层;(10) On the second sealing layer as an etch stop layer, pattern the metal layer and the third insulating layer to form an upper electrode and a capacitor insulating layer corresponding to the third copper wire, wherein the A portion of the second sealing layer also serves as the capacitor insulating layer;
(11)于该第二密封层和该上电极上形成一第四绝缘层;(11) forming a fourth insulating layer on the second sealing layer and the upper electrode;
(12)于该第四绝缘层和该第二密封层中形成包括第三铜插塞、第四铜插塞、第五铜导线和第六铜导线的双镶嵌结构,其中该第三铜插塞用以连接该第五铜导线和上电极,该第四铜插塞用以连接该第六铜导线和第四铜导线;(12) Forming a dual damascene structure including a third copper plug, a fourth copper plug, a fifth copper wire, and a sixth copper wire in the fourth insulating layer and the second sealing layer, wherein the third copper plug The plug is used to connect the fifth copper wire and the upper electrode, and the fourth copper plug is used to connect the sixth copper wire and the fourth copper wire;
(13)至少于该第五和第六铜导线上形成一第三密封层。(13) A third sealing layer is formed on at least the fifth and sixth copper wires.
下面结合较佳实施例并配合附图详细说明。The following describes in detail in conjunction with preferred embodiments and accompanying drawings.
附图说明Description of drawings
图1-图4是传统将电容器整合至集成电路中的流程剖面示意图。1 to 4 are schematic cross-sectional views of the traditional process of integrating capacitors into integrated circuits.
图5-图12是本发明的实施例1的在镶嵌制程中形成金属电容器的流程剖面示意图。5-12 are schematic cross-sectional views of the process of forming a metal capacitor in a damascene process according to Embodiment 1 of the present invention.
图13-图20是本发明的实施例2的在镶嵌制程中形成金属电容器的流程剖面示意图。13-20 are schematic cross-sectional views of the process of forming a metal capacitor in a damascene process according to Embodiment 2 of the present invention.
具体实施方式Detailed ways
实施例1Example 1
参阅图5-图12,详细说明本发明第一较佳实施例的一种在镶嵌制程中形成金属电容器的方法。Referring to FIGS. 5-12 , a method for forming a metal capacitor in a damascene process according to a first preferred embodiment of the present invention will be described in detail.
参阅图5,于绝缘层102上形成另一层绝缘层106,其中绝缘层102中可能包括其他内连线,而绝缘层102下方包括形成于基底上和基底中的元件,为了能清楚描述本发明的内容,这些底层的电路元件并未在图中显示。利用镶嵌制程于绝缘层106中形成厚度约为2000至6000埃的铜导线104a和104b。举例来说,在绝缘层106中形成沟槽后,形成一层顺应性的阻障层(未绘示)后,填入铜金属,之后进行化学机械研磨,以磨除多余的铜金属和阻障层。接着至少在铜导线104a和104b上形成密封层108,在图中是以形成全面性的密封层108为例,其厚度约为100-400埃左右,其材质可以是氮化硅(SiN)或碳化硅(SiC)Referring to FIG. 5, another insulating
接着,于密封层108上依序形成绝缘层110和抗反射层112。在形成双镶嵌结构时,抗反射层112可作为硬掩模,在形成铜导线时,抗反射层112可作为研磨终止层;在形成金属电容器的上电极时,抗反射层112可作为蚀刻终止层。用于形成抗反射层112的材质可为氮氧化硅(SiON)或碳化硅(SiC)。抗反射层112的厚度约为100-600埃左右。Next, an insulating
在抗反射层112、绝缘层110和密封层108中形成双镶嵌图案,此图案是由介层窗孔114a和114b以及沟槽116a和116b所构成,其中介层窗孔114b会暴露出铜导线104b的表面,而介层窗孔114a会暴露出铜导线104a的表面。A dual damascene pattern is formed in the
参阅图6,在抗反射层112、介层窗孔114a和114b以及沟槽116a和116b表面形成顺应性的阻障层(未绘示)。在阻障层上沉积铜金属,并填入介层窗孔114a和114b以及沟槽116a和116b中。利用化学机械研磨制程移除多余的部分,并配合以抗反射层112作为研磨终止层,以形成由铜插塞120a和120b以及铜导线122a和122b所构成的双镶嵌结构。其中,铜导线122a是作为金属电容器的下电极。Referring to FIG. 6 , a conformable barrier layer (not shown) is formed on the surface of the
上述的双镶嵌制程,除了用于形成铜插塞120a和120b以及铜导线122b外,亦用于形成下电极122a。因此,不需要额外的光刻蚀刻制程来形成下电极122a,再者,下电极122a是与铜导线122b位于同一平面。The aforementioned dual damascene process is not only used to form the copper plugs 120a and 120b and the
接着于抗反射层112以及铜导线122a和122b上形成绝缘层124,此绝缘层124是作为金属电容器的电容器绝缘层。绝缘层124的厚度约为100-1200埃左右,然而实际的厚度仍需视电容器的应用及其所需的电容量而定。绝缘层124的材质可为氮化硅(Si3N4)、氮氧化硅(SiON)、碳化硅(SiC)、氧化钽(TaO2)、氧化锆(ZrO2)、氧化铪(HfO2)、氧化铝(Al2O3)、或其他具有高介电常数的材质。Next, an insulating
参阅图7,于绝缘层124上形成金属层126,此金属层126是将用以形成金属电容器的上电极,其厚度约为100-2000埃左右。上述的金属层126的材质可为钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、铝、铝铜合金(AlCu)等。Referring to FIG. 7, a
接着参阅图8,定义金属层126和绝缘层124,以形成上电极126和电容器绝缘层124,其方法为进行光刻蚀刻制程,直至暴露出作为蚀刻终止层的抗反射层112为止。Referring next to FIG. 8 , the
根据上述的步骤,在形成金属电容器128时,仅需额外一道光刻蚀刻步骤。因此,可以减少制造内含电容器的集成电路的光刻蚀刻步骤,亦可以减少制造成本。According to the above-mentioned steps, when forming the
所形成的下电极122a的区域大致与上电极126的区域相对应,且上电极126的区域需大于或等于下电极122a的区域。下电极122a、绝缘层124和上电极126则构成电容器128。The area of the formed
接着参阅图9,于抗反射层112和金属电容器128上方形成一层毯覆式牺牲绝缘层130。接着对此牺牲绝缘层130进行平坦化的制程,例如化学机械研磨制程,使绝缘层130的表面不受其下方的电容器128所造成的地形起伏的影响,而变成图10所示的具有平坦表面的绝缘层130’,以利于后续制程的进行。Referring next to FIG. 9 , a blanket sacrificial insulating
参阅图11、12,接着进行另一道双镶嵌制程,于绝缘层130’中形成双镶嵌的图案,此图案是由沟槽134a和134b以及介层窗孔132a和132b所构成。其中,介层窗孔132b会暴露出欲做电性接触的导线122b的表面,介层窗孔132a会暴露出欲做电性接触的上电极126的表面。Referring to FIGS. 11 and 12 , another dual damascene process is then performed to form a dual damascene pattern in the insulating
如图12所示,于绝缘层130’、沟槽134a和134b以及介层窗孔132a和132b的表面形成一层顺应性的阻障层(未绘示)。并于阻障层上沉积铜金属,且填入沟槽134a和134b,以及介层窗孔I32a和132b中。之后进行化学机械研磨,以磨除多余的铜金属和阻障层,而于双镶嵌图案中形成铜导线138a和138b以及铜插塞136a和136b。之后于铜导线138a和138b以及绝缘层130’上方覆盖一层密封层140,其材质可为氮化硅或碳化硅。于是,上电极126经由铜插塞136a与铜导线138a电性连接,而铜导线122b则经由铜插塞136b与铜导线138b电性连接。As shown in FIG. 12 , a compliant barrier layer (not shown) is formed on the surfaces of the insulating
后续的铜制程仍继续进行,直至完成整个内连线的制造为止。由于其为现有技术,故不重述。Subsequent copper manufacturing process continues until the manufacture of the entire interconnection is completed. Since it is prior art, it will not be restated.
上述的绝缘层102、106、110和130的材质可以是低介电常数的绝缘材质,例如掺杂或未掺杂的氧化硅、低介电常数的旋涂式高分子、以及化学气相沉积式低介电常数材质。The material of the above-mentioned
实施例2Example 2
参阅图13-图20,是用以说明本发明较佳实施例2的一种在镶嵌制程中形成金属电容器的方法。Referring to FIG. 13-FIG. 20, it is used to illustrate a method of forming a metal capacitor in a damascene process according to the preferred embodiment 2 of the present invention.
首先参阅图13,于绝缘层202上形成另一层绝缘层206,其中绝缘层202中可能包括其他内连线,而绝缘层202下方包括形成于基底上和基底中的元件,为了能清楚描述本发明的内容,这些底层的电路元件并未在图中显示。利用镶嵌制程于绝缘层206中形成厚度约为2000至6000埃的铜导线204a和204b。举例而言,在绝缘层206中形成沟槽后,形成一层顺应性的阻障层(未绘示)后,填入铜金属,之后进行化学机械研磨,以磨除多余的铜金属和阻障层。接着至少在铜导线204a和204b上形成密封层208,在图中是以形成全面性的密封层208为例,其厚度约为100-400埃左右,其材质可以是氮化硅(SiN)或碳化硅(SiC)。Referring first to FIG. 13, another insulating
接着,于密封层208上依序形成绝缘层210和抗反射层212。在形成双镶嵌结构时,抗反射层212可作为硬掩模;在形成铜导线时,抗反射层212可作为研磨终止层。用于形成抗反射层212的材质可为氮氧化硅(SiON)或碳化硅(SiC)。抗反射层212的厚度约为100-600埃左右。Next, an insulating
在抗反射层212、绝缘层210和密封层208中形成双镶嵌图案,此图案是由介层窗孔214a和214b以及沟槽216a和216b所构成,其中介层窗孔214b会暴露出铜导线204b的表面,而介层窗孔214a会暴露出铜导线204a的表面。A dual damascene pattern is formed in the
接着参阅图14,在抗反射层212、介层窗孔和214b以及沟槽216a和216b表面形成顺应性的阻障层(未绘示)。在阻障层上沉积铜金属,并填入介层窗孔214a和214b以及沟槽216a和216b中。利用化学机械研磨制程移除多余的部分,并配合以抗反射层212作为研磨终止层,以形成由铜插塞220a和220b以及铜导线222a和222b所构成的双镶嵌结构。其中,铜导线222a是作为金属电容器的下电极。Referring next to FIG. 14 , a compliant barrier layer (not shown) is formed on the surface of the
上述的双镶嵌制程,除了用于形成铜插塞220a和220b以及铜导线222b外,亦用于形成下电极222a。因此,不需要额外的光刻蚀刻制程来形成下电极222a。再者,下电极222a是与铜导线222b位于同一平面。The aforementioned dual damascene process is not only used to form the copper plugs 220a and 220b and the
接着于抗反射层212以及铜导线222a和222b上形成密封层223,其厚度约为100-400埃左右。此密封层223是作为扩散阻障层,以避免铜原子的迁移;此密封层223亦可于形成上电极时作为蚀刻终止层;还可作为一部分的电容器绝缘层。其材质可为氮化硅或碳化硅。Next, a
继续于密封层223上形成一层高介电常数的绝缘层224。而密封层223在此可提高绝缘层224和下电极222a之间的附着力。绝缘层224是作为另一部分的电容器绝缘层。绝缘层224的厚度约为100-1200埃左右,然而实际的厚度仍需视电容器的应用及其所需的电容量而定。绝缘层224的材质可为氮化硅、氮氧化硅、碳化硅(SiC)、氧化钽(TaO2)、氧化锆(ZrO2)、氧化铪(HfO2)、氧化铝(Al2O3)或其他具有高介电常数的材质。Continue to form an insulating
参阅图15,于绝缘层224上形成金属层226,此金属层226是将用以形成金属电容器的上电极,其厚度约为100-2000埃左右。上述的金属层226的材质可为钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、铝、铝铜合金(AlCu)等。Referring to FIG. 15, a
接着参阅图16,定义金属层226和绝缘层224,以形成上电极226和部分的电容器绝缘层225,其方法为进行光刻蚀刻制程,直至暴露出作为蚀刻终止层的抗反射层223为止。Referring next to FIG. 16, the
根据上述的步骤,在形成金属电容器228时,仅需额外一道光刻蚀刻步骤。因此,可以减少制造内含电容器228的集成电路的光刻蚀刻步骤,亦可以减少制造成本。According to the above steps, when forming the metal capacitor 228 , only one additional photolithographic etching step is required. Therefore, the photolithography and etching steps for manufacturing the integrated circuit containing the capacitor 228 can be reduced, and the manufacturing cost can also be reduced.
电容器绝缘层225包括绝缘层224和密封层223。所形成的下电极222a的区域大致与上电极226的区域相对应,而且金属电容器228的电容量亦控制于下电极222a和上电极226的重叠面积。下电极222a、绝缘层225和上电极226则构成电容器228。The capacitor insulating layer 225 includes an insulating
参阅图17,于密封层223和金属电容器228上方形成一层毯覆式牺牲绝缘层230。接着对此牺牲绝缘层230进行平坦化的制程,例如化学机械研磨制程,使绝缘层230变成图18所示的具有平坦表面的绝缘层230’,以利于后续制程的进行。Referring to FIG. 17 , a blanket sacrificial insulating
参阅图19、20,接着进行另一道双镶嵌制程,于绝缘层230’和密封层223中形成双镶嵌的图案,此图案是由沟槽234a和234b以及介层窗孔232a和232b所构成。其中,介层窗孔232b会暴露出欲做电性接触的导线222b的表面,介层窗孔232a会暴露出欲做电性接触的上电极226的表面。Referring to FIGS. 19 and 20, another dual damascene process is then performed to form a dual damascene pattern in the insulating
如图20所示,于绝缘层230’、沟槽234a和234b以及介层窗孔232a和232b的表面形成一层顺应性的阻障层(未绘示)。并于阻障层上沉积铜金属,且填入沟槽234a和234b以及介层窗孔232a和232b中。之后进行化学机械研磨,以磨除多余的铜金属和阻障层,而于双镶嵌图案中形成铜导线238a和238b以及铜插塞236a和236b。之后于铜导线238a和238b以及绝缘层230’上方覆盖一层密封层240,其材质可为氮化硅或碳化硅。于是,上电极226经由铜插塞236a与铜导线238a电性连接,而铜导线222b则经由铜插塞236b与铜导线238b电性连接。As shown in FIG. 20 , a compliant barrier layer (not shown) is formed on the surfaces of the insulating
后续的铜制程仍继续进行,直至完成整个内连线的制造为止。Subsequent copper manufacturing process continues until the manufacture of the entire interconnection is completed.
上述的绝缘层202、206、210和230的材质可以是低介电常数的绝缘材质(例如掺杂或未掺杂的氧化硅)、低介电常数的旋涂式高分子、以及化学气相沉积式低介电常数材质等The above insulating
虽然本发明以较佳实施例揭露如上,然其并非用以限制本发明,任何熟习此项技艺者,在不脱离本发明的精神和范围内,所做更动与润饰,都属于本发明的保护范围之内。Although the present invention is disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any changes and modifications made by those skilled in the art without departing from the spirit and scope of the present invention belong to the present invention. within the scope of protection.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01130733 CN1237598C (en) | 2001-08-22 | 2001-08-22 | Method for forming metal capacitors in damascene process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01130733 CN1237598C (en) | 2001-08-22 | 2001-08-22 | Method for forming metal capacitors in damascene process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1402325A CN1402325A (en) | 2003-03-12 |
CN1237598C true CN1237598C (en) | 2006-01-18 |
Family
ID=4670099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 01130733 Expired - Lifetime CN1237598C (en) | 2001-08-22 | 2001-08-22 | Method for forming metal capacitors in damascene process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1237598C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105720039A (en) * | 2014-12-04 | 2016-06-29 | 中芯国际集成电路制造(上海)有限公司 | Interconnection structure and forming method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7502218B2 (en) * | 2005-11-09 | 2009-03-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-terminal capacitor |
US7960838B2 (en) | 2005-11-18 | 2011-06-14 | United Microelectronics Corp. | Interconnect structure |
US7365009B2 (en) | 2006-01-04 | 2008-04-29 | United Microelectronics Corp. | Structure of metal interconnect and fabrication method thereof |
CN100514596C (en) * | 2006-01-13 | 2009-07-15 | 联华电子股份有限公司 | Method and structure for manufacturing metal interconnects |
CN102420103B (en) * | 2011-05-26 | 2013-09-11 | 上海华力微电子有限公司 | Copper Damascus process MIM (metal-insulator-metal) capacitor structure and manufacturing process |
CN111199953B (en) | 2018-11-16 | 2022-04-08 | 无锡华润上华科技有限公司 | A kind of MIM capacitor and its manufacturing method |
-
2001
- 2001-08-22 CN CN 01130733 patent/CN1237598C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105720039A (en) * | 2014-12-04 | 2016-06-29 | 中芯国际集成电路制造(上海)有限公司 | Interconnection structure and forming method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN1402325A (en) | 2003-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1177365C (en) | Semiconductor device and manufacturing method thereof | |
CN1276499C (en) | Structural reinforcement of highly porous low k dielectric films by cu diffusion barrier structures | |
CN1197159C (en) | Semiconductor device with capactor and its producing method | |
CN1599028A (en) | Metal-insulator-metal capacitor and interconnecting structure | |
CN1507033A (en) | Capacitor and its manufacturing method | |
CN1783476A (en) | Interconnect structure of integrated circuit | |
CN1933153A (en) | Semiconductor element and method of manufacturing metal-insulated-metal capacitors in a damascene structure | |
TW201810591A (en) | Semiconductor device and method for manufacturing the same | |
CN1434509A (en) | Dual damascene metal interconnection structure and manufacturing method thereof | |
CN101030552A (en) | Integrated circuit manufacturing method, metal-insulating layer-metal capacitor forming method | |
CN1574334A (en) | Integrated circuit and its forming method and electronic component | |
CN1815714A (en) | Semiconductor device and method for fabricating the same | |
US6495448B1 (en) | Dual damascene process | |
CN1881558A (en) | Dual damascene structure, interconnect structure and manufacturing method thereof | |
CN1815711A (en) | Interconnect structure and method of forming the same | |
CN1949502A (en) | Semiconductor device and integrated circuit device | |
CN1187823C (en) | Semi-conductor device and its producing method | |
CN1677643A (en) | Method for manufacturing semiconductor device having damascene structure with air gap | |
CN1237598C (en) | Method for forming metal capacitors in damascene process | |
CN1707788A (en) | Semiconductor device and manufacturing method thereof | |
US6410386B1 (en) | Method for forming a metal capacitor in a damascene process | |
US20020190299A1 (en) | Metal capacitor in damascene structures | |
CN1750249A (en) | Semiconductor device in integrated circuit and manufacturing method thereof | |
CN1248303C (en) | Method for forming metal capacitor by damascene process and product thereof | |
CN1201386C (en) | Method for forming metal capacitor by damascene process and product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
ASS | Succession or assignment of patent right |
Owner name: LIANHUA ELECTRONICS CO., LTD. Free format text: FORMER OWNER: XITONG SCIENCE AND TECHNOLOGY CO LTD Effective date: 20050408 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20050408 Address after: Hsinchu Science Industrial Park, Taiwan Applicant after: United Microelectronics Corporation Address before: Hsinchu Science Industrial Park, Taiwan Applicant before: Xitong Science & Technology Co., Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20060118 |
|
CX01 | Expiry of patent term |