[go: up one dir, main page]

CN118900614A - Semiconductor refrigeration module and preparation method, refrigeration equipment - Google Patents

Semiconductor refrigeration module and preparation method, refrigeration equipment Download PDF

Info

Publication number
CN118900614A
CN118900614A CN202411399303.5A CN202411399303A CN118900614A CN 118900614 A CN118900614 A CN 118900614A CN 202411399303 A CN202411399303 A CN 202411399303A CN 118900614 A CN118900614 A CN 118900614A
Authority
CN
China
Prior art keywords
semiconductor refrigeration
layer
refrigeration module
preparing
circuit layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202411399303.5A
Other languages
Chinese (zh)
Other versions
CN118900614B (en
Inventor
王春
雷海斌
孙怀远
孙洪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinli Cold Chain Technology Co ltd
Original Assignee
Jiangsu Jinli Cold Chain Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinli Cold Chain Technology Co ltd filed Critical Jiangsu Jinli Cold Chain Technology Co ltd
Priority to CN202411399303.5A priority Critical patent/CN118900614B/en
Publication of CN118900614A publication Critical patent/CN118900614A/en
Application granted granted Critical
Publication of CN118900614B publication Critical patent/CN118900614B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明提供了一种半导体制冷模组及制备方法、制冷设备,方法包括:S1、提供基座;S2、在所述基座的上表面制备绝缘层;S3、根据外部散热装置的热有限元分析结果,在所述绝缘层的上表面制备第一电路层;S4、在第一电路层上通过堆叠式耦合共晶工艺连接热电偶对的冷端;S5、在热电偶对的热端上通过堆叠式耦合共晶工艺连接第二电路层;其中,根据外部散热装置的热有限元分析结果,建立网格,根据热电偶对在网格中位置,建立温度梯度与热电偶对内阻形成对应正比例关系。本发明使每个热电偶对性能发挥到极致,提高整体半导体制冷模组的制冷效率,有效解决热载体热点问题,提高热端解热效果。

The present invention provides a semiconductor refrigeration module and a preparation method and a refrigeration device, the method comprising: S1, providing a base; S2, preparing an insulating layer on the upper surface of the base; S3, preparing a first circuit layer on the upper surface of the insulating layer according to the thermal finite element analysis results of an external heat dissipation device; S4, connecting the cold end of the thermocouple pair on the first circuit layer through a stacked coupling eutectic process; S5, connecting the second circuit layer on the hot end of the thermocouple pair through a stacked coupling eutectic process; wherein, according to the thermal finite element analysis results of the external heat dissipation device, a grid is established, and according to the position of the thermocouple pair in the grid, a corresponding positive proportional relationship is established between the temperature gradient and the internal resistance of the thermocouple pair. The present invention maximizes the performance of each thermocouple pair, improves the refrigeration efficiency of the overall semiconductor refrigeration module, effectively solves the problem of hot spots of the heat carrier, and improves the heat removal effect of the hot end.

Description

半导体制冷模组及制备方法、制冷设备Semiconductor refrigeration module and preparation method, refrigeration equipment

技术领域Technical Field

本发明涉及半导体制冷技术领域,具体地,涉及半导体制冷模组及制备方法、电子设备。The present invention relates to the field of semiconductor refrigeration technology, and in particular to a semiconductor refrigeration module and a preparation method, and electronic equipment.

背景技术Background Art

半导体制冷片的工作运转是用直流电流,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理。一个制冷片,由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连接组成。半导体制冷片的工作原理是:当一块N型半导体材料和一块P型半导体材料连结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定。制冷片内部是由若干电偶联成的热电堆,以达到增强制冷(制热)的效果。The operation of semiconductor refrigeration chip is to use direct current, which can be used for both cooling and heating. By changing the polarity of direct current, cooling or heating can be achieved on the same refrigeration chip. This effect is produced by the principle of thermoelectricity. A refrigeration chip is composed of two ceramic chips, with N-type and P-type semiconductor materials (bismuth telluride) in between. The semiconductor elements are connected in series in the circuit. The working principle of semiconductor refrigeration chip is: when a piece of N-type semiconductor material and a piece of P-type semiconductor material are connected to form an electric couple, after the direct current is connected in this circuit, energy transfer can be generated. The current flows from the N-type element to the joint of the P-type element to absorb heat and become the cold end. The current flows from the P-type element to the joint of the N-type element to release heat and become the hot end. The amount of heat absorption and heat release is determined by the size of the current and the number of element pairs of semiconductor materials N and P. The inside of the refrigeration chip is a thermopile formed by several electric couplings to achieve the effect of enhancing cooling (heating).

然而,对于需要散热的热源来说,其表面的温度分布是不均匀的,各个部位对于散热的需求也因此不同。这导致对于半导体制冷模组的设计制造难度加大,同时,温度不均匀的热源也会导致半导体制冷模组表面的温度分布不均匀,不利于其自身的进一步制冷、散热。现有的散热处理技术还存在成本高,结构复杂的问题,比如采用VC、3DVC。However, for heat sources that need to dissipate heat, the temperature distribution on their surfaces is uneven, and the heat dissipation requirements of different parts are therefore different. This makes the design and manufacturing of semiconductor refrigeration modules more difficult. At the same time, heat sources with uneven temperatures will also cause uneven temperature distribution on the surface of semiconductor refrigeration modules, which is not conducive to further cooling and heat dissipation. Existing heat dissipation processing technologies also have the problems of high cost and complex structure, such as the use of VC and 3DVC.

发明内容Summary of the invention

针对现有技术中的缺陷,本发明的目的是提供一种半导体制冷模组及制备方法、制冷设备。In view of the defects in the prior art, the purpose of the present invention is to provide a semiconductor refrigeration module and a preparation method and refrigeration equipment.

根据本发明提供的一种半导体制冷模组的制备方法,包括步骤:A method for preparing a semiconductor refrigeration module according to the present invention comprises the following steps:

S1、提供基座101;S1, providing a base 101;

S2、在所述基座101的上表面制备绝缘层102;S2, preparing an insulating layer 102 on the upper surface of the base 101;

S3、根据外部散热装置的热有限元分析结果,在所述绝缘层102的上表面制备第一电路层104;S3. According to the thermal finite element analysis result of the external heat sink, a first circuit layer 104 is prepared on the upper surface of the insulating layer 102;

S4、在第一电路层104上通过堆叠式耦合共晶工艺连接热电偶对105的冷端;S4, connecting the cold end of the thermocouple pair 105 on the first circuit layer 104 through a stacked coupling eutectic process;

S5、在热电偶对105的热端上通过堆叠式耦合共晶工艺连接第二电路层106;S5, connecting the second circuit layer 106 to the hot end of the thermocouple pair 105 through a stacked coupling eutectic process;

其中,根据外部散热装置的热有限元分析结果,建立温度梯度与热电偶对内阻形成对应正比例关系,温度越高的区域对应设置的热电偶对105的阻值越高。According to the thermal finite element analysis results of the external heat sink, a corresponding positive proportional relationship between the temperature gradient and the internal resistance of the thermocouple pair is established, and the resistance value of the thermocouple pair 105 corresponding to the higher the temperature area is, the higher the resistance value of the thermocouple pair 105 is.

优选地,所述步骤S2中,通过硬质氧化工艺形成绝缘层102。Preferably, in the step S2, the insulating layer 102 is formed by a hard oxidation process.

优选地,所述步骤S3中,制备第一电路层104的方式包括:Preferably, in step S3, the method of preparing the first circuit layer 104 includes:

在所述绝缘层102的上表面涂布导热绝缘胶形成绝缘增强复合层103,将第一电路层104的电路通过模压工艺制备到母版上,在热压复合工艺下,将母版上的电路通过绝缘增强复合层103固定到绝缘层102。A thermally conductive insulating adhesive is applied on the upper surface of the insulating layer 102 to form an insulating reinforced composite layer 103, and the circuit of the first circuit layer 104 is prepared on the motherboard through a molding process. Under a hot pressing composite process, the circuit on the motherboard is fixed to the insulating layer 102 through the insulating reinforced composite layer 103.

优选地,所述步骤S4中,第二电路层106的电路通过模压工艺制备到母版上,通过堆叠式耦合共晶工艺连接热电偶对105的冷端。Preferably, in step S4, the circuit of the second circuit layer 106 is prepared on the motherboard through a molding process, and connected to the cold end of the thermocouple pair 105 through a stacked coupling eutectic process.

优选地,所述热电偶对105的外表面通过气相沉积丙烯酸树脂材料,形成纳米防水镀膜层。Preferably, the outer surface of the thermocouple pair 105 is coated with a nano-waterproof coating layer by vapor deposition of acrylic resin material.

优选地,在所述步骤S4、步骤S5前先进行等离子清洁、氮气清洁,并在真空环境下执行步骤S4、S5。Preferably, plasma cleaning and nitrogen cleaning are performed before step S4 and step S5, and steps S4 and S5 are performed in a vacuum environment.

优选地,在所述步骤S4、步骤S5中,通过堆叠式耦合共晶工艺,在第一电路层104与热电偶对105的冷端之间、在第二电路层106与热电偶对105的热端之间分别形成共晶层107。Preferably, in step S4 and step S5, a eutectic layer 107 is formed between the first circuit layer 104 and the cold end of the thermocouple pair 105 and between the second circuit layer 106 and the hot end of the thermocouple pair 105 by a stacked coupled eutectic process.

优选地,热电偶对105之间高度相同,不同阻值的热电偶对105之间横截面积不同。Preferably, the thermocouple pairs 105 have the same height, and the thermocouple pairs 105 with different resistance values have different cross-sectional areas.

根据本发明提供的一种半导体制冷模组,采用所述的半导体制冷模组的制备方法得到。A semiconductor refrigeration module provided by the present invention is obtained by adopting the preparation method of the semiconductor refrigeration module.

根据本发明提供的一种制冷设备,包括所述的半导体制冷模组。A refrigeration device provided according to the present invention includes the semiconductor refrigeration module.

与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明在外部散热效果好的位置采用低阻值热电偶对,而在散热效果差的位置采用高阻值热电偶对,使每个热电偶对性能发挥到极致,提高整体半导体制冷模组的制冷效率,有效解决热载体热点问题,提高热端解热效果。1. The present invention adopts a low-resistance thermocouple pair at a location with good external heat dissipation effect, and adopts a high-resistance thermocouple pair at a location with poor heat dissipation effect, so that the performance of each thermocouple pair can be brought into play to the extreme, the cooling efficiency of the overall semiconductor refrigeration module is improved, the hot spot problem of the heat carrier is effectively solved, and the heat removal effect of the hot end is improved.

2、本发明可以实现半导体制冷模组零缺陷共晶,提高其工作寿命和降低其热阻。2. The present invention can realize zero-defect eutectic of semiconductor refrigeration module, improve its service life and reduce its thermal resistance.

3、本发明的半导体制冷模组可以实现防水、防腐蚀、防电子迁移作用,便于进一步改良设计。3. The semiconductor refrigeration module of the present invention can achieve waterproof, anti-corrosion and anti-electron migration effects, which is convenient for further improvement of design.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent from the detailed description of non-limiting embodiments made with reference to the following drawings:

图1为半导体制冷模组的立体图;FIG1 is a perspective view of a semiconductor refrigeration module;

图2为半导体制冷模组的侧视图;FIG2 is a side view of a semiconductor refrigeration module;

图3为半导体制冷系统的立体图;FIG3 is a perspective view of a semiconductor refrigeration system;

图4为半导体制冷模块的立体图;FIG4 is a perspective view of a semiconductor refrigeration module;

图5为真空绝热壳体的立体图;FIG5 is a perspective view of a vacuum insulation housing;

图6为液冷模块的立体图;FIG6 is a perspective view of a liquid cooling module;

图7为喷流换热模块的透视图;FIG7 is a perspective view of a jet heat exchange module;

图8为阶梯散热模块的透视图。FIG. 8 is a perspective view of a stepped heat dissipation module.

具体实施方式DETAILED DESCRIPTION

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention is described in detail below in conjunction with specific embodiments. The following embodiments will help those skilled in the art to further understand the present invention, but are not intended to limit the present invention in any form. It should be noted that, for those of ordinary skill in the art, several changes and improvements can also be made without departing from the concept of the present invention. These all belong to the protection scope of the present invention.

实施例1Example 1

如图1和图2所示,一种半导体制冷模组11的制备方法,包括步骤:As shown in FIG. 1 and FIG. 2 , a method for preparing a semiconductor refrigeration module 11 includes the following steps:

S1、提供基座101。基座101可以为铝基座,采用铝挤压工艺与机械加工合成。S1. Provide a base 101. The base 101 may be an aluminum base, which is synthesized by aluminum extrusion and mechanical processing.

S2、在基座101的上表面通过硬质氧化工艺制备绝缘层102。S2. Prepare an insulating layer 102 on the upper surface of the base 101 by a hard oxidation process.

S3、根据外部散热装置的热有限元分析结果,在绝缘层102的上表面制备第一电路层104。制备第一电路层104的方式包括:在绝缘层102的上表面涂布导热绝缘胶形成绝缘增强复合层103,将第一电路层104的电路通过模压工艺制备到母版上,在热压复合工艺下,将母版上的电路通过绝缘增强复合层103固定到绝缘层102。S3. According to the thermal finite element analysis results of the external heat sink, a first circuit layer 104 is prepared on the upper surface of the insulating layer 102. The method of preparing the first circuit layer 104 includes: applying a thermally conductive insulating adhesive on the upper surface of the insulating layer 102 to form an insulating reinforced composite layer 103, preparing the circuit of the first circuit layer 104 on a motherboard through a molding process, and fixing the circuit on the motherboard to the insulating layer 102 through the insulating reinforced composite layer 103 under a hot pressing composite process.

其中,根据外部散热装置的热有限元分析结果建立网格,根据热电偶对在网格中位置,温度越高的区域对应设置的热电偶对105的阻值越高,建立温度梯度与热电偶对内阻形成对应正比例关系,不同阻值(内阻)的热电偶对105之间横截面积不同。也就是说,第一电路上对应阻值越大的热电偶对105连接位置所需的空间越小,对应阻值越小的热电偶对105连接位置所需的空间越大。Among them, a grid is established according to the results of the thermal finite element analysis of the external heat sink, and according to the position of the thermocouple pair in the grid, the higher the temperature area, the higher the resistance of the corresponding thermocouple pair 105 is set, and a corresponding positive proportional relationship is established between the temperature gradient and the internal resistance of the thermocouple pair, and the cross-sectional areas of thermocouple pairs 105 with different resistance values (internal resistance) are different. In other words, the space required for the connection position of the thermocouple pair 105 with a larger resistance value on the first circuit is smaller, and the space required for the connection position of the thermocouple pair 105 with a smaller resistance value is larger.

S4、在第一电路层104上通过堆叠式耦合共晶工艺连接热电偶对105的冷端。热电偶对105之间高度相同。热电偶对105的外表面通过气相沉积丙烯酸树脂材料,形成纳米防水镀膜层,起到防水、防腐蚀、防电子迁移作用。S4. Connect the cold end of the thermocouple pair 105 on the first circuit layer 104 through a stacked coupling eutectic process. The thermocouple pairs 105 have the same height. The outer surface of the thermocouple pair 105 is vapor-deposited with acrylic resin material to form a nano-waterproof coating layer, which plays a role in waterproofing, corrosion resistance, and electron migration resistance.

S5、在热电偶对105的热端上通过堆叠式耦合共晶工艺连接第二电路层106。其中,第二电路层106的电路同样通过模压工艺制备到母版上,再通过堆叠式耦合共晶工艺连接热电偶对105的冷端。S5. Connect the second circuit layer 106 to the hot end of the thermocouple pair 105 through a stacked coupling eutectic process. The circuit of the second circuit layer 106 is also prepared on the motherboard through a molding process, and then connected to the cold end of the thermocouple pair 105 through a stacked coupling eutectic process.

同理,第二电路上对应阻值越大的热电偶对105连接位置所需的空间越小,对应阻值越小的热电偶对105连接位置所需的空间越大。Similarly, on the second circuit, the space required for the connection position of the thermocouple pair 105 with a larger resistance value is smaller, and the space required for the connection position of the thermocouple pair 105 with a smaller resistance value is larger.

在步骤S4、步骤S5前先进行等离子清洁、氮气清洁,并在真空环境下执行步骤S4、S5。在步骤S4、步骤S5中,通过堆叠式耦合共晶工艺,在第一电路层104与热电偶对105的冷端之间、在第二电路层106与热电偶对105的热端之间会分别形成共晶层107。Plasma cleaning and nitrogen cleaning are performed before step S4 and step S5, and steps S4 and S5 are performed in a vacuum environment. In step S4 and step S5, a eutectic layer 107 is formed between the first circuit layer 104 and the cold end of the thermocouple pair 105 and between the second circuit layer 106 and the hot end of the thermocouple pair 105 through a stacked coupled eutectic process.

实施例2Example 2

如图1和图2所示,一种半导体制冷模组11,采用实施例1的方法制备得到,具体包括:基座101、绝缘层102、第一电路层104、多个热电偶对105和第二电路层106。As shown in FIG. 1 and FIG. 2 , a semiconductor refrigeration module 11 is prepared by the method of Example 1, and specifically comprises: a base 101 , an insulating layer 102 , a first circuit layer 104 , a plurality of thermocouple pairs 105 and a second circuit layer 106 .

绝缘层102连接在基座101的上表面,第一电路层104连接在绝缘层102的上表面,多个热电偶对105的冷端与第一电路层104电连接,第二电路层106与热电偶对105的冷端热端电连接。The insulating layer 102 is connected to the upper surface of the base 101 , the first circuit layer 104 is connected to the upper surface of the insulating layer 102 , the cold ends of the plurality of thermocouple pairs 105 are electrically connected to the first circuit layer 104 , and the second circuit layer 106 is electrically connected to the cold ends and hot ends of the thermocouple pairs 105 .

由于热电偶对105的一端为冷端,用于给所需制冷物体降温,而另一端为热端,会产生热量,因此通常需要其他散热装置对热端进行散热。比如使用液冷设备对冷端所处的半导体散热模组的端面进行降温,由于液体从从一侧流向另一侧,因此会出现一侧因为换热充分而降温效果好,而另一侧因为液体已经换热升温而降温效果差的问题。Since one end of the thermocouple pair 105 is a cold end, used to cool the object to be cooled, and the other end is a hot end, which will generate heat, other heat dissipation devices are usually required to dissipate heat from the hot end. For example, when a liquid cooling device is used to cool the end surface of a semiconductor heat dissipation module where the cold end is located, since the liquid flows from one side to the other, one side will have a good cooling effect due to sufficient heat exchange, while the other side will have a poor cooling effect due to the liquid having been heated up by heat exchange.

针对于该问题,在本申请中,不同位置的热电偶对105的阻值根据外部散热装置的热有限元分析结果进行布置,温度越高的位置对应的热电偶对105的阻值越大,不同阻值的热电偶对105体现在截面大小不同,阻值越大横截面积越小。热电偶对105的阻值由高到底进行渐变式分布,使热电偶对105性能发挥到极致。热电偶对105的表面通过气相沉积丙烯酸树脂材料,形成纳米防水镀膜层,起到防水、防腐蚀、防电子迁移作用。In response to this problem, in the present application, the resistance values of the thermocouple pairs 105 at different positions are arranged according to the thermal finite element analysis results of the external heat sink. The higher the temperature, the greater the resistance value of the corresponding thermocouple pair 105. The thermocouple pairs 105 with different resistance values are reflected in different cross-sectional sizes. The greater the resistance value, the smaller the cross-sectional area. The resistance value of the thermocouple pair 105 is gradually distributed from high to low, so that the performance of the thermocouple pair 105 can be brought into play to the extreme. The surface of the thermocouple pair 105 is formed by vapor deposition of acrylic resin material to form a nano-waterproof coating layer, which plays a role in waterproofing, corrosion resistance, and electron migration resistance.

在其他实施例中,绝缘层102的上表面还设置有绝缘增强复合层103,第一电路层104通过绝缘增强复合层103连接在绝缘层102的上表面。In other embodiments, an insulation-reinforced composite layer 103 is further disposed on the upper surface of the insulation layer 102 , and the first circuit layer 104 is connected to the upper surface of the insulation layer 102 through the insulation-reinforced composite layer 103 .

热电偶对105的两端分别通过共晶工艺与第一电路层104、第二电路层106连接,因此会在热电偶对105的两端与第一电路层104、第二电路层106之间分别形成共晶层107。第一电路层104的厚度是第二电路层106厚度的2倍以上。The two ends of the thermocouple pair 105 are connected to the first circuit layer 104 and the second circuit layer 106 respectively through the eutectic process, so that eutectic layers 107 are formed between the two ends of the thermocouple pair 105 and the first circuit layer 104 and the second circuit layer 106 respectively. The thickness of the first circuit layer 104 is more than twice the thickness of the second circuit layer 106.

基座101内可以设置有温度传感器,便于对半导体制冷模组11内的温度进行监控。A temperature sensor may be provided in the base 101 to monitor the temperature in the semiconductor refrigeration module 11 .

实施例3Example 3

如图3所示,一种半导体制冷系统,包括半导体制冷模块1和液冷模块2。其中,半导体制冷模块1包括半导体制冷模组11、真空绝热壳体12,液冷模块2包括喷流换热结构21和阶梯散热结构22。As shown in FIG3 , a semiconductor refrigeration system includes a semiconductor refrigeration module 1 and a liquid cooling module 2. The semiconductor refrigeration module 1 includes a semiconductor refrigeration module 11 and a vacuum insulation shell 12, and the liquid cooling module 2 includes a jet heat exchange structure 21 and a stepped heat dissipation structure 22.

如图4所示,半导体制冷模块1包括半导体制冷模组11、真空绝热壳体12。As shown in FIG. 4 , the semiconductor refrigeration module 1 includes a semiconductor refrigeration module 11 and a vacuum insulation shell 12 .

如图1和图2所示,半导体制冷模组11包括:基座101、绝缘层102、第一电路层104、多个热电偶对105和第二电路层106。As shown in FIG. 1 and FIG. 2 , the semiconductor refrigeration module 11 includes: a base 101 , an insulating layer 102 , a first circuit layer 104 , a plurality of thermocouple pairs 105 , and a second circuit layer 106 .

绝缘层102连接在基座101的上表面,第一电路层104连接在绝缘层102的上表面,多个热电偶对105的冷端与第一电路层104电连接,第二电路层106与热电偶对105的冷端热端电连接。The insulating layer 102 is connected to the upper surface of the base 101 , the first circuit layer 104 is connected to the upper surface of the insulating layer 102 , the cold ends of the plurality of thermocouple pairs 105 are electrically connected to the first circuit layer 104 , and the second circuit layer 106 is electrically connected to the cold ends and hot ends of the thermocouple pairs 105 .

由于热电偶对105的一端为冷端,用于给所需制冷物体降温,而另一端为热端,会产生热量,因此通常需要其他散热装置对热端进行散热。比如使用液冷设备对冷端所处的半导体散热模组的端面进行降温,由于液体从一侧流向另一侧,因此会出现一侧因为换热充分而降温效果好,而另一侧因为液体已经换热升温而降温效果差的问题。Since one end of the thermocouple pair 105 is a cold end, used to cool the object to be cooled, and the other end is a hot end, which will generate heat, other heat dissipation devices are usually required to dissipate heat from the hot end. For example, when a liquid cooling device is used to cool the end surface of a semiconductor heat dissipation module where the cold end is located, since the liquid flows from one side to the other, one side will have a good cooling effect due to sufficient heat exchange, while the other side will have a poor cooling effect due to the liquid having been heated up by heat exchange.

针对于该问题,在本申请中,不同位置的热电偶对105的阻值根据外部散热装置的热有限元分析结果进行布置,温度越高的位置对应的热电偶对105的阻值越大,不同阻值的热电偶对105体现在截面大小不同,阻值越大横截面积越小。热电偶对105的阻值由高到底进行渐变式分布,使热电偶对105性能发挥到极致。热电偶对105的表面通过气相沉积丙烯酸树脂材料,形成纳米防水镀膜层,起到防水、防腐蚀、防电子迁移作用。In response to this problem, in the present application, the resistance values of the thermocouple pairs 105 at different positions are arranged according to the thermal finite element analysis results of the external heat sink. The higher the temperature, the greater the resistance value of the corresponding thermocouple pair 105. The thermocouple pairs 105 with different resistance values are reflected in different cross-sectional sizes. The greater the resistance value, the smaller the cross-sectional area. The resistance value of the thermocouple pair 105 is gradually distributed from high to low, so that the performance of the thermocouple pair 105 can be brought into play to the extreme. The surface of the thermocouple pair 105 is formed by vapor deposition of acrylic resin material to form a nano-waterproof coating layer, which plays a role in waterproofing, corrosion resistance, and electron migration resistance.

在其他实施例中,绝缘层102的上表面还设置有绝缘增强复合层103,第一电路层104通过绝缘增强复合层103连接在绝缘层102的上表面。In other embodiments, an insulation-reinforced composite layer 103 is further disposed on the upper surface of the insulation layer 102 , and the first circuit layer 104 is connected to the upper surface of the insulation layer 102 through the insulation-reinforced composite layer 103 .

热电偶对105的两端分别通过共晶工艺与第一电路层104、第二电路层106连接,因此会在热电偶对105的两端与第一电路层104、第二电路层106之间分别形成共晶层107。第一电路层104的厚度是第二电路层106厚度的2倍以上。The two ends of the thermocouple pair 105 are connected to the first circuit layer 104 and the second circuit layer 106 respectively through the eutectic process, so that eutectic layers 107 are formed between the two ends of the thermocouple pair 105 and the first circuit layer 104 and the second circuit layer 106 respectively. The thickness of the first circuit layer 104 is more than twice the thickness of the second circuit layer 106.

基座101内可以设置有温度传感器114,便于对半导体制冷模组11内的温度进行监控。A temperature sensor 114 may be provided in the base 101 to monitor the temperature in the semiconductor refrigeration module 11 .

如图5所示,真空绝热壳体12内部具有容纳空间,热电模组11设置于容纳空间内。在容纳空间封闭前,先填充有微胶囊相变材料,微胶囊相变材料的高度在第一电路层104的顶面之下,由于第一电路层104的厚度较大,因此可以填充的微胶囊相变材料也就越多,再通过盖板110覆盖微胶囊相变材料。通过微胶囊相变材料可以快速对热量较大的待制冷目标进行降温制冷,从而提高热电模组11的制冷效率。同时,由于,热电偶对105的电阻是不同的,因此每个热电偶对105的冷淡制冷效果也不同,通过微胶囊相变材料可以使得底板108处的温度趋向均匀,因而对待制冷目标的制冷效果也更为均匀。As shown in FIG5 , the vacuum insulation shell 12 has a storage space inside, and the thermoelectric module 11 is arranged in the storage space. Before the storage space is closed, it is first filled with microcapsule phase change material. The height of the microcapsule phase change material is below the top surface of the first circuit layer 104. Since the thickness of the first circuit layer 104 is large, more microcapsule phase change material can be filled, and then the microcapsule phase change material is covered by the cover plate 110. The microcapsule phase change material can quickly cool down the target to be cooled with a large amount of heat, thereby improving the cooling efficiency of the thermoelectric module 11. At the same time, since the resistance of the thermocouple pair 105 is different, the cooling effect of each thermocouple pair 105 is also different. The temperature at the bottom plate 108 can be made uniform by the microcapsule phase change material, so the cooling effect on the target to be cooled is also more uniform.

真空绝热壳体12包括:底板108、围坝109、盖板110和纳米防水镀膜层,底板108用于连接待制冷目标。底板108上开设有视窗111,围坝109与底板一体成型,且环绕视窗111外围设置并向底板108的高度方向延伸,盖板110连接在围坝109的内壁,将所述微胶囊相变材料层密封在盖板110以下的所述容纳空间内。纳米防水镀膜层填充在盖板110以上的容纳空间内。其中,底板108、围坝109的内部具有真空层,用于实现绝热。实现防止热电模组11漏冷、漏热现象,实现快速装配。The vacuum insulation shell 12 includes: a bottom plate 108, a dam 109, a cover plate 110 and a nano-waterproof coating layer. The bottom plate 108 is used to connect the target to be refrigerated. A window 111 is provided on the bottom plate 108. The dam 109 is integrally formed with the bottom plate, and is arranged around the periphery of the window 111 and extends in the height direction of the bottom plate 108. The cover plate 110 is connected to the inner wall of the dam 109 to seal the microcapsule phase change material layer in the accommodation space below the cover plate 110. The nano-waterproof coating layer is filled in the accommodation space above the cover plate 110. Among them, the bottom plate 108 and the dam 109 have a vacuum layer inside for achieving thermal insulation. It prevents the thermoelectric module 11 from leaking cold and heat, and achieves rapid assembly.

在视窗111与围坝109之间的底板108上,设置有铆柱112,基座101上开设有对应的铆柱孔113,铆柱112与铆柱孔113通过超声波焊接连接,实现半导体制冷模组11与真空绝热壳体12之间的固定。A rivet post 112 is provided on the bottom plate 108 between the window 111 and the dam 109 , and a corresponding rivet post hole 113 is opened on the base 101 . The rivet post 112 and the rivet post hole 113 are connected by ultrasonic welding to achieve fixation between the semiconductor refrigeration module 11 and the vacuum insulation shell 12 .

如图6所示,液冷模块2包括喷流换热结构21和阶梯散热结构22。As shown in FIG. 6 , the liquid cooling module 2 includes a jet heat exchange structure 21 and a stepped heat dissipation structure 22 .

如图7所示,一种喷流换热结构21,包括:微泵201、管路202和换热腔体212。换热腔体212内部具有流体通路,换热腔体212的输入端连接微泵201的输出端,换热腔体212的输出端与管路202一一对应连接。As shown in FIG7 , a jet heat exchange structure 21 includes: a micro pump 201, a pipeline 202 and a heat exchange cavity 212. The heat exchange cavity 212 has a fluid passage inside, the input end of the heat exchange cavity 212 is connected to the output end of the micro pump 201, and the output end of the heat exchange cavity 212 is connected to the pipeline 202 in a one-to-one correspondence.

具体的,流体通路包括:入口腔体203、增压腔体205、特斯拉阀组204和第二特斯拉阀206。入口腔体203连接换热腔体212的输入端。多个增压腔体205分别通过一个正向连接的第二特斯拉阀206与换热腔体212的输出端一一对应连接。特斯拉阀组204包括多个串联的第一特斯拉阀,每个特斯拉阀组204反向连接在入口腔体203和一个增压腔体205之间。Specifically, the fluid passage includes: an inlet cavity 203, a boosting cavity 205, a Tesla valve group 204 and a second Tesla valve 206. The inlet cavity 203 is connected to the input end of the heat exchange cavity 212. The multiple boosting cavities 205 are connected to the output end of the heat exchange cavity 212 one by one through a forward-connected second Tesla valve 206. The Tesla valve group 204 includes multiple first Tesla valves connected in series, and each Tesla valve group 204 is reversely connected between the inlet cavity 203 and a boosting cavity 205.

进入特斯拉阀组204的流体在反向连接的第一特斯拉阀的作用下经过多次振荡及混合,使流体能够均匀受热,同时汇聚在增压腔体205中增压,正向连接的第二特斯拉阀206具有一定加速的作用,在第二特斯拉阀206与小口径的换热腔体212的输出端的配合下形成喷流,从而通过管路202快速向上导出。The fluid entering the Tesla valve group 204 undergoes multiple oscillations and mixing under the action of the reversely connected first Tesla valve, so that the fluid can be evenly heated, and at the same time is gathered in the boosting chamber 205 for boosting. The forwardly connected second Tesla valve 206 has a certain acceleration effect. The cooperation between the second Tesla valve 206 and the output end of the small-diameter heat exchange chamber 212 forms a jet, which is then quickly discharged upward through the pipeline 202.

为了让换热腔体212与待制冷目标充分换热,喷流换热结构21还包括耦合层211,连接在换热腔体212的一侧。耦合层211采用PA靶材通过气相物理沉积在换热腔体212的底面,形成超薄柔性绝缘膜。再把氮化硼片状微晶体溶液通过超声波喷涂工艺,在超薄柔性绝缘膜表面形成氮化硼膜层,通过真空热压工艺把氮化硼涂层压嵌在超薄柔性绝缘膜内,其热压温度为PA材料Tg温度,得到的耦合层211具有超薄、高绝缘、高导热性,能有效缓解热应力及材料膨胀系数。In order to allow the heat exchange cavity 212 to fully exchange heat with the target to be cooled, the jet heat exchange structure 21 also includes a coupling layer 211, which is connected to one side of the heat exchange cavity 212. The coupling layer 211 uses a PA target material to be physically deposited on the bottom surface of the heat exchange cavity 212 in the gas phase to form an ultra-thin flexible insulating film. Then, the boron nitride flaky microcrystalline solution is subjected to an ultrasonic spraying process to form a boron nitride film layer on the surface of the ultra-thin flexible insulating film. The boron nitride coating is pressed into the ultra-thin flexible insulating film through a vacuum hot pressing process. The hot pressing temperature is the Tg temperature of the PA material. The obtained coupling layer 211 has ultra-thin, high insulation, and high thermal conductivity, which can effectively relieve thermal stress and material expansion coefficient.

通常,换热腔体212的输入端并不一定在中心轴线位置处,因此,本发明将入口腔体203越靠近换热腔体212的输入端的位置截面积设计的越大。例如,入口腔体203呈梯形,换热腔体212的输入端的连接在梯形的底部区域。克服了进入每个特斯拉阀组204的流体压力不均匀的问题。Generally, the input end of the heat exchange cavity 212 is not necessarily at the central axis position, therefore, the present invention designs the cross-sectional area of the inlet cavity 203 to be larger as it is closer to the input end of the heat exchange cavity 212. For example, the inlet cavity 203 is trapezoidal, and the input end of the heat exchange cavity 212 is connected to the bottom area of the trapezoid. This overcomes the problem of uneven fluid pressure entering each Tesla valve group 204.

每个增压腔体205至少连接一个特斯拉阀组204,用于汇聚特斯拉阀组204输出的流体,起到一定加压作用。增压腔体205的数量为多个,沿宽度方向排列设置在换热腔体212内。增压腔体205的数量为3个,位于中间的增压腔体205连接的特斯拉阀组204数量越多,位于中间的增压腔体205的体积大于两侧的增压腔体205。Each boosting cavity 205 is connected to at least one Tesla valve group 204, which is used to gather the fluid output by the Tesla valve group 204 and play a certain pressurizing role. There are multiple boosting cavities 205, which are arranged in the width direction in the heat exchange cavity 212. The number of boosting cavities 205 is 3, and the more Tesla valve groups 204 are connected to the boosting cavity 205 in the middle, the larger the volume of the boosting cavity 205 in the middle is than the boosting cavities 205 on both sides.

如图8所示,一种阶梯散热结构,包括:阶梯型流道207、上翅片208、下翅片209和集流腔体210。As shown in FIG. 8 , a stepped heat dissipation structure includes: a stepped flow channel 207 , an upper fin 208 , a lower fin 209 and a manifold cavity 210 .

阶梯型流道207的上表面连接有多个上翅片208,阶梯型流道207的下表面连接有多个下翅片209。上翅片208具有向阶梯型流道207内部延伸的延伸部,延伸部与阶梯型流道207的内部下表面具有预设距离,预设距离可以是1-3mm。具体的,上翅片208连接在每个阶梯的上表面,且每个阶梯的上表面至少连接有两个上翅片208。每个上翅片208的延伸部的端部所在高度从最上级阶梯到最下级阶梯方向依序逐渐降低。The upper surface of the stepped flow channel 207 is connected to a plurality of upper fins 208, and the lower surface of the stepped flow channel 207 is connected to a plurality of lower fins 209. The upper fins 208 have an extension extending into the stepped flow channel 207, and the extension has a preset distance from the inner lower surface of the stepped flow channel 207, and the preset distance may be 1-3 mm. Specifically, the upper fins 208 are connected to the upper surface of each step, and at least two upper fins 208 are connected to the upper surface of each step. The height of the end of the extension of each upper fin 208 is gradually reduced from the uppermost step to the lowermost step.

集流腔体210联通阶梯型流道207的最下级阶梯,作为阶梯散热结构输出端连接微泵201,阶梯型流道207的最上级阶梯作为输入端连接管路202。The manifold 210 is connected to the lowest step of the stepped flow channel 207 and is connected to the micro pump 201 as an output end of the stepped heat dissipation structure. The highest step of the stepped flow channel 207 is connected to the pipeline 202 as an input end.

阶梯型流道207包括依次相连的横向流道和纵向流道。外部进入的流体从最上级阶梯进入阶梯型流道207,每个横向流道中包括至少两个延伸部,流体能够与最上级阶梯上的上翅片208的延伸部产生撞击,然后在液位差的作用下通过纵向流道流向下一级阶梯,并在下一级阶梯的横向流道继续与对应的上翅片208产生撞击。The stepped flow channel 207 includes transverse flow channels and longitudinal flow channels connected in sequence. The fluid entering from the outside enters the stepped flow channel 207 from the uppermost step. Each transverse flow channel includes at least two extensions. The fluid can collide with the extension of the upper fin 208 on the uppermost step, and then flow to the next step through the longitudinal flow channel under the action of the liquid level difference, and continue to collide with the corresponding upper fin 208 in the transverse flow channel of the next step.

在其他实施例中,每个纵向流道中包括至少两个延伸部,在流体通过纵向流道时也会与对应的延伸部产生接触。In other embodiments, each longitudinal flow channel includes at least two extension portions, and the fluid will come into contact with the corresponding extension portions when passing through the longitudinal flow channel.

为了便于安装或包装,上翅片208的外端齐平,下翅片209的外端齐平。In order to facilitate installation or packaging, the outer ends of the upper fins 208 are flush, and the outer ends of the lower fins 209 are flush.

在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of the present application, it should be understood that the terms "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc., indicating orientations or positional relationships, are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。The above describes the specific embodiments of the present invention. It should be understood that the present invention is not limited to the above specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which does not affect the essence of the present invention. In the absence of conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.

Claims (10)

1.一种半导体制冷模组的制备方法,其特征在于,包括步骤:1. A method for preparing a semiconductor refrigeration module, characterized in that it comprises the steps of: S1、提供基座(101);S1. Provide a base (101); S2、在所述基座(101)的上表面制备绝缘层(102);S2, preparing an insulating layer (102) on the upper surface of the base (101); S3、根据外部散热装置的热有限元分析结果,在所述绝缘层(102)的上表面制备第一电路层(104);S3. According to the thermal finite element analysis result of the external heat sink, a first circuit layer (104) is prepared on the upper surface of the insulating layer (102); S4、在第一电路层(104)上通过堆叠式耦合共晶工艺连接热电偶对(105)的冷端;S4, connecting the cold end of the thermocouple pair (105) on the first circuit layer (104) through a stacked coupling eutectic process; S5、在热电偶对(105)的热端上通过堆叠式耦合共晶工艺连接第二电路层(106);S5, connecting the second circuit layer (106) to the hot end of the thermocouple pair (105) through a stacked coupling eutectic process; 其中,根据外部散热装置的热有限元分析结果,建立温度梯度与热电偶对内阻形成对应正比例关系。According to the thermal finite element analysis results of the external heat sink, a corresponding positive proportional relationship between the temperature gradient and the internal resistance of the thermocouple is established. 2.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,所述步骤S2中,通过硬质氧化工艺形成绝缘层(102)。2. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that in the step S2, the insulating layer (102) is formed by a hard oxidation process. 3.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,所述步骤S3中,制备第一电路层(104)的方式包括:3. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that in step S3, the method for preparing the first circuit layer (104) comprises: 在所述绝缘层(102)的上表面涂布导热绝缘胶形成绝缘增强复合层(103),将第一电路层(104)的电路通过模压工艺制备到母版上,在热压复合工艺下,将母版上的电路通过绝缘增强复合层(103)固定到绝缘层(102)。A heat-conductive insulating adhesive is coated on the upper surface of the insulating layer (102) to form an insulating reinforced composite layer (103), the circuit of the first circuit layer (104) is prepared on a motherboard through a molding process, and the circuit on the motherboard is fixed to the insulating layer (102) through the insulating reinforced composite layer (103) under a hot pressing composite process. 4.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,所述步骤S5中,第二电路层(106)的电路通过模压工艺制备到母版上,通过堆叠式耦合共晶工艺连接热电偶对(105)的冷端。4. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that in the step S5, the circuit of the second circuit layer (106) is prepared on the motherboard through a molding process, and the cold end of the thermocouple pair (105) is connected through a stacked coupling eutectic process. 5.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,所述热电偶对(105)的外表面通过气相沉积丙烯酸树脂材料,形成纳米防水镀膜层。5. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that the outer surface of the thermocouple pair (105) is formed with a nano-waterproof coating layer by vapor deposition of acrylic resin material. 6.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,在所述步骤S4、步骤S5前先进行等离子清洁、氮气清洁,并在真空环境下执行步骤S4、S5。6. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that plasma cleaning and nitrogen cleaning are performed before step S4 and step S5, and steps S4 and S5 are performed under a vacuum environment. 7.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,在所述步骤S4、步骤S5中,通过堆叠式耦合共晶工艺,在第一电路层(104)与热电偶对(105)的冷端之间、在第二电路层(106)与热电偶对(105)的热端之间分别形成共晶层(107)。7. The method for preparing a semiconductor refrigeration module according to claim 1 is characterized in that, in the steps S4 and S5, a eutectic layer (107) is formed between the first circuit layer (104) and the cold end of the thermocouple pair (105), and between the second circuit layer (106) and the hot end of the thermocouple pair (105), respectively, through a stacked coupled eutectic process. 8.根据权利要求1所述的半导体制冷模组的制备方法,其特征在于,热电偶对(105)之间高度相同,不同阻值的热电偶对(105)之间横截面积不同。8. The method for preparing a semiconductor refrigeration module according to claim 1, characterized in that the thermocouple pairs (105) have the same height, and the thermocouple pairs (105) with different resistance values have different cross-sectional areas. 9.一种半导体制冷模组,其特征在于,采用权利要求1-8任一项所述的半导体制冷模组的制备方法得到。9. A semiconductor refrigeration module, characterized in that it is obtained by using the preparation method of the semiconductor refrigeration module according to any one of claims 1 to 8. 10.一种制冷设备,其特征在于,包括权利要求9所述的半导体制冷模组。10. A refrigeration device, characterized by comprising the semiconductor refrigeration module according to claim 9.
CN202411399303.5A 2024-10-09 2024-10-09 Semiconductor refrigeration module and preparation method, refrigeration equipment Active CN118900614B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411399303.5A CN118900614B (en) 2024-10-09 2024-10-09 Semiconductor refrigeration module and preparation method, refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411399303.5A CN118900614B (en) 2024-10-09 2024-10-09 Semiconductor refrigeration module and preparation method, refrigeration equipment

Publications (2)

Publication Number Publication Date
CN118900614A true CN118900614A (en) 2024-11-05
CN118900614B CN118900614B (en) 2024-12-10

Family

ID=93269834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411399303.5A Active CN118900614B (en) 2024-10-09 2024-10-09 Semiconductor refrigeration module and preparation method, refrigeration equipment

Country Status (1)

Country Link
CN (1) CN118900614B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012240A (en) * 1999-06-23 2001-01-16 Nissan Motor Co Ltd Exhaust heat generator for automobile
JP2004064015A (en) * 2002-07-31 2004-02-26 Eco 21 Inc Manufacturing method of thermoelectric converter and thermoelectric converter
JP2015115590A (en) * 2013-12-16 2015-06-22 日本特殊陶業株式会社 Thermoelectric conversion module
CN107492593A (en) * 2016-06-09 2017-12-19 埃贝施佩歇尔排气技术有限及两合公司 Thermoelectric generator for gas extraction system and the contact element for thermoelectric generator
WO2018008507A1 (en) * 2016-07-04 2018-01-11 株式会社デンソー Thermoelectric power generation device
GB202019731D0 (en) * 2020-12-14 2021-01-27 Soliton Holdings Corp Apparatuses based on jet-effect and thermo-electric effect
CN113644189A (en) * 2021-08-04 2021-11-12 桂林电子科技大学 A wearable thermoelectric cooling device based on dual-network hydrogel heat dissipation and its preparation method
CN220307688U (en) * 2023-07-25 2024-01-05 田村电子(深圳)有限公司 Liquid cooling heat radiation structure of power supply
CN118338605A (en) * 2024-04-11 2024-07-12 东南大学 A self-driven multi-stage immersion liquid cooling system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012240A (en) * 1999-06-23 2001-01-16 Nissan Motor Co Ltd Exhaust heat generator for automobile
JP2004064015A (en) * 2002-07-31 2004-02-26 Eco 21 Inc Manufacturing method of thermoelectric converter and thermoelectric converter
JP2015115590A (en) * 2013-12-16 2015-06-22 日本特殊陶業株式会社 Thermoelectric conversion module
CN107492593A (en) * 2016-06-09 2017-12-19 埃贝施佩歇尔排气技术有限及两合公司 Thermoelectric generator for gas extraction system and the contact element for thermoelectric generator
WO2018008507A1 (en) * 2016-07-04 2018-01-11 株式会社デンソー Thermoelectric power generation device
GB202019731D0 (en) * 2020-12-14 2021-01-27 Soliton Holdings Corp Apparatuses based on jet-effect and thermo-electric effect
CN113644189A (en) * 2021-08-04 2021-11-12 桂林电子科技大学 A wearable thermoelectric cooling device based on dual-network hydrogel heat dissipation and its preparation method
CN220307688U (en) * 2023-07-25 2024-01-05 田村电子(深圳)有限公司 Liquid cooling heat radiation structure of power supply
CN118338605A (en) * 2024-04-11 2024-07-12 东南大学 A self-driven multi-stage immersion liquid cooling system

Also Published As

Publication number Publication date
CN118900614B (en) 2024-12-10

Similar Documents

Publication Publication Date Title
US7032389B2 (en) Thermoelectric heat pump with direct cold sink support
CN101307996B (en) Flat-plate evaporator structure and loop type heat pipe with same
TWI382507B (en) Semiconductor package
US20100081191A1 (en) Anisotropic heat spreader for use with a thermoelectric device
CN101840914A (en) Power model with double-sided cooled of power overlay
TW201014515A (en) Microscale cooling apparatus and method
JP2010278438A (en) Heat sink and manufacturing method thereof
CN110720147B (en) Heat conversion device
CN100557367C (en) A high-power flat plate integral phase change heat dissipation method and radiator
WO2011036854A1 (en) Heat exchanger
CN115551302A (en) Heat dissipation system and electronic equipment
KR20090089111A (en) Thermoelectric Module Heat Exchanger
Gromoll Advanced micro air-cooling systems for high density packaging
US7584622B2 (en) Localized refrigerator apparatus for a thermal management device
CN119170582A (en) A packaging heat dissipation structure and design method for 3D chips
CN118900614A (en) Semiconductor refrigeration module and preparation method, refrigeration equipment
KR102492207B1 (en) Heat conversion device
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
RU107582U1 (en) MICROCHANNEL HEAT EXCHANGER WITH NANORELIEF
CN115551301A (en) Heat dissipation system and electronic equipment
JP2023531460A (en) Thermoelectric module and power generator containing same
JP2011082272A (en) Thermoelectric cooling device
JP7672435B2 (en) Thermoelectric module and power generation device including same
TWI799084B (en) Gas-liquid dual-cooled radiator for memory module
CN221841910U (en) Direct cooling plate and battery module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant