[go: up one dir, main page]

CN118538774B - Silicon carbide planar gate power MOSFET and manufacturing method - Google Patents

Silicon carbide planar gate power MOSFET and manufacturing method Download PDF

Info

Publication number
CN118538774B
CN118538774B CN202410979268.8A CN202410979268A CN118538774B CN 118538774 B CN118538774 B CN 118538774B CN 202410979268 A CN202410979268 A CN 202410979268A CN 118538774 B CN118538774 B CN 118538774B
Authority
CN
China
Prior art keywords
layer
region
silicon carbide
hard mask
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410979268.8A
Other languages
Chinese (zh)
Other versions
CN118538774A (en
Inventor
汉多科·林纳威赫
刘芝新
崔鹏
韩吉胜
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202410979268.8A priority Critical patent/CN118538774B/en
Publication of CN118538774A publication Critical patent/CN118538774A/en
Application granted granted Critical
Publication of CN118538774B publication Critical patent/CN118538774B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种碳化硅平面栅功率MOSFET及制作方法,属于功率半导体技术领域,该器件拥有p+区域与n+区域不同的金属形成的欧姆接触,使用间隔物薄介质层实现n+源区的沟道自对准,保证了器件的可靠性,并减小沟道区域的电阻,进而减小器件整体的比导通电阻。该工艺过程中首先进行p+区域的离子注入,使用金属层阻挡之后的n+区域氮离子注入p+区域,该金属层最终随着碳化硅晶圆注入后的热退火,同时在p+区域形成欧姆接触。本发明优化了器件的工艺流程,简化了碳化硅平面栅MOSFET的制作工艺步骤,减少了碳化硅平面栅MOSFET的工艺时间和生产成本,并且分别在n+区域和p+区域实现了不同金属的欧姆接触。

The present invention provides a silicon carbide planar gate power MOSFET and a manufacturing method, belonging to the field of power semiconductor technology. The device has an ohmic contact formed by different metals in the p+ region and the n+ region, and uses a spacer thin dielectric layer to achieve channel self-alignment of the n+ source region, thereby ensuring the reliability of the device and reducing the resistance of the channel region, thereby reducing the overall specific on-resistance of the device. In the process, ion implantation in the p+ region is first performed, and nitrogen ions in the n+ region are implanted into the p+ region after being blocked by a metal layer. The metal layer finally forms an ohmic contact in the p+ region at the same time as the silicon carbide wafer is thermally annealed after implantation. The present invention optimizes the process flow of the device, simplifies the manufacturing process steps of the silicon carbide planar gate MOSFET, reduces the process time and production cost of the silicon carbide planar gate MOSFET, and realizes ohmic contacts of different metals in the n+ region and the p+ region respectively.

Description

一种碳化硅平面栅功率MOSFET及制作方法A silicon carbide planar gate power MOSFET and manufacturing method thereof

技术领域Technical Field

本发明涉及一种新型碳化硅(SiC)平面栅功率MOSFET及制作方法,属于功率半导体技术领域。The invention relates to a novel silicon carbide (SiC) planar gate power MOSFET and a manufacturing method thereof, belonging to the technical field of power semiconductors.

背景技术Background Art

功率MOSFET可以在导通状态下携带大电流且在截止状态下承受大击穿电压。在半导体衬底中的源极和漏极区之间的电流通过施加到栅极的电压来控制,该栅极通过绝缘体(通常为二氧化硅)与半导体表面隔离。例如,在n型增强型MOSFET中,栅极上的正偏压导致表面反型层或沟道在栅极氧化物下的p型区域形成,从而在源极和漏极之间形成导电通路。正的漏极和源极之间产生电流。多年来,人们对硅中的横向和垂直功率MOSFET结构进行了探索,前者在硅片的同一表面上具有漏极、栅极和源极,后者在硅片的相对表面上具有源和漏。提出了几种不同类型的垂直功率MOSFET,包括DMOSFET和UMOSFET。A power MOSFET can carry a large current in the on state and withstand a large breakdown voltage in the off state. The current between the source and drain regions in the semiconductor substrate is controlled by a voltage applied to the gate, which is isolated from the semiconductor surface by an insulator (usually silicon dioxide). For example, in an n-type enhancement MOSFET, a positive bias on the gate causes a surface inversion layer or channel to form in the p-type region under the gate oxide, forming a conductive path between the source and drain. Current is generated between the positive drain and source. Over the years, lateral and vertical power MOSFET structures in silicon have been explored, with the former having the drain, gate, and source on the same surface of the silicon wafer and the latter having the source and drain on opposite surfaces of the silicon wafer. Several different types of vertical power MOSFETs have been proposed, including DMOSFET and UMOSFET.

DMOSFET和UMOSFET的结构对于碳化硅MOSFET来说仍然有效。DMOSFET中的D在碳化硅MOSFET中指的是双注入(double-implanted)MOSFET,p基区和n+源区通过离子注入而不是热扩散产生,因为杂质在碳化硅中的扩散系数非常低,在碳化硅中应用扩散工艺是不切合实际的。碳化硅是第三代宽禁带半导体材料。碳化硅基MOSFET相比与硅基的MOSFET,拥有更高的击穿电压,更低的导通电阻,更低的导通损耗。在功率器件领域,碳化硅功率器件的市场占有率逐年升高。The structures of DMOSFET and UMOSFET are still valid for SiC MOSFET. The D in DMOSFET refers to double-implanted MOSFET in SiC MOSFET. The p-base region and n+ source region are produced by ion implantation rather than thermal diffusion. Because the diffusion coefficient of impurities in SiC is very low, it is not practical to apply diffusion process in SiC. SiC is the third generation wide bandgap semiconductor material. Compared with Si-based MOSFET, SiC-based MOSFET has higher breakdown voltage, lower on-resistance and lower conduction loss. In the field of power devices, the market share of SiC power devices is increasing year by year.

尽管如此,碳化硅作为功率MOSFET的潜在优势还没有完全体现,包括优化碳化硅MOSFET器件的制作工艺,简化碳化硅MOSFET的工艺流程,节省成本和工艺时间。Nevertheless, the potential advantages of SiC as a power MOSFET have not yet been fully realized, including optimizing the manufacturing process of SiC MOSFET devices, simplifying the process flow of SiC MOSFET, and saving costs and process time.

发明内容Summary of the invention

针对现有技术的不足,本发明提供一种功率半导体器件以及其制作方法。该碳化硅功率MOSFET拥有p+区域与n+区域不同的金属形成的欧姆接触,使用间隔物薄介质层实现n+源区的沟道自对准,保证了器件的可靠性,并可以实现小于0.5um长度的较短的沟道,减小沟道区域的电阻,进而减小器件整体的比导通电阻。该碳化硅功率MOSFET工艺过程中首先进行p+区域的离子注入,使用一层(或多层)金属层阻挡之后的n+区域氮离子注入p+区域,该金属层最终随着碳化硅晶圆注入后的热退火,同时在p+区域形成欧姆接触。In view of the shortcomings of the prior art, the present invention provides a power semiconductor device and a method for manufacturing the same. The silicon carbide power MOSFET has an ohmic contact formed by different metals in the p+ region and the n+ region, and uses a spacer thin dielectric layer to achieve self-alignment of the channel in the n+ source region, thereby ensuring the reliability of the device and achieving a shorter channel with a length of less than 0.5um, reducing the resistance of the channel region, and thus reducing the overall specific on-resistance of the device. In the process of the silicon carbide power MOSFET, ion implantation in the p+ region is first performed, and nitrogen ions in the n+ region are implanted into the p+ region after being blocked by a layer (or multiple layers) of metal layers. The metal layer finally forms an ohmic contact in the p+ region at the same time as the silicon carbide wafer is thermally annealed after implantation.

本发明的技术方案如下:The technical solution of the present invention is as follows:

一种碳化硅平面栅功率MOSFET,由下到上包括衬底、外延层、CSL层,CSL层上注入制作得到p阱区域,p阱区域中间从下到上设有p+区域、p+区域金属层,p+区域两侧的p阱区域上表面注入制作有n+区域,p阱区域一旁的CSL层上注入制作有结终端区域,结终端区域与p阱区域一侧连接;A silicon carbide planar gate power MOSFET comprises, from bottom to top, a substrate, an epitaxial layer, and a CSL layer, a p-well region is formed by implantation on the CSL layer, a p+ region and a p+ region metal layer are provided in the middle of the p-well region from bottom to top, n+ regions are implanted on the upper surface of the p-well region on both sides of the p+ region, a junction terminal region is implanted on the CSL layer next to the p-well region, and the junction terminal region is connected to one side of the p-well region;

p+区域一侧的CSL层上方依次设有栅极氧化层、栅极多晶硅,二者覆盖住部分CSL层、部分p阱区域、部分n+区域;栅极多晶硅上方及侧面设有电介质层,电介质层旁边设有源极金属,源极金属覆盖住部分n+区域、部分p+区域金属层;源极金属旁边设有电介质层,电介质层覆盖部分p+区域金属层、n+区域、部分p阱区域、结终端区域;A gate oxide layer and a gate polysilicon are arranged in sequence above the CSL layer on the p+ region side, and the two cover part of the CSL layer, part of the p-well region, and part of the n+ region; a dielectric layer is arranged above and on the side of the gate polysilicon, and a source metal is arranged next to the dielectric layer, and the source metal covers part of the n+ region and part of the p+ region metal layer; a dielectric layer is arranged next to the source metal, and the dielectric layer covers part of the p+ region metal layer, the n+ region, part of the p-well region, and the junction terminal region;

电介质层和源极金属的上方设置顶层金属层。A top metal layer is disposed above the dielectric layer and the source metal.

优选的,结终端区域一旁的CSL层上刻蚀有标记槽,标记槽不被任何材料覆盖。Preferably, a marking groove is etched on the CSL layer beside the junction termination region, and the marking groove is not covered by any material.

一种碳化硅平面栅功率MOSFET的制作方法,包括步骤如下:A method for manufacturing a silicon carbide planar gate power MOSFET comprises the following steps:

(1)在衬底上生长一层n型外延层和一层CSL层;然后在晶圆表面刻蚀出标记槽;(1) Grow an n-type epitaxial layer and a CSL layer on the substrate; then etch a marking groove on the surface of the wafer;

优选的,衬底为4H-SiC的n型重掺杂低电阻率衬底,电阻率在0.015~0.025Ω·cm;n型外延层轻掺杂,掺杂浓度1×1015cm-3~1×1016cm-3;CSL层掺杂浓度为2×1016-1×1017cm-3Preferably, the substrate is a 4H-SiC n-type heavily doped low resistivity substrate with a resistivity of 0.015-0.025Ω·cm; the n-type epitaxial layer is lightly doped with a doping concentration of 1×10 15 cm -3 -1×10 16 cm -3 ; and the CSL layer doping concentration is 2×10 16 -1×10 17 cm -3 .

(2)在晶圆表面制作一层足够厚度的第一硬质掩膜层,使用掩模版刻蚀第一硬质掩膜层暴露出用于p+区域离子注入的窗口;通过标记槽与p+区域注入窗口自对准,从而节省了1μm的配准公差;进行p型(例如铝离子)注入制作p+区域。(2) A first hard mask layer of sufficient thickness is formed on the surface of the wafer, and the first hard mask layer is etched using a mask to expose a window for ion implantation in the p+ region; the marking groove is self-aligned with the injection window in the p+ region, thereby saving a 1μm alignment tolerance; and p-type (e.g., aluminum ion) implantation is performed to form the p+ region.

优选的,步骤(2)中,第一硬质掩膜层自下而上的组成包括如下选择:Preferably, in step (2), the composition of the first hard mask layer from bottom to top includes the following selections:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

优选的,步骤(2)中,制作p+区域的离子为铝离子,p+区域的掺杂浓度为应当具有1×1019-5×1019cm-3的峰值浓度,来保证形成良好的欧姆接触。Preferably, in step (2), the ions used to make the p+ region are aluminum ions, and the doping concentration of the p+ region should have a peak concentration of 1×10 19 -5×10 19 cm -3 to ensure the formation of a good ohmic contact.

(3)完成p+区域注入之后,溅射一层p+区域金属层,进行退火,并使用稀硫酸过氧化氢溶液洗去未反应的金属。(3) After the p+ region injection is completed, a p+ region metal layer is sputtered, annealed, and the unreacted metal is washed away with a dilute sulfuric acid and hydrogen peroxide solution.

优选的,步骤(3)中,p+区域金属层的成分选择包括:镍、钛、钨、钽、钼或其合金。Preferably, in step (3), the composition of the p+ region metal layer includes: nickel, titanium, tungsten, tantalum, molybdenum or alloys thereof.

优选的,步骤(3)中,在450℃以上进行至少30s的退火,该金属层的厚度应当足够阻挡n+区域注入的氮离子,应当不小于0.5μm。Preferably, in step (3), annealing is performed at a temperature above 450° C. for at least 30 seconds. The thickness of the metal layer should be sufficient to block nitrogen ions injected into the n+ region and should be no less than 0.5 μm.

(4)去除表面的步骤(3)中的第一硬质掩膜层,再制作一层足够厚度的第二硬质掩膜层,并使用掩模版刻蚀出p阱区域窗口;进行p型注入制作p阱区域,离子注入阻挡层的厚度一般是相同的,p阱区域的注入高度与CSL层齐平并低于金属层。(4) Remove the first hard mask layer in step (3) on the surface, then make a second hard mask layer of sufficient thickness, and use a mask to etch a p-well area window; perform p-type implantation to make the p-well area. The thickness of the ion implantation barrier layer is generally the same, and the implantation height of the p-well area is flush with the CSL layer and lower than the metal layer.

优选的,步骤(4)中,第二硬质掩膜层自下而上的组成包括如下选择:Preferably, in step (4), the second hard mask layer is composed from bottom to top of the following:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

进一步优选的,该窗口需要刻蚀到第二硬质掩膜层的离子注入阻挡层即可。Further preferably, the window only needs to be etched to the ion implantation barrier layer of the second hard mask layer.

优选的,步骤(4)中,制作p阱区域的离子为铝离子;为了足够的击穿电压,p阱区域的掺杂浓度为1×1018-3×1018cm-3。这个数量级上的掺杂浓度足够高,使得沟道源极端的势垒不会因为施加到漏极的电压而降低。Preferably, in step (4), the ions used to make the p-well region are aluminum ions; in order to achieve a sufficient breakdown voltage, the doping concentration of the p-well region is 1×10 18 -3×10 18 cm -3 . The doping concentration at this level is high enough so that the potential barrier at the source end of the channel will not be reduced due to the voltage applied to the drain.

进一步优选的,为了避免阈值电压过高,p阱区域采用逆向掺杂分布,表面掺杂浓度低,下方深处掺杂浓度高。由于碳化硅是宽禁带半导体材料,拥有更大的PN结内建电场。碳化硅可以制作常关型积累型沟道的MOSFET。因此,沟道区的掺杂浓度在n型掺杂2×1016cm-3到p型掺杂5×1016cm-3之间。Further preferably, in order to avoid the threshold voltage being too high, the p-well region adopts a reverse doping distribution, with a low surface doping concentration and a high doping concentration deep below. Since silicon carbide is a wide bandgap semiconductor material, it has a larger PN junction built-in electric field. Silicon carbide can be used to make a normally-off accumulation channel MOSFET. Therefore, the doping concentration of the channel region is between 2×10 16 cm -3 for n-type doping and 5×10 16 cm -3 for p-type doping.

(5)接下来,淀积一层均匀薄电介质氮化硅层,进行地毯式刻蚀同样的厚度,以在本步骤p阱区域第二硬质掩膜层的侧壁形成一层均匀薄电介质氮化硅间隔层;该电介质氮化硅间隔层用以实现MOSFET的自对准沟道;进行n型注入制作n+区域;所述p+区域金属层在p+区域上方,可以阻挡n+区域进行n型离子注入时,离子进入到p+区域。因为n+区域的掺杂浓度大约高出p+区域掺杂浓度的十倍。(5) Next, a uniform thin dielectric silicon nitride layer is deposited and carpet-etched to the same thickness to form a uniform thin dielectric silicon nitride spacer on the sidewall of the second hard mask layer in the p-well region in this step; the dielectric silicon nitride spacer is used to realize the self-aligned channel of the MOSFET; n-type implantation is performed to form the n+ region; the p+ region metal layer is above the p+ region and can block ions from entering the p+ region when the n-type ion implantation is performed in the n+ region. This is because the doping concentration of the n+ region is about ten times higher than the doping concentration of the p+ region.

优选的,步骤(5)中,制作n+区域的离子为氮离子;n+区域的峰值浓度应当在1×1020cm-3以上;电介质氮化硅间隔层的厚度应当不超过0.5μm,以形成不超过0.5μm的较短的沟道,减小沟道区域的电阻,进而减小器件的导通电阻。Preferably, in step (5), the ions used to make the n+ region are nitrogen ions; the peak concentration of the n+ region should be above 1×10 20 cm -3 ; the thickness of the dielectric silicon nitride spacer layer should not exceed 0.5 μm to form a shorter channel not exceeding 0.5 μm, thereby reducing the resistance of the channel region and thereby reducing the on-resistance of the device.

(6)去除晶圆表面的步骤(5)中的电介质氮化硅间隔层以及第二硬质掩膜层,再制作一层足够厚度的第三硬质掩膜层,并使用掩模版刻蚀出结终端区域窗口;进行p型离子注入制作结终端区域,注入结束后去除晶圆表面的本步骤的第三硬质掩膜层。(6) removing the dielectric silicon nitride spacer layer and the second hard mask layer in step (5) on the surface of the wafer, and then forming a third hard mask layer of sufficient thickness, and using a mask to etch a junction termination area window; performing p-type ion implantation to form the junction termination area, and removing the third hard mask layer of this step on the surface of the wafer after the implantation is completed.

优选的,步骤(6)中,第三硬质掩膜层自下而上的组成包括如下选择:Preferably, in step (6), the composition of the third hard mask layer from bottom to top includes the following selections:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

优选的,步骤(6)中,制作结终端区域的离子为铝离子。Preferably, in step (6), the ions used to make the junction termination region are aluminum ions.

(7)接下来淀积一层帽层,在惰性气体气氛中进行退火以激活注入的离子,并使p+区域金属层与p+区域形成欧姆接触;退火结束后,去除帽层。(7) Next, a cap layer is deposited and annealed in an inert gas atmosphere to activate the implanted ions and enable the p+ region metal layer to form an ohmic contact with the p+ region; after the annealing is completed, the cap layer is removed.

优选的,步骤(7)中,帽层成分为碳;惰性气体为氮气或氩气;退火的温度在1500℃~1900℃之间,时间在8~15分钟之间。Preferably, in step (7), the cap layer component is carbon; the inert gas is nitrogen or argon; the annealing temperature is between 1500° C. and 1900° C., and the annealing time is between 8 and 15 minutes.

(8)接下来通过标准的MOSFET制作工艺进行后续的制作;首先清洗上述步骤后的晶圆表面;通过热氧化碳化硅并退火形成栅极氧化层;淀积一层n型掺杂栅极多晶硅,并使用掩模版刻蚀出栅极区域;淀积一层电介质层,并使用掩模版刻蚀出源极区域的窗口;溅射一层源极金属并进行退火,在该源极金属层和n+区域之间形成欧姆接触;蒸发顶层金属层并使用掩模版刻蚀出源极区域;进行背面划线、清洗以及衬底减薄工艺,并在背面形成欧姆接触和电极。(8) The standard MOSFET manufacturing process is then used for subsequent manufacturing. First, the wafer surface after the above steps is cleaned; a gate oxide layer is formed by thermally oxidizing silicon carbide and annealing; a layer of n-type doped gate polysilicon is deposited, and the gate region is etched out using a mask; a layer of dielectric layer is deposited, and a window for the source region is etched out using a mask; a layer of source metal is sputtered and annealed to form an ohmic contact between the source metal layer and the n+ region; the top metal layer is evaporated and the source region is etched out using a mask; back-side scribing, cleaning, and substrate thinning processes are performed, and an ohmic contact and electrode are formed on the back side.

优选的,步骤(8)中,源极金属的选择包括:镍、钛、钨、钽、钼、铝或其合金;顶层金属层成分为铝。Preferably, in step (8), the source metal includes nickel, titanium, tungsten, tantalum, molybdenum, aluminum or alloys thereof; and the top metal layer is composed of aluminum.

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明首先进行注入p+区域并在p+区域制作用于阻挡氮离子注入的金属硬质掩膜,以及使用沟道自对准工艺制作n+区域。在退火激活注入离子的过程中,p+区域上方的金属硬质掩膜在碳化硅表面形成欧姆接触。本发明简化了碳化硅平面栅MOSFET的工艺步骤,减少了工艺过程中掩模版的使用,节省了制造过程中的工艺成本和时间成本。The present invention first implants a p+ region and forms a metal hard mask in the p+ region for blocking nitrogen ion implantation, and uses a channel self-alignment process to form an n+ region. During the process of annealing to activate the implanted ions, the metal hard mask above the p+ region forms an ohmic contact on the silicon carbide surface. The present invention simplifies the process steps of silicon carbide planar gate MOSFET, reduces the use of masks in the process, and saves process costs and time costs in the manufacturing process.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是根据本发明实施例的方法形成的完整半导体器件的截面示意图;1 is a schematic cross-sectional view of a complete semiconductor device formed by a method according to an embodiment of the present invention;

图2是起始晶圆的截面示意图;FIG2 is a schematic cross-sectional view of a starting wafer;

图3是根据实施例的方法形成p+区域之后的半导体器件的截面示意图;3 is a schematic cross-sectional view of a semiconductor device after a p+ region is formed according to a method of an embodiment;

图4是在根据实施例的方法形成所述金属层之后的半导体器件的截面示意图;4 is a schematic cross-sectional view of a semiconductor device after the metal layer is formed according to the method of an embodiment;

图5是在根据实施例的方法形成p阱区域之后的半导体器件的截面示意图;5 is a schematic cross-sectional view of a semiconductor device after a p-well region is formed according to a method of an embodiment;

图6是在根据实施例的方法形成n+区域之后的半导体器件的截面示意图;6 is a schematic cross-sectional view of a semiconductor device after an n+ region is formed according to a method of an embodiment;

图7是在根据实施例的方法形成的结终端区域之后的半导体器件的截面示意图;7 is a schematic cross-sectional view of a semiconductor device after a junction termination region is formed according to a method of an embodiment;

其中:1、衬底,2、外延层,3、CSL层,4、标记槽,5、第一硬质掩膜层,6、p+区域注入窗口,7、p+区域,8、p+区域金属层,9、第二硬质掩膜层,10、p 阱区域窗口,11、p 阱区域,12、电介质氮化硅间隔层,13、n+区域,14、第三硬质掩膜层,15、结终端区域窗口,16、结终端区域,17、栅极氧化层,18、栅极多晶硅,19、电介质层,20、源极金属,21、顶层金属层。Wherein: 1. substrate, 2. epitaxial layer, 3. CSL layer, 4. mark groove, 5. first hard mask layer, 6. p+ region injection window, 7. p+ region, 8. p+ region metal layer, 9. second hard mask layer, 10. p well region window, 11. p well region, 12. dielectric silicon nitride spacer layer, 13. n+ region, 14. third hard mask layer, 15. junction termination region window, 16. junction termination region, 17. gate oxide layer, 18. gate polysilicon, 19. dielectric layer, 20. source metal, 21. top metal layer.

具体实施方式DETAILED DESCRIPTION

下面通过实施例并结合附图对本发明做进一步说明,但不限于此。The present invention will be further described below by way of embodiments in conjunction with the accompanying drawings, but is not limited thereto.

图1展示了按照本发明的制作方法的碳化硅MOSFET的横截面图。图2-7描述了本发明具有不同欧姆接触的MOSFET制造工艺的各个步骤。Figure 1 shows a cross-sectional view of a silicon carbide MOSFET according to the manufacturing method of the present invention. Figures 2-7 describe the various steps of the manufacturing process of a MOSFET with different ohmic contacts of the present invention.

为了促进对本发明原理的理解,现在将参考附图中所示的实施例,并将使用特定的语言来描述它们。然而,应当理解的是,下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。In order to promote the understanding of the principles of the present invention, reference will now be made to the embodiments shown in the accompanying drawings, and specific language will be used to describe them. However, it should be understood that the following description of the embodiments is only intended to provide a better understanding of the present application by illustrating examples of the present application. In the drawings and the following description, at least some of the well-known structures and technologies are not shown in order to avoid unnecessary ambiguity in the present application; and, for clarity, the sizes of some structures may be exaggerated. In addition, the features, structures, or characteristics described below may be combined in one or more embodiments in any suitable manner.

实施例1:Embodiment 1:

一种碳化硅平面栅功率MOSFET,如图1所示,由下到上包括衬底1、外延层2、CSL层3,CSL层上注入制作得到p阱区域11,p阱区域中间从下到上设有p+区域7、p+区域金属层8,p+区域两侧的p阱区域上表面注入制作有n+区域13,p阱区域一旁的CSL层上注入制作有结终端区域16,结终端区域与p阱区域一侧连接。A silicon carbide planar gate power MOSFET, as shown in FIG1 , comprises, from bottom to top, a substrate 1, an epitaxial layer 2, and a CSL layer 3, a p-well region 11 is produced by implantation on the CSL layer, a p+ region 7 and a p+ region metal layer 8 are provided in the middle of the p-well region from bottom to top, n+ regions 13 are implanted on the upper surface of the p-well region on both sides of the p+ region, a junction termination region 16 is implanted on the CSL layer next to the p-well region, and the junction termination region is connected to one side of the p-well region.

p+区域一侧(如图1中左侧)的CSL层上方依次设有栅极氧化层17、栅极多晶硅18,二者覆盖住部分CSL层、部分p阱区域、部分n+区域;栅极多晶硅上方及侧面设有电介质层19,电介质层旁边设有源极金属20,源极金属覆盖住部分n+区域、部分p+区域金属层;源极金属旁边设有电介质层19,电介质层覆盖部分p+区域金属层、n+区域、部分p阱区域、结终端区域。A gate oxide layer 17 and a gate polysilicon 18 are arranged in sequence above the CSL layer on the p+ region side (as shown on the left side in Figure 1), and the two cover part of the CSL layer, part of the p-well region, and part of the n+ region; a dielectric layer 19 is arranged above and on the side of the gate polysilicon, and a source metal 20 is arranged next to the dielectric layer, and the source metal covers part of the n+ region and part of the p+ region metal layer; a dielectric layer 19 is arranged next to the source metal, and the dielectric layer covers part of the p+ region metal layer, the n+ region, part of the p-well region, and the junction terminal region.

两边的电介质层19和源极金属20的上方设置顶层金属层21。A top metal layer 21 is disposed above the dielectric layer 19 and the source metal 20 on both sides.

结终端区域16一旁的CSL层上刻蚀有标记槽4,标记槽不被任何材料覆盖。A marking groove 4 is etched on the CSL layer beside the junction termination region 16 , and the marking groove is not covered by any material.

本发明通过率先进行p+注入,优化了碳化硅MOSFET的制作工艺,并提供n+源极注入与p基极注入自对准的DMOS制造工艺消除了对这种对准容差的需要。p+区域7由第一种金属8实现欧姆接触。n+区域13由第二种源极金属20实现欧姆接触。如图所示,第一条附加p阱区域11和结终端区域(JTE)16形成在器件的边缘处。The present invention optimizes the manufacturing process of silicon carbide MOSFET by first performing p+ implantation, and provides a DMOS manufacturing process in which n+ source implantation and p base implantation are self-aligned, eliminating the need for such alignment tolerance. The p+ region 7 is ohmically contacted by the first metal 8. The n+ region 13 is ohmically contacted by the second source metal 20. As shown in the figure, the first additional p-well region 11 and the junction termination region (JTE) 16 are formed at the edge of the device.

实施例2:Embodiment 2:

一种制备实施例1所述碳化硅平面栅功率MOSFET的制作方法,包括步骤如下:A method for preparing the silicon carbide planar gate power MOSFET described in Example 1 comprises the following steps:

(1)如图2所示,在衬底1上生长一层n型外延层2和一层CSL层3;然后在晶圆表面刻蚀出标记槽4。(1) As shown in FIG. 2 , an n-type epitaxial layer 2 and a CSL layer 3 are grown on a substrate 1; then a marking groove 4 is etched on the surface of the wafer.

衬底为4H-SiC的n型重掺杂低电阻率衬底,电阻率0.015~0.025Ω·cm;n型外延层轻掺杂,掺杂浓度1×1015cm-3~1×1016cm-3;CSL层掺杂浓度为2×1016-1×1017cm-3The substrate is a 4H-SiC n-type heavily doped low resistivity substrate with a resistivity of 0.015~0.025Ω·cm; the n-type epitaxial layer is lightly doped with a doping concentration of 1×10 15 cm -3 ~1×10 16 cm -3 ; and the CSL layer doping concentration is 2×10 16 -1×10 17 cm -3 .

(2)如图3所示,在晶圆表面制作一层足够厚度的第一硬质掩膜层5,使用掩模版刻蚀第一硬质掩膜层暴露出用于p+区域离子注入的窗口。通过标记槽4与p+区域注入窗口6自对准,从而节省了1μm的配准公差;进行p型(例如铝离子)注入制作p+区域7。(2) As shown in FIG3 , a first hard mask layer 5 of sufficient thickness is formed on the surface of the wafer, and the first hard mask layer is etched using a mask to expose a window for ion implantation in the p+ region. The marking groove 4 is self-aligned with the p+ region implantation window 6, thereby saving a 1 μm registration tolerance; p-type (e.g., aluminum ion) implantation is performed to form the p+ region 7.

第一硬质掩膜层自下而上的组成包括如下选择:The composition of the first hard mask layer from bottom to top includes the following options:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

制作p+区域的离子为铝离子,p+区域的掺杂浓度为应当具有1×1019-5×1019cm-3的峰值浓度,来保证形成良好的欧姆接触。The ions used to make the p+ region are aluminum ions, and the doping concentration of the p+ region should have a peak concentration of 1×10 19 -5×10 19 cm -3 to ensure the formation of a good ohmic contact.

(3)如图4所示,完成p+区域7注入之后,溅射一层p+区域金属层8,进行退火,并使用稀硫酸过氧化氢溶液洗去未反应的金属。(3) As shown in FIG. 4 , after the implantation of the p+ region 7 is completed, a p+ region metal layer 8 is sputtered, annealed, and the unreacted metal is washed away using a dilute sulfuric acid-hydrogen peroxide solution.

p+区域金属层的成分选择包括:镍、钛、钨、钽、钼或其合金。The composition of the p+ region metal layer may include nickel, titanium, tungsten, tantalum, molybdenum or alloys thereof.

在450℃以上进行至少30s的退火,该金属层的厚度应当足够阻挡n+区域注入的氮离子,应当不小于0.5μm。Annealing is performed at a temperature above 450° C. for at least 30 seconds. The thickness of the metal layer should be sufficient to block nitrogen ions injected into the n+ region and should not be less than 0.5 μm.

(4)如图5所示,去除表面的步骤(3)中的第一硬质掩膜层5,再制作一层足够厚度的第二硬质掩膜层9,并使用掩模版刻蚀出p阱区域窗口10,刻蚀到第二硬质掩膜层的离子注入阻挡层即可。进行p型注入制作p阱区域11,离子注入阻挡层的厚度一般是相同的,p阱区域的注入高度与CSL层齐平并低于金属层。(4) As shown in FIG. 5 , the first hard mask layer 5 in step (3) is removed from the surface, and a second hard mask layer 9 of sufficient thickness is formed, and a mask is used to etch a p-well region window 10, and the ion implantation barrier layer of the second hard mask layer is etched. P-type implantation is performed to form a p-well region 11. The thickness of the ion implantation barrier layer is generally the same, and the implantation height of the p-well region is flush with the CSL layer and lower than the metal layer.

与步骤(2)相同,第二硬质掩膜层自下而上的组成包括如下选择:Similar to step (2), the second hard mask layer comprises the following from bottom to top:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

制作p阱区域的离子为铝离子;为了足够的击穿电压,p阱区域的掺杂浓度为1×1018-3×1018cm-3。这个数量级上的掺杂浓度足够高,使得沟道源极端的势垒不会因为施加到漏极的电压而降低。The ions used to make the p-well region are aluminum ions; in order to achieve a sufficient breakdown voltage, the doping concentration of the p-well region is 1×10 18 -3×10 18 cm -3 . The doping concentration at this order of magnitude is high enough so that the potential barrier at the source end of the channel will not be reduced by the voltage applied to the drain.

为了避免阈值电压过高,p阱区域采用逆向掺杂分布,表面掺杂浓度低,下方深处掺杂浓度高。由于碳化硅是宽禁带半导体材料,拥有更大的PN结内建电场。碳化硅可以制作常关型积累型沟道的MOSFET。因此,沟道区的掺杂浓度在n型掺杂2×1016cm-3到p型掺杂5×1016cm-3之间。In order to avoid the threshold voltage being too high, the p-well region adopts a reverse doping distribution, with low surface doping concentration and high doping concentration deep below. Since silicon carbide is a wide bandgap semiconductor material, it has a larger PN junction built-in electric field. Silicon carbide can be used to make normally-off accumulation-channel MOSFETs. Therefore, the doping concentration of the channel region is between 2×10 16 cm -3 for n-type doping and 5×10 16 cm -3 for p-type doping.

(5)接下来如图6所示,淀积一层均匀薄电介质氮化硅层,进行地毯式刻蚀同样的厚度,以在本步骤p阱区域第二硬质掩膜层9的侧壁形成一层均匀薄电介质氮化硅间隔层12;该电介质氮化硅间隔层用以实现MOSFET的自对准沟道;进行n型注入制作n+区域13;所述p+区域金属层在p+区域上方,可以阻挡n+区域进行n型离子注入时,离子进入到p+区域。因为n+区域的掺杂浓度大约高出p+区域掺杂浓度的十倍。(5) Next, as shown in FIG6 , a uniform thin dielectric silicon nitride layer is deposited, and carpet etching is performed to the same thickness to form a uniform thin dielectric silicon nitride spacer 12 on the sidewall of the second hard mask layer 9 in the p-well region in this step; the dielectric silicon nitride spacer is used to realize the self-aligned channel of the MOSFET; n-type implantation is performed to form the n+ region 13; the p+ region metal layer is above the p+ region, which can block the ions from entering the p+ region when the n-type ion implantation is performed in the n+ region. This is because the doping concentration of the n+ region is about ten times higher than the doping concentration of the p+ region.

制作n+区域的离子为氮离子;n+区域的峰值浓度应当在1×1020cm-3以上;电介质氮化硅间隔层的厚度应当不超过0.5μm,以形成不超过0.5μm的较短的沟道,减小沟道区域的电阻,进而减小器件的导通电阻。The ions used to make the n+ region are nitrogen ions; the peak concentration of the n+ region should be above 1×10 20 cm -3 ; the thickness of the dielectric silicon nitride spacer should not exceed 0.5 μm to form a shorter channel not exceeding 0.5 μm, reduce the resistance of the channel region, and further reduce the on-resistance of the device.

(6)去除晶圆表面的步骤(5)中的电介质氮化硅间隔层12以及第二硬质掩膜层9,如图7所示,再制作一层足够厚度的第三硬质掩膜层14,并使用掩模版刻蚀出结终端区域窗口15;进行p型离子注入制作结终端区域16,注入结束后去除晶圆表面的本步骤的第三硬质掩膜层14。(6) The dielectric silicon nitride spacer layer 12 and the second hard mask layer 9 in step (5) are removed from the wafer surface, as shown in FIG. 7 , and a third hard mask layer 14 of sufficient thickness is formed, and a junction termination region window 15 is etched using a mask; p-type ion implantation is performed to form a junction termination region 16, and after the implantation is completed, the third hard mask layer 14 of this step on the wafer surface is removed.

与步骤(2)(4)相同,第三硬质掩膜层自下而上的组成包括如下选择:Similar to steps (2) and (4), the composition of the third hard mask layer from bottom to top includes the following options:

a、离子注入阻挡层(例如二氧化硅层)、氧化物层(例如二氧化硅);a. Ion implantation barrier layer (e.g. silicon dioxide layer), oxide layer (e.g. silicon dioxide);

b、离子注入阻挡层(例如二氧化硅层)、多晶硅层;b. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer;

c、离子注入阻挡层(例如二氧化硅层)、多晶硅层、金属层(例如镍、钛、金、铜、铬、铝);c. Ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, metal layer (e.g. nickel, titanium, gold, copper, chromium, aluminum);

d、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层);d. ion implantation barrier layer (e.g. silicon dioxide layer), polysilicon layer, oxide layer (e.g. silicon dioxide layer);

e、离子注入阻挡层(例如二氧化硅层)、多晶硅层、氧化物层(例如二氧化硅层)、金属层(例如镍、钛、金、铜、铬、铝)。e. Ion implantation barrier layer (such as silicon dioxide layer), polysilicon layer, oxide layer (such as silicon dioxide layer), metal layer (such as nickel, titanium, gold, copper, chromium, aluminum).

制作结终端区域的离子为铝离子。The ions used to make the junction termination region are aluminum ions.

(7)接下来淀积一层帽层,在惰性气体气氛中进行退火以激活注入的离子,并使p+区域金属层与p+区域形成欧姆接触;退火结束后,去除帽层。(7) Next, a cap layer is deposited and annealed in an inert gas atmosphere to activate the implanted ions and enable the p+ region metal layer to form an ohmic contact with the p+ region; after the annealing is completed, the cap layer is removed.

帽层成分为碳;惰性气体为氮气或氩气;退火的温度在1500℃~1900℃之间,时间在8~15分钟之间。The cap layer is composed of carbon; the inert gas is nitrogen or argon; the annealing temperature is between 1500°C and 1900°C, and the time is between 8 and 15 minutes.

(8)如图1所示,接下来通过标准的MOSFET制作工艺进行后续的制作;首先清洗上述步骤后的晶圆表面;通过热氧化碳化硅并退火形成栅极氧化层17;淀积一层n型掺杂栅极多晶硅18,并使用掩模版刻蚀出栅极区域;淀积一层电介质层(PMD)19,并使用掩模版刻蚀出源极区域的窗口;溅射一层源极金属20并进行退火,在该源极金属层和n+区域之间形成欧姆接触;蒸发顶层金属层21并使用掩模版刻蚀出源极区域;进行背面划线、清洗以及衬底减薄工艺,并在背面形成欧姆接触和电极。(8) As shown in FIG1 , the subsequent manufacturing is carried out through the standard MOSFET manufacturing process. First, the wafer surface after the above steps is cleaned; a gate oxide layer 17 is formed by thermally oxidizing silicon carbide and annealing; a layer of n-type doped gate polysilicon 18 is deposited, and the gate region is etched out using a mask; a layer of dielectric layer (PMD) 19 is deposited, and a window of the source region is etched out using a mask; a layer of source metal 20 is sputtered and annealed to form an ohmic contact between the source metal layer and the n+ region; the top metal layer 21 is evaporated and the source region is etched out using a mask; back side scribing, cleaning and substrate thinning processes are performed, and ohmic contacts and electrodes are formed on the back side.

源极金属的选择包括:镍、钛、钨、钽、钼、铝或其合金;顶层金属层成分为铝。The source metal options include: nickel, titanium, tungsten, tantalum, molybdenum, aluminum or their alloys; the top metal layer is composed of aluminum.

Claims (10)

1. The silicon carbide planar gate power MOSFET is characterized in that a p-well region is manufactured by injecting the substrate, an epitaxial layer and a CSL layer from bottom to top, a p+ region and a p+ region metal layer are arranged in the middle of the p-well region from bottom to top, an n+ region is manufactured by injecting the upper surfaces of the p-well regions at two sides of the p+ region, a junction terminal region is manufactured by injecting the CSL layer beside the p-well region, and the junction terminal region is connected with one side of the p-well region;
A grid oxide layer and grid polysilicon are sequentially arranged above the CSL layer at one side of the p+ region, and cover part of the CSL layer, part of the p-well region and part of the n+ region; dielectric layers are arranged above and on the side surfaces of the grid polycrystalline silicon, source metal is arranged beside the dielectric layers, and the source metal covers part of the n+ region and part of the p+ region metal layer; a dielectric layer is arranged beside the source electrode metal, and covers part of the p+ region metal layer, the n+ region, part of the p well region and the junction terminal region;
a top metal layer is arranged above the dielectric layer and the source metal;
the CSL layer beside the junction termination region is etched with a marker trench that is not covered by any material.
2. The manufacturing method of the silicon carbide planar gate power MOSFET is characterized by comprising the following steps:
(1) Growing an n-type epitaxial layer and a CSL layer on a substrate; then etching a marking groove on the surface of the wafer;
(2) Manufacturing a first hard mask layer on the surface of the wafer, and etching the first hard mask layer by using a mask plate to expose a window for p+ region ion implantation; self-aligning with the p+ region implantation window through the mark slot; p-type implantation is carried out to manufacture a p+ region;
(3) After the injection of the p+ region is completed, sputtering a metal layer of the p+ region, annealing, and washing off unreacted metal by using a dilute sulfuric acid hydrogen peroxide solution;
(4) Removing the first hard mask layer in the step (3) on the surface, manufacturing a second hard mask layer, and etching a p-well region window by using a mask plate; p-type implantation is carried out to manufacture a p-well region;
(5) Depositing a uniform dielectric silicon nitride layer, and performing carpet etching with the same thickness to form a uniform dielectric silicon nitride spacer layer on the side wall of the second hard mask layer of the p-well region in the step; the dielectric silicon nitride spacer layer is used for realizing a self-aligned channel of the MOSFET; performing n-type implantation to manufacture an n+ region;
(6) Removing the dielectric silicon nitride spacer layer and the second hard mask layer in the step (5) on the surface of the wafer, then manufacturing a third hard mask layer, and etching a junction terminal area window by using a mask plate; performing p-type ion implantation to manufacture a junction terminal region, and removing the third hard mask layer of the step on the surface of the wafer after the implantation is finished;
(7) Next, depositing a cap layer, and annealing in an inert gas atmosphere to activate the implanted ions and enable the p+ region metal layer to form ohmic contact with the p+ region; removing the cap layer after the annealing is finished;
(8) The subsequent manufacturing is carried out through a standard MOSFET manufacturing process; firstly, cleaning the surface of the wafer after the steps; forming a gate oxide layer by thermally oxidizing silicon carbide and annealing; depositing a layer of n-type doped gate polysilicon and etching a gate region by using a mask plate; depositing a dielectric layer and etching a window of the source region by using a mask; sputtering a layer of source metal and annealing to form ohmic contact between the source metal layer and the n+ region; evaporating the top metal layer and etching the source electrode region by using a mask plate; and ohmic contacts and electrodes are formed on the back side.
3. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in steps (2), (4), and (6), the composition of the first hard mask layer, the second hard mask layer, and the third hard mask layer from bottom to top comprises the following selection:
a. ion implantation barrier layer, oxide layer;
b. ion implantation barrier layer, polycrystalline silicon layer;
c. Ion implantation barrier layer, polysilicon layer, metal layer;
d. an ion implantation barrier layer, a polysilicon layer, and an oxide layer;
e. Ion implantation barrier layer, polysilicon layer, oxide layer, and metal layer.
4. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 3, wherein in steps (2) and (4), the p+ region implantation window and the p-well region window are etched into the ion implantation barrier layers of the first hard mask layer and the second hard mask layer; the ion implantation barrier layer is a silicon dioxide layer, the oxide layer is a silicon dioxide layer, and the metal layer is made of nickel, titanium, gold, copper, chromium and aluminum.
5. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (1), the substrate is a 4H-SiC n-type heavily doped low resistivity substrate having a doping concentration of 1 x 10 19cm-3; lightly doping the n-type epitaxial layer, wherein the doping concentration is 1 multiplied by 10 16cm-3; the CSL layer doping concentration was 2×10 16-1×1017cm-3.
6. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (2), the ions forming the p+ region are aluminum ions, and the doping concentration of the p+ region is 1 x 10 19-5×1019cm-3; in the step (4), the ions for manufacturing the p-well region are aluminum ions, the p-well region adopts counter doping distribution, the surface doping concentration is low, and the deep doping concentration below is high; the doping concentration of the p-well region is 1×10 18-3×1018cm -3; in the step (6), the ion forming the junction termination region is aluminum ion.
7. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (3), the composition selection of the p+ region metal layer comprises: nickel, titanium, tungsten, tantalum, molybdenum or alloys thereof; in step (8), the selecting of the source metal includes: nickel, titanium, tungsten, tantalum, molybdenum, aluminum or alloys thereof; the top metal layer is made of aluminum.
8. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (3), the annealing is performed at a temperature of 450 ℃ or higher for at least 30 seconds, and the thickness of the metal layer is not less than 0.5 μm.
9. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (5), the ions forming the n+ region are nitrogen ions; the peak concentration of the n+ region is more than 1×10 20cm-3; the thickness of the dielectric silicon nitride spacer is no more than 0.5 μm.
10. The method of fabricating a silicon carbide planar gate power MOSFET according to claim 2, wherein in step (7), the cap layer composition is carbon; the inert gas is nitrogen or argon; the annealing temperature is 1500-1900 ℃ and the annealing time is 8-15 minutes.
CN202410979268.8A 2024-07-22 2024-07-22 Silicon carbide planar gate power MOSFET and manufacturing method Active CN118538774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410979268.8A CN118538774B (en) 2024-07-22 2024-07-22 Silicon carbide planar gate power MOSFET and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410979268.8A CN118538774B (en) 2024-07-22 2024-07-22 Silicon carbide planar gate power MOSFET and manufacturing method

Publications (2)

Publication Number Publication Date
CN118538774A CN118538774A (en) 2024-08-23
CN118538774B true CN118538774B (en) 2024-09-27

Family

ID=92388699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410979268.8A Active CN118538774B (en) 2024-07-22 2024-07-22 Silicon carbide planar gate power MOSFET and manufacturing method

Country Status (1)

Country Link
CN (1) CN118538774B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119730331A (en) * 2025-02-25 2025-03-28 山东大学 Silicon carbide MOSFET layout structure for improving high-frequency performance and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140283A (en) * 2015-07-28 2015-12-09 国网智能电网研究院 Silicon carbide MOSEFTs (metal-oxide-semiconductor field-effect transistors) power device and manufacturing method therefor
CN105161539A (en) * 2015-09-10 2015-12-16 中国科学院微电子研究所 Silicon carbide MOSFET device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950695B1 (en) * 2019-11-05 2021-03-16 Semiq Incorporated Silicon carbide planar MOSFET with wave-shaped channel regions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140283A (en) * 2015-07-28 2015-12-09 国网智能电网研究院 Silicon carbide MOSEFTs (metal-oxide-semiconductor field-effect transistors) power device and manufacturing method therefor
CN105161539A (en) * 2015-09-10 2015-12-16 中国科学院微电子研究所 Silicon carbide MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
CN118538774A (en) 2024-08-23

Similar Documents

Publication Publication Date Title
US5119153A (en) Small cell low contact resistance rugged power field effect devices and method of fabrication
US9472403B2 (en) Power semiconductor switch with plurality of trenches
JP5774261B2 (en) Silicon carbide self-aligned epitaxial MOSFET and manufacturing method thereof
CN103606551B (en) Silicon carbide channel-type semiconductor device and preparation method thereof
US11616123B2 (en) Enhancement on-state power semiconductor device characteristics utilizing new cell geometries
CN112820769A (en) Silicon carbide MOSFET device and preparation method thereof
CN118538774B (en) Silicon carbide planar gate power MOSFET and manufacturing method
CN111244164A (en) Silicon carbide device, semiconductor device, and methods for forming the same
WO2023071284A1 (en) Trench-gate semiconductor device and manufacturing method therefor
CN113972261A (en) Silicon carbide semiconductor device and preparation method
CN115241051A (en) Silicon carbide power device and preparation method thereof
CN114927559A (en) Novel silicon carbide-based super-junction trench MOSFET and preparation method thereof
CN118248555A (en) MOSFET power device integrated with heterojunction diode and manufacturing method thereof
US5234851A (en) Small cell, low contact assistance rugged power field effect devices and method of fabrication
CN111509037A (en) Silicon carbide MOS device with groove type JFET and preparation process thereof
CN115377200A (en) A kind of semiconductor device and its preparation method
CN114335148A (en) Preparation method of gallium nitride power transistor with longitudinal structure
CN118610269A (en) Silicon carbide device, manufacturing method thereof and electronic device
CN115000154B (en) A silicon carbide MOSFET device with an L-shaped vertical source and a manufacturing method thereof
CN110797263A (en) Power MOSFET device and manufacturing method thereof
CN111755520B (en) A Silicon Carbide UMOSFET Device with Integrated JBS
JP7697210B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US9048103B2 (en) Method for producing semiconductor device
CN115621300A (en) Silicon carbide-based trench MOSFET with integrated superjunction structure and manufacturing method thereof
CN117613097B (en) Silicon carbide MOSFET power device and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant