CN118693160B - Silicon carbide MOSFET device with gate oxide protection structure and preparation method - Google Patents
Silicon carbide MOSFET device with gate oxide protection structure and preparation method Download PDFInfo
- Publication number
- CN118693160B CN118693160B CN202411178430.2A CN202411178430A CN118693160B CN 118693160 B CN118693160 B CN 118693160B CN 202411178430 A CN202411178430 A CN 202411178430A CN 118693160 B CN118693160 B CN 118693160B
- Authority
- CN
- China
- Prior art keywords
- type
- silicon carbide
- source
- region
- gate oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 182
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 179
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 239000010410 layer Substances 0.000 claims abstract description 206
- 210000000746 body region Anatomy 0.000 claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 45
- 239000011229 interlayer Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 17
- 229920005591 polysilicon Polymers 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims description 26
- 238000005468 ion implantation Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- -1 aluminum ions Chemical class 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims 6
- 230000005684 electric field Effects 0.000 abstract description 38
- 150000002739 metals Chemical class 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QQMBHAVGDGCSGY-UHFFFAOYSA-N [Ti].[Ni].[Ag] Chemical compound [Ti].[Ni].[Ag] QQMBHAVGDGCSGY-UHFFFAOYSA-N 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000779 depleting effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JHJNPOSPVGRIAN-SFHVURJKSA-N n-[3-[(1s)-1-[[6-(3,4-dimethoxyphenyl)pyrazin-2-yl]amino]ethyl]phenyl]-5-methylpyridine-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=CN=CC(N[C@@H](C)C=2C=C(NC(=O)C=3C=C(C)C=NC=3)C=CC=2)=N1 JHJNPOSPVGRIAN-SFHVURJKSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Thyristors (AREA)
Abstract
Description
技术领域Technical Field
本发明属于半导体技术领域,具体涉及具有一种具有栅氧保护结构的碳化硅MOSFET器件及制备方法。The present invention belongs to the field of semiconductor technology, and in particular relates to a silicon carbide MOSFET device with a gate oxide protection structure and a preparation method thereof.
背景技术Background Art
碳化硅(SiC)材料因其优越的物理特性,开始受到人们的关注和研究。碳化硅材料较高的热导率决定了其高电流密度的特性,较高的禁带宽度又决定了SiC 器件的高击穿场强和高工作温度特性。Silicon carbide (SiC) materials have begun to attract attention and research due to their superior physical properties. The higher thermal conductivity of silicon carbide materials determines its high current density characteristics, and the higher bandgap width determines the high breakdown field strength and high operating temperature characteristics of SiC devices.
沟槽型碳化硅MOSFET与平面VDMOS器件相比,导电沟道位于垂直方向,消除了平面VDMOS的寄生JFET电阻,减小了元胞尺寸,提高了元胞密度,从而使得电流密度显著提高,大幅度降低了器件的导通电阻。Compared with planar VDMOS devices, the conductive channel of trench silicon carbide MOSFET is located in the vertical direction, which eliminates the parasitic JFET resistance of planar VDMOS, reduces the cell size, and increases the cell density, thereby significantly increasing the current density and greatly reducing the on-resistance of the device.
鉴于沟槽型碳化硅MOSFET的优势,越来越多的研究机构对沟槽型碳化硅MOSFET提高了研发力度。然而现有制备方案制备出的沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿。为了降低栅氧化层的峰值电场强度,在沟槽底部引入P+屏蔽区是被证实非常有效的手段。通常,为了发挥P+屏蔽区的屏蔽作用且避免P+屏蔽区浮空可能出现的动态退化问题,该注入区需和源极地电位连接。但是,在器件导通时P+屏蔽区和N型外延层会形成耗尽区,极大的缩小了电子电流的流通路径,增加了SiCMOSFET的导通电阻。In view of the advantages of trench silicon carbide MOSFET, more and more research institutions have increased their research and development efforts on trench silicon carbide MOSFET. However, the trench silicon carbide MOSFET prepared by the existing preparation scheme does not provide sufficient electric field protection for the gate oxide layer, especially the gate oxide layer at the corner is easily broken down by the electric field. In order to reduce the peak electric field strength of the gate oxide layer, introducing a P+ shielding region at the bottom of the trench has been proven to be a very effective means. Usually, in order to give full play to the shielding effect of the P+ shielding region and avoid the dynamic degradation problem that may occur when the P+ shielding region is floating, the injection region needs to be connected to the source ground potential. However, when the device is turned on, the P+ shielding region and the N-type epitaxial layer will form a depletion region, which greatly reduces the flow path of the electron current and increases the on-resistance of the SiCMOSFET.
发明内容Summary of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种具有栅氧保护结构的碳化硅MOSFET器件及制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a silicon carbide MOSFET device with a gate oxide protection structure and a preparation method. The technical problem to be solved by the present invention is achieved by the following technical solutions:
第一方面,本发明实施例提供了一种具有栅氧保护结构的碳化硅MOSFET器件,包括:In a first aspect, an embodiment of the present invention provides a silicon carbide MOSFET device with a gate oxide protection structure, comprising:
由下至上依次设置的漏极金属、N+型碳化硅衬底、N-型第一碳化硅外延层、N-型第二碳化硅外延层、层间绝缘介质、源极金属;其中,The drain metal, N+ type silicon carbide substrate, N-type first silicon carbide epitaxial layer, N-type second silicon carbide epitaxial layer, interlayer insulating medium, and source metal are arranged in sequence from bottom to top; wherein,
所述N-型第一碳化硅外延层中顶层区域内两侧设置有P型第一掺杂区,两侧的P型第一掺杂区之间设置有N型第一掺杂区;一侧的P型第一掺杂区中部分顶层区域内设置有N+型第一源区;In the N-type first silicon carbide epitaxial layer, P-type first doping regions are arranged on both sides of the top layer region, and an N-type first doping region is arranged between the P-type first doping regions on both sides; an N+ type first source region is arranged in part of the top layer region of the P-type first doping region on one side;
所述N-型第二碳化硅外延层中部分顶层区域内设置有P型体区,所述P型体区中一侧设置有N+型第二源区;A P-type body region is arranged in a part of the top region of the N-type second silicon carbide epitaxial layer, and an N+-type second source region is arranged on one side of the P-type body region;
所述N-型第二碳化硅外延层中,两侧设置有源极沟槽,两个源极沟槽之间设置有栅极沟槽;所述源极沟槽贯穿所述N-型第二碳化硅外延层和所述P型第一掺杂区,下端延伸至所述N-型第一碳化硅外延层内;所述源极沟槽的外侧设置有P+型源区;In the N-type second silicon carbide epitaxial layer, source trenches are arranged on both sides, and a gate trench is arranged between the two source trenches; the source trench runs through the N-type second silicon carbide epitaxial layer and the P-type first doped region, and the lower end extends into the N-type first silicon carbide epitaxial layer; a P+ type source region is arranged outside the source trench;
所述源极金属设置于所述源极沟槽的内部及所述层间绝缘介质之上,并通过层间绝缘介质的空隙接触部分P型体区和N+型第二源区的上表面;所述P型体区远离N+型第二源区的一侧与一个源极沟槽的P+型源区接触;The source metal is arranged inside the source trench and on the interlayer insulating medium, and contacts the upper surface of a portion of the P-type body region and the N+ type second source region through the gap of the interlayer insulating medium; the side of the P-type body region away from the N+ type second source region contacts the P+ type source region of a source trench;
所述栅极沟槽的内部设置有栅氧化层,并淀积有多晶硅作为栅极,所述栅极沟槽的一侧栅氧化层与所述N+型第二源区接触,底侧的栅氧化层与所述N+型第一源区接触;所述N+型第一源区远离栅氧化层的一侧与另一个源极沟槽的P+型源区重叠并接触内部的源极金属。A gate oxide layer is arranged inside the gate trench, and polysilicon is deposited as a gate. The gate oxide layer on one side of the gate trench contacts the N+ type second source region, and the gate oxide layer on the bottom side contacts the N+ type first source region; the side of the N+ type first source region away from the gate oxide layer overlaps with the P+ type source region of another source trench and contacts the internal source metal.
第二方面,本发明实施例提供了一种具有栅氧保护结构的碳化硅MOSFET器件的制备方法,用于制备第一方面所述的具有栅氧保护结构的碳化硅MOSFET器件,所述方法包括:In a second aspect, an embodiment of the present invention provides a method for preparing a silicon carbide MOSFET device with a gate oxide protection structure, which is used to prepare the silicon carbide MOSFET device with a gate oxide protection structure according to the first aspect, and the method comprises:
选取N+型碳化硅衬底,在所述N+型碳化硅衬底的上表面生长N-型第一碳化硅外延层;Selecting an N+ type silicon carbide substrate, and growing an N-type first silicon carbide epitaxial layer on the upper surface of the N+ type silicon carbide substrate;
利用掩膜层选择性注入离子的方式,在所述N-型第一碳化硅外延层中顶层区域内两侧形成P型第一掺杂区,在两侧的P型第一掺杂区之间形成N型第一掺杂区,在一侧的P型第一掺杂区中部分顶层区域内形成N+型第一源区;By selectively injecting ions through a mask layer, a P-type first doping region is formed on both sides of the top layer region in the N-type first silicon carbide epitaxial layer, an N-type first doping region is formed between the P-type first doping regions on both sides, and an N+ type first source region is formed in a portion of the top layer region in the P-type first doping region on one side;
在当前结构的上表面生长N-型第二碳化硅外延层;growing an N-type second silicon carbide epitaxial layer on the upper surface of the current structure;
利用掩膜层选择性注入离子的方式,在所述N-型第二碳化硅外延层中预设的顶层区域内形成P型体区,在所述P型体区中一侧形成N+型第二源区;By selectively injecting ions through a mask layer, a P-type body region is formed in a preset top region of the N-type second silicon carbide epitaxial layer, and an N+-type second source region is formed on one side of the P-type body region;
在N-型第二碳化硅外延层中的两侧区域,利用干法等离子刻蚀工艺形成源极沟槽,所述源极沟槽贯穿N-型第二碳化硅外延层和P型第一掺杂区,下端延伸至N-型第一碳化硅外延层内;并通过离子注入在所述源极沟槽的外侧和底部形成P+型源区,使得一个源极沟槽一侧的P+型源区与所述N+型第一源区有重叠,另一个源极沟槽一侧的P+型源区与所述P型体区接触;In the two side regions of the N-type second silicon carbide epitaxial layer, a source trench is formed by a dry plasma etching process, wherein the source trench penetrates the N-type second silicon carbide epitaxial layer and the P-type first doped region, and the lower end extends into the N-type first silicon carbide epitaxial layer; and a P+ type source region is formed on the outer side and bottom of the source trench by ion implantation, so that the P+ type source region on one side of the source trench overlaps with the N+ type first source region, and the P+ type source region on the other side of the source trench contacts the P type body region;
在所述N-型第二碳化硅外延层中两个源极沟槽之间的位置刻蚀出栅极沟槽,在所述栅极沟槽的内壁生长栅氧化层,使得所述栅极沟槽一侧的栅氧化层与所述N+型第二源区接触,底侧的栅氧化层与下方的N+型第一源区接触,并在所述栅极沟槽内淀积多晶硅作为栅极;A gate trench is etched at a position between two source trenches in the N-type second silicon carbide epitaxial layer, a gate oxide layer is grown on an inner wall of the gate trench, so that the gate oxide layer on one side of the gate trench contacts the N+ type second source region, and the gate oxide layer on the bottom side contacts the N+ type first source region below, and polysilicon is deposited in the gate trench as a gate;
在当前结构的上表面淀积层间绝缘介质,去除所述源极沟槽内部,以及部分P型体区和N+型第二源区上方的层间绝缘介质;Depositing an interlayer insulating dielectric on the upper surface of the current structure, and removing the interlayer insulating dielectric inside the source trench, and above a portion of the P-type body region and the N+-type second source region;
在所述源极沟槽的内部及所述层间绝缘介质之上形成源极金属,并在所述N+型碳化硅衬底的下表面形成漏极金属。A source metal is formed inside the source trench and on the interlayer insulating medium, and a drain metal is formed on the lower surface of the N+ type silicon carbide substrate.
本发明的有益效果:Beneficial effects of the present invention:
本发明实施例所提供的具有栅氧保护结构的碳化硅MOSFET器件,解决了现有技术中沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿的技术问题。本发明结构不仅解决了栅氧化层的电场过高的问题,而且创新性地提出了纵向和横向两种导通沟道,提高了电流密度,解决了因为引入栅氧保护结构而增加导通电阻的问题,本发明结构能够最大限度的利用芯片面积。The silicon carbide MOSFET device with a gate oxide protection structure provided by the embodiment of the present invention solves the technical problem that the electric field protection of the gate oxide layer of the trench-type silicon carbide MOSFET in the prior art is insufficient, especially the gate oxide layer at the corner is easily broken down by the electric field. The structure of the present invention not only solves the problem of the excessively high electric field of the gate oxide layer, but also innovatively proposes two conduction channels, vertical and horizontal, to increase the current density and solve the problem of increasing the on-resistance due to the introduction of the gate oxide protection structure. The structure of the present invention can maximize the use of the chip area.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例所提供的一种具有栅氧保护结构的碳化硅MOSFET器件的结构示意图;FIG1 is a schematic structural diagram of a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention;
图2a为本发明实施例所提供的具有栅氧保护结构的碳化硅MOSFET器件的最终结构示意图;FIG2a is a schematic diagram of the final structure of a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention;
图2b为2a结构在仿真反向耐压状态时沿AA方向上的电场强度分布示意图;FIG2b is a schematic diagram of the electric field intensity distribution along the AA direction of the structure 2a when simulating the reverse withstand voltage state;
图3a为本发明实施例所提供的具有栅氧保护结构的碳化硅MOSFET器件的最终结构示意图;FIG3 a is a schematic diagram of the final structure of a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention;
图3b为图3a结构在仿真反向耐压状态时沿AB方向上的电场强度分布示意图;FIG3b is a schematic diagram of the electric field intensity distribution along the AB direction of the structure of FIG3a when simulating the reverse withstand voltage state;
图4为本发明器件结构在正向导通状态下的电流路径示意图;FIG4 is a schematic diagram of the current path of the device structure of the present invention in the forward conduction state;
图5为本发明实施例所提供的一种具有栅氧保护结构的碳化硅MOSFET器件的制备方法的流程示意图;5 is a schematic flow chart of a method for preparing a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention;
图6a~6n为本发明实施例所提供的一种具有栅氧保护结构的碳化硅MOSFET器件的制备方法的过程结构示意图;6a to 6n are schematic diagrams of the process structure of a method for preparing a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention;
附图标记:Reference numerals:
01:N+型碳化硅衬底;02:N-型第一碳化硅外延层;03:P型第一掺杂区;04:N型第一掺杂区;05:N+型第一源区;06:N-型第二碳化硅外延层;07:P型体区;08:N+型第二源区;09:源极沟槽;10:P+型源区;11:二氧化硅;12:栅极沟槽;13:栅氧化层;14:多晶硅;15:层间绝缘介质;16:源极金属;17:漏极金属。01: N+ type silicon carbide substrate; 02: N- type first silicon carbide epitaxial layer; 03: P-type first doped region; 04: N-type first doped region; 05: N+ type first source region; 06: N- type second silicon carbide epitaxial layer; 07: P-type body region; 08: N+ type second source region; 09: source trench; 10: P+ type source region; 11: silicon dioxide; 12: gate trench; 13: gate oxide layer; 14: polysilicon; 15: interlayer insulating dielectric; 16: source metal; 17: drain metal.
具体实施方式DETAILED DESCRIPTION
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention is further described in detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
第一方面,本发明实施例提供了一种具有栅氧保护结构的碳化硅MOSFET器件,请参见图1所示,该具有栅氧保护结构的碳化硅MOSFET器件包括:In a first aspect, an embodiment of the present invention provides a silicon carbide MOSFET device with a gate oxide protection structure. Referring to FIG. 1 , the silicon carbide MOSFET device with a gate oxide protection structure includes:
由下至上依次设置的漏极金属17、N+型碳化硅衬底01、N-型第一碳化硅外延层02、N-型第二碳化硅外延层06、层间绝缘介质15、源极金属16;其中,The drain metal 17, N+ type silicon carbide substrate 01, N-type first silicon carbide epitaxial layer 02, N-type second silicon carbide epitaxial layer 06, interlayer insulating medium 15, and source metal 16 are arranged in sequence from bottom to top; wherein,
所述N-型第一碳化硅外延层02中顶层区域内两侧设置有P型第一掺杂区03,两侧的P型第一掺杂区03之间设置有N型第一掺杂区04;一侧的P型第一掺杂区03中部分顶层区域内设置有N+型第一源区05;The N-type first silicon carbide epitaxial layer 02 has P-type first doping regions 03 on both sides of the top region, and an N-type first doping region 04 is arranged between the P-type first doping regions 03 on both sides; an N+ type first source region 05 is arranged in part of the top region of the P-type first doping region 03 on one side;
所述N-型第二碳化硅外延层06中部分顶层区域内设置有P型体区07,所述P型体区07中一侧设置有N+型第二源区08;A P-type body region 07 is disposed in a portion of the top region of the N-type second silicon carbide epitaxial layer 06, and an N+-type second source region 08 is disposed on one side of the P-type body region 07;
所述N-型第二碳化硅外延层06中,两侧设置有源极沟槽09,两个源极沟槽09之间设置有栅极沟槽12;所述源极沟槽09贯穿所述N-型第二碳化硅外延层06和所述P型第一掺杂区03,下端延伸至所述N-型第一碳化硅外延层02内;所述源极沟槽09的外侧设置有P+型源区10;In the N-type second silicon carbide epitaxial layer 06, source trenches 09 are arranged on both sides, and a gate trench 12 is arranged between the two source trenches 09; the source trench 09 penetrates the N-type second silicon carbide epitaxial layer 06 and the P-type first doped region 03, and the lower end extends into the N-type first silicon carbide epitaxial layer 02; the outer side of the source trench 09 is provided with a P+ type source region 10;
所述源极金属16设置于所述源极沟槽09的内部及所述层间绝缘介质15之上,并通过层间绝缘介质15的空隙接触部分P型体区07和N+型第二源区08的上表面;所述P型体区07远离N+型第二源区08的一侧与一个源极沟槽09的P+型源区10接触;The source metal 16 is arranged inside the source trench 09 and on the interlayer insulating medium 15, and contacts the upper surface of a part of the P-type body region 07 and the N+ type second source region 08 through the gap of the interlayer insulating medium 15; the side of the P-type body region 07 away from the N+ type second source region 08 contacts the P+ type source region 10 of a source trench 09;
所述栅极沟槽12的内部设置有栅氧化层13,并淀积有多晶硅14作为栅极,所述栅极沟槽12的一侧栅氧化层13与所述N+型第二源区08接触,底侧的栅氧化层13与所述N+型第一源区05接触;所述N+型第一源区05远离栅氧化层13的一侧与另一个源极沟槽09的P+型源区10重叠并接触内部的源极金属16。A gate oxide layer 13 is provided inside the gate trench 12, and polysilicon 14 is deposited as a gate. The gate oxide layer 13 on one side of the gate trench 12 is in contact with the N+ type second source region 08, and the gate oxide layer 13 on the bottom side is in contact with the N+ type first source region 05; the side of the N+ type first source region 05 away from the gate oxide layer 13 overlaps with the P+ type source region 10 of another source trench 09 and contacts the internal source metal 16.
为了简化,图1中并未标识出源极沟槽09和栅极沟槽12。For simplicity, the source trench 09 and the gate trench 12 are not shown in FIG. 1 .
其中,选取N+型衬底用于制备高浓度N型漏极,N+型碳化硅衬底01可以是4H SiC、6H SiC或3C SiC等材料,比如本发明实施例可以选择4H SiC制备N+型碳化硅衬底01。N+型碳化硅衬底01的厚度可以为250~350μm。Among them, an N+ type substrate is selected for preparing a high-concentration N-type drain, and the N+ type silicon carbide substrate 01 can be made of materials such as 4H SiC, 6H SiC or 3C SiC. For example, in the embodiment of the present invention, 4H SiC can be selected to prepare the N+ type silicon carbide substrate 01. The thickness of the N+ type silicon carbide substrate 01 can be 250-350 μm.
N-型第一碳化硅外延层02在N+型碳化硅衬底01上外延生长得到,厚度可以为5~20μm,掺杂浓度可以为4e15cm-3~1.5e16cm-3。The N-type first silicon carbide epitaxial layer 02 is epitaxially grown on the N+ type silicon carbide substrate 01, and may have a thickness of 5 to 20 μm and a doping concentration of 4e15 cm -3 to 1.5e16 cm -3 .
参见图1,所述N-型第一碳化硅外延层02中顶层区域内两侧设置有P型第一掺杂区03,两侧的P型第一掺杂区03之间设置有N型第一掺杂区04;其中一侧设置的P型第一掺杂区03宽度较大,用于后期对应一个源极沟槽09和栅极沟槽12的区域范围,另一侧设置的P型第一掺杂区03宽度较小,对应另一个源极沟槽09。Referring to Figure 1, P-type first doping regions 03 are arranged on both sides of the top layer area in the N-type first silicon carbide epitaxial layer 02, and N-type first doping regions 04 are arranged between the P-type first doping regions 03 on both sides; the P-type first doping region 03 arranged on one side has a larger width, which is used for the area corresponding to a source trench 09 and a gate trench 12 in the later stage, and the P-type first doping region 03 arranged on the other side has a smaller width, which corresponds to another source trench 09.
所述P型第一掺杂区03通过对所述N-型第一碳化硅外延层02中顶层区域进行离子注入形成,可选的一种实施方式中,所述P型第一掺杂区03的掺杂离子包括铝离子,掺杂浓度可以为4e16cm-3~9e16cm-3。所述P型第一掺杂区03的深度可以为1~1.5μm。The P-type first doping region 03 is formed by ion implantation into the top region of the N-type first silicon carbide epitaxial layer 02. In an optional embodiment, the doping ions of the P-type first doping region 03 include aluminum ions, and the doping concentration may be 4e16cm -3 ~9e16cm -3 . The depth of the P-type first doping region 03 may be 1~1.5μm.
N型第一掺杂区04和两侧的P型第一掺杂区03具有间距;N型第一掺杂区04的深度可以和P型第一掺杂区03的深度相同,N型第一掺杂区04的深度可以为0.5~1.2μm。The N-type first doping region 04 and the P-type first doping regions 03 on both sides have a distance therebetween; the depth of the N-type first doping region 04 may be the same as the depth of the P-type first doping region 03 , and the depth of the N-type first doping region 04 may be 0.5-1.2 μm.
所述N型第一掺杂区04通过对所述N-型第一碳化硅外延层02中顶层区域进行离子注入形成,注入的离子可以为氮离子,掺杂浓度可以为1e15cm-3~6e15cm-3,该掺杂浓度起到降低导通电阻和保护栅氧化层13的作用。The N-type first doping region 04 is formed by ion implantation into the top region of the N-type first silicon carbide epitaxial layer 02 . The implanted ions may be nitrogen ions, and the doping concentration may be 1e15 cm −3 to 6e15 cm −3 , which reduces the on-resistance and protects the gate oxide layer 13 .
参见图1,宽度较大的P型第一掺杂区03中部分顶层区域内设置有N+型第一源区05;N+型第一源区05的深度不超过P型第一掺杂区03的深度。N+型第一源区05也是利用离子注入形成的,可选的一种实施方式中,N+型第一源区05掺杂的离子可以为氮离子,掺杂浓度高于1e19cm-3。1 , an N+ type first source region 05 is disposed in a portion of the top region of the P-type first doping region 03 having a relatively large width; the depth of the N+ type first source region 05 does not exceed the depth of the P-type first doping region 03. The N+ type first source region 05 is also formed by ion implantation, and in an optional embodiment, the ions doped in the N+ type first source region 05 may be nitrogen ions, with a doping concentration higher than 1e19 cm-3.
N-型第二碳化硅外延层06位于N-型第一碳化硅外延层02的上表面,因此也位于P型第一掺杂区03和N型第一掺杂区04的上表面,N-型第二碳化硅外延层06通过外延生长得到,N-型第二碳化硅外延层06的厚度可以为0.8~1.2μm,掺杂浓度范围可以和所述N-型第一碳化硅外延层02的掺杂浓度范围相同。The N-type second silicon carbide epitaxial layer 06 is located on the upper surface of the N-type first silicon carbide epitaxial layer 02, and is therefore also located on the upper surfaces of the P-type first doping region 03 and the N-type first doping region 04. The N-type second silicon carbide epitaxial layer 06 is obtained by epitaxial growth. The thickness of the N-type second silicon carbide epitaxial layer 06 can be 0.8~1.2μm, and the doping concentration range can be the same as the doping concentration range of the N-type first silicon carbide epitaxial layer 02.
所述N-型第二碳化硅外延层06中部分顶层区域内设置有P型体区07,P型体区07的深度不超过N-型第二碳化硅外延层06的深度;P型体区07也通过离子注入形成,注入的离子包括铝离子,掺杂浓度可以为2e16cm-3~8e16cm-3。A P-type body region 07 is disposed in a portion of the top region of the N-type second silicon carbide epitaxial layer 06, and the depth of the P-type body region 07 does not exceed the depth of the N-type second silicon carbide epitaxial layer 06; the P-type body region 07 is also formed by ion implantation, and the implanted ions include aluminum ions, and the doping concentration can be 2e16cm -3 ~8e16cm -3 .
从位置上看,P型体区07可以位于N型第一掺杂区04以及部分P型第一掺杂区03的上方。From the perspective of position, the P-type body region 07 may be located above the N-type first doping region 04 and a portion of the P-type first doping region 03 .
所述P型体区07 中一侧设置有N+型第二源区08,可选的一种实施方式中,所述N+型第二源区08设置在所述P型体区07 中一侧的顶层区域内。当然,也可以设置在所述P型体区07 中一侧的全部区域内,即深度和所述P型体区07一致,具体可以根据需要选择。N+型第二源区08 也通过离子注入形成,注入的离子包括氮离子,掺杂浓度可以和N+型第一源区05的掺杂浓度相同。An N+ type second source region 08 is disposed on one side of the P type body region 07. In an optional embodiment, the N+ type second source region 08 is disposed in the top region on one side of the P type body region 07. Of course, it can also be disposed in the entire region on one side of the P type body region 07, that is, the depth is consistent with the P type body region 07, and the specific selection can be made as needed. The N+ type second source region 08 is also formed by ion implantation, and the implanted ions include nitrogen ions, and the doping concentration can be the same as the doping concentration of the N+ type first source region 05.
本发明实施例中,源极沟槽09贯穿N-型第二碳化硅外延层06和P型第一掺杂区03,因此,其宽度小于所贯穿的P型第一掺杂区03的宽度,其下端延伸至N-型第一碳化硅外延层02内,但不超过N-型第一碳化硅外延层02的下表面,具体可以根据器件需求设置,比如,可选的一种实施方式中,所述源极沟槽09的深度为1.4~2.6μm,该深度是现有工艺能力下的最优深度,以保证源极沟槽09的深度大于或等于栅极沟槽12的深度。In the embodiment of the present invention, the source trench 09 penetrates the N-type second silicon carbide epitaxial layer 06 and the P-type first doped region 03, so its width is smaller than the width of the P-type first doped region 03 penetrated, and its lower end extends into the N-type first silicon carbide epitaxial layer 02, but does not exceed the lower surface of the N-type first silicon carbide epitaxial layer 02. It can be specifically set according to device requirements. For example, in an optional implementation, the depth of the source trench 09 is 1.4~2.6μm, which is the optimal depth under the existing process capabilities to ensure that the depth of the source trench 09 is greater than or equal to the depth of the gate trench 12.
源极沟槽09底部边缘为圆弧状,以增加源极沟槽09内的源极金属16与源极沟槽09外侧底部的P+型源区10的接触面积,更利于电位的稳定。所述源极沟槽09的外侧设置有P+型源区10,即源极沟槽09外侧的左右和下方设置有P+型源区10;P+型源区10是通过对源极沟槽09的外侧进行离子注入形成的,注入的离子可以为铝离子,掺杂浓度可以为8e15cm-3~1e16cm-3。The bottom edge of the source trench 09 is arc-shaped to increase the contact area between the source metal 16 in the source trench 09 and the P+ source region 10 at the bottom of the outer side of the source trench 09, which is more conducive to the stability of the potential. The P+ source region 10 is arranged outside the source trench 09, that is, the P+ source region 10 is arranged on the left, right and bottom of the outer side of the source trench 09; the P+ source region 10 is formed by ion implantation of the outer side of the source trench 09, and the implanted ions can be aluminum ions, and the doping concentration can be 8e15cm -3 ~1e16cm -3 .
参见图1,左侧的源极沟槽09一侧的P+型源区10接触P型体区07,以实现欧姆接触,达到稳定电位的作用。1 , the P+ type source region 10 on one side of the source trench 09 on the left side contacts the P type body region 07 to achieve ohmic contact, thereby achieving the function of stabilizing the potential.
所述源极沟槽09的内部及所述层间绝缘介质15的上表面设置有源极金属16;而且P型体区07和N+型第二源区08的上表面还通过层间绝缘介质15的空隙与空隙内填充的源极金属16接触,以实现欧姆接触。The source metal 16 is arranged inside the source trench 09 and on the upper surface of the interlayer insulating medium 15; and the upper surfaces of the P-type body region 07 and the N+-type second source region 08 are also in contact with the source metal 16 filled in the gaps through the gaps of the interlayer insulating medium 15 to achieve ohmic contact.
层间绝缘介质15可以是二氧化硅、氮化硅、氮氧化硅之一或者任意的组合体。源极金属16可以为铝硅组合体、铝铜组合体、纯铝,厚度可以为3~5μm,漏极金属17可以为钛镍银组合体,厚度可以为0.2~0.8μm。The interlayer insulating medium 15 can be one of silicon dioxide, silicon nitride, silicon oxynitride, or any combination thereof. The source metal 16 can be an aluminum-silicon combination, an aluminum-copper combination, or pure aluminum, and can have a thickness of 3 to 5 μm. The drain metal 17 can be a titanium-nickel-silver combination, and can have a thickness of 0.2 to 0.8 μm.
如图1所示,靠近N+型第一源区05的源极沟槽09,即右侧的源极沟槽09,其一侧侧壁接触N+型第一源区05,使得N+型第一源区05可以接触到源极沟槽09内部,这样该源极沟槽09的该侧侧壁外,在注入离子形成P+型源区10后,与N+型第一源区05有部分区域重叠,重叠区域即为P+型源区10在该侧的宽度,本发明实施例设置N+型第一源区05的掺杂浓度高于P+型源区10的掺杂浓度,N+型第一源区05为N型掺杂,P+型源区10为P型掺杂,N+型第一源区05和P+型源区10重叠的区域会显示出N+型第一源区05的特征。N+型第一源区05和源极沟槽09内的源极金属16接触后,使得电流能从N+型第一源区05流到源极金属16。As shown in Figure 1, the source trench 09 close to the N+ type first source region 05, that is, the source trench 09 on the right side, has a side wall on one side contacting the N+ type first source region 05, so that the N+ type first source region 05 can contact the inside of the source trench 09, so that outside the side wall of the source trench 09, after ions are injected to form the P+ type source region 10, there is a partial overlap with the N+ type first source region 05, and the overlapping area is the width of the P+ type source region 10 on this side. The embodiment of the present invention sets the doping concentration of the N+ type first source region 05 to be higher than the doping concentration of the P+ type source region 10, the N+ type first source region 05 is N-doped, and the P+ type source region 10 is P-doped, and the overlapping area between the N+ type first source region 05 and the P+ type source region 10 will show the characteristics of the N+ type first source region 05. After the N+ type first source region 05 contacts the source metal 16 in the source trench 09 , current can flow from the N+ type first source region 05 to the source metal 16 .
所述栅极沟槽12的内壁设置有栅氧化层13,栅氧化层13的材料可以为二氧化硅、二氧化硅和氮化硅的组合、二氧化硅和二氧化铪的组合。所述栅极沟槽12内填满多晶硅14作为栅极。所述栅极沟槽12远离所接近的源极沟槽09的一侧侧壁与所述N+型第二源区08接触,即该侧壁上的栅氧化层13与所述N+型第二源区08接触(但N+型第二源区08并不接触多晶硅14),从而形成对应的电流路径C;并且,所述栅极沟槽12底侧的栅氧化层13与N+型第一源区05接触,从图1可以看出,栅极沟槽12下侧部分区域的栅氧化层13与N+型第一源区05有接触。The inner wall of the gate trench 12 is provided with a gate oxide layer 13, and the material of the gate oxide layer 13 can be silicon dioxide, a combination of silicon dioxide and silicon nitride, or a combination of silicon dioxide and hafnium dioxide. The gate trench 12 is filled with polysilicon 14 as a gate. The side wall of the gate trench 12 away from the source trench 09 is in contact with the N+ type second source region 08, that is, the gate oxide layer 13 on the side wall is in contact with the N+ type second source region 08 (but the N+ type second source region 08 does not contact the polysilicon 14), thereby forming a corresponding current path C; and the gate oxide layer 13 on the bottom side of the gate trench 12 is in contact with the N+ type first source region 05. As can be seen from FIG. 1, the gate oxide layer 13 in the lower part of the gate trench 12 is in contact with the N+ type first source region 05.
具体的,电流只能在同掺杂类型的半导体中流动,本发明实施例中,比如 N型掺杂分为N+型第一源区05、N+型第二源区08、N-型第二碳化硅外延层06、N-型第一碳化硅外延层02、N型第一掺杂区04、N+型碳化硅衬底01,这些区域接触后就像导体,电流可以在这些区域穿梭,电流如果遇到P型区就会停下。比如电流C路径如图4所示,电流流向从漏极金属17—N+型碳化硅衬底01—N-型第一碳化硅外延层02—N型第一掺杂区04—N-型第二碳化硅外延层06,到P型体区07的时候就被P型体区07阻断。这时就会体现出栅极的作用,在给多晶硅14施加15~20V的正向电压时,在栅氧化层13和P型体区07之间会形成很薄的沟道(约为50nm),这时电流会通过栅氧化层13和P型体区07之间的沟道,流到N+型第二源区08,然后流到源极金属16。如果N+型第二源区08未与栅氧化层13接触,则电流无法形成通路。Specifically, current can only flow in semiconductors of the same doping type. In the embodiment of the present invention, for example, N-type doping is divided into N+ type first source region 05, N+ type second source region 08, N- type second silicon carbide epitaxial layer 06, N- type first silicon carbide epitaxial layer 02, N-type first doping region 04, and N+ type silicon carbide substrate 01. After these regions are in contact, they are like conductors, and current can shuttle through these regions. If the current encounters a P-type region, it will stop. For example, the current C path is shown in Figure 4. The current flows from the drain metal 17—N+ type silicon carbide substrate 01—N- type first silicon carbide epitaxial layer 02—N-type first doping region 04—N- type second silicon carbide epitaxial layer 06, and is blocked by the P-type body region 07 when it reaches the P-type body region 07. At this time, the role of the gate will be reflected. When a forward voltage of 15-20V is applied to the polysilicon 14, a very thin channel (about 50nm) will be formed between the gate oxide layer 13 and the P-type body region 07. At this time, the current will pass through the channel between the gate oxide layer 13 and the P-type body region 07, flow to the N+ type second source region 08, and then flow to the source metal 16. If the N+ type second source region 08 is not in contact with the gate oxide layer 13, the current cannot form a path.
所述栅极沟槽12靠近N+型第一源区05的侧壁上的栅氧化层13与N+型第一源区05接触以形成对应的电流路径D如图4所示。同N+型第二源区08与栅氧化层13接触的原理一样,只有栅氧化层13与N+型第一源区05接触,电流路径D才能成立,具体的,电流D路径,电流从漏极金属17—N+型碳化硅衬底01—N-型第一碳化硅外延层02—电流向右走,路径被右侧的P型第一掺杂区03阻断,在给多晶硅14 施加15~20V的正向电压时,在栅氧化层13和P型第一掺杂区03之间会形成很薄的沟道(约为50nm),电流流经该沟道后,流到N+型第一源区05,之后电流进入源极金属16。P型体区07和右侧的P型第一掺杂区03起到电流阻断作用,多晶硅14和栅氧化层13的功能就像电流的开关。The gate oxide layer 13 on the side wall of the gate trench 12 close to the N+ type first source region 05 contacts the N+ type first source region 05 to form a corresponding current path D as shown in FIG4 . The same principle as the contact between the N+ type second source region 08 and the gate oxide layer 13, only when the gate oxide layer 13 contacts the N+ type first source region 05, the current path D can be established. Specifically, the current D path, the current goes from the drain metal 17—N+ type silicon carbide substrate 01—N-type first silicon carbide epitaxial layer 02—current to the right, the path is blocked by the P-type first doping region 03 on the right, when a forward voltage of 15~20V is applied to the polysilicon 14, a very thin channel (about 50nm) will be formed between the gate oxide layer 13 and the P-type first doping region 03, and the current flows through the channel and flows to the N+ type first source region 05, and then the current enters the source metal 16. The P-type body region 07 and the P-type first doped region 03 on the right side play a role of current blocking, and the polysilicon 14 and the gate oxide layer 13 function like a current switch.
本发明实施例中,所述源极沟槽09的深度大于或等于所述栅极沟槽12的深度,以实现对栅极的栅氧化层13的保护。In the embodiment of the present invention, the depth of the source trench 09 is greater than or equal to the depth of the gate trench 12 , so as to protect the gate oxide layer 13 of the gate.
所述栅极沟槽12的深度和宽度可以根据需要设置,其深度可以到达对应的P型第一掺杂区03的上表面,也可以延伸到其中,但是深度不能超过N+型第一源区05的深度,比如可选的一种实施方式中,所述栅极沟槽12的深度可以为0.8~1.2μm。所述栅极沟槽12的宽度为0.8~1.5μm。The depth and width of the gate trench 12 can be set as needed, and its depth can reach the upper surface of the corresponding P-type first doping region 03, or extend therein, but the depth cannot exceed the depth of the N+ type first source region 05. For example, in an optional embodiment, the depth of the gate trench 12 can be 0.8-1.2 μm. The width of the gate trench 12 is 0.8-1.5 μm.
本发明实施例中,所述具有栅氧保护结构的碳化硅MOSFET器件的栅极同时控制横向和纵向两种沟道的开启。具体可以结合前文以及相关附图理解,在此不再详细说明。In the embodiment of the present invention, the gate of the silicon carbide MOSFET device with a gate oxide protection structure controls the opening of both lateral and longitudinal channels at the same time. The details can be understood in conjunction with the above text and related drawings, and will not be described in detail here.
沟槽型碳化硅MOSFET器件最主要的问题是反向耐压状态下栅氧化层的高电场强度太高,为了保持碳化硅MOSFET器件的长期可靠性,在器件反向耐压时栅氧化层的最高电场强度需要被限制在3MV/cm以下,未加保护结构的沟槽型碳化硅MOSFET反向耐压状态下栅氧化层场强常常达到8MV/cm以上,远远高于电场强度工作可靠性的要求。The main problem of trench silicon carbide MOSFET devices is that the high electric field strength of the gate oxide layer in the reverse withstand state is too high. In order to maintain the long-term reliability of silicon carbide MOSFET devices, the maximum electric field strength of the gate oxide layer in the reverse withstand state of the device needs to be limited to below 3MV/cm. The field strength of the gate oxide layer in the reverse withstand state of trench silicon carbide MOSFET without a protection structure often reaches more than 8MV/cm, which is far higher than the requirement for electric field strength working reliability.
现有技术中,沟槽型碳化硅栅氧保护结构使用最多的一种是采用Infineon公司提出的非对称沟槽MOSFET,栅沟槽一侧用于导电,另一侧用于制作P+屏蔽区,但是该结构仍然会引入较大的JFET电阻。另一种方法是Rohm公司的双沟槽MOSFET,引入栅极沟槽和源极沟槽,但是该结构在栅极沟槽中心仍然具有较大的栅氧化层电场强度。In the prior art, the most commonly used trench-type silicon carbide gate oxide protection structure is the asymmetric trench MOSFET proposed by Infineon, where one side of the gate trench is used for conduction and the other side is used for making a P+ shielding area, but this structure still introduces a large JFET resistance. Another method is the double trench MOSFET of Rohm, which introduces a gate trench and a source trench, but this structure still has a large gate oxide layer electric field strength in the center of the gate trench.
碳化硅材料的击穿电场强度为2.5MV/cm,目前沟槽型碳化硅最大的问题是当器件达到击穿电场强度时,未经保护栅氧化层的电场强度能达到7.5MV/cm左右,而栅氧化层长时间工作的安全电场强度必须在3MV/cm以下。本发明实施例提出的碳化硅MOSFET器件,具有对栅氧化层屏蔽保护的效果,在器件处于反向耐压状态时,具体利用P+型源区10、P型第一掺杂区03、N型第一掺杂区04以及N-型第一碳化硅外延层02作为栅氧保护结构,共同耗尽保护栅极沟槽12的栅氧化层13,降低栅极拐角处的电场强度。请参见图2a、图2b,图2a为本发明器件的最终结构;图2b为2a结构在仿真反向耐压状态时沿AA方向上的电场强度分布,图2b中横坐标表示器件仿真剖面结构的长度,单位为μm,纵坐标表示电场强度,单位为V/cm。从图2b可以看出:栅极拐角处的栅氧化层强度在1MV/cm以下,远低于3MV/cm的电场强度,栅氧化层得到有效的缓解,保证了器件的可靠性。The breakdown electric field strength of silicon carbide material is 2.5MV/cm. At present, the biggest problem of trench silicon carbide is that when the device reaches the breakdown electric field strength, the electric field strength of the unprotected gate oxide layer can reach about 7.5MV/cm, while the safe electric field strength of the gate oxide layer for long-term operation must be below 3MV/cm. The silicon carbide MOSFET device proposed in the embodiment of the present invention has the effect of shielding and protecting the gate oxide layer. When the device is in a reverse withstand voltage state, the P+ type source region 10, the P-type first doping region 03, the N-type first doping region 04 and the N-type first silicon carbide epitaxial layer 02 are specifically used as the gate oxide protection structure to jointly deplete the gate oxide layer 13 of the gate trench 12 to reduce the electric field strength at the gate corner. Please refer to Figures 2a and 2b. Figure 2a is the final structure of the device of the present invention; Figure 2b is the electric field strength distribution of the 2a structure along the AA direction when simulating the reverse withstand voltage state. In Figure 2b, the horizontal axis represents the length of the simulated cross-sectional structure of the device, in μm, and the vertical axis represents the electric field strength, in V/cm. It can be seen from Figure 2b that the gate oxide strength at the gate corner is below 1MV/cm, which is much lower than the electric field strength of 3MV/cm. The gate oxide is effectively relieved, ensuring the reliability of the device.
请参见图3a、图3b,图3a为本发明器件的最终结构;图3b为图3a结构在仿真反向耐压状态时沿AB方向上的电场强度分布,图3b中横坐标表示器件仿真剖面结构的长度,单位为μm,纵坐标表示电场强度,单位为V/cm。从图3b可以看出:最强电场强度达到2.5MV/cm以上,电场强度最强的地方发生在左边的P+型源区10与N-型第一碳化硅外延层02耗尽区,以及P型第一掺杂区03与N-型第一碳化硅外延层02耗尽区。Please refer to Figure 3a and Figure 3b. Figure 3a is the final structure of the device of the present invention; Figure 3b is the electric field intensity distribution along the AB direction of the structure of Figure 3a when simulating the reverse withstand voltage state. In Figure 3b, the horizontal axis represents the length of the simulated cross-sectional structure of the device, in μm, and the vertical axis represents the electric field intensity, in V/cm. It can be seen from Figure 3b that the strongest electric field intensity reaches more than 2.5MV/cm, and the strongest electric field intensity occurs in the P+ type source region 10 and the N-type first silicon carbide epitaxial layer 02 depletion region on the left, as well as the P-type first doping region 03 and the N-type first silicon carbide epitaxial layer 02 depletion region.
图2b和图3b是在器件击穿情况下的不同位置的电场强度,图3b证明器件的击穿点在P+型源区10与N-型第一碳化硅外延层02耗尽区,以及P型第一掺杂区03与N-型第一碳化硅外延层02耗尽区。此时栅氧化层13的电场强度在1MV/cm以下。栅氧化层13在比较安全的电场环境下。FIG2b and FIG3b are electric field strengths at different positions when the device is broken down. FIG3b proves that the breakdown point of the device is in the depletion region of the P+ type source region 10 and the N-type first silicon carbide epitaxial layer 02, and the depletion region of the P-type first doping region 03 and the N-type first silicon carbide epitaxial layer 02. At this time, the electric field strength of the gate oxide layer 13 is below 1MV/cm. The gate oxide layer 13 is in a relatively safe electric field environment.
可见,本发明实施例通过P+型源区10 和N-型第一碳化硅外延层02、N型第一掺杂区04耗尽,N+型第一源区05和N-型第一碳化硅外延层02、N型第一掺杂区04耗尽,形成耗尽区域,屏蔽高电场,能够保护栅氧化层13。本发明结构能够解决现有技术中沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿的技术问题。It can be seen that the embodiment of the present invention forms a depletion region by depleting the P+ type source region 10 and the N-type first silicon carbide epitaxial layer 02 and the N-type first doping region 04, and depleting the N+ type first source region 05 and the N-type first silicon carbide epitaxial layer 02 and the N-type first doping region 04, shielding the high electric field and protecting the gate oxide layer 13. The structure of the present invention can solve the technical problem in the prior art that the electric field protection of the gate oxide layer of the trench silicon carbide MOSFET is insufficient, especially the gate oxide layer at the corner is easily broken down by the electric field.
本发明实施例在解决栅极沟槽拐角处电场强度太高问题的同时,增加了器件电流流通的路径,具体设计出横向和纵向两种电流路径,可以通过提高器件的电流密度有效降低器件的导通电阻,能够提高芯片的电流路径。The embodiment of the present invention solves the problem of too high electric field strength at the corners of the gate trench while increasing the path for device current flow. Specifically, two current paths, horizontal and vertical, are designed, which can effectively reduce the on-resistance of the device by increasing the current density of the device, thereby improving the current path of the chip.
请参见图4,图4为本发明器件结构在正向导通状态下的电流路径示意图。具体的,器件工作时的两条电流路径为C和D,其中C是纵向的电路路径,D是横向的电流路径。这两种电流路径即为两种导通沟道。如前所述:Please refer to FIG. 4, which is a schematic diagram of the current path of the device structure of the present invention in the forward conduction state. Specifically, the two current paths when the device is working are C and D, where C is a longitudinal circuit path and D is a transverse current path. These two current paths are two conduction channels. As mentioned above:
针对电流C路径,电流流向从漏极金属17—N+型碳化硅衬底01—N-型第一碳化硅外延层02—N型第一掺杂区04—N-型第二碳化硅外延层06,到P型体区07的时候就被P型体区07阻断。这时就会体现出栅极的作用,在给多晶硅14施加15~20V正向电压时,在栅氧化层13和P型体区07之间会形成很薄的沟道(约为50nm),这时电流会通过栅氧化层13和P型体区07之间的沟道,流到N+型第二源区08,然后流到源极金属16。For the current C path, the current flows from the drain metal 17—N+ type silicon carbide substrate 01—N- type first silicon carbide epitaxial layer 02—N- type first doped region 04—N- type second silicon carbide epitaxial layer 06, and is blocked by the P-type body region 07 when it reaches the P-type body region 07. At this time, the role of the gate will be reflected. When a forward voltage of 15~20V is applied to the polysilicon 14, a very thin channel (about 50nm) will be formed between the gate oxide layer 13 and the P-type body region 07. At this time, the current will pass through the channel between the gate oxide layer 13 and the P-type body region 07, flow to the N+ type second source region 08, and then flow to the source metal 16.
针对电流D路径,电流从漏极金属17—N+型碳化硅衬底01—N-型第一碳化硅外延层02—电流向右走,路径被右侧的P型第一掺杂区03阻断,在给多晶硅14 施加15~20V正向电压时,在栅氧化层13和P型第一掺杂区03之间会形成很薄的沟道(约为50nm),电流流经该沟道后,流到N+型第一源区05,之后电流进入源极金属16。For the current D path, the current goes from the drain metal 17—N+ type silicon carbide substrate 01—N- type first silicon carbide epitaxial layer 02—current to the right, and the path is blocked by the P-type first doped region 03 on the right. When a forward voltage of 15~20V is applied to the polysilicon 14, a very thin channel (about 50nm) is formed between the gate oxide layer 13 and the P-type first doped region 03. After the current flows through the channel, it flows to the N+ type first source region 05, and then the current enters the source metal 16.
综上,本发明实施例所提供的具有栅氧保护结构的碳化硅MOSFET器件,解决了现有技术中沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿的技术问题。本发明结构不仅解决了栅氧化层的电场过高的问题,而且创新性地提出了纵向和横向两种导通沟道,提高了电流密度,解决了因为引入栅氧保护结构而增加导通电阻的问题,本发明结构能够最大限度的利用芯片面积。In summary, the silicon carbide MOSFET device with a gate oxide protection structure provided by the embodiment of the present invention solves the technical problem in the prior art that the electric field protection of the gate oxide layer of the trench-type silicon carbide MOSFET is insufficient, especially the gate oxide layer at the corner is easily broken down by the electric field. The structure of the present invention not only solves the problem of the excessively high electric field of the gate oxide layer, but also innovatively proposes two conduction channels, vertical and horizontal, to increase the current density, solve the problem of increasing the on-resistance due to the introduction of the gate oxide protection structure, and the structure of the present invention can maximize the use of the chip area.
第二方面,本发明实施例针对还提供了一种具有栅氧保护结构的碳化硅MOSFET器件的制备方法,用于制备第一方面提供的具有栅氧保护结构的碳化硅MOSFET器件,如图5所示,该制备方法包括:In a second aspect, an embodiment of the present invention further provides a method for preparing a silicon carbide MOSFET device with a gate oxide protection structure, which is used to prepare the silicon carbide MOSFET device with a gate oxide protection structure provided in the first aspect. As shown in FIG. 5 , the preparation method includes:
S1,选取N+型碳化硅衬底01,在所述N+型碳化硅衬底01上生长N-型第一碳化硅外延层02。S1 , selecting an N+ type silicon carbide substrate 01 , and growing an N− type first silicon carbide epitaxial layer 02 on the N+ type silicon carbide substrate 01 .
具体的,选取N+型衬底以形成高浓度N型漏极,N+型衬底采用碳化硅材料,具体的,本发明实施例的N+型碳化硅衬底01可以是4H-SiC、6H-SiC或3C-SiC等材料。比如可选的实施方式中,可以采用4H-SiC材料。N+型碳化硅衬底01的厚度可以为250~350μm。Specifically, an N+ type substrate is selected to form a high concentration N-type drain, and the N+ type substrate uses silicon carbide material. Specifically, the N+ type silicon carbide substrate 01 of the embodiment of the present invention can be 4H-SiC, 6H-SiC or 3C-SiC. For example, in an optional implementation, 4H-SiC material can be used. The thickness of the N+ type silicon carbide substrate 01 can be 250~350μm.
然后在N+型碳化硅衬底01的上表面外延生长N-型第一碳化硅外延层02,厚度可以为5~20μm,掺杂浓度可以为4e15cm-3~1.5e16cm-3。之后清洗外延片,得到的结构如图6a所示。Then, an N-type first silicon carbide epitaxial layer 02 is epitaxially grown on the upper surface of the N+ type silicon carbide substrate 01, with a thickness of 5-20 μm and a doping concentration of 4e15 cm -3 -1.5e16 cm -3 . The epitaxial wafer is then cleaned, and the obtained structure is shown in FIG. 6a .
S2,利用掩膜层选择性注入离子的方式,在所述N-型第一碳化硅外延层02中顶层区域内两侧形成P型第一掺杂区03,在两侧的P型第一掺杂区03之间形成N型第一掺杂区04,在一侧的P型第一掺杂区03中部分顶层区域内形成N+型第一源区05。S2, by means of selective ion injection through a mask layer, a P-type first doping region 03 is formed on both sides of the top layer region in the N-type first silicon carbide epitaxial layer 02, an N-type first doping region 04 is formed between the P-type first doping regions 03 on both sides, and an N+ type first source region 05 is formed in part of the top layer region in the P-type first doping region 03 on one side.
具体的,首先在所述N-型第一碳化硅外延层02上淀积氧化层(氧化层是二氧化硅),通过光刻和刻蚀工艺刻蚀出离子注入窗口,选择性注入离子形成P型第一掺杂区03,注入的离子可以为铝离子,离子注入的能量可以为50~400KeV,掺杂浓度可以为4e16cm-3~9e16cm-3。所述P型第一掺杂区03的深度可以为1~1.5μm。去除掩膜层得到如图6b所示的器件结构;P型第一掺杂区03在所述N-型第一碳化硅外延层02中顶层区域内两侧位置。Specifically, firstly, an oxide layer (the oxide layer is silicon dioxide) is deposited on the N-type first silicon carbide epitaxial layer 02, and an ion implantation window is etched by photolithography and etching processes, and ions are selectively implanted to form a P-type first doping region 03. The implanted ions may be aluminum ions, and the energy of the ion implantation may be 50-400 KeV, and the doping concentration may be 4e16 cm -3 -9e16 cm -3 . The depth of the P-type first doping region 03 may be 1-1.5 μm. The mask layer is removed to obtain the device structure shown in FIG. 6 b; the P-type first doping region 03 is located on both sides of the top layer region in the N-type first silicon carbide epitaxial layer 02.
然后,在离子注入后的N-型第一碳化硅外延层02上表面淀积氧化层,通过光刻和刻蚀工艺刻蚀出离子注入窗口,在P型第一掺杂区03之间的区域选择性注入离子形成N型第一掺杂区04;所述N型第一掺杂区04的掺杂离子包括氮离子,离子注入的能量可以为100~300KeV,掺杂浓度可以为1e15cm-3~6e15cm-3。去除掩膜层得到如图6c所示的器件结构;其中,N型第一掺杂区04和两侧的P型第一掺杂区03具有间距;N型第一掺杂区04的深度可以和P型第一掺杂区03的深度相同。N型第一掺杂区04的深度可以为0.5~1.2μm。Then, an oxide layer is deposited on the upper surface of the N-type first silicon carbide epitaxial layer 02 after ion implantation, and an ion implantation window is etched by photolithography and etching processes. Ions are selectively implanted in the region between the P-type first doping regions 03 to form an N-type first doping region 04; the doping ions of the N-type first doping region 04 include nitrogen ions, the energy of ion implantation can be 100~300KeV, and the doping concentration can be 1e15cm -3 ~6e15cm -3 . The mask layer is removed to obtain the device structure shown in Figure 6c; wherein, the N-type first doping region 04 and the P-type first doping regions 03 on both sides have a spacing; the depth of the N-type first doping region 04 can be the same as the depth of the P-type first doping region 03. The depth of the N-type first doping region 04 can be 0.5~1.2μm.
再之后,在再次离子注入后的N-型第一碳化硅外延层02上表面淀积氧化层,通过光刻和刻蚀工艺刻蚀出离子注入窗口,在一侧的P型第一掺杂区03中部分顶层区域内形成N+型第一源区05;N+型第一源区05的掺杂离子包括氮离子,离子注入的能量可以为50~120KeV,掺杂浓度高于1e19cm-3。去除掩膜层得到如图6d所示的器件结构;After that, an oxide layer is deposited on the upper surface of the N-type first silicon carbide epitaxial layer 02 after the second ion implantation, and an ion implantation window is etched out by photolithography and etching processes, and an N+ type first source region 05 is formed in a part of the top region of the P-type first doping region 03 on one side; the doping ions of the N+ type first source region 05 include nitrogen ions, and the ion implantation energy can be 50-120 KeV, and the doping concentration is higher than 1e19 cm -3 . The mask layer is removed to obtain the device structure shown in FIG6d ;
S3,在当前结构的上表面生长N-型第二碳化硅外延层06。S3, growing an N-type second silicon carbide epitaxial layer 06 on the upper surface of the current structure.
即在图6d所示的器件结构的上表面上生长N-型第二碳化硅外延层06。That is, an N-type second silicon carbide epitaxial layer 06 is grown on the upper surface of the device structure shown in FIG. 6 d .
N-型第二碳化硅外延层06的厚度可以为0.8~1.2μm,掺杂浓度范围可以和所述N-型第一碳化硅外延层02的掺杂浓度范围相同。该步骤得到的器件结构如图6e所示。The thickness of the N-type second silicon carbide epitaxial layer 06 may be 0.8-1.2 μm, and the doping concentration range may be the same as the doping concentration range of the N-type first silicon carbide epitaxial layer 02. The device structure obtained in this step is shown in FIG6e.
S4,利用掩膜层选择性注入离子的方式,在所述N-型第二碳化硅外延层06中预设的顶层区域内形成P型体区07,在所述P型体区07中一侧形成N+型第二源区08。S4, forming a P-type body region 07 in a preset top region of the N-type second silicon carbide epitaxial layer 06 by selectively injecting ions through a mask layer, and forming an N+-type second source region 08 on one side of the P-type body region 07 .
具体的,首先在所述N-型第二碳化硅外延层06上淀积氧化层,通过光刻和刻蚀工艺刻蚀出离子注入窗口,选择性注入离子形成P型体区07,P型体区07可以位于N型第一掺杂区04及部分P型第一掺杂区03的上方,P型体区07的深度不超过N-型第二碳化硅外延层06的深度。P型体区07注入的离子包括铝离子,离子注入的能量可以为100~350KeV,掺杂浓度可以为2e16cm-3~8e16cm-3。去除掩膜层得到如图6f所示的器件结构;Specifically, firstly, an oxide layer is deposited on the N-type second silicon carbide epitaxial layer 06, and an ion implantation window is etched by photolithography and etching processes, and ions are selectively implanted to form a P-type body region 07. The P-type body region 07 can be located above the N-type first doping region 04 and part of the P-type first doping region 03, and the depth of the P-type body region 07 does not exceed the depth of the N-type second silicon carbide epitaxial layer 06. The ions implanted into the P-type body region 07 include aluminum ions, and the energy of the ion implantation can be 100~350KeV, and the doping concentration can be 2e16cm -3 ~8e16cm -3 . The mask layer is removed to obtain the device structure shown in FIG6f;
然后,在离子注入后的N-型第二碳化硅外延层06上淀积氧化层,在P型体区07的上表面局部区域,通过光刻和刻蚀工艺刻蚀出离子注入窗口,选择性注入离子形成N+型第二源区08,注入的离子可以为氮离子,离子注入的能量可以为80~150 KeV,掺杂浓度可以为5e16cm-3~8e16cm-3。N+型第二源区08的深度不超过P型体区07的深度,可以靠近P型体区07一侧边缘。去除掩膜版后得到如图6g所示的器件结构。Then, an oxide layer is deposited on the N-type second silicon carbide epitaxial layer 06 after ion implantation, and an ion implantation window is etched in a local area on the upper surface of the P-type body region 07 by photolithography and etching processes, and ions are selectively implanted to form an N+ type second source region 08. The implanted ions may be nitrogen ions, the energy of the ion implantation may be 80-150 KeV, and the doping concentration may be 5e16cm -3 ~8e16cm -3 . The depth of the N+ type second source region 08 does not exceed the depth of the P-type body region 07, and may be close to one side edge of the P-type body region 07. After removing the mask, the device structure shown in FIG. 6g is obtained.
S5,在N-型第二碳化硅外延层06中的两侧区域,利用干法等离子刻蚀工艺形成源极沟槽09,所述源极沟槽09贯穿N-型第二碳化硅外延层06和P型第一掺杂区03,下端延伸至N-型第一碳化硅外延层02内;并通过离子注入在所述源极沟槽09的外侧和底部形成P+型源区10,使得一个源极沟槽09一侧的P+型源区10与所述N+型第一源区05有重叠,另一个源极沟槽09一侧的P+型源区10与所述P型体区07接触。S5, forming source trenches 09 in the two side regions of the N-type second silicon carbide epitaxial layer 06 by dry plasma etching process, wherein the source trenches 09 penetrate the N-type second silicon carbide epitaxial layer 06 and the P-type first doped region 03, and the lower end extends into the N-type first silicon carbide epitaxial layer 02; and forming a P+ type source region 10 on the outer side and bottom of the source trench 09 by ion implantation, so that the P+ type source region 10 on one side of the source trench 09 overlaps with the N+ type first source region 05, and the P+ type source region 10 on the other side of the source trench 09 contacts with the P type body region 07.
具体的,首先在当前的N-型第二碳化硅外延层06的全部上表面上淀积氧化层,通过光刻和干法等离子刻蚀工艺,在两侧区域刻蚀出源极沟槽09,其贯穿N-型第二碳化硅外延层06和P型第一掺杂区03,下端延伸至N-型第一碳化硅外延层02。所述源极沟槽09的深度可以为1.4~2.6μm,在源极沟槽09外侧经过一定角度的离子注入后在源极沟槽09外的左右两侧和底部形成P+型源区10,源极沟槽09底部呈圆弧状,注入的离子可以为铝离子,掺杂浓度为8e15cm-3~1e16cm-3,该掺杂浓度小于N+型第一源区05的掺杂浓度,使得一侧的P+型源区10与所述N+型第一源区05重叠,重叠区域表现为N+型第一源区05的特性,另外一个源极沟槽09一侧的P+型源区10和所述P型体区07接触,得到如图6h所示的器件结构;Specifically, an oxide layer is first deposited on the entire upper surface of the current N-type second silicon carbide epitaxial layer 06, and a source trench 09 is etched in the two side regions through photolithography and dry plasma etching processes, which penetrates the N-type second silicon carbide epitaxial layer 06 and the P-type first doped region 03, and the lower end extends to the N-type first silicon carbide epitaxial layer 02. The source trench 09 may have a depth of 1.4-2.6 μm. After ion implantation at a certain angle outside the source trench 09, a P+ type source region 10 is formed on the left and right sides and the bottom outside the source trench 09. The bottom of the source trench 09 is arc-shaped. The implanted ions may be aluminum ions with a doping concentration of 8e15 cm -3 ~1e16 cm -3 , which is less than the doping concentration of the N+ type first source region 05, so that the P+ type source region 10 on one side overlaps with the N+ type first source region 05, and the overlapping area exhibits the characteristics of the N+ type first source region 05. The P+ type source region 10 on another side of the source trench 09 contacts the P type body region 07, thereby obtaining a device structure as shown in FIG. 6h ;
接下来,在当前的N-型第二碳化硅外延层06 的全部上表面上利用化学沉积方式填充源极沟槽09,填充的材料可以为二氧化硅11,得到如图6i所示的器件结构。Next, the source trench 09 is filled on the entire upper surface of the current N-type second silicon carbide epitaxial layer 06 by chemical deposition. The filling material may be silicon dioxide 11, so as to obtain the device structure shown in FIG. 6i.
S6,在所述N-型第二碳化硅外延层06中两个源极沟槽09之间的位置刻蚀出栅极沟槽12,在所述栅极沟槽12的内壁生长栅氧化层13,使得所述栅极沟槽12一侧的栅氧化层13与所述N+型第二源区08接触,底侧的栅氧化层13与下方的N+型第一源区05接触,并在所述栅极沟槽12内淀积多晶硅14作为栅极;S6, etching a gate trench 12 at a position between two source trenches 09 in the N-type second silicon carbide epitaxial layer 06, growing a gate oxide layer 13 on the inner wall of the gate trench 12, so that the gate oxide layer 13 on one side of the gate trench 12 is in contact with the N+ type second source region 08, and the gate oxide layer 13 on the bottom side is in contact with the N+ type first source region 05 below, and depositing polysilicon 14 in the gate trench 12 as a gate;
具体的,首先使用化学机械研磨的方式去除掉N-型第二碳化硅外延层06上的二氧化硅11。再通过光刻和刻蚀工艺刻蚀出栅极沟槽12得到如图6j所示的器件结构;其中,栅极沟槽12位于两个源极沟槽09之间,深度小于源极沟槽09的深度。栅极沟槽12的宽度可以为0.8~1.5μm。Specifically, firstly, the silicon dioxide 11 on the N-type second silicon carbide epitaxial layer 06 is removed by chemical mechanical polishing. Then, the gate trench 12 is etched by photolithography and etching to obtain the device structure shown in FIG. 6j; wherein, the gate trench 12 is located between the two source trenches 09, and the depth is less than the depth of the source trench 09. The width of the gate trench 12 can be 0.8-1.5 μm.
然后,在栅极沟槽12内生长牺牲氧化层,在一定时间内去除掉牺牲氧化层,然后通过高温炉管在内壁和底部生长栅氧化层13,温度可以为1100~1200℃。栅氧化层13的材料可以为二氧化硅、二氧化硅和氮化硅的组合、二氧化硅和二氧化铪的组合。Then, a sacrificial oxide layer is grown in the gate trench 12, and the sacrificial oxide layer is removed within a certain period of time, and then a gate oxide layer 13 is grown on the inner wall and the bottom through a high-temperature furnace tube, and the temperature may be 1100-1200° C. The material of the gate oxide layer 13 may be silicon dioxide, a combination of silicon dioxide and silicon nitride, or a combination of silicon dioxide and hafnium dioxide.
经过RCA(标准清洗液)清洗后进行退火处理,栅极沟槽12内淀积多晶硅14后,将N-型第二碳化硅外延层06上的剩余多晶硅14去除后得到如图6k所示的器件结构。其中,栅极沟槽12一侧的栅氧化层13与N+型第二源区08接触,右侧和下方部分栅氧化层13与N+型第一源区05接触。After cleaning with RCA (standard cleaning solution) and annealing, polysilicon 14 is deposited in the gate trench 12, and the remaining polysilicon 14 on the N-type second silicon carbide epitaxial layer 06 is removed to obtain the device structure shown in Figure 6k. Among them, the gate oxide layer 13 on one side of the gate trench 12 is in contact with the N+ type second source region 08, and the right side and lower part of the gate oxide layer 13 are in contact with the N+ type first source region 05.
S7,在当前结构的上表面淀积层间绝缘介质15,去除所述源极沟槽09内部,以及部分P型体区07和N+型第二源区08上方的层间绝缘介质15;S7, depositing an interlayer insulating dielectric 15 on the upper surface of the current structure, and removing the interlayer insulating dielectric 15 inside the source trench 09 and above a portion of the P-type body region 07 and the N+-type second source region 08;
在图6k所示的器件结构上表面淀积层间绝缘介质15。An interlayer insulating dielectric 15 is deposited on the upper surface of the device structure shown in FIG. 6k.
具体的,层间绝缘介质15可以是二氧化硅、氮化硅、氮氧化硅之一或者任意的组合体。淀积层间绝缘介质15后的器件结构请参见图6l。Specifically, the interlayer insulating dielectric 15 can be silicon dioxide, silicon nitride, silicon oxynitride, or any combination thereof. The device structure after the interlayer insulating dielectric 15 is deposited is shown in FIG. 61 .
之后,利用掩膜层选择性刻蚀后,将源极沟槽09中的层间绝缘介质15,部分P型体区07和N+型第二源区08上方的层间绝缘介质15刻蚀干净,得到的器件结构请参见图6m。Afterwards, the interlayer insulating dielectric 15 in the source trench 09, part of the P-type body region 07 and the interlayer insulating dielectric 15 above the N+-type second source region 08 are etched cleanly by selective etching using the mask layer. Please refer to FIG. 6m for the obtained device structure.
S8,在所述源极沟槽09的内部及所述层间绝缘介质15之上形成源极金属16,并在所述N+型碳化硅衬底01下方形成漏极金属17。S8 , forming a source metal 16 inside the source trench 09 and on the interlayer insulating dielectric 15 , and forming a drain metal 17 below the N+ type silicon carbide substrate 01 .
具体的,在所述源极沟槽09的内部及所述层间绝缘介质15之上形成源极金属16,使得源极金属16接触部分P型体区(07)和N+型第二源区(08)上表面,并填满源极沟槽09。再淀积背面金属形成漏极金属17。Specifically, a source metal 16 is formed inside the source trench 09 and on the interlayer insulating medium 15, so that the source metal 16 contacts a portion of the P-type body region (07) and the upper surface of the N+-type second source region (08), and fills the source trench 09. A back metal is then deposited to form a drain metal 17.
其中,源极金属16可以为铝硅组合体、铝铜组合体、纯铝,厚度可以为3~5μm,漏极金属17可以为钛镍银组合体,厚度可以为0.2~0.8μm。得到的器件结构请参见图6n。The source metal 16 may be an aluminum-silicon combination, an aluminum-copper combination, or pure aluminum, and may have a thickness of 3 to 5 μm, and the drain metal 17 may be a titanium-nickel-silver combination, and may have a thickness of 0.2 to 0.8 μm. The obtained device structure is shown in FIG6n .
至此器件制备完成。At this point, the device is completed.
利用本发明实施例所提供的具有栅氧保护结构的碳化硅MOSFET器件的制备方法,制备出的器件解决了现有技术中沟槽型碳化硅MOSFET对栅氧化层的电场保护不够,特别是拐角处的栅氧化层容易被电场击穿的技术问题。本发明结构不仅解决了栅氧化层的电场过高的问题,而且创新性地提出了纵向和横向两种导通沟道,提高了电流密度,解决了因为引入栅氧保护结构而增加导通电阻的问题,本发明结构能够最大限度的利用芯片面积。The method for preparing a silicon carbide MOSFET device with a gate oxide protection structure provided by an embodiment of the present invention solves the technical problem in the prior art that the electric field protection of the gate oxide layer of the trench-type silicon carbide MOSFET is insufficient, especially the gate oxide layer at the corner is easily broken down by the electric field. The structure of the present invention not only solves the problem of the gate oxide layer having an excessively high electric field, but also innovatively proposes two conduction channels, longitudinal and transverse, to increase the current density, solve the problem of increasing the on-resistance due to the introduction of the gate oxide protection structure, and the structure of the present invention can maximize the use of the chip area.
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above description is only a preferred embodiment of the present invention and is not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411178430.2A CN118693160B (en) | 2024-08-27 | 2024-08-27 | Silicon carbide MOSFET device with gate oxide protection structure and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411178430.2A CN118693160B (en) | 2024-08-27 | 2024-08-27 | Silicon carbide MOSFET device with gate oxide protection structure and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118693160A CN118693160A (en) | 2024-09-24 |
CN118693160B true CN118693160B (en) | 2024-11-05 |
Family
ID=92766613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411178430.2A Active CN118693160B (en) | 2024-08-27 | 2024-08-27 | Silicon carbide MOSFET device with gate oxide protection structure and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118693160B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119497414A (en) * | 2025-01-20 | 2025-02-21 | 西安龙飞电气技术有限公司 | A silicon carbide MOSFET device and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807504A (en) * | 2018-08-28 | 2018-11-13 | 电子科技大学 | Silicon carbide MOSFET device and its manufacturing method |
CN114420761A (en) * | 2022-03-30 | 2022-04-29 | 成都功成半导体有限公司 | A kind of high pressure silicon carbide device and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180358449A1 (en) * | 2017-06-12 | 2018-12-13 | Maxpower Semiconductor Inc. | Fabrication of Trench-Gated Wide-Bandgap Devices |
CN114628515A (en) * | 2020-12-14 | 2022-06-14 | 深圳尚阳通科技有限公司 | SiC MOSFET device and manufacturing method |
KR20230111007A (en) * | 2022-01-17 | 2023-07-25 | 삼성전자주식회사 | Power semiconductor device |
CN116469916A (en) * | 2023-05-29 | 2023-07-21 | 华瑞创芯半导体(成都)有限公司 | A trench type silicon carbide MOSFET and its manufacturing method |
-
2024
- 2024-08-27 CN CN202411178430.2A patent/CN118693160B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807504A (en) * | 2018-08-28 | 2018-11-13 | 电子科技大学 | Silicon carbide MOSFET device and its manufacturing method |
CN114420761A (en) * | 2022-03-30 | 2022-04-29 | 成都功成半导体有限公司 | A kind of high pressure silicon carbide device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN118693160A (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108735817B (en) | SiC semiconductor device with offset in trench bottom | |
CN104969357B (en) | Insulated-gate type manufacturing silicon carbide semiconductor device and its manufacturing method | |
JP7190144B2 (en) | Super-junction silicon carbide semiconductor device and method for manufacturing super-junction silicon carbide semiconductor device | |
TWI453919B (en) | Diode structure with controlled injection efficiency for fast switching | |
JP5586887B2 (en) | Semiconductor device and manufacturing method thereof | |
JP7243094B2 (en) | semiconductor equipment | |
WO2024216880A1 (en) | Heterojunction-based silicon carbide trench-gate mosfet and manufacturing method therefor | |
JP4166102B2 (en) | High voltage field effect semiconductor device | |
JP7057555B2 (en) | Semiconductor device | |
CN108336133B (en) | A silicon carbide insulated gate bipolar transistor and method of making the same | |
WO2013001677A1 (en) | Semiconductor device and method for manufacturing same | |
JP6802454B2 (en) | Semiconductor devices and their manufacturing methods | |
JP6183087B2 (en) | Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device | |
CN116759461A (en) | High-temperature-stability power MOSFET device and preparation method thereof | |
JP2020136416A (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
WO2012131768A1 (en) | Silicon carbide semiconductor device and method for producing same | |
WO2024227330A1 (en) | Asymmetric silicon carbide trench mosfet and manufacturing method therefor | |
CN114551586B (en) | Silicon carbide split gate MOSFET cell with integrated gated diode and preparation method | |
CN109920839A (en) | P+ shielding layer potential adjustable silicon carbide MOSFET device and preparation method | |
JP5233158B2 (en) | Silicon carbide semiconductor device | |
JP3998454B2 (en) | Power semiconductor device | |
CN118693160B (en) | Silicon carbide MOSFET device with gate oxide protection structure and preparation method | |
CN113972261A (en) | Silicon carbide semiconductor device and preparation method | |
CN116913969A (en) | A trench-gate LDMOS device with a dual-trench source structure and its production process | |
CN110534576B (en) | A split gate 4H-SiC VDMOS device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |