[go: up one dir, main page]

CN119433351A - 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法 - Google Patents

一种GPa级超高强抗疲劳海洋工程用钢及其生产方法 Download PDF

Info

Publication number
CN119433351A
CN119433351A CN202411567078.1A CN202411567078A CN119433351A CN 119433351 A CN119433351 A CN 119433351A CN 202411567078 A CN202411567078 A CN 202411567078A CN 119433351 A CN119433351 A CN 119433351A
Authority
CN
China
Prior art keywords
steel
temperature
fatigue
rolling
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202411567078.1A
Other languages
English (en)
Inventor
李文斌
张坤
罗军
罗志华
田永久
王刚
韩旭
杨静
段江涛
刘硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202411567078.1A priority Critical patent/CN119433351A/zh
Publication of CN119433351A publication Critical patent/CN119433351A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种GPa级超高强抗疲劳海洋工程用钢及其生产方法,化学成分为(Wt%),C:0.02~0.07、Si:0.10~0.25、Mn:1.75~2.50、P:0.022~0.026、S:≤0.008、Nb:0.03~0.04、V:0.09~0.15、Ti:0.045~0.055、Mo:0.50~0.80、Cr:2.00~2.40、Ni:8.0~10.0、Co:8.0~12.0、Als:0.035~0.045、N:0.013~0.014、Cu:0.58~0.62、Sb:0.03~0.05、RE:0.03~0.05、B:0.0008~0.001。步骤包括冶炼、连铸、快速冷却、铸坯加热、轧制和热处理。钢板最大厚度为100mm,Rp0.2为1080~1120MPa,A≥18%,峰值应力560MPa下的疲劳寿命>200万次,‑60℃冲击功≥150J,耐海洋大气腐蚀速率<0.10mm/a。本发明不仅提高钢的强度,改善钢板在低温下的冲击韧性,还提升了钢的耐腐蚀性和抗疲劳性能。

Description

一种GPa级超高强抗疲劳海洋工程用钢及其生产方法
技术领域
本发明属于金属材料制备技术领域,特别涉及到一种GPa级超高强抗疲劳海洋工程用钢及其生产方法。
背景技术
海洋蕴藏着人类社会未来发展所需的油气、可燃冰和矿产等战略资源,根据国海洋科技面临的形势、沿海社会经济发展需求以及海洋科技的工作发展现状,我国提出了加强海洋科技以支撑深海资源开发的战略。研究重点包括海洋风能、海洋油气、可燃冰的勘探与开发,大洋金属矿产资源的开采,以及现场高效提取技术和相关装备的研发。海洋装备制造用钢在面对复杂海洋环境如波浪、温度、湿度和盐度时,要求钢材具备更高的耐腐蚀和抗疲劳性能。如要具有较高的强度、更大的厚度、良好的Z向性能,同时还要具有较好的低温冲击韧性、耐腐蚀性和抗疲劳性能现有钢材很难同时满足上述性能要求,因此,需要制造一种高强度、同时具有优异的低温韧性、耐腐蚀性及抗疲劳性能的钢板。
专利“一种低温韧性优异的1GPa级海洋工程用钢板及其制备方法”,申请号202011576945.X,公开了一种低温韧性优异的1GPa级海洋工程用钢板及其制备方法,其设计的化学成分结合控制轧制+多步热处理工艺,实现同时具有高强度,低屈强比和优异低温韧性能的钢板生产,得到成材率高、强度和低温韧性稳定的钢板,具有超高强度(屈服强度≥1GPa),低屈强比(<0.94),优异低温韧性(-80℃冲击功≥150J)的特点,但其只能生产10~50mm的厚度,且未涉及耐腐蚀性和抗疲劳性能。
专利“强韧性、强塑性优良的960MPa级调质钢板及其制造方法”,专利号ZL201010227961.8,公开的钢板虽然综合力学性能也达到较高水平,抗拉强度≥980MPa、屈服强度≥890MPa、-60℃夏比横向冲击功(单个值)≥47J,但其强度偏低且未涉及腐蚀性能和疲劳性能评价。
专利“一种低温韧性优异的FH690级海工钢及其制造方法”,申请号202110788240.2,公开了一种最大厚度50mm、低温韧性优异的FH690级海工钢及其制造方法,钢板屈服强度≥690MPa,抗拉强度770~940MPa,断后延伸率≥14%,低温韧性-60℃冲击功≥100J,但其最大厚度只有50mm,且未解决耐腐蚀问题,不能满足海洋工程建设需要。
专利“一种耐南海海洋环境用耐蚀钢板及其生产工艺”,申请号:CN201410036368.3,提供了一种耐南海海洋环境用耐蚀钢板及其生产工艺,生产工艺包括转炉冶炼工序、LF精炼工序、真空脱气工序、连铸工序、控轧控冷工序,该钢板的组织类型理论上为单相多边形铁素体精细组织(平均晶粒尺寸10.17μm),在工业实际生产中不可避免地含有极少量的珠光体组织,相比常规船体结构钢EH36,其耐海洋环境(海洋大气、潮差、全浸等)腐蚀性能提高50%以上,并且具有良好的强韧性匹配及焊接性能,但其强度较低,低温韧性不足,且未评价其抗疲劳性能。
专利“一种屈服345MPa级高疲劳结构钢及其制造方法”,申请号:201910712227.1,公开了一种屈服强度345MPa级高疲劳结构钢,其化学成分为,C:0.13%~0.16%、Mn:1.30%~1.60%、Nb:0.020%~0.050%、Alt:0.020%~0.030%、Ti≤0.010%、Si≤0.12%、P≤0.010%、S≤0.005%,余量为铁和不可避免杂质,采用大压下+控冷工艺,得到的钢板具有良好的综合力学性能和较好的表面质量,但是钢板强度低,且没有评价其腐蚀性能,仅评价了-20℃的冲击韧性,远不能满足不同海洋环境的使用要求。
专利“一种工程用抗腐蚀疲劳钢及其制备方法”,申请号:202110068169.0,公开了一种工程用抗腐蚀疲劳钢,该钢在E690钢主元素(C:0.04%~0.07%、Si:0.20%~0.26%、Mn:1.45%~1.60%、P≤0.01%、S≤0.015%、Cr:0.44%~0.50%)的基础下,进行元素调控及特征元素添加,其中,Cu:0.28%~0.66%、Ni:0.76%~1.55%、Sb:0.03%~0.12%,其余为Fe和不可避免的杂质,其腐蚀疲劳强度提高可达52%,但是没有评价钢的低温韧性。
发明内容
针对现有技术的不足,本发明的目的在于提出一种GPa级超高强抗疲劳海洋工程用钢及其生产方法,以低碳低合金化为基本特征,复合添加Mo、Cr、Ni、Co等多元合金强化元素和V、N等析出强化元素,添加P、Al和Sb、RE为基本特点,提高钢板的强度、低温韧性,同时具有较好的耐蚀性能和抗疲劳性能,解决了现有海洋工程用钢板强度偏低、低温冲击韧性差、耐腐蚀性能和抗疲劳性不足的问题。
本发明以低温韧性优异、高强和耐腐蚀、抗疲劳的钢板为基本特征,在本发明中,钢板化学成分的含量,C:0.02%~0.07%、Si:0.10%~0.25%、Mn:1.75%~2.50%、P:0.022%~0.026%、S:≤0.008%、Nb:0.03%~0.04%、V:0.09%~0.15%、Ti:0.045%~0.055%、Mo:0.50%~0.80%、Cr:2.00%~2.40%、Ni:8.0%~10.0%、Co:8.0%~12.0%、Als:0.035%~0.045%、N:0.013%~0.014%、Cu:0.58%~0.62%、Sb:0.03%~0.05%、RE:0.03%~0.05%、B:0.0008%~0.001%,其中0.08≤(Nb+V+Ti)/Mn≤0.12、2.5≤Si/Al≤7.0、3.5≤(Cu+Co)/Cr≤5.5、12Cr/Co≥2.2、3.2≤Ni/Cr≤4.5、36Nb/Mn≥0.5、(Nb+V+Ti+Als)/N≥15、Ni/Cu≥13、(Nb+V+Ti)/RE≥4.2、RE/P≥1.10,其余为Fe以及不可避免的杂质。
本发明所以选择以上合金元素种类及其含量,是因为各元素在提高海洋工程用钢的钢材强度、韧性、耐腐蚀性及抗疲劳性中的作用:
C:C与Cr可形成合金渗碳体(Fe·Cr)3C,又能形成碳化物,如Cr7C3、Cr23C6等,这些碳化物的熔点、硬度、耐磨性以及稳定性都比Fe3C高,可提高钢材强度。C与V、Nb、Ti等强碳化物形成元素,会优先形成VC、NbC、TiC等碳化物,它们的稳定性最高,熔点、硬度、耐磨性也最高。C是最有效提高钢板强度的元素,当其含量低于0.02%将会大幅度降低钢板的强度,但C对钢材低温韧性、延伸率及焊接性影响很大,从改善钢材韧性、耐蚀性、抗疲劳性及焊接性角度,钢中C含量应控制得适当低一些。因此本发明C含量选择在0.02%~0.07%。
Si:Si是炼钢脱氧的必要元素,具有一定固溶强化的作用,Si虽然能够提高钢板的强度,但是Si降低马氏体相变临界冷却速度,严重损害超高强度钢板的低温韧性、延伸率及焊接性,Si不仅促进M-A岛形成,而且形成的M-A岛尺寸较为粗大、分布不均匀,严重损害焊接热影响区(HAZ)韧性,因此钢中的Si含量应尽可能控制得低。一定的Si含量可有效提高钢材耐海洋腐蚀性能,Si与Al复合添加可提高抗蚀和抗高温氧化能力。本发明Si含量控制在0.10%~0.25%,2.5≤Si/Al≤7.0。
Mn:Mn是提高强度和韧性的主要元素,能显著提高钢淬透性,成本十分低廉,是钢中的主要添加元素。当C含量较低时,较高的Mn含量可有效提高钢的淬透性,通过组织细化以及促进贝氏体转变从而提高钢板的强度,同时具有优良的低温韧性。Mn扩大奥氏体区范围,促进晶粒增大,故需复合添加细化晶粒元素Nb、V、Ti,以促进晶粒细化、改善钢材疲劳性能,但Mn在钢水凝固过程中容易发生偏析,加重铸坯中心部位的偏析与疏松,导致超高强度钢板低温韧性低下和焊接接头出现裂纹,需通过优化连铸工艺和加热工艺进行改善。本发明Mn的含量选择在1.75%~2.50%,0.08≤(Nb+V+Ti)/Mn≤0.12。
P:P在钢中固溶强化作用强,作为合金元素加入低合金结构钢中,能提高其强度和钢的耐大气腐蚀性能,其含量≥0.02%时可显著提高耐腐蚀性能,但其含量过大时会给母材的低温韧性和焊接热影响区韧性造成不利影响,所以其含量应尽可能地控制在合理范围。本发明P含量控制在0.022%~0.026%。
S:S在钢中偏析严重,恶化钢的质量。S是夹杂物形成元素,形成FeS、MnS等夹杂从而使钢材延性降低,且夹杂物附近会成为腐蚀的发源地,不利于钢板的耐腐蚀性能,且FeS因熔点低易在晶界熔化,削弱了晶粒间的结合力,导致钢的热脆,应加入一定的Mn元素,可其形成熔点较高且具有变形能力的MnS。因此,本发明S含量应≤0.008%。
Co:Co在钢中主要起固溶强化作用,改善钢的抗氧化性和耐腐蚀的能力,Co能增加Fe原子之间的相互作用,降低Cr原子形成团簇的临界浓度,进而提高Cr原子团簇稳定性,当Co与Cr原子同时作用于钢中,其表面形成平滑的钝化膜,具有较高的结构稳定性,可以很好地保护基体,因而具有优异的耐蚀性能。Co通过促进更多的(Ti、Al)Ni3沉淀成核硬化,提高强度和韧性,Co的加入对Ni、Ti的析出比例影响不大,但是可以减小析出相的尺寸,Co增加了Ni3Ti的形核率,同时增加析出相的数量密度,即Co可以使析出相的分布更加弥散,提高钢的抗疲劳性能,增强析出相的析出强化效应。本发明Co含量控制在8%~12%,12Cr/Co≥2.2。
Mo:在调质钢中,Mo能使较大断面的零件淬深、淬透,提高钢的抗回火性或回火稳定性,使零件可以在较高温度下回火,从而更有效地消除(或降低)残余应力,提高塑性。Mo能提高对有机酸(如蚁酸、醋酸、草酸等)以及过氧化氢、硫酸、亚硫酸、硫酸盐、酸性染料、漂白粉液等的抗蚀性,Mo的加入,防止氯离子的存在所产生的点腐蚀倾向,可提高Cr、Ni钢的抗晶间腐蚀能力,但过高的Mo会使钢材脆化,强度和塑性降低,韧性恶化。故本发明Mo含量控制在0.50%~0.80%。
Cr:Cr能提高钢的强度和硬度。Cr是铁素体形成元素,有助于提高钢中铁素体含量从而提高钢的低温韧性。Cr是提高钢的耐腐蚀性能元素,但是单独添加Cr有时会降低耐腐蚀性能,甚至比普通碳钢的耐蚀性还差,需要和其他耐腐蚀的合金元素配合使用,如Cu、P、Co等,其耐腐蚀性能就会显著提高。本发明Cr含量控制在2.0%~2.4%,3.5≤(Cu+Co)/Cr≤5.5。
Ni:Ni在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。Ni可以提高钢对疲劳的抗力和减小钢对缺口的敏感性,因此,Ni能提高钢材的疲劳性能。Ni不形成碳化物,能够通过形成简单的置换固溶体强化铁素体,并有降低钢材韧脆转变温度、提高钢材低温韧性的作用,一定的Ni含量可以保证钢板在具有足够的淬透性、板厚方向性能均匀的同时,确保钢板的强韧性匹配及低温韧性。钢中加Ni还可以降低含Cu钢的铜脆现象,减轻热轧过程的晶间开裂,提高钢板的耐大气腐蚀性,Ni与Cr配合能显著提高钢的耐腐蚀性。本发明Ni含量控制在8.0%~10.0%,3.2≤Ni/Cr≤4.5,Ni/Cu≥13。
Cu:Cu是耐腐蚀钢中最主要、最普遍使用的合金元素。Cu能起到活化阴极的作用,可促进钢阳极钝化减缓腐蚀,钢在腐蚀过程中表面会形成一层富铜相,在钢的表面腐蚀层与富铜层之间有致密、附着性强的中间层,其能进一步缓解钢的腐蚀,特别是和P配合使用时可显著提高抗海洋大气腐蚀和抗海水腐蚀的性能。Cu、Ni的复合添加除了降低含铜钢的铜脆现象、减轻热轧过程的晶间开裂作用之外,更重要的是Cu、Ni均为奥氏体稳定化元素,Cu、Ni复合添加可以大幅度降低Ar3,提高奥氏体向铁素体相变的驱动力,同时铜可使碳氮化铌高温应变诱导析出加速、再结晶停止温度升高,有利于进行非再结晶区控制轧制而细化相转变产物,提高材料的抗疲劳性能。本发明Cu含量控制在0.58%~0.62%。
Nb:Nb是控轧控冷钢中的重要元素,Nb是强碳化物形成元素,与C、N形成的NbC、NbN二相粒子是控轧控冷钢中的重要元素,可有效细化晶粒,从而能够同时提高强度和低温冲击韧性。Nb和Mn的复合添加可有效抑制轧制过程中奥氏体的回复、再结晶等过程,一方面可提高奥氏体再结晶温度,从而提高轧制温度,减轻轧制机组负荷;另一方面可有效细化钢板的相转变组织,从而能够同时提高强度和低温冲击韧性,可以防止氧化介质对钢的晶间腐蚀。Nb可以提高钢中稀土的固溶量,从而提高钢的耐腐蚀性能。本发明Nb含量控制在0.03%~0.04%,36Nb/Mn≥0.5。
V:V与O、N都有很大的亲和力,是强碳化物形成元素。一般VC的弥散度很高,且极稳定,所以它利于脱氧、脱气得到致密细晶组织,提高钢材塑性、韧性及强度,其冲击性能和疲劳强度都较无钒钢高,在高温及低温(<0℃)均有高强度和高韧性。VC的高度分散阻止焊缝晶粒粗大,改善了钢的可焊性能,但加热到VC熔解温度后即会引起钢晶强烈长大,当在高温溶入固溶体时,增加淬透性,反之,如以碳化物形式存在时,降低淬透性。V增加淬火钢的回火稳定性,并产生二次硬化效应。V可以提高钢中稀土的固溶量,从而提高钢的耐腐蚀性能。本发明V含量控制在0.09%~0.15%。
Ti:Ti和N、O、C都有极强的亲和力,与S的亲和力比Fe强,因此,它是一种良好的脱氧去气剂和固定N和C的有效元素。Ti是强碳氮化物形成元素,微量的Ti可与钢中N结合形成TiN,阻止均热时奥氏体晶粒的长大,亦可在焊接热影响区中阻止奥氏体晶粒的长大,从而改善焊接性,TiC、TiN结合力强、稳定、不易分解,在钢中只有加热到1000℃以上才能缓慢地溶入固溶体中,能显著控制焊接热影响区晶粒的长大,提高材料的焊接性能,因此,Ti固定了N和S并形成TiN,可使钢的塑性和冲击韧性得到显著改善。Ti可以提高钢中稀土的固溶量,从而提高钢的耐腐蚀性能,但Ti与N、O有很大的亲和力而极易形成TiN和TiO2,钢锭在较低温度时,会形成较多的非金属夹杂和皮下多孔等缺陷,因此含钛钢要控制O含量。本发明Ti含量控制在0.045%~0.055%。
N:N和C一样可固溶于Fe,形成间隙式的固溶体,N扩大钢的奥氏体相区,是一种强奥氏体形成元素,在一定限度内可代替一部分Ni。渗入钢表面的N与Nb、Al、V、Ti等元素可化合成极稳定的氮化物,进而改善钢材耐蚀性能,但钢中残留N含量过高会导致宏观组织疏松或形成气孔,故含氮钢中需加入一定的Al形成稳定的AlN,以避免在凝固时产生氮逸出形成气孔等缺陷。故本发明中N含量控制在0.013%~0.014%,(Nb+V+Ti+Als)/N≥15。
Al:Al主要用来脱氧和细化晶粒,Al与N或O生成有效的细小弥散物而抑制钢加热时的晶粒长大,在钢冷却时对奥氏体分解起促进作用,进而改善钢的淬透性,还作为再结晶的形核质点,促进铁素体形核并细化晶粒,提高钢的抗疲劳性能。AlN本身在加热时具有高稳定性,因而可提高钢的热稳定性,有利于减弱钢的过热倾向,可改善钢的抗氧化性。Al通过N的较低温扩散(氮化)而生成有效的表面硬化层,提高钢的抗氧化性和耐蚀性,用Al脱氧时酌情加一定量的Si,能显著提高Al的脱氧性,但如果Al用量过多,会使钢产生反常组织和石墨化倾向。故本发明Als含量控制0.035%~0.045%。
Sb:奥氏体温度下钢中的Sb在MnS夹杂物处及沿原奥氏体晶界处析出,从而抑制MnS夹杂物在晶界上富集析出,Sb还可以使二次再结晶晶粒尺寸细化,使钢的组织得到细化并提高韧性,从而提高钢材的抗疲劳性和耐腐蚀性能。Sb有助于改善材料的耐蚀性,在钢中单独添加和复合添加Sb均显著提高了材料的耐蚀性能,Sb通过钢表面形成了Sb2O5耐蚀性氧化膜,有效阻止了基体与腐蚀介质的相互作用,抑制了钢在腐蚀介质中的腐蚀;Sb经水化作用后得到的Sb3+在阳极微区形成的沉淀物填充腐蚀裂纹或空洞,提高阻挡侵蚀性Cl-渗透的能力;Sb还可以通过在Cl-环境介质下的水合作用抑制Fe3+水解产生H+的过程,改善了腐蚀微区pH值,缓解了阳极溶解过程。Sb作为缓蚀剂改变了阴阳极反应过程,能大幅改善钢材的耐海洋环境腐蚀性。本发明Sb含量控制在0.03%~0.05%。
RE:稀土(RE)原子性质活泼,结合力较强,将RE添加在钢中可以起到改善凝固组织、改变固态相变组织、形成无害化低熔点夹杂物、通过偏聚强化界面、钝化表面锈层等作用。RE可以提高耐候钢的自腐蚀电位、极化电阻,从而抑制了阳极反应,使整个电化学反应的阻力增大,使得钢的腐蚀速率显著降低;RE通过扩散机制富集在晶界,抑制夹杂物在晶界的偏聚,提高钢材的低温性能和耐腐蚀性能;RE加入含P钢中可减少宏观偏析,使P在晶界和铁素体界面上的偏聚减少,使P在钢中的分布更加合理,从而显著提高钢的韧性、耐腐蚀性能、抗疲劳性能等,但稀土属于稀缺资源,要控制其加入量。本发明的RE含量控制在0.03%~0.05%,(Nb+V+Ti)/RE≥4.2,RE/P≥1.10。
B:B对晶界具有强化作用,能使沿晶界的析出物降低,改善了晶界状态,添加B元素在确保钢板淬透性的同时,不损害钢板的焊接性、HAZ韧性及板坯表面质量,显著地提高了钢的淬透性。Nb、B有强烈的相互作用,联合加入可以使钢的再结晶温度升高到950℃以上,同时,Ti和B的协同作用对于提高材料的冲击韧性至关重要,利用Ti固定钢中的N,使B固溶在钢中。本发明B含量控制在0.0008%~0.001%。
以上是添加各种元素的含量范围以及作用,本发明生产高性能抗疲劳钢板的制造方法包括:
1.按照上述成分对钢进行冶炼,工艺包括:
(1)在转炉冶炼时,调整C、Si、Mn、P、S等元素的含量,使其含量在本发明范围内,冶炼过程中先将铁水进行脱硫预处理,脱硫后铁水中S≤0.0025%,采用炉顶底复合吹炼工艺,转炉出钢温度为1630~1650℃,之后进行喂Si-Ca线处理,Ca含量控制在0.0015%至0.0025%之间。
(2)将钢水进行精炼,在LF炉中真空处理结束前7~9min向LF炉中加入20%稀土合金1.95~3.25kg/吨钢,再进行吹氩5~10min;然后进行RH处理,RH处理时间30~35min,RH处理时全程吹氮,控制钢中[H]≤1.0ppm,[O]≤20ppm,搬出前净循环时间6~10min。
(3)在RH处理结束前加入Sb元素,保证加入量为目标控制量的1.2~1.3倍,以保证其终点含量能控制在目标范围内。
2.将步骤1所得钢水铸造成所需的连铸坯,为了控制连铸坯中等轴晶的含量,中间包过热度20~30℃,较低的过热度可以降低钢水凝固时间,且可以减少铸坯中心C、Mn等元素偏析,减少铸坯疏松、缩孔等缺陷,保证了钢板Z向性能和抗疲劳性能;采用全程保护浇注,连铸坯拉坯速度控制在0.8~1.2m/min,二冷水比水量0.80~1.0m3/t,使连铸坯等轴晶比例>30.0%,凝固末端采用电磁搅拌,使钢液搅拌均匀后尽快实现高强高密凝固,在连铸过程中采用重压下,压下量15.0~20.0mm。
3.为了控制连铸坯晶粒度,对连铸坯进行快速冷却,开冷温度950~1000℃,冷却速度9.0~12.0℃/s,冷却至720~750℃后进入缓冷坑缓冷,为了减少连铸坯的内应力,连铸坯以3.0~10.0℃/h冷却速度冷却至150℃以下。
4.将步骤3所得连铸坯送入加热炉进行加热。加热采用分段加热工艺,在炉温600~650℃时入炉,保温2.0~3.0h,释放铸坯的内应力;950℃以下采用慢速加热工艺,以进一步释放连铸坯冷却和重压下过程中造成的内应力,并防止过快升温带来的温度应力,热速度控制在6~8℃/min,加热至950℃保温30~40min;950℃以上采用快速升温、适当延长保温时间的工艺,在防止奥氏体晶粒粗化的同时,使铸坯中合金元素充分扩散溶解,进一步降低元素偏析,加热速度控制在12~20℃/min,加热至1200℃~1220℃进行均温,保温时间2.0~4.0h。
5.将铸坯经二阶段轧制成成品钢板,第一阶段为了充分破碎连铸坯的柱状晶,采用高温慢轧、大压下量的工艺,铸坯出炉经除P后直接进行轧制,轧制速度0.80~1.00m/s,前三道次每道次压下量≥35mm,轧制过程中每道次间采用轧机冷却水对坯料进行冷却,终轧温度1000~1030℃,待温坯料厚度为1.5~2.0倍成品厚度,为了抑制中间坯晶粒的长大,对待温坯料采用喷水冷却,冷却速度8.0~10.0℃/s,冷却至第二阶段开轧温度以上15~25℃;第二阶段开轧温度880~900℃,轧制速度1.2~1.6m/s,终轧温度810~840℃,然后空冷至室温。
6.轧后钢板进行两次淬火+回火热处理,其中一次淬火温度为870~900℃,保温时间1.2~1.5min/mm,二次淬火温度为840~860℃,保温时间1.5~2.0min/mm,回火温度为540~580℃,保温时间2.5~3.5min/mm。其中两次淬火的作用如下:(1)初次淬火只能使钢材表面达到一定硬度,而通过再次加热处理,钢材内部也能达到相同的硬度水平,这使得钢材具有更好的耐磨性和抗拉强度,提高了产品的质量;(2)在初次淬火后,钢材内部会产生大量残余应力,在使用过程中容易出现变形或裂纹,而通过二次淬火可以消除这些残余应力,改善钢材的组织结构,使其更加均匀致密,这不仅提高了产品的使用寿命,还减少了因应力产生的不良影响;(3)二次淬火可以有效控制钢材内部组织结构和性能的一致性,保证产品质量的稳定性;(4)通过二次淬火,钢材内部会形成更细小的晶粒,从而增加了钢材的晶界面积,从而改善钢材的低温韧性。
本发明采用低碳和较高锰含量设计,控制复合添加合金元素范围0.08≤(Nb+V+Ti)/Mn≤0.12,2.5≤Si/Al≤7.0,3.5≤(Cu+Co)/Cr≤5.5,12Cr/Co≥2.2,3.2≤Ni/Cr≤4.5,36Nb/Mn≥0.5,(Nb+V+Ti+Als)/N≥15,Ni/Cu≥13,(Nb+V+Ti)/RE≥4.2,RE/P≥1.10,提高钢强度的同时,保证了钢板具有优异的低温韧性、耐腐蚀性能及抗疲劳性能。通过优化连铸工艺控制元素偏析对钢板疲劳性能和低温性能的影响,加热采用慢速长时的分段加热工艺,轧制采用高温慢速大压下、未结晶区轧制两阶段工艺,配合后续的两次淬火+回火热处理工艺。依靠细晶强化、位错强化、固溶强化和第二相强化保障钢板的强度;依靠晶粒细化保障钢板良好的低温韧性;依靠Cr、Ni、Co等元素形成的氧化物保障钢板具有良好的耐腐蚀性能;通过细小弥散的二相粒子控制和元素偏析控制提高钢板的抗疲劳性能;通过复合添加少量Sb和RE、P元素,降低P元素的偏聚,进一步提高钢板的耐腐蚀性能。
1.提出一种复合添加Mo、Co、Ni、Cr元素,钢板具有较好的综合力学性能:屈服强度1080~1120MPa、伸长率≥18%、-60℃冲击功≥150J;
2.提出一种复合添加少量Sb和RE、P元素,提高钢板的耐蚀性能,其耐海洋大气腐蚀速率<0.10mm/a;
3.钢板具有较好的抗疲劳性能,在峰值应力为560MPa载荷下,疲劳寿命大于200万次;
4.可生产的厚度规格范围大,最大厚度可达到100mm。
具体实施方式
按照上述的化学成分及生产工艺,本发明实际熔炼成分如表1,本发明的实际工艺参数如表2~6,实物性能如表7。
表1熔炼成分,Wt%
表2炼钢工艺参数
表3连铸工艺参数
表4加热工艺参数
表5轧制工艺参数
表6热处理工艺
表7实物性能
从表7中可以看出,本发明实施例钢板厚度25~100mm的屈服强度在1082~1118MPa,均达到设计强度1000MPa以上,延伸率18.5%~22.5%,-60℃冲击功在152~215J,说明各实施例钢的强度和韧性不仅满足设计要求,还有一定富裕量。利用Instron8802疲劳试验机在常规环境下进行疲劳性能测试,加载方式为拉-压疲劳,应力比Rs=-1,试验频率20Hz,获得峰值应力560MPa载荷下疲劳寿命次数大于200万次。按照GBT19746-2005规定的试验方法,对发明钢进行168小时周期浸润快速腐蚀评价试验,采用失重法对发明钢进行耐腐蚀性能评价,并换算成年平均腐蚀速率为0.085~0.096mm/a。
在此明确,所列举的实施例旨在阐释本发明的技术构思和主要特征,并非对发明的限定性描述。任何不偏离本发明本质的等效替代或改进,均应视为包含在本发明的保护范围内。

Claims (7)

1.一种GPa级超高强抗疲劳海洋工程用钢,其特征在于,钢板化学成分的含量为,C:0.02%~0.07%、Si:0.10%~0.25%、Mn:1.75%~2.50%、P:0.022%~0.026%、S:≤0.008%、Nb:0.03%~0.04%、V:0.09%~0.15%、Ti:0.045%~0.055%、Mo:0.50%~0.80%、Cr:2.00%~2.40%、Ni:8.0%~10.0%、Co:8.0%~12.0%、Als:0.035%~0.045%、N:0.013%~0.014%、Cu:0.58%~0.62%、Sb:0.03%~0.05%、RE:0.03%~0.05%、B:0.0008%~0.001%,其中0.08≤(Nb+V+Ti)/Mn≤0.12、2.5≤Si/Al≤7.0、3.5≤(Cu+Co)/Cr≤5.5、12Cr/Co≥2.2、3.2≤Ni/Cr≤4.5、36Nb/Mn≥0.5、(Nb+V+Ti+Als)/N≥15、Ni/Cu≥13、(Nb+V+Ti)/RE≥4.2、RE/P≥1.10,其余为Fe以及不可避免的杂质。
2.根据权利要求1所述的GPa级超高强抗疲劳海洋工程用钢,其特征在于,成品钢板最大厚度可达到100mm。
3.根据权利要求1所述的GPa级超高强抗疲劳海洋工程用钢,其特征在于,钢的屈服强度在1080~1120MPa之间,伸长率≥18%,峰值应力为560MPa载荷下,疲劳寿命大于200万次,-60℃冲击功≥150J。
4.根据权利要求1所述的GPa级超高强抗疲劳海洋工程用钢,其特征在于,耐海洋大气腐蚀速率<0.10mm/a。
5.一种权利要求1~4任一项所述的GPa级超高强抗疲劳海洋工程用钢的生产方法,包括冶炼、板坯连铸、铸坯快速冷却、铸坯加热、轧制、两次淬火和回火热处理,其特征在于,连铸坯拉坯速度控制在0.8~1.2m/min,二冷水比水量0.80~1.0m3/t,压下量为15.0~20.0mm;连铸坯快速冷却开冷温度为950~1000℃,冷却速度9.0~12.0℃/s,冷却至720~750℃后进入缓冷坑缓冷,再以3.0~10.0℃/h冷却速度冷却至150℃以下;铸坯加热采用分段加热工艺,炉温600~650℃时入炉,保温2.0~3.0h,950℃以下采用慢速加热工艺,热速度控制在6~8℃/min,加热至950℃保温30~40min,950℃以上采用快速升温、适当延长保温时间的工艺,加热速度控制在12~20℃/min,加热至1200~1220℃进行均温,保温时间2.0~4.0h;铸坯经二阶段轧制成成品钢板,第一阶段采用高温慢轧、大压下量的工艺,轧制速度0.80~1.00m/s,前三道次每道次压下量≥35mm,轧制过程中每道次间采用轧机冷却水进行冷却,终轧温度1000~1030℃,待温坯料厚度为1.5~2.0倍成品厚度,冷却速度8.0~10.0℃/s,冷却至第二阶段开轧温度以上15~25℃,第二阶段开轧温度880~900℃,轧制速度1.2~1.6m/s,终轧温度810~840℃,然后空冷至室温。
6.根据权利要求5所述的GPa级超高强抗疲劳海洋工程用钢的生产方法,其特征在于,冶炼过程中,在LF炉中真空处理结束前7~9min向LF炉中加入20%稀土合金1.95~3.25kg/吨钢,再进行吹氩5~10min;然后进行RH处理,RH处理时间30~35min,RH处理时全程吹氮,控制钢中[H]≤1.0ppm,[O]≤20ppm,搬出前净循环时间6~10min。在RH处理结束前加入Sb元素,保证加入量为目标控制量的1.2~1.3倍。
7.根据权利要求5所述的GPa级超高强抗疲劳海洋工程用钢的生产方法,轧制后钢板进行两次淬火及回火热处理,一次淬火温度为870~900℃,保温时间1.2~1.5min/mm,二次淬火温度为840~860℃,保温时间1.5~2.0min/mm,回火温度为540~580℃,保温时间2.5~3.5min/mm。
CN202411567078.1A 2024-11-05 2024-11-05 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法 Pending CN119433351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411567078.1A CN119433351A (zh) 2024-11-05 2024-11-05 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411567078.1A CN119433351A (zh) 2024-11-05 2024-11-05 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法

Publications (1)

Publication Number Publication Date
CN119433351A true CN119433351A (zh) 2025-02-14

Family

ID=94507087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411567078.1A Pending CN119433351A (zh) 2024-11-05 2024-11-05 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法

Country Status (1)

Country Link
CN (1) CN119433351A (zh)

Similar Documents

Publication Publication Date Title
CN109136737A (zh) 一种抗拉强度1100MPa级超高强韧钢及其制造方法
CN106319380A (zh) 一种低压缩比690MPa级特厚钢板及其生产方法
CN102888560B (zh) 一种大厚度海洋工程用调质高强度钢板及其生产方法
JP2025523544A (ja) 厚さ80mmの690MPaグレードの超高強度・靭性を有する海洋工業用の鋼板及びその製造方法
CN106282831A (zh) 一种高强度集装箱用耐大气腐蚀钢及其制造方法
CN108624809A (zh) 优良的耐海水腐蚀、抗疲劳性能及抗环境脆性的超高强度钢板及其制造方法
CN109881094A (zh) 低温冲击性优良的屈服强度≥480MPa压力容器钢及生产方法
CN110106445B (zh) 一种用于海洋平台铸造节点高强度高低温韧性用钢及其制备方法
CN119411031A (zh) 一种心部低温韧性优良的低屈强比超厚海工钢及其制造方法
CN115572905B (zh) 一种690MPa级耐回火低温调质钢及其制造方法
CN116043128A (zh) 一种460e级特厚钢板及其生产方法
CN115287530A (zh) 高焊接性能700MPa级稀土高强结构钢及其生产方法
CN119433351A (zh) 一种GPa级超高强抗疲劳海洋工程用钢及其生产方法
CN119433352A (zh) 一种1200MPa级高性能耐腐蚀海工钢及其生产方法
CN113604736A (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN117305710B (zh) 一种850MPa级海洋工程用高强耐蚀钢板及其生产方法
CN119464935A (zh) 一种超高强高韧性海洋工程用钢及其生产方法
CN117385278B (zh) 一种700MPa级海洋工程用高强耐蚀钢板及其生产方法
CN117363981B (zh) 一种560MPa级海洋工程用高强耐蚀钢板及其生产方法
CN119571193A (zh) 一种高性能抗疲劳海洋工程用钢及其生产方法
CN118979195B (zh) 一种低屈强比高强韧海工钢及其制备方法
CN119464933A (zh) 一种高强特厚海洋工程用钢及其生产方法
CN115386802B (zh) 一种10.9级大规格风电螺栓用非调质钢及其生产方法
CN114774804B (zh) 一种600hb级热轧低成本耐磨钢板及其制造方法
CN115838902B (zh) 一种tmcp工艺特厚钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination