[go: up one dir, main page]

CN118851444A - Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities - Google Patents

Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities Download PDF

Info

Publication number
CN118851444A
CN118851444A CN202411274569.7A CN202411274569A CN118851444A CN 118851444 A CN118851444 A CN 118851444A CN 202411274569 A CN202411274569 A CN 202411274569A CN 118851444 A CN118851444 A CN 118851444A
Authority
CN
China
Prior art keywords
mixed
bacterial
marine
community
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202411274569.7A
Other languages
Chinese (zh)
Other versions
CN118851444B (en
Inventor
张伟鹏
张恒
丁维
张�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202411274569.7A priority Critical patent/CN118851444B/en
Publication of CN118851444A publication Critical patent/CN118851444A/en
Application granted granted Critical
Publication of CN118851444B publication Critical patent/CN118851444B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Water Supply & Treatment (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the technical field of microorganism technology and environmental protection, and discloses a method for removing inorganic phosphorus in high-salt wastewater by utilizing a marine biofilm mixed community, and the method comprises the steps of collecting a marine biofilm sample and culturing microorganisms; extracting DNA of the cultured strain, performing PCR amplification and Sanger sequencing, and determining the classification of the isolate; annotating the genome of each strain to determine if ppk1, ppk2 and pap genes are present; inoculating and culturing bacterial strains with dephosphorization capability, and adjusting light absorption values to obtain a marine biofilm mixed community; enrichment culture is carried out on the marine biofilm mixed community by using a seawater salt concentration culture medium (marine broth 2216E), and the phosphate removal efficiency of the mixed community is measured by using a phosphate-added 2216E liquid culture medium. When the initial phosphorus concentration is 26.5mg/L, the phosphorus removal efficiency of the invention reaches 73.97% in 72h, and a new direction is provided for biological phosphorus removal.

Description

利用海洋生物被膜混合群落去除高盐废水中无机磷的方法Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities

技术领域Technical Field

本发明属于微生物技术和环境保护技术领域,尤其涉及利用海洋生物被膜混合群落去除高盐废水中无机磷的方法。The invention belongs to the field of microbial technology and environmental protection technology, and in particular relates to a method for removing inorganic phosphorus in high-salinity wastewater by utilizing mixed marine biofilm communities.

背景技术Background Art

由于磷矿的不断采集以及磷相关产品的不断生产和利用,越来越多的磷被排放到环境水体中,导致水体中磷酸盐含量日益增高,致使水体富营养化,环境污染加重,污水处理难度变高。Due to the continuous collection of phosphate ore and the continuous production and utilization of phosphorus-related products, more and more phosphorus is discharged into the environmental water bodies, resulting in an increasing phosphate content in the water bodies, causing eutrophication of the water bodies, aggravated environmental pollution, and more difficult sewage treatment.

目前的污水除磷方法主要为物理法,化学法和生物法。由于物理法和化学方法往往会产生大量沉淀,这些沉淀物很难回收和再利用,导致污染和回收成本升高,污水处理厂广泛采用生物方法,即主要依靠聚磷微生物进行污水中磷酸盐的去除。The current methods for removing phosphorus from sewage are mainly physical, chemical and biological methods. Since physical and chemical methods often produce a large amount of precipitation, these precipitations are difficult to recycle and reuse, resulting in pollution and increased recycling costs, sewage treatment plants widely use biological methods, that is, mainly relying on polyphosphate microorganisms to remove phosphates from sewage.

污水处理厂主要依靠活性污泥中的聚磷微生物进行磷酸盐的富集与回收。但是,其中的细菌种类多样,作用复杂,且目前的有除磷能力的菌株没有获得纯培养,每个处理厂之间的发挥作用的微生物组成并不统一,无法进一步扩大应用。并且由于污水处理厂中的菌株依靠污泥及其中的细菌进行除磷,污泥的存在会使工艺流程变得复杂:即需要先对污泥进行沉淀才能回收磷酸盐,且由于污泥密度较大,更改氧气浓度较为困难。同时,由于污水处理厂的菌种来自活性污泥,而微生物活性在高盐浓度(>10‰)下减弱或丧失,导致污染物去除效率下降,面对一些高盐度的废水时需要先降低盐度再进行除磷,流程相对复杂,效率较慢,成本也相应提高。Sewage treatment plants mainly rely on polyphosphate microorganisms in activated sludge to enrich and recover phosphates. However, the bacteria are diverse and complex in nature, and the current strains with phosphorus removal capabilities have not been cultured in pure form. The composition of the microorganisms that work in each treatment plant is not uniform, and the application cannot be further expanded. In addition, since the strains in the sewage treatment plant rely on sludge and the bacteria in it to remove phosphorus, the presence of sludge will complicate the process: that is, the sludge needs to be precipitated before the phosphate can be recovered, and because the sludge has a high density, it is difficult to change the oxygen concentration. At the same time, since the bacteria in the sewage treatment plant come from activated sludge, and the activity of the microorganisms is weakened or lost at high salt concentrations (>10‰), the pollutant removal efficiency is reduced. When facing some high-salinity wastewater, it is necessary to reduce the salinity before removing phosphorus. The process is relatively complicated, the efficiency is slow, and the cost is correspondingly increased.

通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the problems and defects of the prior art are as follows:

(1)目前具有除磷能力的菌株没有获得纯培养,无法扩大应用。(1) Currently, the bacterial strains with phosphorus removal ability have not been cultured in pure form and cannot be expanded for application.

(2)现有废水除磷方法流程相对复杂,对装置和条件要求较高。(2) The existing wastewater phosphorus removal method has a relatively complex process and has high requirements for equipment and conditions.

(3)目前的除磷微生物来自污泥,在应对高盐污水时,除磷效率较低。(3) The current phosphorus removal microorganisms come from sludge, and their phosphorus removal efficiency is low when dealing with high-salt wastewater.

发明内容Summary of the invention

为克服相关技术中存在的问题,本发明公开实施例提供了利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,可以不依赖复杂装置进行高盐废水中无机磷的去除,所述技术方案如下:In order to overcome the problems existing in the related art, the disclosed embodiment of the present invention provides a method for removing inorganic phosphorus in high-salinity wastewater by using a mixed community of marine biofilms, which can remove inorganic phosphorus in high-salinity wastewater without relying on complex equipment. The technical solution is as follows:

本发明是这样实现的,利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,包括:The present invention is achieved by using a mixed community of marine biofilms to remove inorganic phosphorus from high-salinity wastewater, comprising:

S1,采集用于细菌分离的海洋生物被膜样本并进行微生物培养;提取培养菌株的DNA进行PCR扩增16SrRNA基因和Sanger测序,确定分离物的分类;S1, collect marine biofilm samples for bacterial isolation and culture the microorganisms; extract DNA of the cultured strains for PCR amplification of 16SrRNA gene and Sanger sequencing to determine the classification of the isolates;

S2,对各个菌株的基因组进行提取,组装、比对、预测开放阅读框以及进行功能基因注释,以是否存在ppk1、ppk2pap基因为目标,判断是否为聚磷菌,确定具有除磷能力的菌株;S2, extract the genome of each strain, assemble, align, predict the open reading frame and perform functional gene annotation, and determine whether it is a phosphate-accumulating bacterium based on the presence of ppk1, ppk2 and pap genes, and determine the strain with phosphorus removal ability;

S3,分别制备富集培养基和磷酸盐去除培养基,将筛选得到的具有除磷能力的细菌菌株接种培养,测定生长阶段,按比例混合菌液得到海洋生物被膜混合群落;S3, respectively preparing an enrichment medium and a phosphate removal medium, inoculating and culturing the screened bacterial strains with phosphorus removal ability, determining the growth stage, and mixing the bacterial liquids in proportion to obtain a marine biofilm mixed community;

S4,以2216E液体培养基对海洋生物被膜混合群落进行富集培养,添加磷酸盐的2216E液体培养基对混合群落进行磷酸盐去除效率的测定。S4, enriching and culturing the mixed community of marine biofilm with 2216E liquid culture medium, and determining the phosphate removal efficiency of the mixed community with 2216E liquid culture medium supplemented with phosphate.

在步骤S1中,采集用于细菌分离的海洋生物被膜样本并进行微生物培养,包括:In step S1, a marine biofilm sample for bacterial isolation is collected and microbial culture is performed, including:

利用无菌棉签采集位于潮下带1-2米深的岩石表面天然生物被膜,利用经0.1μm滤膜过滤和高压灭菌后的海水冲洗棉签,并分别稀释10倍和100倍;Natural biofilms on rock surfaces at a depth of 1-2 m in the subtidal zone were collected using sterile cotton swabs. The swabs were rinsed with seawater that had been filtered through a 0.1 μm filter membrane and sterilized by high pressure, and then diluted 10 and 100 times, respectively.

取生物被膜样本100μL涂布在海洋琼脂培养基2216平板后在25℃、有光有氧条件下进行微生物培养;在解剖显微镜下检查菌落形态特征,分离明显的菌落类型;Take 100 μL of the biofilm sample and spread it on a marine agar medium 2216 plate and culture the microorganisms at 25°C under light and aerobic conditions; examine the morphological characteristics of the colonies under a dissecting microscope and separate the obvious colony types;

在100℃下加热5min提取细胞中的DNA;使用通用引物27F(5'-AGAGTTTGATCCTGGCTCAG-3')和1492R(5'-GGTTACCTTGTTACGACTT-3')进行PCR扩增16SrRNA基因;然后进行 Sanger测序,以确定分离物的分类。DNA was extracted from cells by heating at 100°C for 5 min. 16S rRNA gene was amplified by PCR using universal primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′). Sanger sequencing was then performed to determine the classification of the isolates.

在步骤S2中,对各个菌株的基因组进行提取,组装、比对、预测开放阅读框以及进行功能基因注释,包括:In step S2, the genomes of each strain are extracted, assembled, aligned, open reading frames predicted, and functional gene annotations are performed, including:

基因组测序前,使用TIANamp基因组DNA试剂盒提取培养菌株的DNA,溶菌酶的最终浓度为10mg/mL,在37℃温育30min;按照试剂盒提供的方法加入裂解缓冲液GA和缓冲液GB、GD和GW;在Mini-Sub Cell GT系统中通过琼脂糖凝胶电泳检测DNA的完整性;对于每个细菌菌株,采用NovaSeq 6000系统进行Illumina测序。Before genome sequencing, DNA of cultured strains was extracted using the TIANamp genomic DNA kit with a final lysozyme concentration of 10 mg/mL and incubated at 37°C for 30 min. Lysis buffer GA and buffers GB, GD, and GW were added according to the method provided by the kit. DNA integrity was detected by agarose gel electrophoresis in a Mini-Sub Cell GT system. For each bacterial strain, Illumina sequencing was performed using the NovaSeq 6000 system.

使用SPAdes中的spades.py对返回的纯净读数进行基因组组装,以CheckM中的Lineage_wf评估基因组的完整性和潜在污染,基因组污染<5%且完整性大于90%的基因组被视为高质量基因组,并用于进一步分析;The returned clean reads were assembled using spades.py in SPAdes, and the integrity and potential contamination of the genome were assessed using Lineage_wf in CheckM. Genomes with a contamination rate of <5% and an integrity of more than 90% were considered high-quality genomes and used for further analysis.

再使用fastANI进行全基因组比较后,去除了冗余基因组,保留了平均核苷酸同一性ANI小于99.9%的基因组,开放阅读框ORFs采用Prodigal在单基因组分析模式下进行预测,进行闭合终止的ORF预测;After whole-genome comparison using fastANI, redundant genomes were removed and genomes with an average nucleotide identity ANI less than 99.9% were retained. Open reading frames (ORFs) were predicted using Prodigal in single genome analysis mode to predict closed-terminated ORFs;

为了进行功能基因注释,使用DIAMOND和BLASTP将与ORFs对应的蛋白质序列在京都基因与基因组百科全书KEGG数据库中进行搜索,E值设为<1e-7;基于与磷酸盐代谢相关的基因,包括phoU(K02039)、pstSCAB(K02036、K02037、K02038和K02040)、pgk(K00927)、ppx(K01524)、ppk1(K00937)、ppk2(K22468)、phoB(K07657)、ppnK(K00858)和pit(K03306)初步判断菌株是否具有除磷能力;将筛选到的细菌培养至对数期,之后加入保种液置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。For functional gene annotation, the protein sequences corresponding to the ORFs were searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using DIAMOND and BLASTP, with an E value set to <1e -7 ; based on genes related to phosphate metabolism, including phoU (K02039) , pstSCAB (K02036, K02037, K02038, and K02040) , pgk (K00927) , ppx (K01524) , ppk1 (K00937) , ppk2 (K22468) , phoB (K07657) , ppnK (K00858), and pit (K03306) Preliminarily determine whether the strain has the ability to remove phosphorus; culture the screened bacteria to the logarithmic phase, then add the seed preservation solution and store it in a -80℃ refrigerator; the seed preservation solution is a mixture of glycerol and sterile water in a 1:1 ratio and then sterilized.

在步骤S3中,确定具有除磷能力的菌株包括:Psychrobacter nivimarisPsychrobacter marincolaPsychrobacter namhaensisPsychrobacter haloduransPsychrobacter fulvigenesPsychrobacter celerPsychrobacter maritimusPsychrobacter faecalisRoseibium aggregatumStappia taiwanensisIn step S3, the strains determined to have phosphorus removal ability include: Psychrobacter nivimaris , Psychrobacter marincola , Psychrobacter namhaensis , Psychrobacter halodurans , Psychrobacter fulvigenes , Psychrobacter celer , Psychrobacter maritimus , Psychrobacter faecalis , Roseibium aggregatum , and Stappia taiwanensis .

富集培养基以2216E液体培养基加无菌水配置2216E液体培养基,该培养基成分包括:蛋白胨5.0g,酵母浸粉1.0g,柠檬酸铁0.1g,氯化钠19.45g,氯化镁5.98g,硫酸钠3.24g,氯化钙8g,氯化钾0.55g,碳酸钠0.16g,溴化钾0.08g,氯化锶0.034g,硼酸0.022g,硅酸钠0.004g,氟化钠0.0024g,硝酸铵0.0016g,磷酸氢二钠0.008g。The enrichment medium is prepared by adding sterile water to the 2216E liquid medium, and the components of the medium include: 5.0 g of peptone, 1.0 g of yeast extract powder, 0.1 g of ferric citrate, 19.45 g of sodium chloride, 5.98 g of magnesium chloride, 3.24 g of sodium sulfate, 8 g of calcium chloride, 0.55 g of potassium chloride, 0.16 g of sodium carbonate, 0.08 g of potassium bromide, 0.034 g of strontium chloride, 0.022 g of boric acid, 0.004 g of sodium silicate, 0.0024 g of sodium fluoride, 0.0016 g of ammonium nitrate, and 0.008 g of disodium hydrogen phosphate.

磷酸盐去除培养基:将2216E液体培养基灭菌后,加入已灭菌的2g/L-P磷酸氢二钠母液,使磷浓度为26.5mg/L,以1mol/L的NaOH和HCl调节pH在7.6±0.2;之后按比例混合菌液得到海洋生物被膜混合群落。Phosphate removal medium: After sterilizing the 2216E liquid medium, add sterilized 2g/L-P disodium hydrogen phosphate mother solution to make the phosphorus concentration 26.5mg/L, and adjust the pH to 7.6±0.2 with 1mol/L NaOH and HCl; then mix the bacterial liquid in proportion to obtain a marine biofilm mixed community.

将筛选到的且已保种的具有除磷能力的12株细菌按1%的接种量接种至含2216E液体培养基的EP管中,在25℃恒温摇床以180rpm有光有氧条件下培养2-3天;待所有菌株的菌液长至对数期,吸取每个菌株的菌液,用Thermo scientific multiskan FC酶标仪在600nm波长下测定每个菌株菌液的吸光值;根据各个菌株菌液的吸光值,以纯净的已灭菌的2216E液体培养基作为调整液,以稀释或离心重悬的方法调整每个菌株菌液的吸光值,使12株菌菌液吸光值统一在0.2;将12株菌按相同的量混合并加入和菌液相等量的保种液,分装保种好的混合菌群置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到The 12 strains of bacteria with phosphorus removal ability that were screened and preserved were inoculated into EP tubes containing 2216E liquid culture medium at an inoculation rate of 1%, and cultured in a constant temperature shaker at 25°C and 180rpm under light and aerobic conditions for 2-3 days; when the bacterial liquid of all strains grew to the logarithmic phase, the bacterial liquid of each strain was aspirated, and the absorbance value of the bacterial liquid of each strain was measured at a wavelength of 600nm using a Thermo scientific multiskan FC microplate reader; according to the absorbance value of the bacterial liquid of each strain, the pure sterilized 2216E liquid culture medium was used as an adjustment liquid, and the absorbance value of the bacterial liquid of each strain was adjusted by dilution or centrifugal resuspension, so that the absorbance values of the bacterial liquids of the 12 strains were unified at 0.2; the 12 strains of bacteria were mixed in the same amount and a preservation liquid equal to the bacterial liquid was added, and the preserved mixed bacterial colony was divided and stored in a -80°C refrigerator; the preservation liquid was obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing

以2216E液体培养基对海洋生物被膜混合群落进行富集培养,具体为:将冰箱中保存的混合群落的菌液按1%的比例接种至含2216E液体培养基的EP管中活化培养2-3天;取EP管中的菌液按1%的比例接种至含2216E液体培养基的锥形瓶中,在25℃恒温摇床以180rpm有光有氧条件培养3天;取锥形瓶内的菌液按1%接种量接种至每孔含2216E液体培养基的六孔板中静置培养16-18h成膜。The mixed community of marine biofilms was enriched and cultured with 2216E liquid culture medium, specifically: the bacterial solution of the mixed community stored in the refrigerator was inoculated into an EP tube containing 2216E liquid culture medium at a ratio of 1% for activation culture for 2-3 days; the bacterial solution in the EP tube was inoculated into a conical flask containing 2216E liquid culture medium at a ratio of 1%, and cultured in a constant temperature shaker at 25°C and 180rpm under light and aerobic conditions for 3 days; the bacterial solution in the conical flask was inoculated into each well of a six-well plate containing 2216E liquid culture medium at a ratio of 1% and static culture was carried out for 16-18h to form a film.

还包括用移液管吸出六孔板中含有浮游细菌的培养上清液,然后加入8ml 2216E液体培养基,使用钼锑比色法每12小时测定一次培养基中的磷浓度It also includes using a pipette to aspirate the culture supernatant containing planktonic bacteria in the six-well plate, then adding 8 ml of 2216E liquid culture medium, and measuring the phosphorus concentration in the culture medium every 12 hours using the molybdenum antimony colorimetric method

结合上述的所有技术方案,本发明所具备的有益效果为:本发明筛选并培养了由12株细菌组成的细菌群落,将12株菌与NCBI数据库比对,分别是Psychrobacter nivimarisPsychrobacter marincolaPsychrobacter namhaensisPsychrobacter haloduransPsychrobacter fulvigenesPsychrobacter celerPsychrobacter maritimusPsychrobacter faecalisRoseibium aggregatumStappia taiwanensis。在初始磷浓度为26.5mg/L时,本发明的72h的除磷效率高达73.97%,为生物除磷提供了一种新方向。In combination with all the above technical solutions, the beneficial effects of the present invention are as follows: the present invention screened and cultured a bacterial community consisting of 12 bacterial strains, and compared the 12 bacterial strains with the NCBI database, which were Psychrobacter nivimaris , Psychrobacter marincola , Psychrobacter namhaensis , Psychrobacter halodurans , Psychrobacter fulvigenes , Psychrobacter celer , Psychrobacter maritimus , Psychrobacter faecalis , Roseibium aggregatum , and Stappia taiwanensis . When the initial phosphorus concentration was 26.5 mg/L, the phosphorus removal efficiency of the present invention in 72 hours was as high as 73.97%, providing a new direction for biological phosphorus removal.

本发明筛选并混合了来自海洋生物被膜的12株纯培养细菌,此群落在正常实验室环境未经调整氧气浓度下下即可发挥较高除磷能力;培养群落的富集培养基和磷酸盐去除培养基均与海水盐度(30‰)相同,可以处理高盐度废水;且所用碳源较易获得(蛋白胨,酵母粉等中的,较污水处理厂需提供特定的醋酸盐而言,较易获得的,更经济的碳源)、菌群也倾向于形成生物膜方便磷回收,为废水除磷提供了一种新思路。The present invention screens and mixes 12 pure cultured bacteria from marine biofilms. This community can exert a high phosphorus removal ability under normal laboratory environment without adjusting the oxygen concentration. The enrichment medium and phosphate removal medium for culturing the community are both the same as the salinity of seawater (30‰), and can treat high-salinity wastewater. The carbon source used is easier to obtain (peptone, yeast powder, etc., which is easier to obtain and more economical than the specific acetate that needs to be provided by sewage treatment plants), and the bacterial community also tends to form a biofilm to facilitate phosphorus recovery, providing a new idea for wastewater phosphorus removal.

本发明利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,构建了一个由12株细菌构成的高效除磷群落,可以对高盐废水中的磷进行去除。本发明拓宽了废水除磷的选择,有助于废水除磷的扩大应用,为去除废水中多余的磷酸盐并回收利用提供了有益信息。The present invention uses a method for removing inorganic phosphorus from high-salinity wastewater using a mixed community of marine biofilms, constructs an efficient phosphorus removal community consisting of 12 strains of bacteria, and can remove phosphorus from high-salinity wastewater. The present invention broadens the options for wastewater phosphorus removal, helps expand the application of wastewater phosphorus removal, and provides useful information for removing excess phosphates from wastewater and recycling them.

本发明在高盐度的培养基中与已经商业化的除磷菌剂相比,具有更快的除磷速度和更强的除磷能力,有望开发出针对高盐废水的具有更高效率的除磷菌剂。本发明的除磷群落可以在高盐条件下去除磷酸盐,解决了目前污水处理的难点:即面对盐度较高的废水时,活性污泥菌株除磷效率下降,导致高盐废水难以去除磷酸盐。Compared with commercial phosphorus removal bacteria in high-salinity culture medium, the present invention has a faster phosphorus removal speed and stronger phosphorus removal ability, and is expected to develop a more efficient phosphorus removal bacteria for high-salinity wastewater. The phosphorus removal community of the present invention can remove phosphate under high-salinity conditions, solving the current difficulty in sewage treatment: that is, when faced with wastewater with high salinity, the phosphorus removal efficiency of activated sludge strains decreases, resulting in difficulty in removing phosphate from high-salinity wastewater.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理;The accompanying drawings herein are incorporated in and constitute a part of the specification, illustrate embodiments consistent with the present disclosure, and together with the description, serve to explain the principles of the present disclosure;

图1是本发明实施例提供的利用海洋生物被膜混合群落去除高盐废水中无机磷的方法流程图;FIG1 is a flow chart of a method for removing inorganic phosphorus from high-salinity wastewater using a mixed community of marine biofilms provided by an embodiment of the present invention;

图2是本发明实施例提供的群落除磷效率示意图;FIG2 is a schematic diagram of the phosphorus removal efficiency of the community provided by an embodiment of the present invention;

图3是本发明实施例提供的群落除磷效率与在售除磷菌剂的对比图。FIG3 is a comparison chart of the phosphorus removal efficiency of the community provided in an embodiment of the present invention and the phosphorus removal bacteria agent currently on the market.

具体实施方式DETAILED DESCRIPTION

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其他方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. In the following description, many specific details are set forth to facilitate a full understanding of the present invention. However, the present invention can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without violating the connotation of the present invention, so the present invention is not limited by the specific implementation disclosed below.

本发明的创新点在于:本发明的12株细菌均来自海洋生物被膜,且由它们混合为细菌群落,以有无ppk2pap基因判断是否为聚磷菌,为核心创新点,使得除磷群落在较高盐度下有较强的除磷能力,较单个细菌而言有更强的稳定性,可适用于多种环境,且有基因组信息支持,可以进一步扩大应用或进行菌株改造以进一步提高除磷效率和拓宽应用场景;以2216E液体培养基为富集培养基及用2216E液体培养基加磷酸氢二钠作为磷酸盐去除培养基;混菌时以OD600 0.2为标准;菌群在接种至磷酸盐去除培养基前先在6孔板里经过16-18h的成膜;以无机磷酸盐检测试剂盒(磷钼酸法)测定培养基中磷酸盐浓度变化。The innovation of the present invention lies in that: the 12 bacterial strains of the present invention are all from marine biofilms, and they are mixed into bacterial communities, and whether they are polyphosphate-accumulating bacteria is determined by the presence or absence of ppk2 and pap genes, which is the core innovation point, so that the phosphorus removal community has a stronger phosphorus removal ability under higher salinity, has stronger stability than a single bacterium, can be applied to a variety of environments, and has the support of genome information, and can further expand the application or carry out strain transformation to further improve the phosphorus removal efficiency and broaden the application scenarios; 2216E liquid culture medium is used as an enrichment medium and 2216E liquid culture medium plus disodium hydrogen phosphate is used as a phosphate removal medium; OD600 0.2 is used as a standard when mixing bacteria; the bacterial community is first subjected to 16-18 hours of film formation in a 6-well plate before being inoculated into the phosphate removal medium; and the change in phosphate concentration in the culture medium is determined by an inorganic phosphate detection kit (phosphomolybdic acid method).

实施例,如图1所示,本发明实施例提供的利用海洋生物被膜混合群落去除高盐废水中无机磷的方法的包括以下步骤:Embodiment, as shown in FIG1 , the method for removing inorganic phosphorus from high-salinity wastewater using a mixed community of marine biofilms provided in the embodiment of the present invention comprises the following steps:

S1,采集用于细菌分离的海洋生物被膜样本并进行微生物培养;提取培养菌株的DNA进行PCR扩增16SrRNA基因和Sanger测序,确定分离物的分类;S1, collect marine biofilm samples for bacterial isolation and culture the microorganisms; extract DNA of cultured strains for PCR amplification of 16SrRNA gene and Sanger sequencing to determine the classification of isolates;

S2,对各个菌株的基因组进行提取,组装、比对、预测开放阅读框以及进行功能基因注释,以是否存在ppk1、ppk2pap基因判断是否为聚磷菌,确定具有除磷能力的菌株;S2, extract the genome of each strain, assemble, align, predict the open reading frame and perform functional gene annotation, determine whether it is a phosphate-accumulating bacterium based on the presence of ppk1, ppk2 and pap genes, and determine the strain with phosphorus removal ability;

S3,分别制备富集培养基和磷酸盐去除培养基,将筛选得到的具有除磷能力的细菌菌株接种培养,测定生长阶段,按比例混合菌液得到海洋生物被膜混合群落;S3, respectively preparing an enrichment medium and a phosphate removal medium, inoculating and culturing the screened bacterial strains with phosphorus removal ability, determining the growth stage, and mixing the bacterial liquids in proportion to obtain a marine biofilm mixed community;

S4,以2216E液体培养基对海洋生物被膜混合群落进行富集培养,以添加磷酸盐的2216E液体培养基对混合群落进行磷酸盐去除效率的测定。S4, enriching and culturing the mixed community of marine biofilms with 2216E liquid culture medium, and determining the phosphate removal efficiency of the mixed community with 2216E liquid culture medium supplemented with phosphate.

本发明实施例提供的生物被膜采样和细菌分离包括:利用无菌棉签采集位于潮下带1-2米深的岩石表面天然生物被膜,利用经0.1μm滤膜过滤和高压灭菌后的海水冲洗棉签,并分别稀释10倍和100倍;取生物被膜样本涂布在海洋琼脂培养基2216平板后在25℃、有光有氧条件下进行微生物培养;在解剖显微镜下检查菌落形态特征,分离明显的菌落类型;在100℃下加热5min提取细胞中的DNA;使用通用引物27F(5'-AGAGTTTGATCCTGGCTCAG-3')和1492R(5'-GGTTACCTTGTTACGACTT-3')进行PCR扩增16SrRNA基因,然后在中国北京基因组研究所进行Sanger测序,以确定分离物的分类。分离海洋中的细菌有利于使最终得到的除磷菌株对盐度有较高的耐受性,分离可培养细菌有利于区分各个细菌的功能,有利于进一步的扩大应用,以及深入分析和菌株改造以获得更高效率的除磷菌株。The biofilm sampling and bacterial separation provided in the embodiment of the present invention include: using a sterile cotton swab to collect natural biofilms on the surface of rocks at a depth of 1-2 meters in the subtidal zone, and using seawater filtered through a 0.1 μm filter membrane and sterilized under high pressure to rinse the cotton swab, and diluting it 10 times and 100 times respectively; taking the biofilm sample and smearing it on a marine agar medium 2216 plate, and then culturing the microorganisms at 25° C. under light and aerobic conditions; examining the morphological characteristics of the colonies under a dissecting microscope, and separating obvious colony types; heating at 100° C. for 5 minutes to extract DNA from the cells; using universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-3') to PCR amplify the 16SrRNA gene, and then performing Sanger sequencing at the Beijing Genomics Institute in China to determine the classification of the isolate. Isolating bacteria from the ocean is beneficial for making the final phosphorus removal strain have a higher tolerance to salinity. Isolating cultivable bacteria is beneficial for distinguishing the functions of each bacteria, which is conducive to further expanding applications, as well as in-depth analysis and strain modification to obtain more efficient phosphorus removal strains.

本发明实施例提供的基因组提取及分析包括:基因组测序前,使用TIANamp基因组DNA试剂盒提取培养菌株的DNA,溶菌酶的最终浓度为10mg/mL,在37℃温育30min;按照试剂盒提供的方法加入裂解缓冲液GA和缓冲液GB、GD和GW;在Mini-Sub Cell GT系统中通过琼脂糖凝胶电泳检测DNA的完整性;对于每个细菌菌株,采用NovaSeq 6000系统进行Illumina测序。使用SPAdes(v3.13.0)中的spades.py对返回的纯净读数进行基因组组装。以CheckM(v1.1.2)中的Lineage_wf评估基因组的完整性和潜在污染。基因组污染<5%且完整性大于90%的基因组被视为高质量基因组,并用于进一步分析。在使用fastANI进行全基因组比较后,去除了冗余基因组,保留了平均核苷酸同一性(ANI)小于99.9%的基因组。开放阅读框(ORFs)采用Prodigal(v2.60)在单基因组分析模式下进行预测,进行闭合终止的ORF预测。为了进行功能基因注释,使用DIAMOND和BLASTP将与ORFs对应的蛋白质序列在京都基因与基因组百科全书(KEGG)数据库(v2022)中进行搜索,E值设<1e-7。基于与磷酸盐代谢相关的基因,包括phoU(K02039)、pstSCAB(K02036、K02037、K02038和K02040)、pgk(K00927)、ppx(K01524)、ppk1(K00937)、ppk2(K22468)、phoB(K07657)、ppnK(K00858)和pit(K03306)初步判断菌株是否具有除磷能力。将筛选到的细菌培养至对数期,之后加入保种液置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。测定细菌的基因组有利于对细菌的基因进行挖掘,通过功能基因的有无可以推断细菌的某些代谢功能,有利于在基因组水平上筛选除磷菌株,且能为具有除磷能力的菌株提供基因水平上的证据,且定位到功能基因时,有利于菌株在基因组水平上的改造,从而提高除磷效率。以除磷相关基因筛选除磷菌株,较传统平板划线筛选方法,工作量更低,效率更高,且可以定位到发挥作用的功能基因,对筛选到的除磷菌株有更为清晰的除磷原理认识。The genome extraction and analysis provided in the embodiment of the present invention includes: before genome sequencing, DNA of the cultured strain is extracted using the TIANamp genomic DNA kit, the final concentration of lysozyme is 10 mg/mL, and it is incubated at 37°C for 30 minutes; lysis buffer GA and buffers GB, GD and GW are added according to the method provided by the kit; the integrity of the DNA is detected by agarose gel electrophoresis in the Mini-Sub Cell GT system; for each bacterial strain, the NovaSeq 6000 system is used for Illumina sequencing. Spades.py in SPAdes (v3.13.0) is used to assemble the returned clean reads. The integrity and potential contamination of the genome are evaluated by Lineage_wf in CheckM (v1.1.2). Genomes with genome contamination <5% and integrity greater than 90% are considered high-quality genomes and used for further analysis. After whole-genome comparison using fastANI, redundant genomes are removed and genomes with an average nucleotide identity (ANI) of less than 99.9% are retained. Open reading frames (ORFs) were predicted using Prodigal (v2.60) in single genome analysis mode to predict closed and terminated ORFs. For functional gene annotation, protein sequences corresponding to ORFs were searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (v2022) using DIAMOND and BLASTP, with an E value of <1e -7 . Based on genes related to phosphate metabolism, including phoU (K02039) , pstSCAB (K02036, K02037, K02038 and K02040) , pgk (K00927) , ppx (K01524) , ppk1 (K00937) , ppk2 (K22468) , phoB (K07657) , ppnK (K00858) and pit (K03306), it was preliminarily determined whether the strain had the ability to remove phosphorus. The selected bacteria were cultured to the logarithmic phase, and then added with seed preservation solution and stored in a -80℃ refrigerator; the seed preservation solution was obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing. Determining the bacterial genome is conducive to mining bacterial genes. The presence or absence of functional genes can be used to infer certain metabolic functions of bacteria, which is conducive to screening phosphorus removal strains at the genome level and can provide genetic evidence for strains with phosphorus removal capabilities. When functional genes are located, it is conducive to the transformation of strains at the genome level, thereby improving phosphorus removal efficiency. Screening phosphorus removal strains with phosphorus removal-related genes has lower workload and higher efficiency than traditional plate streaking screening methods, and can locate functional genes that play a role, so that the screened phosphorus removal strains have a clearer understanding of the phosphorus removal principle.

本发明实施例提供的具有除磷能力的菌株包括:Psychrobacter nivimarisPsychrobacter marincolaPsychrobacter namhaensisPsychrobacter haloduransPsychrobacter fulvigenesPsychrobacter celerPsychrobacter maritimusPsychrobacter faecalisRoseibium aggregatumStappia taiwanensisThe strains with phosphorus removal ability provided in the embodiments of the present invention include: Psychrobacter nivimaris , Psychrobacter marincola , Psychrobacter namhaensis , Psychrobacter halodurans , Psychrobacter fulvigenes , Psychrobacter celer , Psychrobacter maritimus , Psychrobacter faecalis , Roseibium aggregatum , and Stappia taiwanensis .

本发明实施例提供的富集培养基是以2216E液体培养基加无菌水配置2216E液体培养基,该培养基成分包括:蛋白胨5.0g,酵母浸粉1.0g,柠檬酸铁0.1g,氯化钠19.45g,氯化镁5.98g,硫酸钠3.24g,氯化钙8g,氯化钾0.55g,碳酸钠0.16g,溴化钾0.08g,氯化锶0.034g,硼酸0.022g,硅酸钠0.004g,氟化钠0.0024g,硝酸铵0.0016g,磷酸氢二钠0.008g;The enrichment medium provided in the embodiment of the present invention is prepared by adding sterile water to the 2216E liquid medium, wherein the medium components include: 5.0 g of peptone, 1.0 g of yeast extract powder, 0.1 g of ferric citrate, 19.45 g of sodium chloride, 5.98 g of magnesium chloride, 3.24 g of sodium sulfate, 8 g of calcium chloride, 0.55 g of potassium chloride, 0.16 g of sodium carbonate, 0.08 g of potassium bromide, 0.034 g of strontium chloride, 0.022 g of boric acid, 0.004 g of sodium silicate, 0.0024 g of sodium fluoride, 0.0016 g of ammonium nitrate, and 0.008 g of disodium hydrogen phosphate;

磷酸盐去除培养基是将2216E液体培养基灭菌后,加入已灭菌的2g/L-P磷酸氢二钠母液,使磷浓度为26.5mg/L,以1mol/L的NaOH和HCl调节pH在7.6±0.2。The phosphate-removed medium is prepared by sterilizing the 2216E liquid medium, adding sterilized 2g/L-P disodium hydrogen phosphate mother solution to make the phosphorus concentration 26.5mg/L, and adjusting the pH to 7.6±0.2 with 1mol/L NaOH and HCl.

本发明实施例提供的菌群混合包括:将已保种的具有除磷能力的12株细菌按1%的接种量接种至含2216E液体培养基的EP管中,在25℃恒温摇床以180rpm有光有氧条件下培养2-3天;待所有菌株的菌液长至指数期,吸取每个菌株的菌液,用Thermo scientificmultiskan FC酶标仪在600nm波长下测定每个菌株菌液的吸光值;根据各个菌株菌液的吸光值,以纯净的已灭菌的2216E液体培养基作为调整液,以稀释或离心重悬的方法调整每个菌株菌液的吸光值,使12株菌菌液吸光值统一在0.2;将12株菌按相同的量混合并加入和菌液相等量的保种液,分装保种好的混合菌群置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。The bacterial flora mixing provided in the embodiment of the present invention includes: inoculating 12 preserved bacterial strains with phosphorus removal ability into an EP tube containing 2216E liquid culture medium at an inoculation rate of 1%, and culturing for 2-3 days in a 25°C constant temperature shaker at 180rpm under light and aerobic conditions; when the bacterial liquid of all strains grows to the exponential phase, absorbing the bacterial liquid of each strain, and measuring the absorbance value of the bacterial liquid of each strain at a wavelength of 600nm using a Thermo scientificmultiskan FC microplate reader; according to the absorbance value of the bacterial liquid of each strain, using a pure sterilized 2216E liquid culture medium as an adjustment liquid, adjusting the absorbance value of the bacterial liquid of each strain by dilution or centrifugal resuspension method, so that the absorbance values of the bacterial liquids of the 12 strains are unified at 0.2; mixing the 12 bacterial strains in the same amount and adding a preservation liquid in an amount equal to the bacterial liquid, packaging the preserved mixed bacterial flora and storing it in a -80°C refrigerator; the preservation liquid is obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing.

本发明实施例提供的混合群落的富集培养包括:将冰箱中保存的混合群落的菌液按1%的比例接种至含2216E液体培养基的EP管中活化培养2-3天;取EP管中的菌液按1%的比例接种至含2216E液体培养基的锥形瓶中,在25℃恒温摇床以180rpm有光有氧条件培养3天;取锥形瓶内的菌液按1%接种量接种至每孔含2216E液体培养基的六孔板中静置培养16-18h成膜。用移液管小心吸出六孔板中含有浮游细菌的培养上清液,然后加入8ml 2216E液体培养基。使用钼锑比色法每12小时测定一次培养基中的磷浓度。将筛选验证具有除磷功能的菌株混合成群落,比单个除磷菌株更为稳定,更适合应用于多种环境,不易丢失除磷功能,且混合群落有较强的成膜能力,可以更牢固的附着在固体载体上,使生物吸附得到的磷更为集中,有利于磷酸盐的富集和回收。The enrichment culture of the mixed community provided in the embodiment of the present invention includes: inoculating the bacterial solution of the mixed community stored in the refrigerator into an EP tube containing 2216E liquid culture medium at a ratio of 1% for activation culture for 2-3 days; taking the bacterial solution in the EP tube and inoculating it into a conical flask containing 2216E liquid culture medium at a ratio of 1%, and culturing it in a constant temperature shaker at 25°C for 3 days under light and aerobic conditions at 180rpm; taking the bacterial solution in the conical flask and inoculating it into a six-well plate containing 2216E liquid culture medium in each well at a 1% inoculation amount and statically culturing for 16-18h to form a film. Carefully aspirate the culture supernatant containing planktonic bacteria in the six-well plate with a pipette, and then add 8ml of 2216E liquid culture medium. The phosphorus concentration in the culture medium is measured every 12 hours using the molybdenum antimony colorimetric method. Mixing strains that have been screened and verified to have phosphorus removal functions into communities is more stable than single phosphorus removal strains, more suitable for application in a variety of environments, and less likely to lose the phosphorus removal function. The mixed community has a strong film-forming ability and can be more firmly attached to solid carriers, making the phosphorus obtained by biological adsorption more concentrated, which is beneficial to the enrichment and recovery of phosphates.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described or recorded in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.

为进一步证明上述实施例的积极效果,本发明基于上述技术方案进行如下实验。In order to further demonstrate the positive effects of the above embodiment, the present invention conducts the following experiments based on the above technical solution.

一、生物被膜采样和细菌分离:1. Biofilm sampling and bacterial isolation:

用于细菌分离的生物被膜于2019年3月在中国青岛沿海地区(36.05,120.43)采集。用无菌棉签刮下位于潮下带1-2米深的岩石表面天然生物被膜,并立即转移到实验室。用10mL经0.1μm滤膜过滤和高压灭菌后的海水彻底冲洗棉签,然后分别稀释10倍和100倍。每个生物被膜样本取100µL涂布在海洋琼脂培养基2216平板(海博生物)上。随后在25℃、有光有氧条件下进行微生物培养。在解剖显微镜下检查菌落的形态特征,包括大小、颜色、形状和表面形貌,分离出明显的菌落类型。在100℃下加热5min提取细胞中的DNA;使用通用引物27F(5'-AGAGTTTGATCCTGGCTCAG-3')和1492R(5'-GGTTACCTTGTTACGACTT-3')进行PCR扩增16SrRNA基因,然后在中国北京基因组研究所进行Sanger测序,以确定分离物的分类。本发明用到的菌株及其16SrRNA基因与NCBI数据库比对的结果:Biofilms for bacterial isolation were collected in the coastal area of Qingdao, China (36.05, 120.43) in March 2019. Natural biofilms on rock surfaces located at a depth of 1–2 m in the subtidal zone were scraped off with sterile cotton swabs and immediately transferred to the laboratory. The cotton swabs were thoroughly rinsed with 10 mL of seawater filtered through a 0.1 μm filter membrane and sterilized by autoclave, and then diluted 10-fold and 100-fold, respectively. 100 µL of each biofilm sample was spread on a marine agar medium 2216 plate (Haibo Biotech). Microbial culture was then performed at 25 °C under light and aerobic conditions. The morphological characteristics of the colonies, including size, color, shape, and surface morphology, were examined under a dissecting microscope, and distinct colony types were isolated. DNA was extracted from the cells by heating at 100°C for 5 min; PCR was performed to amplify the 16SrRNA gene using universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-3'), and then Sanger sequencing was performed at the Beijing Genomics Institute in China to determine the classification of the isolates. The strains used in the present invention and their 16SrRNA genes were compared with the NCBI database:

H023,16s-NCBI比对结果:Psychrobacter nivimaris,16SrRNA序列:ATAGCACGGGGAAACTCGTATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACTCTTCGGTTAATACCCGGAGACGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGAAACTGTTAGGCTAGAGTAGGTGAGAGGGAAGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAA,H023, 16s-NCBI alignment result: Psychrobacter nivimaris , 16SrRNA sequence:

L010,16s-NCBI比对结果:Psychrobacter marincola,16SrRNA序列:AGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGTCCTACGGGAGAAAGGGGGCAACTTGTTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCTAACGGTTAATACCCGTTAGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTCAGGCTAGAATAGGTGAGAGGAAGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCCTTCTGGCATCATATTGACACTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTTTCAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAAT;L010, 16s-NCBI alignment result: Psychrobacter marincola , 16SrRNA sequence:;

L022,16s-NCBI比对结果:Psychrobacter namhaensis,16SrRNA序列:GCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCATATGGTTAATACCCATATGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATA,L022, 16s-NCBI alignment result: Psychrobacter namhaensis , 16SrRNA sequence:

L037,16s-NCBI比对结果:Psychrobacter halodurans,16SrRNA序列:CGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCCACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCTAATGGTTAATACCCATTAGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTTTCCTTAGTTACCAGCGGTTTGGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAAT,L037, 16s-NCBI alignment result: Psychrobacter halodurans , 16SrRNA sequence:

S259,16s-NCBI比对结果:Psychrobacter fulvigenes,16SrRNA序列:CTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGGGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCATATGGCTAATACCCATATGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGA,S259, 16s-NCBI alignment result: Psychrobacter fulvigenes , 16SrRNA sequence:

S270,16s-NCBI比对结果:Psychrobacter namhaensis,16SrRNA序列:AGTAGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCATGTGGTTAATACCCATATGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTC,S270, 16s-NCBI alignment result: Psychrobacter namhaensis , 16SrRNA sequence:

S279,16s-NCBI比对结果:Psychrobacter celer,16SrRNA序列:AGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCTAACGATTAATACCCGTTAGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACG,S308,16s-NCBI比对结果:Psychrobacter faecalis,16SrRNA序列:GTAGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAACTTGTTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACTCTATGGTTAATACCCATGGGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAATAGGTGAGAGGAAGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCCTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGGCACCTTGATTGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTTGACGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCA,S279, 16s-NCBI alignment result: Psychrobacter celer , 16SrRNA sequence: , S308, 16s-NCBI alignment result: Psychrobacter faecalis , 16SrRNA sequence: ,

S310,16s-NCBI比对结果:Psychrobacter celer,16SrRNA序列:TAGTAGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAGTTTACTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACCTAACGGTTAATACCCGTTAGCGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAAGCTAGAGTAGGTGAGAGGGAAGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCTTCCTGGCATCATACTGACACTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATACACAGAATCTTGTAGAGATACGAGAGTGCCTTCGGGAATTGTGATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAAT,S344,16s-NCBI比对结果:Psychrobacter maritimus,16SrRNA序列:CCTAGTAGTGGGGGATAGCTCGGGGAAACTCGAATTAATACCGCATACGACCTACGGGAGAAAGGGGGCAACTTGTTGCTCTCGCTATTAGATGAGCCTAAGTCGGATTAGCTAGATGGTGGGGTAAAGGCCTACCATGGCGACGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACCGGGACTGAGACACGGCCCGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCAGTGAAGAAGACTCCATGGTTAATACCCATGGACGATGACATTAGCTGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGAGCGTAGGTGGCTTGATAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATCTGATACTGTTAGGCTAGAATAGGTGAGAGGAAGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCCTTCTGGCATCATATTGACACTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGTCGTTGGGTCCCTTGAGGACTTAGTGACGCAGCTAACGCAATAAGTAGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATATCTAGAATCCTGCAGAGATGCGGGAGTGCCTTCGGGAATTAGAATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTACCAGCGGGTTAAGCCGGGAACTCTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGTAGGTACAGAGGGCAGCTACACAGCGATGTGATGCGAATCTCAAAAAGCCTATCGTAGTCCAGATTGGAGTCTGCAACTCGACTCCATGAAGTAGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATA,S310, 16s-NCBI alignment result: Psychrobacter celer , 16SrRNA sequence: , S344, 16s-NCBI alignment result: Psychrobacter maritimus , 16SrRNA sequence: ,

S419,16s-NCBI比对结果:Roseibium aggregatum,16SrRNA序列:ACAACAGTTGGAAACGACTGCTAATACCGTATGTGCCCTATGGGGGAAAGATTTATCGCCTAAGGATGGGCCCGCGTTGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCCATAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGAAGGCCCTAGGGTTGTAAAGCTCTTTCAGCGAGGAGGATAATGACGTTACTCGCAGAAGAAGCCCCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATCACTGGGCGTAAAGCGCACGTAGGCGGACTTTTAAGTCAGGGGTGAAATCCCGGGGCTCAACCCCGGAACTGCCTTTGATACTGGAAGTCTTGAGTCCGAGAGAGGTGAGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGGCTCACTGGCTCGGTACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGAAGCTAGCCGTCAGGTAGCATGCTATTTGGTGGCGCAGCTAACGCATTAAGCTTCCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCAGCCCTTGACATTTGGTGCTACTTCCAGAGATGGAAGGTTCCCTTCGGGGACGCCAGGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCCTTAGTTGCCAGCATTCAGTTGGGCACTCTAGGGGGACTGCCGGTGATAAGCCGAGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTACGGGCTGGGCTACACACGTGCTACAATGGCGGTGACAGTGGGCAGCGAACTCGCGAGAGGGAGCTAATCTCCAAAAGCCGTCTCAGTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGTTGGAATCGCTAGTAATCGCGTAACAGCATGACGCGGTGAATACGTT,S419, 16s-NCBI alignment result: Roseibium aggregatum , 16SrRNA sequence:

Z008,16s-NCBI比对结果:Stappia taiwanensis,16SrRNA序列:AACAGTTGGAAACGACTGCTAATACCGTATACGCCCTATTGGGGAAAGATTTATTGCCGAGAGATGGGCCCGCGTTGGATTAGCTAGTTGGTGGGGTAATGGCCTACCAAGGCGACGATCCATAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCCATGCCGCGTGAGTGATGAAGGCCTTAGGGTTGTAAAGCTCTTTCGCCGGTGAAGATAATGACGGTAACCGGTAAAGAAGCCCCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATTACTGGGCGTAAAGCGCACGTAGGCTGACTTTTAAGTCAGGGGTGAAATCCCGGGGCTCAACCTCGGAATTGCCTTTGATACTGGAAGTCTTGAGTCCGAGAGAGGTGAGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGGCTCACTGGCTCGGTACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGAAGCTAGCTGTCAGGTAGCATGCTATTTGGTGGCGCAGCTAACGCATTAAGCTTCCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCAGCCCTTGACATGTCCGGCACACACCAGAGATGGTGTTTTCCCTTCGGGGACCGGAGCACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCCTTAGTTGCCAGCATTCAGTTGGGCACTCTAGGGGGACTGCCGGTGATAAGCCGAGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTACGGGCTGGGCTACACACGTGCTACAATGGCGGTGACAATGGGCAGCGAACCCGCGAGGGGGAGCTAATCTTTAAAAACCGTCTCAGTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGTTGGAATCGCTAGTAATCGCGTAACAGCATGACGCGGTGAATACGTTCCCG。Z008, 16s-NCBI alignment results: Stappia taiwanensis , 16SrRNA sequence:.

本发明中选取12株细菌的所有三个属中的代表菌株各一株保藏,保藏编号为:S344: CCTCCM 20241514, S419: CCTCCM 20241515, Z008: CCTCCM 20241516。In the present invention, 12 bacterial strains were selected and one representative strain from each of the three genera was deposited, and the deposit numbers are: S344: CCTCCM 20241514, S419: CCTCCM 20241515, and Z008: CCTCCM 20241516.

二、基因组提取及分析:2. Genome extraction and analysis:

基因组测序前,使用TIANamp基因组DNA试剂盒提取培养菌株的DNA,溶菌酶的最终浓度为10 mg/mL,在37℃温育30min;按照试剂盒提供的方法加入裂解缓冲液GA和缓冲液GB、GD和GW;在Mini-Sub Cell GT系统中通过琼脂糖凝胶电泳检测DNA的完整性;对于每个细菌菌株, 采用NovaSeq 6000系统进行Illumina测序。使用 SPAdes(v3.13.0)中的spades.py 对返回的纯净读数进行基因组组装。以CheckM(v1.1.2)中的Lineage_wf评估基因组的完整性和潜在污染。基因组污染<5%且完整性大于90%的基因组被视为高质量基因组,并用于进一步分析。在使用fastANI进行全基因组比较后,去除了冗余基因组,保留了平均核苷酸同一性(ANI)小于99.9%的基因组。开放阅读框(ORFs)采用Prodigal(v2.60)在单基因组分析模式下进行预测,进行闭合终止的ORF预测。为了进行功能基因注释,使用DIAMOND和BLASTP将与ORFs对应的蛋白质序列在京都基因与基因组百科全书(KEGG)数据库(v2022)中进行搜索,E值设为<1e-7。基于与磷酸盐代谢相关的基因,包括phoU(K02039) pstSCAB(K02036、K02037、K02038和K02040)、pgk(K00927)、ppx(K01524)、ppk1(K00937) ppk2(K22468)、phoB(K07657)、ppnK(K00858)和pit(K03306)初步判断菌株是否具有除磷能力。将筛选到的细菌培养至对数期,之后加入保种液置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。Before genome sequencing, DNA of cultured strains was extracted using the TIANamp genomic DNA kit, with a final concentration of lysozyme of 10 mg/mL and incubated at 37°C for 30 min; lysis buffer GA and buffers GB, GD, and GW were added according to the method provided by the kit; DNA integrity was detected by agarose gel electrophoresis in the Mini-Sub Cell GT system; for each bacterial strain, Illumina sequencing was performed using the NovaSeq 6000 system. Genome assembly was performed on the returned clean reads using spades.py in SPAdes (v3.13.0). The integrity and potential contamination of the genome were assessed using Lineage_wf in CheckM (v1.1.2). Genomes with genome contamination <5% and integrity greater than 90% were considered high-quality genomes and used for further analysis. After whole-genome comparison using fastANI, redundant genomes were removed and genomes with an average nucleotide identity (ANI) of less than 99.9% were retained. Open reading frames (ORFs) were predicted using Prodigal (v2.60) in single genome analysis mode to predict closed and terminated ORFs. For functional gene annotation, protein sequences corresponding to ORFs were searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (v2022) using DIAMOND and BLASTP, with an E value of <1e -7 . Based on genes related to phosphate metabolism, including phoU (K02039) , pstSCAB (K02036, K02037, K02038 and K02040) , pgk (K00927) , ppx (K01524) , ppk1 (K00937) , ppk2 (K22468) , phoB (K07657) , ppnK (K00858) and pit (K03306), it was preliminarily determined whether the strain had the ability to remove phosphorus. The selected bacteria were cultured to the logarithmic phase, and then added with seed preservation solution and stored in a -80℃ refrigerator; the seed preservation solution was obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing.

三、培养基制备:3. Culture medium preparation:

以2216E液体培养基对所有细菌及群落进行富集培养,以添加了磷酸盐的2216E液体培养基对群落进行磷酸盐去除效率的测定。以下为各培养基的具体配方,富集培养基:以2216E液体培养基加无菌水配置2216E液体培养基。成分(g/L):蛋白胨5.0g,酵母浸粉1.0g,柠檬酸铁0.1g,氯化钠19.45g,氯化镁5.98g,硫酸钠3.24g,氯化钙8g,氯化钾0.55g,碳酸钠0.16g,溴化钾0.08g,氯化锶0.034g,硼酸0.022g,硅酸钠0.004g,氟化钠0.0024g,硝酸铵0.0016g,磷酸氢二钠0.008g。All bacteria and communities were enriched and cultured in 2216E liquid medium, and the phosphate removal efficiency of the community was determined in 2216E liquid medium supplemented with phosphate. The following are the specific formulas of each culture medium: Enrichment medium: 2216E liquid medium was prepared by adding sterile water to 2216E liquid medium. Ingredients (g/L): peptone 5.0g, yeast extract powder 1.0g, ferric citrate 0.1g, sodium chloride 19.45g, magnesium chloride 5.98g, sodium sulfate 3.24g, calcium chloride 8g, potassium chloride 0.55g, sodium carbonate 0.16g, potassium bromide 0.08g, strontium chloride 0.034g, boric acid 0.022g, sodium silicate 0.004g, sodium fluoride 0.0024g, ammonium nitrate 0.0016g, disodium hydrogen phosphate 0.008g.

磷酸盐去除培养基:上述2216E液体培养基灭菌后,加入已灭菌的2g/L-P的磷酸氢二钠母液,使磷浓度在26.5mg/L左右,以1mol/L的NaOH和HCl调节pH在7.6±0.2。Phosphate-removed medium: After the above 2216E liquid medium is sterilized, add sterilized 2g/L-P disodium hydrogen phosphate mother solution to make the phosphorus concentration about 26.5mg/L, and adjust the pH to 7.6±0.2 with 1mol/L NaOH and HCl.

四、混合菌群:4. Mixed flora:

按上述步骤共筛选到12株潜在的具有除磷能力的细菌菌株,将已经保种的12株细菌按1%的接种量接种至含5mL 2216E液体培养基的15mL EP管中,在25℃恒温摇床以180rpm有光有氧条件下培养2-3天。待所有菌株的菌液长至一定程度,吸取每个菌株的菌液,用Thermo scientific multiskan FC酶标仪在600nm波长下测定每个菌株菌液的吸光值。根据各个菌株菌液的吸光值,以纯净的已灭菌的2216E液体培养基作为调整液,以稀释或离心重悬的方法调整每个菌株菌液的吸光值,使12株菌菌液吸光值统一在0.2。之后把12株菌按相同的量混合到一起,并加入和菌液相等量的保种液,分装保种好的混合菌群置于-80℃冰箱保存便于以后利用。保种液为甘油和无菌水按1:1混合后灭菌得到。According to the above steps, a total of 12 bacterial strains with potential phosphorus removal ability were screened. The 12 bacterial strains that have been preserved were inoculated into a 15mL EP tube containing 5mL 2216E liquid culture medium at a 1% inoculation rate, and cultured for 2-3 days in a 25℃ constant temperature shaker at 180rpm under light and aerobic conditions. When the bacterial liquid of all strains grows to a certain extent, the bacterial liquid of each strain is aspirated, and the absorbance value of each strain bacterial liquid is measured at a wavelength of 600nm using a Thermo scientific multiskan FC microplate reader. According to the absorbance value of each strain bacterial liquid, pure sterilized 2216E liquid culture medium is used as an adjustment liquid, and the absorbance value of each strain bacterial liquid is adjusted by dilution or centrifugal resuspension, so that the absorbance value of the 12 strain bacterial liquid is unified at 0.2. After that, the 12 strains of bacteria are mixed together in the same amount, and the same amount of preservation liquid as the bacterial liquid is added. The mixed bacterial colony with good preservation is divided and stored in a -80℃ refrigerator for later use. The seed preservation solution is obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing.

五、富集培养:5. Enrichment culture:

将在冰箱中保存的混合群落的菌液按1%的比例接种至含5mL 2216E液体培养基的15mL EP管中培养2-3天以活化在冰箱中保存的低活力群落,之后吸取15mL EP管中的菌液,按1%的比例接种至含200mL 2216E液体培养基500mL锥形瓶中,在25℃恒温摇床以180rpm有光有氧条件下培养3天。然后接取锥形瓶内的菌液按1%接种量接种至每孔含8mL 2216E液体培养基的六孔板中静置培养16-18h使其成膜。The mixed bacterial suspension stored in the refrigerator was inoculated into a 15mL EP tube containing 5mL 2216E liquid medium at a ratio of 1% and cultured for 2-3 days to activate the low-activity community stored in the refrigerator. Then the bacterial suspension in the 15mL EP tube was aspirated and inoculated into a 500mL conical flask containing 200mL 2216E liquid medium at a ratio of 1%, and cultured for 3 days in a 25℃ constant temperature shaker at 180rpm under light and aerobic conditions. Then the bacterial suspension in the conical flask was inoculated into a six-well plate containing 8mL 2216E liquid medium per well at a 1% inoculation rate and cultured for 16-18h to form a film.

六、除磷效率测定:6. Determination of phosphorus removal efficiency:

将上述六孔板中成膜的菌液上清以移液枪小心吸走,再加入800μL 2216E液体培养基,之后用新的移液枪枪头吹打,摩擦六孔板底部使成膜的细菌重悬至菌液中。然后将六孔板中已经重悬的菌液吸走,接种至每孔有8mL含额外加入的磷酸盐的2216E液体培养基的六孔板中静置培养,每个样品分3个重复。用无机磷测试盒(南京建成生物工程研究所)每隔12h测定培养基中的总磷浓度。试剂盒测定磷酸盐的原理为磷钼酸法。具体测量过程为,取300μL六孔板中的菌液,以6000rpm离心5min取200μL上清进行后续的测定,按试剂盒的操作方法制定标准曲线,按每个样品的吸光值与标准曲线的公式求剩余磷酸盐浓度。以去除的磷酸盐比总磷酸盐计算磷酸盐去除效率。六孔板中菌液含有的磷酸盐浓度随时间变化如图2所示。The supernatant of the bacterial solution in the above six-well plate was carefully sucked away with a pipette, and then 800 μL of 2216E liquid culture medium was added. After that, the film-forming bacteria were resuspended in the bacterial solution by blowing with a new pipette tip and rubbing the bottom of the six-well plate. Then the resuspended bacterial solution in the six-well plate was sucked away and inoculated into a six-well plate with 8 mL of 2216E liquid culture medium containing additional phosphate in each well for static culture. Each sample was repeated 3 times. The total phosphorus concentration in the culture medium was determined every 12 hours using an inorganic phosphorus test kit (Nanjing Jiancheng Bioengineering Institute). The principle of the kit for determining phosphate is the phosphomolybdic acid method. The specific measurement process is to take 300 μL of the bacterial solution in the six-well plate, centrifuge it at 6000 rpm for 5 minutes, and take 200 μL of the supernatant for subsequent determination. The standard curve was prepared according to the operating method of the kit, and the residual phosphate concentration was calculated according to the absorbance value of each sample and the formula of the standard curve. The phosphate removal efficiency was calculated as the ratio of the removed phosphate to the total phosphate. The change of phosphate concentration in the bacterial solution in the six-well plate over time is shown in FIG2 .

七、除磷效率对比:7. Comparison of phosphorus removal efficiency:

将已经商业化的两种在售菌剂,分别为广州引能生物环境科技有限公司的除磷菌及利博源环保材料的除总磷菌,与合成的群落按照六流程测定除磷效率,得到的除磷效率如图3所示。The phosphorus removal efficiency of two commercially available bacterial agents, namely the phosphorus removal bacteria of Guangzhou Yinneng Bio-Environment Technology Co., Ltd. and the total phosphorus removal bacteria of Liboyuan Environmental Protection Materials, was measured together with the synthetic community according to the six-process method. The phosphorus removal efficiency obtained is shown in Figure 3.

以上所述,仅为本发明较优的具体的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any modifications, equivalent substitutions and improvements made by any technician familiar with the technical field within the technical scope disclosed by the present invention and within the spirit and principles of the present invention should be covered within the protection scope of the present invention.

Claims (10)

1.一种利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,该方法包括:1. A method for removing inorganic phosphorus from high-salinity wastewater using a mixed community of marine biofilms, characterized in that the method comprises: S1,采集用于细菌分离的海洋生物被膜样本并进行微生物培养;提取培养菌株的DNA进行PCR扩增16SrRNA基因和Sanger测序,确定分离物的分类;S1, collect marine biofilm samples for bacterial isolation and culture the microorganisms; extract DNA of cultured strains for PCR amplification of 16SrRNA gene and Sanger sequencing to determine the classification of isolates; S2,对各个菌株的基因组进行提取,组装、比对、预测开放阅读框以及进行功能基因注释,以是否存在ppk1、ppk2pap基因为目标,判断是否为聚磷菌,确定具有除磷能力的菌株;S2, extract the genome of each strain, assemble, align, predict the open reading frame and perform functional gene annotation, and determine whether it is a phosphate-accumulating bacterium based on the presence of ppk1, ppk2 and pap genes, and determine the strain with phosphorus removal ability; S3,分别制备富集培养基和磷酸盐去除培养基,将筛选得到的具有除磷能力的细菌菌株接种培养,测定生长阶段,按比例混合菌液得到海洋生物被膜混合群落;S3, respectively preparing an enrichment medium and a phosphate removal medium, inoculating and culturing the screened bacterial strains with phosphorus removal ability, determining the growth stage, and mixing the bacterial liquids in proportion to obtain a marine biofilm mixed community; S4,以2216E液体培养基对海洋生物被膜混合群落进行富集培养,添加磷酸盐的2216E液体培养基对混合群落进行磷酸盐去除效率的测定。S4, enriching and culturing the mixed community of marine biofilm with 2216E liquid culture medium, and determining the phosphate removal efficiency of the mixed community with 2216E liquid culture medium supplemented with phosphate. 2.根据权利要求1所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,在步骤S1中,采集用于细菌分离的海洋生物被膜样本并进行微生物培养,包括:2. The method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities according to claim 1, characterized in that in step S1, a marine biofilm sample for bacterial isolation is collected and microbial culture is performed, comprising: 利用无菌棉签采集位于潮下带1-2米深的岩石表面天然生物被膜,利用经0.1μm滤膜过滤和高压灭菌后的海水冲洗棉签,并分别稀释10倍和100倍;Natural biofilms on rock surfaces at a depth of 1-2 meters in the subtidal zone were collected using sterile cotton swabs. The swabs were rinsed with seawater that had been filtered through a 0.1 μm filter membrane and sterilized by high pressure, and then diluted 10 times and 100 times, respectively. 取生物被膜样本100μL涂布在海洋琼脂培养基2216平板后在25℃、有光有氧条件下进行微生物培养;在解剖显微镜下检查菌落形态特征,分离明显的菌落类型;Take 100 μL of the biofilm sample and spread it on a marine agar medium 2216 plate and culture the microorganisms at 25°C under light and aerobic conditions; examine the morphological characteristics of the colonies under a dissecting microscope and separate the obvious colony types; 在100℃下加热5min提取细胞中的DNA;使用通用引物27F(5'-AGAGTTTGATCCTGGCTCAG-3')和1492R(5'-GGTTACCTTGTTACGACTT-3')进行PCR扩增16SrRNA基因;然后进行Sanger测序,以确定分离物的分类。DNA was extracted from cells by heating at 100°C for 5 min. 16S rRNA gene was amplified by PCR using universal primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′). Sanger sequencing was then performed to determine the classification of the isolates. 3.根据权利要求1所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,在步骤S2中,对各个菌株的基因组进行提取,组装、比对、预测开放阅读框以及进行功能基因注释,包括:3. The method for removing inorganic phosphorus from high-salinity wastewater using a mixed marine biofilm community according to claim 1, characterized in that in step S2, the genome of each strain is extracted, assembled, aligned, open reading frames are predicted, and functional gene annotation is performed, including: 基因组测序前,使用TIANamp基因组DNA试剂盒提取培养菌株的DNA,溶菌酶的最终浓度为10 mg/mL,在37℃温育30min;按照试剂盒提供的方法加入裂解缓冲液GA和缓冲液GB、GD和GW;在Mini-Sub Cell GT系统中通过琼脂糖凝胶电泳检测DNA的完整性;对于每个细菌菌株,采用NovaSeq 6000系统进行Illumina测序。Before genome sequencing, DNA of cultured strains was extracted using the TIANamp genomic DNA kit with a final lysozyme concentration of 10 mg/mL and incubated at 37°C for 30 min. Lysis buffer GA and buffers GB, GD, and GW were added according to the method provided by the kit. DNA integrity was detected by agarose gel electrophoresis in a Mini-Sub Cell GT system. For each bacterial strain, Illumina sequencing was performed using the NovaSeq 6000 system. 4.根据权利要求3所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,还包括:使用SPAdes中的spades.py对返回的纯净读数进行基因组组装,以CheckM中的Lineage_wf评估基因组的完整性和潜在污染,基因组污染<5%且完整性大于90%的基因组被视为高质量基因组,并用于进一步分析;4. The method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities according to claim 3, characterized in that it also includes: using spades.py in SPAdes to assemble the returned clean reads, and using Lineage_wf in CheckM to evaluate the integrity and potential contamination of the genome. Genomes with genome contamination <5% and integrity greater than 90% are considered high-quality genomes and used for further analysis; 再使用fastANI进行全基因组比较后,去除了冗余基因组,保留了平均核苷酸同一性ANI小于99.9%的基因组,开放阅读框ORFs采用Prodigal在单基因组分析模式下进行预测,进行闭合终止的ORF预测;After whole-genome comparison using fastANI, redundant genomes were removed and genomes with an average nucleotide identity ANI less than 99.9% were retained. Open reading frames (ORFs) were predicted using Prodigal in single genome analysis mode to predict closed-terminated ORFs; 为了进行功能基因注释,使用DIAMOND和BLASTP将与ORFs对应的蛋白质序列在京都基因与基因组百科全书KEGG数据库中进行搜索,E值设为< 1e-7;基于与磷酸盐代谢相关的基因,包括phoU(K02039)、pstSCAB(K02036、K02037、K02038和K02040)、pgk(K00927)、ppx(K01524)、ppk1(K00937)、ppk2(K22468)、phoB(K07657)、ppnK(K00858)和pit(K03306)初步判断菌株是否具有除磷能力;将筛选到的细菌培养至对数期,之后加入保种液置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。For functional gene annotation, protein sequences corresponding to ORFs were searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using DIAMOND and BLASTP, with an E value set to <1e-7; based on genes related to phosphate metabolism, including phoU (K02039) , pstSCAB (K02036, K02037, K02038, and K02040) , pgk (K00927) , ppx (K01524) , ppk1 (K00937) , ppk2 (K22468) , phoB (K07657) , ppnK (K00858), and pit (K03306) Preliminarily determine whether the strain has the ability to remove phosphorus; culture the screened bacteria to the logarithmic phase, then add the seed preservation solution and store it in a -80℃ refrigerator; the seed preservation solution is a mixture of glycerol and sterile water in a 1:1 ratio and then sterilized. 5.根据权利要求1所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,在步骤S3中,确定具有除磷能力的菌株包括:Psychrobacter nivimarisPsychrobacter marincolaPsychrobacter namhaensisPsychrobacter haloduransPsychrobacter fulvigenesPsychrobacter celerPsychrobacter maritimusPsychrobacter faecalisRoseibium aggregatumStappia taiwanensis5. The method for removing inorganic phosphorus from high-salinity wastewater using a mixed marine biofilm community according to claim 1, characterized in that, in step S3, the strains determined to have phosphorus removal ability include: Psychrobacter nivimaris , Psychrobacter marincola , Psychrobacter namhaensis , Psychrobacter halodurans , Psychrobacter fulvigenes , Psychrobacter celer , Psychrobacter maritimus , Psychrobacter faecalis , Roseibium aggregatum , and Stappia taiwanensis . 6.根据权利要求5所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,富集培养基以2216E液体培养基加无菌水配置2216E液体培养基,该培养基成分包括:蛋白胨5.0g,酵母浸粉1.0g,柠檬酸铁0.1g,氯化钠19.45g,氯化镁5.98g,硫酸钠3.24g,氯化钙8g,氯化钾0.55g,碳酸钠0.16g,溴化钾0.08g,氯化锶0.034g,硼酸0.022g,硅酸钠0.004g,氟化钠0.0024g,硝酸铵0.0016g,磷酸氢二钠0.008g。6. The method for removing inorganic phosphorus from high-salt wastewater using a mixed community of marine biofilms according to claim 5, characterized in that the enrichment medium is prepared by adding sterile water to a 2216E liquid medium, wherein the medium components include: 5.0 g of peptone, 1.0 g of yeast extract powder, 0.1 g of ferric citrate, 19.45 g of sodium chloride, 5.98 g of magnesium chloride, 3.24 g of sodium sulfate, 8 g of calcium chloride, 0.55 g of potassium chloride, 0.16 g of sodium carbonate, 0.08 g of potassium bromide, 0.034 g of strontium chloride, 0.022 g of boric acid, 0.004 g of sodium silicate, 0.0024 g of sodium fluoride, 0.0016 g of ammonium nitrate, and 0.008 g of disodium hydrogen phosphate. 7.根据权利要求6所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,磷酸盐去除培养基:将2216E液体培养基灭菌后,加入已灭菌的2g/L-P磷酸氢二钠母液,使磷浓度为26.5mg/L,以1mol/L的NaOH和HCl调节pH在7.6±0.2;之后按比例混合菌液得到海洋生物被膜混合群落。7. The method for removing inorganic phosphorus from high-salt wastewater using a mixed marine biofilm community according to claim 6, characterized in that the phosphate removal culture medium is as follows: after the 2216E liquid culture medium is sterilized, a sterilized 2g/L-P disodium hydrogen phosphate mother solution is added to make the phosphorus concentration 26.5mg/L, and the pH is adjusted to 7.6±0.2 with 1mol/L NaOH and HCl; then the bacterial liquid is mixed in proportion to obtain a mixed marine biofilm community. 8.根据权利要求7所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,还包括:将筛选到的且已保种的具有除磷能力的12株细菌按1%的接种量接种至含2216E液体培养基的EP管中,在25℃恒温摇床以180rpm有光有氧条件下培养2-3天;待所有菌株的菌液长至对数期,吸取每个菌株的菌液,用Thermo scientific multiskan FC酶标仪在600nm波长下测定每个菌株菌液的吸光值;根据各个菌株菌液的吸光值,以纯净的已灭菌的2216E液体培养基作为调整液,以稀释或离心重悬的方法调整每个菌株菌液的吸光值,使12株菌菌液吸光值统一在0.2;将12株菌按相同的量混合并加入和菌液相等量的保种液,分装保种好的混合菌群置于-80℃冰箱保存;保种液为甘油和无菌水按1:1混合后灭菌得到。8. The method for removing inorganic phosphorus from high-salinity wastewater using a mixed community of marine biofilms according to claim 7, characterized in that it also includes: inoculating the 12 strains of bacteria with phosphorus removal ability that have been screened and preserved into an EP tube containing 2216E liquid culture medium at an inoculation rate of 1%, and culturing in a constant temperature shaker at 25°C and 180rpm under light and aerobic conditions for 2-3 days; when the bacterial liquid of all strains grows to the logarithmic phase, aspirating the bacterial liquid of each strain, and using a Thermo scientific multiskan The absorbance of each bacterial solution of each strain was measured by FC microplate reader at a wavelength of 600nm; according to the absorbance of each bacterial solution, pure sterilized 2216E liquid culture medium was used as an adjustment liquid, and the absorbance of each bacterial solution of each strain was adjusted by dilution or centrifugal resuspension, so that the absorbance of the bacterial solutions of the 12 strains was unified at 0.2; the 12 strains of bacteria were mixed in the same amount and a seed preservation solution in an amount equal to the bacterial solution was added, and the mixed bacterial community with the preserved seeds was packaged and stored in a -80°C refrigerator; the seed preservation solution was obtained by mixing glycerol and sterile water in a ratio of 1:1 and then sterilizing. 9.根据权利要求8所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,以2216E液体培养基对海洋生物被膜混合群落进行富集培养,具体为:将冰箱中保存的混合群落的菌液按1%的比例接种至含2216E液体培养基的EP管中活化培养2-3天;取EP管中的菌液按1%的比例接种至含2216E液体培养基的锥形瓶中,在25℃恒温摇床以180rpm有光有氧条件培养3天;取锥形瓶内的菌液按1%接种量接种至每孔含2216E液体培养基的六孔板中静置培养16-18h成膜。9. The method for removing inorganic phosphorus from high-salt wastewater using a mixed marine biofilm community according to claim 8 is characterized in that the mixed marine biofilm community is enriched and cultured with 2216E liquid culture medium, specifically: the bacterial solution of the mixed community stored in the refrigerator is inoculated at a ratio of 1% into an EP tube containing 2216E liquid culture medium for activation and culture for 2-3 days; the bacterial solution in the EP tube is inoculated at a ratio of 1% into a conical flask containing 2216E liquid culture medium, and cultured at a constant temperature shaker of 25°C and 180rpm under light and aerobic conditions for 3 days; the bacterial solution in the conical flask is inoculated at a 1% inoculation rate into a six-well plate containing 2216E liquid culture medium in each well and statically cultured for 16-18 hours to form a film. 10.根据权利要求9所述利用海洋生物被膜混合群落去除高盐废水中无机磷的方法,其特征在于,还包括用移液管吸出六孔板中含有浮游细菌的培养上清液,然后加入8ml 2216E液体培养基,使用钼锑比色法每12小时测定一次培养基中的磷浓度。10. The method for removing inorganic phosphorus from high-salinity wastewater using a mixed marine biofilm community according to claim 9, characterized in that it also includes using a pipette to suck out the culture supernatant containing planktonic bacteria in the six-well plate, then adding 8 ml of 2216E liquid culture medium, and using a molybdenum antimony colorimetric method to determine the phosphorus concentration in the culture medium every 12 hours.
CN202411274569.7A 2024-09-12 2024-09-12 Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities Active CN118851444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411274569.7A CN118851444B (en) 2024-09-12 2024-09-12 Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411274569.7A CN118851444B (en) 2024-09-12 2024-09-12 Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities

Publications (2)

Publication Number Publication Date
CN118851444A true CN118851444A (en) 2024-10-29
CN118851444B CN118851444B (en) 2025-02-11

Family

ID=93171663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411274569.7A Active CN118851444B (en) 2024-09-12 2024-09-12 Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities

Country Status (1)

Country Link
CN (1) CN118851444B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015280A (en) * 2003-08-05 2005-02-21 주식회사 효성 Apparatus for Advanced Wastewater Treatment and Method of Treating Wastewater by using the Same
CN102268373A (en) * 2011-07-17 2011-12-07 北京工业大学 Method for rapidly screening phosphorus-accumulating bacteria in active sludge
CN103121754A (en) * 2011-11-18 2013-05-29 上海市政工程设计研究总院(集团)有限公司 Denitrification and dephosphorization technique
CN104531599A (en) * 2015-01-07 2015-04-22 南京大学 Citrobacter freundii with transformed phosphorus accumulating genes and construction method and application thereof
CN105754902A (en) * 2016-04-14 2016-07-13 山东大学 Shewanella sp.capable of efficiently removing phosphorus in phosphorus wastewater and application thereof
KR101756266B1 (en) * 2016-12-15 2017-07-11 세종대학교산학협력단 Wastewater treatment system for simultaneous removal of color, phosphates and e. coli, and processing method thereof
CN109022328A (en) * 2018-09-05 2018-12-18 海南师范大学 The application of one plant of polyP bacteria and its Polyphosphate kinase gene in sewage dephosphorization
CN111004744A (en) * 2019-12-16 2020-04-14 黄河三角洲京博化工研究院有限公司 Efficient phosphorus removal strain and application thereof
CN113666511A (en) * 2021-09-29 2021-11-19 南京沃谱瑞环境研究院有限公司 Constructed wetland dephosphorization enhancement microbial inoculum and preparation device and method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015280A (en) * 2003-08-05 2005-02-21 주식회사 효성 Apparatus for Advanced Wastewater Treatment and Method of Treating Wastewater by using the Same
CN102268373A (en) * 2011-07-17 2011-12-07 北京工业大学 Method for rapidly screening phosphorus-accumulating bacteria in active sludge
CN103121754A (en) * 2011-11-18 2013-05-29 上海市政工程设计研究总院(集团)有限公司 Denitrification and dephosphorization technique
CN104531599A (en) * 2015-01-07 2015-04-22 南京大学 Citrobacter freundii with transformed phosphorus accumulating genes and construction method and application thereof
CN105754902A (en) * 2016-04-14 2016-07-13 山东大学 Shewanella sp.capable of efficiently removing phosphorus in phosphorus wastewater and application thereof
KR101756266B1 (en) * 2016-12-15 2017-07-11 세종대학교산학협력단 Wastewater treatment system for simultaneous removal of color, phosphates and e. coli, and processing method thereof
CN109022328A (en) * 2018-09-05 2018-12-18 海南师范大学 The application of one plant of polyP bacteria and its Polyphosphate kinase gene in sewage dephosphorization
CN111004744A (en) * 2019-12-16 2020-04-14 黄河三角洲京博化工研究院有限公司 Efficient phosphorus removal strain and application thereof
CN113666511A (en) * 2021-09-29 2021-11-19 南京沃谱瑞环境研究院有限公司 Constructed wetland dephosphorization enhancement microbial inoculum and preparation device and method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张丽敏;曾薇;李博晓;王向东;: "MUCT脱氮除磷系统中聚磷菌(Candidatus Accumulibacter)和氨氧化细菌(AOB)的菌群结构及组成特征", 安全与环境学报, no. 06, 25 December 2016 (2016-12-25) *
徐媛;陈禹保;: "基于宏基因组技术的聚磷菌研究进展", 微生物学杂志, no. 02, 15 April 2016 (2016-04-15) *
李波;刘卫东;刘娟;赵晓丽;高雅英;曹慧;崔中利;: "高效除磷工程菌Pseudomonas putida GM6-PPK1的构建及其除磷能力研究", 土壤, no. 04, 15 August 2009 (2009-08-15) *

Also Published As

Publication number Publication date
CN118851444B (en) 2025-02-11

Similar Documents

Publication Publication Date Title
CN111893074B (en) A kind of fusiform lysine bacillus strain and use thereof
CN108220169B (en) A kind of separation, screening and identification method of polystyrene degrading bacteria
CN110904057A (en) A method for extracting and enriching bacteriophages in soil
CN101368200B (en) Medium for Screening of Anaerobic Simultaneous Sulfate Reduction and Denitrification Strains
CN108486013A (en) Application of the adhesion sword bacterium in sewage purification
CN108676763B (en) High-antimony-resistance proteus cassiicola DSHN0704 and separation and screening method and application thereof
CN110846254A (en) Composite microbial inoculum for denitrification and preparation method and application thereof
CN118497028B (en) A strain of Bacillus licheniformis capable of inhibiting the growth of Aspergillus flavus and its application
CN118851444B (en) Method for removing inorganic phosphorus from high-salinity wastewater using mixed marine biofilm communities
CN118685308A (en) A culture medium for efficiently screening and culturing olfactory actinomycetes in surface water
CN104403968B (en) Bacillus firmus GY-49 and screening method and application thereof
CN103011423A (en) Application of Bacillus cereus DS1 in degradation of organic pollutants in saponin waste water
CN113308400B (en) OFA38 strain in Castellaniella sp, and screening method and application thereof
CN108587940A (en) The marine bacteria of one species diversity metabolism production polyhydroxyalkanoate and application
CN103013875B (en) Bacillus cereus DS1
CN103320361B (en) Clostridium for producing acid and application thereof to paper-making wastewater treatment
CN108455734A (en) Application of the Amur microbacterium in sewage purification
CN100386428C (en) Chlorine-resistant strain S616 and its screening method
CN103952365A (en) Phosphorus-accumulating bacteria with higher phosphorus removal effect at low temperature and screening method and application thereof
CN103013874B (en) Bacillus subtilis ds3
CN100391868C (en) Application of a Chlorine-resistant Strain S616
CN116676212B (en) A strain of Brevibacillus aydinogluensis PMBT001 and its application
CN113717888B (en) Streptomyces neoformans and application thereof
CN119372106A (en) Microbial composite flora with nitrogen removal ability and its construction method and application
CN118813487A (en) A culture medium formula for screening and multiplying nitrogen-fixing bacteria and its application method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant