[go: up one dir, main page]

CN118956908A - 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用 - Google Patents

一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用 Download PDF

Info

Publication number
CN118956908A
CN118956908A CN202411253661.5A CN202411253661A CN118956908A CN 118956908 A CN118956908 A CN 118956908A CN 202411253661 A CN202411253661 A CN 202411253661A CN 118956908 A CN118956908 A CN 118956908A
Authority
CN
China
Prior art keywords
nbip1
gene
rice
leaf angle
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202411253661.5A
Other languages
English (en)
Inventor
蒋志敏
胡斌
储成才
王静弛
黄鸿声
吴灿伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202411253661.5A priority Critical patent/CN118956908A/zh
Publication of CN118956908A publication Critical patent/CN118956908A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02019Ubiquitin-protein ligase (6.3.2.19), i.e. ubiquitin-conjugating enzyme

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及植物基因工程领域,公开了一种RING‑H2型E3泛素连接酶NBIP1基因及其在介导磷调控水稻叶夹角方面的应用,NBIP1基因转录受磷诱导。NBIP1基因的核苷酸序列如SEQ ID NO:1所示,该基因的CDS序列如SEQ ID NO:2所示,该基因编码的蛋白质的氨基酸序列如SEQ ID NO:3所示。NBIP1正向调控水稻叶夹角,敲除NBIP1导致水稻叶夹角变小,NBIP1过量表达后水稻叶夹角增大。水稻株型影响其最终产量,叶夹角是调控水稻株型的一个重要因素。本发明为通过分子水平调控水稻叶夹角,选育理想株型水稻提供理论依据。

Description

一种RING-H2型E3泛素连接酶NBIP1基因及其在介导磷调控水 稻叶夹角方面的应用
技术领域
本发明涉及植物基因工程技术领域,特别涉及一种RING-H2型E3泛素连接酶NBIP1基因及其在介导磷调控水稻叶夹角方面的应用。
背景技术
随着人口增长、可耕作土地面积减少,提高单位面积作物产量对于世界粮食安全至关重要。水稻作为主要粮食作物之一,养活世界上一半以上的人口。水稻产量是一个复杂的性状,主要由有效分蘖数、每穗粒数和千粒重三个因素决定。此外,株型对水稻产量也有重要影响。水稻株型主要由株高、分蘖角度,叶夹角等因素决定,其中叶夹角与种植密度有关,叶夹角直立使得更多的光透过冠层,可以提高叶面指数和光合效率,利于密植。因此,筛选调控水稻叶夹角的遗传位点对于培育叶夹角小和耐密植的作物品种具有重要意义。
磷是植物生长发育过程中必须的大量矿质营养元素之一,施加磷肥能够促进植物生长以及提高作物产量。但施加磷肥之后会使得水稻叶夹角增大,不利于密植。因此,鉴定介导磷调控叶夹角的关键因子,对于实现磷肥的高效利用和密植增产具有重要意义。
发明内容
本发明的目的在于提供一个介导磷调控水稻叶夹角的基因NBIP1的基因工程应用,在高浓度磷条件下该基因表达量增加,使水稻叶夹角增大。
本发明的目的可通过以下技术方案实现:
一种RING-H2型E3泛素连接酶NBIP1基因,其特征在于,所述基因的核苷酸序列如SEQ ID NO.1所示。
进一步地,RING-H2型E3泛素连接酶NBIP1基因编码的蛋白质的氨基酸序列如SEQID NO.3所示,NBIP1基因编码的蛋白用于调控水稻叶夹角。
一种含有上述RING-H2型E3泛素连接酶NBIP1基因的重组表达载体。
RING-H2型E3泛素连接酶NBIP1基因在介导磷调控水稻叶夹角方面的应用。
进一步地,NBIP1基因在转录水平上受高浓度磷酸盐诱导表达,低浓度磷酸盐抑制其表达。
进一步地,上调NBIP1基因的表达量能增大转基因水稻植株的叶夹角,而敲除NBIP1基因的水稻植株则表现为叶夹角变小,叶片直立,水稻RING-H2型E3泛素连接酶NBIP1正向调控水稻叶夹角。
进一步地,将上调水稻RING-H2型E3泛素连接酶NBIP1基因,以及使用CRISPER/Cas9敲除NBIP1基因的载体通过农杆菌转入水稻愈伤组织中,培养获得NBIP1表达上调的植株和基因敲除突变体。
本发明的有益效果:
(1)本发明首次克隆出RING-H2型E3泛素连接酶NBIP1基因,该基因正向调控水稻叶夹角。通过构建NBIP1基因过表达材料发现,与野生型水稻(中花11)相比,NBIP1基因过表达的植株叶夹角显著增大。
(2)本发明通过构建NBIP1敲除材料发现,与野生型水稻(中花11)相比,敲除NBIP1基因的植株叶夹角显著小于野生型。
(3)本发明通过比较NBIP1基因在不同磷浓度下的表达发现,高浓度磷会激活NBIP1基因在叶枕部位的转录。
(4)本发明首次将RING-H2型E3泛素连接酶NBIP1基因应用到水稻叶夹角调节,有助于理解磷调控水稻叶夹角的机制,为理想株型的开发和改良奠定基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为NBIP1过量表达增大水稻叶夹角的表型图。其中,图1的A为NBIP1过量表达株系中NBIP1的表达量;图1的B为田间培养1.5个月的NBIP1过量表达株系的植株照片。
图2为NBIP1敲除株系降低水稻叶夹角表型图。其中,图2的A为NBIP1敲除株系中NBIP1的突变形式;图2的B为田间培养1.5个月的NBIP1敲除株系植株照片。
图3为本发明实施例中不同浓度磷对NBIP1自身启动子驱动GUS转基因材料中NBIP1基因表达分析;
图4为本发明实施例中NBIP1过量表达材料、敲除材料和野生型材料在高低磷条件下的叶夹角表型。其中,图4的A为野生型、NBIP1敲除株系、NBIP1过量表达株系在低磷条件下的叶夹角表型图;图4的B为野生型、NBIP1敲除株系、NBIP1过量表达株系在低磷条件下的叶夹角大小统计结果;图4的C为野生型、NBIP1敲除株系、NBIP1过量表达株系在正常磷条件下的叶夹角表型图;图4的D为野生型、NBIP1敲除株系、NBIP1过量表达株系在正常磷条件下的叶夹角大小统计结果。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
pYLsgRNA-OsU3质粒和pYLCRISPR/Cas9P35S-H质粒:从刘耀光教授实验室获得。记载于“MaX.,Zhang Q.,Zhu Q.,Liu W.,Chen Y.,Qiu R.,Wang B.et al.(2015)A
robust CRISPR/Cas9 system for convenient high-efficiency multiplexgenome Editing in Monocot andDicot Plants.Mol.Plant,8,1274-1284.”一文,公众可从申请人处获得,仅可用于重复本发明实验使用。
pCAMBIA2391Z质粒:记载于“Hu B.,Wang W.,Ou S.,Tang J.,Li H.,Che R.,Zhang Z.,Chai X.,Wang H.,Wang Y.,et al.(2015).Variation in NRT1.1Bcontributes to nitrate-use divergence between rice subspecies.Nat.Genet.47:834-838.”一文公众可从申请人处获得,仅可用于重复本发明实验。
pCAMBIA1300-221-3×FLAG质粒:记载于“Liu C.,Ou S.,Mao B.,Tang J.,WangW.,Wang H.,Cao S.,MR.,Zhao B.,Xiao G.,Wang X.,Chu C.(2018)Earlyselection ofbZIP73 facilitated adaptation ofjaponica rice to coldclimates.Nat Commun.9,3302.”一文,公众可从申请人处获得,仅可用于重复本发明实验使用。
实施例1NBIP1基因过量表达后能够增大叶夹角
本实施例中所涉及的NBIP1基因来自于水稻(Oryza sativa L.),NBIP1基因的序列如SEQ ID No.1所示,NBIP1基因的CDS序列即编码序列如SEQ ID NO:2所示,CDS序列编码SEQ ID No.3所示的NBIP1蛋白。本实施例将对水稻中NBIP1基因进行过量表达,进而研究其对水稻植株叶片夹角的影响。具体如下:
1.1总RNA的提取
水稻中花11经质量浓度30%NaClO消毒,催芽,自来水培养三天后,换木村无磷或木村正常磷培养两周,取根和地上部分材料,迅速置于液氮中保存,用液氮研磨材料后称取0.1g左右样品至2mL离心管,迅速加入1mL Trizol试剂,充分涡旋混匀,加入0.2mL氯仿,涡旋后离心、吸取上清,加入0.5mL异丙醇,离心后弃上清,加入70%乙醇洗涤沉淀,RNA溶于DEPC水中(体积比为1‰),用质量比为1.0%的琼脂糖凝胶电泳检测RNA质量,并用分光光度计检测总RNA的浓度和纯度,合格后进入下一步骤。
1.2总cDNA合成
每个RNA样品2μg,加入50μmol·L-1Oligo dT18,加1‰DEPC水补足10μL,70℃下水浴5min,冰上放置5min后,依次加入RNase inhibitor 0.5μL和5x RT buffer5μL,10mMdNTPs 2.5μL,M-MLV反转录酶1μL,1‰DEPC水补足25μL,42℃水浴60min后,70℃水浴10min终止反应(Oligo dT18由南京金斯瑞公司合成;反转录试剂盒购自Fermentas公司,Canada)。
1.3NBIP1过量表达载体构建
为了获得NBIP1基因过量表达植株,发明人构建了35S启动子驱动NBIP1基因融合FLAG标签的表达载体(35S:NBIP1-FLAG),用于水稻转化。针对
pCAMBIA1300-221-3×FLAG载体设计包含In-fusion接头序列的引物,引物序列如下:以SEQ ID No.2所示NBIP1基因为模板,用两端分别带有酶切位点XhoI和SalI的引物NBIP1-F和NBIP1-R克隆出NBIP1基因序列,将克隆出的序列连接到pCAMBIA1300-221-3×FLAG载体35S启动子后的XhoI/SalI酶切位点。构建好的载体用内切酶XhoI和SalI进行检测,能够切出约714bp的目的片段,表明目的基因已连接到载体上,并对该质粒进行测序,若NBIP1序列无误,则该质粒为正确的载体。
NBIP1-F:(下划线处为限制性核酸内切酶XhoI的识别序列,加粗序列指示的为In-fusion接头序列)
NBIP1-R:(下划线处为限制性内切酶SalI的识别序列,加粗序列指示的为In-fusion接头序列)
1300-R:AAGACGCGTCCTAGGCTACG
最后通过电击法将35S:NBIP1-FLAG质粒转化至根癌农杆菌EHA105的感受态细胞中,涂在含有卡那霉素和利福平均为50μg·mL-1的YEP固体培养基上生长48h后,挑取阳性菌落,提取质粒,经XhoI和SalI双酶切验证无误后,菌液加入等体积50%甘油于-80℃保存,转基因备用。
1.4NBIP1过量表达植株的鉴定及表型观察
水稻遗传转化采用的是农杆菌介导转化水稻愈伤组织的方法。具体方法如下:挑取含有35S:NBIP1-FLAG质粒的阳性农杆菌单菌落,接种于10mL的YEP液体培养基中(含卡那霉素50mg/L,利福平50mg/L),28℃,200rpm摇床培养2-3天。取4mL菌液,4,000rpm离心3min,倒去上清液,加入少量AAM液体培养基重悬细菌,然后加入20mL AAM培养基(含0.1mM乙酰丁香酮As),28℃,150rpm摇床避光培养1-2h,培养至OD600=0.4左右。挑选生长状态良好、颗粒状水稻ZH11愈伤组织浸入农杆菌培养液中,28℃,150-200rpm,20min。浸润后,将愈伤倒出,用无菌滤纸吸干多余菌液,将愈伤平铺在含多层滤纸的无菌平皿中,超净台上吹干(愈伤分散不结块),然后将愈伤组织转移到NB共培养基上,黑暗条件下培养2-3天。将愈伤转至含30mg/L潮霉素和400mg/L头孢霉素的NB培养基上筛选3-4周(一筛)。将成活的愈伤组织转入二筛培养基(含50mg/L潮霉素和200mg/L头孢霉素的NB培养基)上筛选3周。将抗性愈伤转入分化培养基上(30mg/L潮霉素)进行分化,再生植株在含30mg/L潮霉素的壮苗培养基上生根后(约3-4周)转移至温室中,得到NBIP1过量表达转基因株系。
潮霉素鉴定为阳性的转基因植株,进一步提取叶片总RNA,反转录之后通过实时荧光定量PCR检测NBIP1的表达情况(见图1的A)。NBIP1的实时荧光定量PCR引物为NBIP1-qRT-F/R,内参引物为Actin1-qRT-F/R其序列如下:
NBIP1-qRT-F:CGTGGAAATGGAAGACTTGG
NBIP1-qRT-R:ATTCGCCGCATATGCTACTG
Actin-qRT-F:TCTCAGCACATTCCAGCAGA
Actin-qRT-R:AGCATTCTTGGGTCCGAAGA
将两个NBIP1过量表达株系和野生型ZH11在田间培养1.5个月,观察其叶夹角大小。其表型如图1B所示,NBIP1过量表达株系叶夹角显著大于野生型,说明NBIP1过量表达后使水稻叶夹角增大。
实施例2NBIP1敲除能够抑制水稻叶夹角
本实施例中所涉及的NBIP1基因来自于水稻(Oryza sativa L.),NBIP1基因的序列如SEQ ID No.1所示,NBIP1基因编码SEQ ID No.3所示的NBIP1蛋白。本实施例将运用CRISPER/Cas9技术对水稻NBIP1基因进行敲除,进而研究其对水稻植株叶片夹角的影响。具体如下:
2.1水稻NBIP1敲出载体引物设计
根据CRISPR/Cas9基因编辑技术原理,通过数据库和工具网站分析,分别在NBIP1起始密码子前和外显子内部选取两个NBIP1基因特异性gRNA的靶标序列:CGGAGTATCGATCGATGGATCGG和GCCGCGTTCGTGTCCGTGCTCGG(下划线部分为符合NGG的PAM序列)两个靶序列位点,设计两对靶点引物(F1和R1;F2和R2)。
正向引物F1:ggcaCGGAGTATCGATCGATGGAT
反向引物R1:aaacATCCATCGATCGATACTCCG
正向引物F2:gccgCCGCGTTCGTGTCCGTGCT
反向引物R2:aaacAGCACGGACACGAACGCGG
2.2敲除载体构建
(1)将引物稀释至100μM,各取1μL加至98μL的1×TE buffer中,90℃加热30s,移至室温冷却退火。
(2)用BasI分别酶切pYLsgRNA-OsU3和pYLsgRNA-OsU6a,将回收的载体分别与两个打靶接头连接。
(3)以连接产物为模板,用引物U-F和gRNA-R进行第一轮PCR扩增。
(4)PCR产物稀释20倍后作为模板,分别用B1’/B2、B2’/BL进行PCR扩增,并进行回收。
(5)将pYLCRISPR/Cas9-MH用BasI酶切后回收,与纯化后第二轮PCR产物进行连接。
U-F:CTCCGTTTTACCTGTGGAATCG
gRNA-R:CGGAGGAAAATTCCATCCAC
Uctcg-B1’:TTCAGAggtctcTctcgCACTGGAATCGGCAGCAAAGG
gRctga-B2:AGCGTGggtctcGtcagGGTCCATCCACTCCAAGCTC-3
Uctga-B2’:TTCAGAggtctcTctgaCACTGGAATCGGCAGCAAAGG
gRcggt-BL:AGCGTGggtctcGaccgGGTCCATCCACTCCAAGCTC
(6)将步骤(5)的连接产物转入DH5α感受态细胞中,通过测序确定阳性克隆。
(7)挑取阳性克隆至10mL LB液体培养基中,过夜培养后提取质粒。
2.3转化水稻
以ZH11愈伤组织为受体,采用农杆菌介导的转化方法将2.2构建的NBIP1敲除载体转入愈伤组织。具体转化方法参照实施例1中的步骤1.4。
2.4NBIP1敲除株系鉴定及表型观察
在包含两个靶序列的两端、200bp左右的位置设计引物CR-NBIP1-F/R。提取上述筛选到的NBIP1敲除转基因株系的基因组DNA,以该DNA为模板、用CR-NBIP1-F/R引物进行PCR扩增。将PCR产物进行测序,鉴定到两个NBIP1敲除突变体nbip1-1和nbip1-2,测序结果见图2的A。
将两个NBIP1敲除突变体和野生型ZH11在田间培养1.5个月,观察其叶夹角大小。其表型如图2B所示,NBIP1敲除突变体叶夹角明显小于野生型,说明NBIP1失活后使水稻叶夹角变小。
实施例3NBIP1表达分析
发明人通过构建NBIP1自身启动子驱动GUS报告基因的转基因株系,观察不同磷浓度条件下叶枕部位GUS染色情况,分析磷对NBIP1转录水平的调控,具体过程如下:
3.1构建NBIP1pro-GUS载体
参考载体pCAMBIA2391Z的多克隆位点设计包含In-Fusion接头的引物,引物序列如下:
NBIP1pro-GUS-F:TGATTACGCCAAGCTTAACCAGCTACCGACCAGATC(下划线指示的序列为HindⅢ酶识别位点序列,加粗字体指示的序列为In-Fusion接头序列);
NBIP1pro-GUS-R:GAATTCCCGGGGATCCGCTTCTCCCTTGGTTTGGTG(双下划线指示的序列为BamHI酶识别位点序列,加粗字体指示的序列为In-Fusion接头序列)。
以水稻ZH11基因组DNA为模板扩增NBIP1启动子(2079bp),所用引物对由NBIP1-GUS-F和NBIP1-GUS-R组成,PCR产物回收后,使用In-Fusion克隆试剂盒将其连入HindⅢ和BamHI酶切线性化后的植物表达载体pCAMBIA2391Z,得到以NBIP1启动子(其序列为序列表序列4)替换pCAMBIA2391Z载体的限制性核酸内切酶HindⅢ和BamHI识别位点间的片段,保持pCAMBIA2391Z载体的其它序列不变的重组表达载体,即NBIP1Pro-GUS载体,命名为pCAMBIA2391Z-NBIP1Pro-GUS。
3.2NBIP1自身启动子驱动GUS报告基因的转基因株系鉴定
将pCAMBIA2391Z-NBIP1Pro-GUS质粒通过农杆菌介导的方法转入水稻ZH11,具体转化方法参照实施例1中1.3的转化方法。将筛选得到的T0代转基因水稻移入温室后,待其返青,然后在每一株苗上取根、叶片、叶枕部,剪成适当大小。将剪好的各个组织浸入GUS染液,抽真空30min,然后放入37℃培养箱中过夜孵育,观察是否出现GUS信号,从而筛选阳性苗。
3.3NBIP1自身启动子驱动GUS报告基因的转基因株系中NBIP1的表达分析
将筛选到的NBIP1自身启动子驱动GUS报告基因表达的转基因株系在低磷(0.018mM KH2PO4)和正常磷(0.18mM KH2PO4)条件下培养2周,取叶枕部位浸入GUS染液,抽真空30min,然后放入37℃培养箱中过夜孵育,观察第二片叶子叶枕部位的染色情况。结果如图3所示,在正常磷培养条件下,NBIP1在叶枕部位的表达量高于低磷条件。
实施例4NBIP1遗传材料苗期表型观察
将创制的NBIP1突变体和过量表达材料及野生型ZH11分别在低磷和正常磷条件下培养两周(三叶一心期),对第二叶叶枕部位进行拍照,用软件Image J测量第二片叶的叶夹角大小。结果如图4所示,与低磷条件下相比,野生型在正常磷条件下叶夹角增大,突变体叶夹角在两种磷条件下变化不明显,而NBIP1过量表达材料叶夹角在正常磷条件下显著增大,说明NBIP1响应环境中的磷浓度、促进叶夹角增大。
从图1可以看出,NBIP1过量表达转基因材料(NBIP1-OE-1、NBIP1-OE-2)与野生型(中花11)相比,株型分散、叶夹角增大。
从图2可以看出,NBIP1敲除株系与野生型(中花11)相比,株型紧凑、叶夹角小。
从图3可以看出,NBIP1自身启动子驱动的GUS报告基因转基因株系在正常浓度磷条件下染色深、在低浓度磷条件下染色较浅,说明正常浓度磷促进NBIP1基因表达。
从图4可以看出,在正常浓度的磷条件下,野生型ZH11的叶夹角增大,NBIP1敲除突变体对变化较小,而NBIP1过量表达株型叶夹角增加更加明显,说明NBIP1是响应磷调控水稻叶夹角的正向调控因子。
综上可知,NBIP1基因通过响应环境中的磷浓度,从而介导磷对水稻叶夹角的调控。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (7)

1.一种RING-H2型E3泛素连接酶NBIP1基因,其特征在于,所述基因的核苷酸序列如SEQID NO.1所示。
2.权利要求1所述的RING-H2型E3泛素连接酶NBIP1基因,其特征在于,RING-H2型E3泛素连接酶NBIP1基因编码的蛋白质的氨基酸序列如SEQ ID NO.3所示。
3.一种含有权利要求1所述的RING-H2型E3泛素连接酶NBIP1基因的重组表达载体。
4.权利要求1所述的RING-H2型E3泛素连接酶NBIP1基因在介导磷调控水稻叶夹角方面的应用。
5.根据权利要求4所述的RING-H2型E3泛素连接酶NBIP1基因在介导磷调控水稻叶夹角方面的应用,其特征在于,NBIP1基因在转录水平上受高浓度磷酸盐诱导表达,低浓度磷酸盐抑制其表达。
6.根据权利要求4所述的RING-H2型E3泛素连接酶NBIP1基因在介导磷调控水稻叶夹角方面的应用,其特征在于,上调NBIP1基因的表达量能增大转基因水稻植株的叶夹角,而敲除NBIP1基因的水稻植株则表现为叶夹角变小,叶片直立。
7.根据权利要求6所述的RING-H2型E3泛素连接酶NBIP1基因在介导磷调控水稻叶夹角方面的应用,其特征在于,将上调水稻RING-H2型E3泛素连接酶NBIP1基因,以及使用CRISPER/Cas9敲除NBIP1基因的载体通过农杆菌转入水稻愈伤组织中,培养获得NBIP1表达上调的植株和基因敲除突变体。
CN202411253661.5A 2024-09-09 2024-09-09 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用 Pending CN118956908A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411253661.5A CN118956908A (zh) 2024-09-09 2024-09-09 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411253661.5A CN118956908A (zh) 2024-09-09 2024-09-09 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用

Publications (1)

Publication Number Publication Date
CN118956908A true CN118956908A (zh) 2024-11-15

Family

ID=93407672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411253661.5A Pending CN118956908A (zh) 2024-09-09 2024-09-09 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用

Country Status (1)

Country Link
CN (1) CN118956908A (zh)

Similar Documents

Publication Publication Date Title
CN103183732B (zh) 一种棉花Gh FPF1蛋白及其编码基因和应用
WO2020221029A1 (zh) 玉米类受体激酶基因ZmRLK7及其应用
CN111118005A (zh) 一种与稻瘟病抗性相关的miRNA、相应的前体与应用
CN114717241A (zh) 一种水稻耐盐相关基因OsMSRFP及其编码蛋白质和应用
CN114457094B (zh) 一种牡丹PoAGL15基因及其氨基酸序列和应用
CN112011547B (zh) 一种控制油菜叶形的主效基因及其应用
CN118207226A (zh) 调控甘蔗适应低钾胁迫的ShCIPK23基因及其应用
CN117604003A (zh) 一个大豆天冬氨酸激酶/高丝氨酸脱氢酶家族基因GmAK-HSDH的应用
CN114891802B (zh) OsDUF6基因及其编码蛋白在水稻耐盐性育种中的应用
WO2022213453A1 (zh) 一种调控植物抗铝性的铝离子受体alr1基因或蛋白的应用
CN113136398B (zh) GsHA24蛋白及其相关生物材料在调控植物耐逆性中的应用
CN118956908A (zh) 一种ring-h2型e3泛素连接酶nbip1基因及其在介导磷调控水稻叶夹角方面的应用
CN112553245B (zh) OsPIL16基因的新用途
CN114085854A (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
CN113881699B (zh) Mac3a和mac3b在植物器官大小调控中的应用
CN115287290B (zh) 组蛋白去甲基化酶基因OsJMJ718及其编码蛋白在调控水稻种子活力中的应用
CN110016479B (zh) 一个紫花苜蓿MsGPF基因
CN117209578B (zh) SlMYB9基因在调控番茄株高中的应用
CN112430590B (zh) 磷酸烯醇式丙酮酸羧化酶在提高再生稻再生率和再生季产量中的应用
CN110194791B (zh) Spl3蛋白在调控植物花序或果柄发育中的用途
CN102453719B (zh) 一种植物双向启动子bigdb1
CN119177254A (zh) OsPTST1基因在提高植物氮素利用效率和增产中的应用
CN118956890A (zh) 调控植物种子发育的薄壳山核桃基因及其编码的蛋白和应用
CN119162236A (zh) SlPRR5基因在调控番茄叶绿素合成和光合效率中的应用
CN112625102A (zh) 水稻抽穗期基因OsPRR73及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination