[go: up one dir, main page]

CN118460650A - A preparation method of Nedosiran - Google Patents

A preparation method of Nedosiran Download PDF

Info

Publication number
CN118460650A
CN118460650A CN202410921733.2A CN202410921733A CN118460650A CN 118460650 A CN118460650 A CN 118460650A CN 202410921733 A CN202410921733 A CN 202410921733A CN 118460650 A CN118460650 A CN 118460650A
Authority
CN
China
Prior art keywords
substrate fragment
seq
antisense strand
sense strand
strand substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410921733.2A
Other languages
Chinese (zh)
Other versions
CN118460650B (en
Inventor
洪浩
詹姆斯·盖吉
张娜
焦学成
王磊
冯骏晨
张冉冉
胡守俊
蒋相军
陈仁芳
贾旭
李少贺
王吉忠
严思堂
金星
刘永贤
王思源
傅绪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Kailaiying Biotechnology Co ltd
Asymchem Laboratories Tianjin Co Ltd
Original Assignee
Tianjin Kailaiying Biotechnology Co ltd
Asymchem Laboratories Tianjin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Kailaiying Biotechnology Co ltd, Asymchem Laboratories Tianjin Co Ltd filed Critical Tianjin Kailaiying Biotechnology Co ltd
Priority to CN202410921733.2A priority Critical patent/CN118460650B/en
Publication of CN118460650A publication Critical patent/CN118460650A/en
Application granted granted Critical
Publication of CN118460650B publication Critical patent/CN118460650B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种Nedosiran的制备方法。该Nedosiran为由正义链和反义链通过互补配对组成的双链RNA;该制备方法包括:将正义链底物片段、反义链底物片段和RNA连接酶混合,其中,正义链底物片段能够组成正义链,反义链底物片段能够组成反义链;正义链底物片段和反义链底物片段以碱基互补形成的氢键连接,正义链底物片段和反义链底物片段的头尾碱基之间均未互相连接,形成含有缺刻的双链核苷酸结构;利用RNA连接酶将缺刻两端的碱基以磷酸二酯键连接,形成Nedosiran。能够解决现有技术中制备Nedosiran纯度较低的问题,适用于药物生物合成技术领域。

The present invention provides a method for preparing Nedosiran. Nedosiran is a double-stranded RNA composed of a sense strand and an antisense strand through complementary pairing; the preparation method comprises: mixing a sense strand substrate fragment, an antisense strand substrate fragment and an RNA ligase, wherein the sense strand substrate fragment can form a sense strand, and the antisense strand substrate fragment can form an antisense strand; the sense strand substrate fragment and the antisense strand substrate fragment are connected by hydrogen bonds formed by base complementarity, and the head and tail bases of the sense strand substrate fragment and the antisense strand substrate fragment are not connected to each other, forming a double-stranded nucleotide structure containing a nick; and using RNA ligase to connect the bases at both ends of the nick with a phosphodiester bond to form Nedosiran. The method can solve the problem of low purity of Nedosiran prepared in the prior art, and is applicable to the field of drug biosynthesis technology.

Description

一种Nedosiran的制备方法A preparation method of Nedosiran

技术领域Technical Field

本发明涉及药物生物合成领域,具体而言,涉及一种Nedosiran的制备方法。The present invention relates to the field of drug biosynthesis, and in particular to a method for preparing Nedosiran.

背景技术Background Art

在现有技术中,由基因表达及突变引起的疾病无法被传统的小分子药物治愈,这类疾病只能通过基因表达干预进行治疗。siRNA是长度为19-25nt的双链RNA寡核苷酸,可特异性结合同靶基因的mRNA,通过阻止翻译的进程,从而达到阻碍靶基因的表达效果,即通过介导RNA干扰引起基因沉默。siRNA药物的研发给基因治疗带来巨大的发展前景,现已被广泛应用于疾病的治疗领域中。siRNA作用于mRNA,可成药的靶点要显著大于作用位点是蛋白质的传统小分子药物,且可以通过变换序列而作用于新的靶点。对基因表达进行干预。In the prior art, diseases caused by gene expression and mutation cannot be cured by traditional small molecule drugs, and such diseases can only be treated by gene expression intervention. siRNA is a double-stranded RNA oligonucleotide with a length of 19-25nt, which can specifically bind to the mRNA of the same target gene, and by blocking the translation process, it can achieve the effect of hindering the expression of the target gene, that is, by mediating RNA interference to cause gene silencing. The research and development of siRNA drugs has brought huge development prospects to gene therapy, and has been widely used in the field of disease treatment. siRNA acts on mRNA, and the druggable target is significantly larger than that of traditional small molecule drugs whose action sites are proteins, and it can act on new targets by changing the sequence. Intervene in gene expression.

Nedosiran是一种基因靶向治疗siRNA类双链RNA药物,由Dicerna公司研发,可用于治疗原发性高草酸尿症(primary hyperoxaluria,PH)。Nedosiran适应症包括3种类型的原发性高尿酸症(PH1、PH2、PH3),是目前唯一一款可同时治疗3种PH的在研药物。Nedosiran is a gene-targeted siRNA double-stranded RNA drug developed by Dicerna for the treatment of primary hyperoxaluria (PH). Nedosiran is indicated for three types of primary hyperoxaluria (PH1, PH2, PH3), and is currently the only drug under development that can treat three types of PH at the same time.

Nedosiran的合成方法主要使用化学固相合成法进行制备,在合成方法中使用固相载体,通过亚磷酰胺三酯法循环合成,合成循环结束后,通过氨解将Nedosiran链从固相载体切除,再经过纯化获得目标产品。此制备方法中产品合成的收率随着合成链长的增加而降低,在合成的过程产生的杂质如,比目标序列多一个核苷酸的杂质(N+1杂质)或比目标序列少一个核苷酸的杂质(N-1杂质)也会随着合成链长的增加而增多,不易去除,导致纯化过程复杂,效率低下。随着Nedosiran日益广泛地应用于原发性高胆红素血症的治疗中,其合成规模受限于合成仪器的限制,成本高昂,难以放大生产,因此需要开发一种更为高效的Nedosiran合成方法。The synthesis method of Nedosiran mainly uses a chemical solid phase synthesis method for preparation. In the synthesis method, a solid phase carrier is used, and the synthesis is cyclically performed by the phosphoramidite triester method. After the synthesis cycle is completed, the Nedosiran chain is cut off from the solid phase carrier by aminolysis, and then purified to obtain the target product. The yield of the product synthesis in this preparation method decreases with the increase of the synthesis chain length. The impurities generated in the synthesis process, such as impurities with one more nucleotide than the target sequence (N+1 impurities) or impurities with one less nucleotide than the target sequence (N-1 impurities), will also increase with the increase of the synthesis chain length. It is not easy to remove, resulting in a complex purification process and low efficiency. As Nedosiran is increasingly widely used in the treatment of primary hyperbilirubinemia, its synthesis scale is limited by the limitations of the synthesis instrument, the cost is high, and it is difficult to scale up production. Therefore, it is necessary to develop a more efficient Nedosiran synthesis method.

发明内容Summary of the invention

本发明的主要目的在于提供一种Nedosiran制备方法,以解决现有技术中制备Nedosiran纯度较低的问题。The main purpose of the present invention is to provide a method for preparing Nedosiran to solve the problem of low purity of Nedosiran prepared in the prior art.

为了实现上述目的,根据本发明的第一个方面,提供了一种Nedosiran的制备方法,该Nedosiran为由互补配对的正义链和反义链组成的双链siRNA;该制备方法包括:In order to achieve the above object, according to the first aspect of the present invention, a method for preparing Nedosiran is provided, wherein Nedosiran is a double-stranded siRNA consisting of a complementary sense strand and an antisense strand; the preparation method comprises:

将正义链底物片段、反义链底物片段和RNA连接酶混合,其中,正义链底物片段能够组成正义链,反义链底物片段能够组成反义链;正义链底物片段和反义链底物片段以碱基互补形成的氢键连接,正义链底物片段和反义链底物片段的头尾碱基之间均未互相连接,形成含有缺刻的双链核苷酸结构;利用RNA连接酶将缺刻两端的碱基以磷酸二酯键连接,形成Nedosiran;缺刻两端的碱基分别为不同底物片段的5’端和3’端,5’端为磷酸根,3’端为羟基;利用RNA连接酶连接缺刻上下游的5’端的磷酸根和3’端的羟基,形成磷酸二酯键,获得Nedosiran;RNA连接酶为具有SEQ ID NO:1所示的氨基酸序列的RNA连接酶;或与SEQ ID NO:1所示的RNA连接酶具有70%以上同一性,且具有催化磷酸二酯键形成活性的酶。The sense strand substrate fragment, the antisense strand substrate fragment and the RNA ligase are mixed, wherein the sense strand substrate fragment can form a sense strand, and the antisense strand substrate fragment can form an antisense strand; the sense strand substrate fragment and the antisense strand substrate fragment are connected by hydrogen bonds formed by base complementarity, and the head and tail bases of the sense strand substrate fragment and the antisense strand substrate fragment are not connected to each other, so as to form a double-stranded nucleotide structure containing a nick; the bases at both ends of the nick are connected by a phosphodiester bond using RNA ligase to form Nedosiran; the bases at both ends of the nick are the 5' end and the 3' end of different substrate fragments, respectively, the 5' end is a phosphate group, and the 3' end is a hydroxyl group; the phosphate group at the 5' end and the hydroxyl group at the 3' end upstream and downstream of the nick are connected by RNA ligase to form a phosphodiester bond to obtain Nedosiran; the RNA ligase is an RNA ligase having an amino acid sequence shown in SEQ ID NO: 1; or an enzyme having more than 70% identity with the RNA ligase shown in SEQ ID NO: 1 and having activity of catalyzing the formation of phosphodiester bonds.

进一步地,正义链的核苷酸序列为SEQ ID NO:19所示的核苷酸序列,反义链的核苷酸序列为SEQ ID NO:20所示的核苷酸序列。Furthermore, the nucleotide sequence of the sense strand is the nucleotide sequence shown in SEQ ID NO: 19, and the nucleotide sequence of the antisense strand is the nucleotide sequence shown in SEQ ID NO: 20.

进一步地,正义链底物片段包括2条或更多条,反义链底物片段包括2条或更多条;优选地,正义链底物片段的长度为2-34nt,更优选为6-30nt;优选地,反义链底物片段的长度为2-20nt,更优选为6-16nt。Further, the sense strand substrate fragment includes 2 or more strands, and the antisense strand substrate fragment includes 2 or more strands; preferably, the length of the sense strand substrate fragment is 2-34 nt, more preferably 6-30 nt; preferably, the length of the antisense strand substrate fragment is 2-20 nt, more preferably 6-16 nt.

进一步地,正义链底物片段和反义链底物片段均包括2条,正义链底物片段包括第一正义链底物片段和第二正义链底物片段,反义链底物片段包括第一反义链底物片段和第二反义链底物片段。制备方法包括:将第一正义链底物片段、第二正义链底物片段、第一反义链底物片段和第二反义链底物片段混合,在RNA连接酶的催化作用下,第一正义链底物片段和第二正义链底物片段连接形成正义链,催化第一反义链底物片段和第二反义链底物片段连接形成反义链,正义链和反义链通过碱基互补配对形成Nedosiran;优选地,将正义链底物片段和反义链底物片段退火后与RNA连接酶混合,获得Nedosiran。Further, the sense strand substrate fragment and the antisense strand substrate fragment each include 2 strands, the sense strand substrate fragment includes the first sense strand substrate fragment and the second sense strand substrate fragment, and the antisense strand substrate fragment includes the first antisense strand substrate fragment and the second antisense strand substrate fragment. The preparation method includes: mixing the first sense strand substrate fragment, the second sense strand substrate fragment, the first antisense strand substrate fragment and the second antisense strand substrate fragment, under the catalytic action of RNA ligase, the first sense strand substrate fragment and the second sense strand substrate fragment are connected to form a sense strand, catalyzing the connection of the first antisense strand substrate fragment and the second antisense strand substrate fragment to form an antisense strand, and the sense strand and the antisense strand are formed by base complementary pairing to form Nedosiran; preferably, the sense strand substrate fragment and the antisense strand substrate fragment are annealed and then mixed with RNA ligase to obtain Nedosiran.

进一步地,第一正义链底物片段的核苷酸序列为SEQ ID NO:5所示的核苷酸序列,第二正义链底物片段的核苷酸序列为SEQ ID NO:6所示的核苷酸序列;第一反义链底物片段的核苷酸序列为SEQ ID NO:8所示的核苷酸序列,第二反义链底物片段的核苷酸序列为SEQ ID NO:7序列所示的核苷酸序列;优选地,第一正义链底物片段的核苷酸序列SEQ IDNO:9所示的核苷酸序列,第二正义链底物片段的核苷酸序列SEQ ID NO:10序列所示的核苷酸序列;第一反义链底物片段的核苷酸序列为SEQ ID NO:12所示的核苷酸序列,第二反义链底物片段的核苷酸序列为SEQ ID NO:11所示的核苷酸序列。Further, the nucleotide sequence of the first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 5, and the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 6; the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 8, and the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 7; preferably, the nucleotide sequence of the first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 9, and the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 10; the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 12, and the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 11.

进一步地,第一正义链底物片段的3’端与第二正义链底物片段的5’端在RNA连接酶的催化下连接,形成正义链;第一反义链底物片段的3’端与第二反义链底物片段的5’端在RNA连接酶的催化下连接,形成反义链;优选地,第一正义链底物片段的5’端为羟基基团,3’端为羟基基团;第二正义链底物片段的5’端为磷酸基团,3’端为R基团;优选地,第一反义链底物片段的5’端为羟基基团,3’端为羟基基团;第二反义链底物片段的5’端为磷酸基团,3’端为羟基基团。Further, the 3' end of the first sense chain substrate fragment and the 5' end of the second sense chain substrate fragment are connected under the catalysis of RNA ligase to form a sense chain; the 3' end of the first antisense chain substrate fragment and the 5' end of the second antisense chain substrate fragment are connected under the catalysis of RNA ligase to form an antisense chain; preferably, the 5' end of the first sense chain substrate fragment is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second sense chain substrate fragment is a phosphate group, and the 3' end is an R group; preferably, the 5' end of the first antisense chain substrate fragment is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second antisense chain substrate fragment is a phosphate group, and the 3' end is a hydroxyl group.

进一步地,正义链底物片段和反义链底物片段均包括3条,正义链底物片段包括第一正义链底物片段、第二正义链底物片段和第三正义链底物片段;反义链底物片段包括第一反义链底物片段、第二反义链底物片段和第三反义链底物片段;优选地,制备方法包括:将第一正义链底物片段、第二正义链底物片段、第三正义链底物片段、第一反义链底物片段、第二反义链底物片段和第三反义链底物片段混合,在RNA连接酶的催化作用下,第一正义链底物片段、第二正义链底物片段和第三正义链底物片段连接形成正义链,催化第一反义链底物片段、第二反义链底物片段和第三反义链底物片段连接形成反义链,正义链和反义链通过碱基互补配对形成Nedosiran;优选地,将正义链底物片段和反义链底物片段退火后与RNA连接酶混合,获得Nedosiran。Furthermore, the sense chain substrate fragment and the antisense chain substrate fragment each include 3, the sense chain substrate fragment includes a first sense chain substrate fragment, a second sense chain substrate fragment and a third sense chain substrate fragment; the antisense chain substrate fragment includes a first antisense chain substrate fragment, a second antisense chain substrate fragment and a third antisense chain substrate fragment; preferably, the preparation method includes: mixing the first sense chain substrate fragment, the second sense chain substrate fragment, the third sense chain substrate fragment, the first antisense chain substrate fragment, the second antisense chain substrate fragment and the third antisense chain substrate fragment, under the catalytic action of RNA ligase, connecting the first sense chain substrate fragment, the second sense chain substrate fragment and the third sense chain substrate fragment to form a sense chain, catalyzing the connection of the first antisense chain substrate fragment, the second antisense chain substrate fragment and the third antisense chain substrate fragment to form an antisense chain, and the sense chain and the antisense chain form Nedosiran through base complementary pairing; preferably, the sense chain substrate fragment and the antisense chain substrate fragment are annealed and then mixed with RNA ligase to obtain Nedosiran.

进一步地,第一正义链底物片段的核苷酸序列为SEQ ID NO:13所示的核苷酸序列;第二正义链底物片段的核苷酸序列为SEQ ID NO:14所示的核苷酸序列;第三正义链底物片段的核苷酸序列为SEQ ID NO:15所示的核苷酸序列;优选地,第一反义链底物片段的核苷酸序列为SEQ ID NO:18所示的核苷酸序列;第二反义链底物片段的核苷酸序列为SEQID NO:17所示的核苷酸序列;第三反义链底物片段的核苷酸序列为SEQ ID NO:16所示的核苷酸序列。Further, the nucleotide sequence of the first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 13; the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 14; the nucleotide sequence of the third sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 15; preferably, the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 18; the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 17; the nucleotide sequence of the third antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 16.

进一步地,正义链底物片段及反义链底物片段浓度各自独立选自0.1-4.5mM;优选地,正义链底物片段、反义链底物片段和RNA连接酶混合形成的反应体系中,还包括ATP、Tris-HCl、MgCl2和DTT;优选地,制备方法的反应温度为10-40℃,更优选为15-30℃;优选地,制备方法的反应时间为2-48h,更优选为12-24h。Furthermore, the concentrations of the sense strand substrate fragment and the antisense strand substrate fragment are independently selected from 0.1-4.5 mM; preferably, the reaction system formed by mixing the sense strand substrate fragment, the antisense strand substrate fragment and the RNA ligase also includes ATP, Tris-HCl, MgCl 2 and DTT; preferably, the reaction temperature of the preparation method is 10-40°C, more preferably 15-30°C; preferably, the reaction time of the preparation method is 2-48h, more preferably 12-24h.

应用本发明的技术方案,利用上述制备方法,在RNA连接酶的催化下,正义链底物片段之间连接形成Nedosiran正义链,反义链底物片段之间连接形成Nedosiran反义链,从而实现了利用生物合成的方式制备此种siRNA药物。与化学合成制备Nedosiran的方法相比,本申请的制备方法获得的产物纯度高,产生的杂质少,制备过程简易,且反应条件温和,有机试剂用量低,降低生产成本,便于实现规模放大的工业化生产。By applying the technical solution of the present invention and utilizing the above-mentioned preparation method, under the catalysis of RNA ligase, the sense strand substrate fragments are connected to form the Nedosiran sense strand, and the antisense strand substrate fragments are connected to form the Nedosiran antisense strand, thereby realizing the preparation of such siRNA drugs by biosynthesis. Compared with the method for preparing Nedosiran by chemical synthesis, the product obtained by the preparation method of the present application has high purity, less impurities, a simple preparation process, mild reaction conditions, low organic reagent dosage, reduced production costs, and is easy to achieve scale-up industrial production.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings constituting a part of the present application are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the drawings:

图1示出了根据本发明实施例1的酶催化连接反应示意图。FIG. 1 shows a schematic diagram of an enzyme-catalyzed ligation reaction according to Example 1 of the present invention.

图2示出了根据本发明实施例的R基基团结构图。FIG. 2 shows a diagram of the R-group structure according to an embodiment of the present invention.

图3示出了根据本发明实施例1的RNA连接酶Ligase25、Ligase11催化产物的电泳结果图。FIG. 3 shows the electrophoresis results of the catalytic products of RNA ligases Ligase25 and Ligase11 according to Example 1 of the present invention.

图4示出了根据本发明实施例2的RNA连接酶Ligase 25催化产物的HPLC检测结果图。FIG. 4 shows a graph showing the HPLC detection result of the product catalyzed by RNA ligase Ligase 25 according to Example 2 of the present invention.

图5示出了根据本发明实施例2的RNA连接酶Ligase 25催化产物的LC-MS检测结果图。FIG. 5 shows the LC-MS detection result of the product catalyzed by RNA ligase Ligase 25 according to Example 2 of the present invention.

具体实施方式DETAILED DESCRIPTION

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。It should be noted that, in the absence of conflict, the embodiments and features in the embodiments of the present application can be combined with each other. The present invention will be described in detail below in conjunction with the embodiments.

术语解释:Terminology explanation:

N+1杂质:相较于目标合成序列具有单个核苷酸额外连接的核酸杂质。N+1 impurity: A nucleic acid impurity that has a single nucleotide extra attached compared to the target synthetic sequence.

N-1杂质:相较于目标合成序列具有单个核苷酸缺失的核酸杂质。N-1 impurity: A nucleic acid impurity that has a single nucleotide missing compared to the target synthetic sequence.

如背景技术所提到的,现有技术对于Nedosiran的制备采用化学合成的制备方法进行,不仅过程复杂,成本过高,而且产生的N+1和N-1杂质较多,影响后续对于产物的纯化。在本申请中发明人尝试开发一种Nedosiran的制备方法,利用酶催化合成对Nedosiran进行制备,因而提出了本申请的一系列保护方案。As mentioned in the background technology, the prior art uses a chemical synthesis method for the preparation of Nedosiran, which is not only complicated and costly, but also produces a large number of N+1 and N-1 impurities, which affect the subsequent purification of the product. In this application, the inventor attempts to develop a method for preparing Nedosiran, using enzyme-catalyzed synthesis to prepare Nedosiran, and thus proposes a series of protection schemes of this application.

在本申请第一种典型的实施方式中,提供了一种Nedosiran的制备方法,Nedosiran是由互补配对的正义链和反义链组成的双链siRNA;制备方法包括:将正义链底物片段、反义链底物片段和RNA连接酶混合,其中,正义链底物片段能够组成正义链,反义链底物片段能够组成反义链;正义链底物片段和反义链底物片段以碱基互补形成的氢键连接,正义链底物片段和反义链底物片段的头尾碱基之间均未互相连接,形成含有缺刻的双链核苷酸结构;利用RNA连接酶将缺刻两端的碱基以磷酸二酯键连接,形成Nedosiran;缺刻两端的碱基分别为不同底物片段的5’端和3’端,5’端为磷酸根,3’端为羟基;利用RNA连接酶连接缺刻上下游的5’端的磷酸根和3’端的羟基,形成磷酸二酯键,获得Nedosiran;RNA连接酶为具有SEQ ID NO:1所示的氨基酸序列的RNA连接酶;或与SEQ ID NO:1所示的RNA连接酶具有70%以上同一性,且具有催化磷酸二酯键形成活性的酶。In a first typical embodiment of the present application, a method for preparing Nedosiran is provided, wherein Nedosiran is a double-stranded siRNA composed of a complementary sense strand and an antisense strand; the preparation method comprises: mixing a sense strand substrate fragment, an antisense strand substrate fragment and an RNA ligase, wherein the sense strand substrate fragment can form a sense strand, and the antisense strand substrate fragment can form an antisense strand; the sense strand substrate fragment and the antisense strand substrate fragment are connected by hydrogen bonds formed by base complementarity, and the head and tail bases of the sense strand substrate fragment and the antisense strand substrate fragment are not connected to each other, so as to form a double-stranded nucleotide structure containing a nick; using RNA ligase to connect the bases at both ends of the nick by phosphodiester bonds to form Nedosiran; the bases at both ends of the nick are the 5' end and the 3' end of different substrate fragments, respectively, the 5' end is a phosphate group, and the 3' end is a hydroxyl group; using RNA ligase to connect the phosphate group at the 5' end and the hydroxyl group at the 3' end upstream and downstream of the nick to form a phosphodiester bond to obtain Nedosiran; the RNA ligase is a polypeptide having SEQ ID An RNA ligase having the amino acid sequence shown in SEQ ID NO: 1; or an enzyme having 70% or more identity with the RNA ligase shown in SEQ ID NO: 1 and having activity of catalyzing the formation of phosphodiester bonds.

在上述的制备方法中,正义链底物片段为能够组成正义链的2条或更多条的核苷酸序列,即正义链底物片段的多条核苷酸序列可拼接组成与正义链序列相同的序列,与正义链的区别在于正义链底物片段之间存在缺刻,未以磷酸二酯键相连接。同理,反义链底物片段及反义链具有上述的特征。利用RNA连接酶将2条或多条正义链底物片段或反义链底物片段之间以磷酸二酯键相连接,获得Nedosiran的正义链及反义链。In the above preparation method, the sense strand substrate fragment is a nucleotide sequence that can form two or more sense strands, that is, multiple nucleotide sequences of the sense strand substrate fragment can be spliced to form a sequence identical to the sense strand sequence, and the difference from the sense strand is that there are nicks between the sense strand substrate fragments and they are not connected by phosphodiester bonds. Similarly, the antisense strand substrate fragment and the antisense strand have the above characteristics. Two or more sense strand substrate fragments or antisense strand substrate fragments are connected by phosphodiester bonds using RNA ligase to obtain the sense strand and antisense strand of Nedosiran.

在上述的制备方法中,将正义链底物片段、反义链底物片段与RNA连接酶混合,能够制备获得Nedosiran。在此制备方法中,正义链底物片段及反义链底物片段之间能够进行互补配对,形成含有粘性末端的双链结构的核苷酸,形成粘性末端后继续与其他底物结合,形成含有缺刻的双链核苷酸结构,RNA连接酶可识别此种双链结构的缺刻,以磷酸二酯键对缺刻进行连接,从而制备获得目标产物Nedosiran;优选地,将正义链底物片段和反义链底物片段退火后与RNA连接酶混合,获得Nedosiran。In the above-mentioned preparation method, the sense strand substrate fragment and the antisense strand substrate fragment are mixed with RNA ligase to prepare Nedosiran. In this preparation method, the sense strand substrate fragment and the antisense strand substrate fragment can be complementary paired to form a double-stranded nucleotide structure containing a sticky end, and after forming the sticky end, they continue to bind to other substrates to form a double-stranded nucleotide structure containing a nick. RNA ligase can recognize the nick of this double-stranded structure and connect the nick with a phosphodiester bond, thereby preparing the target product Nedosiran; preferably, the sense strand substrate fragment and the antisense strand substrate fragment are annealed and mixed with RNA ligase to obtain Nedosiran.

在上述制备方法中,可以先将正义链底物片段和反义链底物片段进行混合进行退火,正义链底物片段和反义链底物片段之间能够通过碱基互补配对形成双链RNA结构,在该双链RNA结构中存在不同底物片段之间的缺刻。再将退火后的反应体系与RNA连接酶混合,利用RNA连接酶将缺刻两侧的磷酸基团和羟基基团以磷酸二酯键相连接,修复缺刻,从而获得双链结构完整的目标产物Nedosiran。In the above preparation method, the sense strand substrate fragment and the antisense strand substrate fragment can be mixed and annealed first, and the sense strand substrate fragment and the antisense strand substrate fragment can form a double-stranded RNA structure through base complementary pairing, and there are nicks between different substrate fragments in the double-stranded RNA structure. Then, the annealed reaction system is mixed with RNA ligase, and the RNA ligase is used to connect the phosphate groups and hydroxyl groups on both sides of the nick with phosphodiester bonds to repair the nick, thereby obtaining the target product Nedosiran with a complete double-stranded structure.

在一种优选的实施例中,正义链的核苷酸序列为SEQ ID NO:19所示的核苷酸序列,反义链的核苷酸序列为SEQ ID NO:20所示的核苷酸序列。In a preferred embodiment, the nucleotide sequence of the sense strand is the nucleotide sequence shown in SEQ ID NO: 19, and the nucleotide sequence of the antisense strand is the nucleotide sequence shown in SEQ ID NO: 20.

SEQ ID NO:19:SEQ ID NO: 19:

AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm。AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm.

SEQ ID NO:20:SEQ ID NO: 20:

U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm。U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm.

本申请中,A、C、G或U后的m表示对该核糖核苷酸的2’甲氧基修饰,f表示对于该核糖核苷酸的2’氟进行修饰,“sUm”、“sAf”等写法中位于该核糖核苷酸前的s表示对于该核糖核苷酸的5’磷酸的硫代修饰,*表示2’有R基基团修饰。R基基团结构如图2所示。In the present application, m after A, C, G or U indicates 2' methoxy modification of the ribonucleotide, f indicates 2' fluorine modification of the ribonucleotide, s before the ribonucleotide in "sUm", "sAf" and the like indicates thio modification of the 5' phosphate of the ribonucleotide, and * indicates 2' modification with R group. The structure of R group is shown in Figure 2.

在一种优选的实施例中,正义链底物片段包括2条或更多条底物片段,反义链底物包括2条或更多条底物片段;优选地,正义链底物片段的长度为2-34nt,更优选为6-30nt;优选地,反义链底物片段的长度为2-20nt,更优选为6-16nt。In a preferred embodiment, the sense chain substrate fragment includes 2 or more substrate fragments, and the antisense chain substrate includes 2 or more substrate fragments; preferably, the length of the sense chain substrate fragment is 2-34nt, more preferably 6-30nt; preferably, the length of the antisense chain substrate fragment is 2-20nt, more preferably 6-16nt.

优选地,对于用于组成正义链3’端的正义链底物片段,该条正义链底物片段的长度≥18nt,包括但不限于18、19、20、21、22、23、24、25、26、27、28、29、30、31和32nt。此种长度的3’端正义链底物片段能够与其他底物片段进行互补配对,从而形成带有缺刻的二级结构,便于RNA连接酶发挥作用,制备获得目标产物Nedosiran。Preferably, for the sense strand substrate fragment used to form the 3' end of the sense strand, the length of the sense strand substrate fragment is ≥18 nt, including but not limited to 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 nt. The 3' end sense strand substrate fragment of this length can be complementary paired with other substrate fragments to form a secondary structure with a nick, which is convenient for RNA ligase to act and prepare the target product Nedosiran.

在一种优选的实施例中,RNA连接酶为具有SEQ ID NO:1所示的氨基酸序列的RNA连接酶;或与SEQ ID NO:1所示的RNA连接酶具有70%以上同一性,包括但不限于75%、80%、85%、90%、95%、99%以上(比如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、98.5%、99%、99.5%、99.6%、99.7%、99.8%以上,甚至99.9%以上)且具有催化磷酸二酯键形成活性的酶。In a preferred embodiment, the RNA ligase is an RNA ligase having an amino acid sequence as shown in SEQ ID NO: 1; or an enzyme having more than 70% identity with the RNA ligase shown in SEQ ID NO: 1, including but not limited to 75%, 80%, 85%, 90%, 95%, 99% or more (such as 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8% or more, or even 99.9% or more) and having activity of catalyzing phosphodiester bond formation.

上述RNA连接酶均能够识别底物片段互补配对形成的、带有缺刻的双链结构,从而实现催化磷酸基团与羟基基团形成磷酸二酯键。The above-mentioned RNA ligases are all able to recognize the double-stranded structure with nicks formed by complementary pairing of substrate fragments, thereby catalyzing the formation of phosphodiester bonds between phosphate groups and hydroxyl groups.

SEQ ID NO:1(Ligase 25,Vibrio phage NT-1):SEQ ID NO: 1 (Ligase 25, Vibrio phage NT-1):

MSFVKYTSLENSYRQAFVDKCDMLGVRDWVALEKIHGANFSFIVEFDGGYTVTPAKRTSIIGATATGDYDFYGCTSVVEAHKEKVELVANFLWLNEYINLYEPIIIYGELAGKGIQKEVNYGDKDFWAFDIFLPQREEFVDWDTCVAAFTNAEIKYTKELARGTLDELLRIDPLFKSLHTPAEHEGDNVAEGFVVKQLHSEKRLQSGSRAILKVKNEKFKEKKKKEGKTPTKLVLTPEQEKLHAEFSCYLTENRLKNVLSKLGTVNQKQFGMISGLFVKDAKDEFERDELNEVAIDRDDWNAIRRSLTNIANEILRKNWLNILDGNF。MSFVKYTSLENSYRQAFVDKCDMLGVRDWVALEKIHGANFSFIVEFDGGYTVTPAKRTSIIGATATGDYDFYGCTSVVEAHKEKVELVANFLWLNEYINLYEPIIIYGELAGKGIQKEVNYGDKDFWAFDIFLPQREEFVDWDTCVAAFTNAEIKYTKELARGTLDELLRIDPLFKSLHTPAEHEGDNVAEGFVVKQLHSE KRLQSGSRAILKVKNEKFKEKKKKEGKTPTKLVLTPEQEKLHAEFSCYLTENRLKNVLSKLGTVNQKQFGMISGLFVKDAKDEFERDELNEVAIDRDDWNAIRRSLTNIANEILRKNWLNILDGNF.

SEQ ID NO:2:(Ligase 11,Thermococcus):SEQ ID NO: 2: (Ligase 11, Thermococcus):

MVSSYFRNLLLKLGLPEERLEVLEGKGALAEDEFEGIRYVRFRDSARNFRRGTVVFETGEAVLGFPHIKRVVQLENGIRRVFKNKPFYVEEKVDGYNVRVVKVKDKILAITRGGFVCPFTTERIEDFVNFDFFKDYPNLVLVGEMAGPESPYLVEGPPYVKEDIEFFLFDIQEKGTGRSLPAEERYRLAEEYGIPQVERFGLYDSSKVGELKELIEWLSEEKREGIVMKSPDMRRIAKYVTPYANINDIKIGSHIFFDLPHGYFMGRIKRLAFYLAENHVRGEEFENYAKALGTALLRPFVESIHEVANGGEVDETFTVRVKNITTAHKMVTHFERLGVKIHIEDIEDLGNGYWRITFKRVYPDATREIRELWNGLAFVD。MVSSYFRNLLLKLGLPEERLEVLEGKGALAEDEFEGIRYVRFRDSARNFRRGTVVFETGEAVLGFPHIKRVVQLENGIRRVFKNKPFYVEEKVDGYNVRVVKVKDKILAITRGGFVCPFTTERIEDFVNFDFFKDYPNLVLVGEMAGPESPYLVEGPPYVKEDIEFFLFDIQEKGTGRSLPAEERYRLAEEYGIPQVERFGLYDSSKV GELKELIEWLSEEKREGIVMKSPDMRRIAKYVTPYANINDIKIGSHIFFDLPHGYFMGRIKRLAFYLAENHVRGEEFENYAKALGTALLRPFVESIHEVANGGEVDETFTVRVKNITTAHKMVTHFERLGVKIHIEDIEDLGNGYWRITFKRVYPDATREIRELWNGLAFVD.

SEQ ID NO:3:(Ligase 20,Archaea):SEQ ID NO: 3: (Ligase 20, Archaea):

MVVPLKRIDKIRWEIPKFDKRMRVPGRVYADEVLLEKMKNDRTLEQATNVAMLPGIYKYSIVMPDGHQGYGFPIGGVAAFDVKEGVISPGGIGYDINCGVRLIRTNLTEKEVRPRIKQLVDTLFKNVPSGVGSQGRIKLHWTQIDDVLVDGAKWAVDNGYGWERDLERLEEGGRMEGADPEAVSQRAKQRGAPQLGSLGSGNHFLEVQVVDKIFDPEVAKAYGLFEGQVVVMVHTGSRGLGHQVASDYLRIMERAIRKYRIPWPDRELVSVPFQSEEGQRYFSAMKAAANFAWANRQMITHWVRESFQEVFKQDPEGDLGMDIVYDVAHNIGKVEEHEVDGKRVKVIVHRKGATRAFPPGHEAVPRLYRDVGQPVLIPGSMGTASYILAGTEGAMKETFGSTCHGAGRVLSRKAATRQYRGDRIRQELLNRGIYVRAASMRVVAEEAPGAYKNVDNVVKVVSEAGIAKLVARMRPIGVAKGAAALEH。MVVPLKRIDKIRWEIPKFDKRMRVPGRVYADEVLLEKMKNDRTLEQATNVAMLPGIYKYSIVMPDGHQGYGFPIGGVAAFDVKEGVISPGGIGYDINCGVRLIRTNLTEKEVRPRIKQLVDTLFKNVPSGVGSQGRIKLHWTQIDDVLVDGAKWAVDNGYGWERDLERLEEGGRMEGADPEAVSQRAKQRGAPQLGSLGS GNHFLEVQVVDKIFDPEVAKAYGLFEGQVVVMVHTGSRGLGHQV ASDYLRIMERAIRKYRIPWPDRELLVSVPFQSEEGQRYFSAMKAAANFAWANRQMITHWVRESFQEVFKQDPEGDLGMDIVYDVAHNIGKVEEHEVDGKRVKVIVHRKGATRAFPPGHEAVPRLYRDVGQPVLIPGSMGTASYILAGTEGAMKETFGSTCHGAGRVLSRKAATRQYRGDRIRQELLNRGIYVRAASMRVVAEEAPGAYK NVDNVVKVVSEAGIAKLVARMRPIGVAKGAAALEH.

SEQ ID NO:4:(Ligase 32,bacteria):SEQ ID NO: 4: (Ligase 32, bacteria):

MVSLHFKHILLKLGLDKERIEILEMKGGIVEDEFEGLRYLRFKDSAKGLRRGTVVFNESDIILGFPHIKRVVHLRNGVKRIFKSKPFYVEEKVDGYNVRVAKVGEKILALTRGGFVCPFTTERIGDFINEQFFKDHPNLILCGEMAGPESPYLVEGPPYVEEDIQFFLFDIQEKRTGRSIPVEERIKLAEEYGIQSVEIFGLYSYEKIDELYELIERLSKEGREGVVMKSPDMKKIVKYVTPYANVNDIKIGSRIFFDLPHGYFMQRIKRLAFYIAEKRIRREDFDEYAKALGKALLQPFVESIWDVAAGEMIAEIFTVRVKKIETAYKMVSHFERMGLNIHIDDIEELGNGYWKITFKRVYDDATKEIRELWNGHAFVD。MVSLHFKHILLKLGLDKERIEILEMKGGIVEDEFEGLRYLRFKDSAKGLRRGTVVFNESDIILGFPHIKRVVHLRNGVKRIFKSKPFYVEEKVDGYNVRVAKVGEKILALTRGGFVCPFTTERIGDFINEQFFKDHPNLILCGEMAGPESPYLVEGPPYVEEDIQFFLFDIQEKRTGRSIPVEERIKLAEEYGIQSVEIFGLYSYEKIDE LYELIERLSKEGREGVVMKSPDMKKIVKYVTPYANVNDIKIGSRIFFDLPHGYFMQRIKRLAFYIAEKRIRREDFDEYAKALGKALLQPFVESIWDVAAGEMIAEIFTVRVKKIETAYKMVSHFERMGLNIHIDDIEELGNGYWKITFKRVYDDATKEIRELWNGHAFVD.

本申请中的同一性(Identity)是指氨基酸序列或核苷酸序列之间的“同一性”,即氨基酸序列或核苷酸序列中的种类相同的氨基酸残基或核苷酸的比率的总计。氨基酸序列或核苷酸序列的同一性可以利用BLAST(Basic Local Alignment Search Tool)、FASTA等比对程序来确定。Identity in this application refers to the "identity" between amino acid sequences or nucleotide sequences, that is, the total ratio of the same type of amino acid residues or nucleotides in the amino acid sequence or nucleotide sequence. The identity of amino acid sequences or nucleotide sequences can be determined using alignment programs such as BLAST (Basic Local Alignment Search Tool) and FASTA.

70%、75%、80%、85%、90%、95%、99%以上(比如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、98.5%、99%、99.5%、99.6%、99.7%、99.8%以上,甚至99.9%以上)同一性且具有相同功能的蛋白质,其活性位点、活性口袋、活性机制、蛋白结构等均和上述序列提供的蛋白质大概率相同。Proteins with 70%, 75%, 80%, 85%, 90%, 95%, or more than 99% (for example, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8% or more, or even 99.9% or more) identity and the same function, their active sites, active pockets, active mechanisms, protein structures, etc. are likely to be the same as the proteins provided by the above sequences.

如本文所用,氨基酸残基缩写如下:丙氨酸(Ala;A)、天冬酰胺(Asn;N)、天冬氨酸(Asp;D)、精氨酸(Arg;R)、半胱氨酸(Cys;C)、谷氨酸(Glu;E)、谷氨酰胺(Gln;Q)、甘氨酸(Gly;G)、组氨酸(His;H)、异亮氨酸(Ile;I)、亮氨酸(Leu;L)、赖氨酸(Lys;K)、蛋氨酸(Met;M)、苯丙氨酸(Phe;F)、脯氨酸(Pro;P),丝氨酸(Ser;S)、苏氨酸(Thr;T)、色氨酸(Trp;W)、酪氨酸(Tyr;Y)和缬氨酸(Val;V)。As used herein, the amino acid residues are abbreviated as follows: alanine (Ala; A), asparagine (Asn; N), aspartic acid (Asp; D), arginine (Arg; R), cysteine (Cys; C), glutamic acid (Glu; E), glutamine (Gln; Q), glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V).

取代、替换等规则,一般情况下,哪些氨基酸性质类似,替换后的效果也类似。例如,在上述同源蛋白中,可发生保守的氨基酸替换。“保守的氨基酸替换”包括但不限于:Substitution and replacement rules. Generally speaking, amino acids with similar properties will have similar effects after replacement. For example, conservative amino acid replacements may occur in the above homologous proteins. "Conservative amino acid replacements" include but are not limited to:

疏水性氨基酸(Ala、Cys、Gly、Pro、Met、Val、Ile、Leu)被其他疏水性氨基酸取代;hydrophobic amino acids (Ala, Cys, Gly, Pro, Met, Val, Ile, Leu) are replaced by other hydrophobic amino acids;

侧链粗大的疏水性氨基酸(Phe、Tyr、Trp)被其他侧链粗大的疏水性氨基酸取代;Substitution of hydrophobic amino acids with bulky side chains (Phe, Tyr, Trp) by other hydrophobic amino acids with bulky side chains;

侧链带正电的氨基酸(Arg、His、Lys)被其他侧链带正电的氨基酸取代;Amino acids with positively charged side chains (Arg, His, Lys) are replaced by other amino acids with positively charged side chains;

侧链有极性不带电的氨基酸(Ser、Thr、Asn、Gln)被其他侧链有极性不带电的氨基酸取代。Amino acids with polar, uncharged side chains (Ser, Thr, Asn, Gln) are replaced by other amino acids with polar, uncharged side chains.

本领域技术人员也可以根据现有技术中的“blosum62评分矩阵”等本领域技术人员熟知的氨基酸替换规则对氨基酸进行保守替换。A person skilled in the art may also perform conservative substitutions on amino acids according to amino acid substitution rules well known to those skilled in the art, such as the "blosum62 scoring matrix" in the prior art.

本申请中只能通过SEQ ID NO:1所示的RNA连接酶,或与过SEQ ID NO:1所示的RNA连接酶具有70%以上同一性的酶催化本申请中底物的磷酸集团与羟基集团形成磷酸二酯键,获得产物Nedosiran。在本申请的相关实验中,发明人通过从大量的酶中进行筛选,获得了能够合成Nedosiran的上述SEQ ID NO:1所示的RNA连接酶。而实验中占比极大的阴性结果显示大多数RNA连接酶难以催化Nedosiran的合成,包括但不限于SEQ ID NO:2~SEQ IDNO:4中所示的RNA连接酶,在本申请说明书只以SEQ ID NO:2~SEQ ID NO:4为例体现该类没有催化Nedosiran合成活性的RNA连接酶。In this application, only the RNA ligase shown in SEQ ID NO: 1, or an enzyme with more than 70% identity with the RNA ligase shown in SEQ ID NO: 1, can be used to catalyze the formation of a phosphodiester bond between the phosphate group and the hydroxyl group of the substrate in this application to obtain the product Nedosiran. In the relevant experiments of this application, the inventors obtained the RNA ligase shown in SEQ ID NO: 1 that can synthesize Nedosiran by screening from a large number of enzymes. The negative results, which accounted for a large proportion of the experiments, showed that most RNA ligases were difficult to catalyze the synthesis of Nedosiran, including but not limited to the RNA ligases shown in SEQ ID NO: 2 to SEQ ID NO: 4. In this application specification, only SEQ ID NO: 2 to SEQ ID NO: 4 are used as examples to reflect this type of RNA ligase that has no catalytic activity in the synthesis of Nedosiran.

在一种优选的实施例中,正义链底物片段和反义链底物片段均包括2条,正义链底物片段包括第一正义链底物片段和第二正义链底物片段,反义链底物包括第一反义链底物片段和第二反义链底物片段;制备方法包括:将第一正义链底物片段、第二正义链底物片段、第一反义链底物片段和第二反义链底物片段混合,利用RNA连接酶催化第一正义链底物片段和第二正义链底物片段连接形成正义链,催化第一反义链底物片段和第二反义链底物片段连接形成反义链,正义链和反义链通过碱基互补配对形成Nedosiran。In a preferred embodiment, the sense chain substrate fragment and the antisense chain substrate fragment each include 2, the sense chain substrate fragment includes a first sense chain substrate fragment and a second sense chain substrate fragment, and the antisense chain substrate includes a first antisense chain substrate fragment and a second antisense chain substrate fragment; the preparation method includes: mixing the first sense chain substrate fragment, the second sense chain substrate fragment, the first antisense chain substrate fragment and the second antisense chain substrate fragment, using RNA ligase to catalyze the connection of the first sense chain substrate fragment and the second sense chain substrate fragment to form a sense chain, catalyzing the connection of the first antisense chain substrate fragment and the second antisense chain substrate fragment to form an antisense chain, and the sense chain and the antisense chain form Nedosiran through base complementary pairing.

在一种优选的实施例中,第一正义链底物片段的核苷酸序列为SEQ ID NO:5所示的核苷酸序列,第二正义链底物片段的核苷酸序列为SEQ ID NO:6所示的核苷酸序列;优选地,第一反义链底物片段的核苷酸序列SEQ ID NO:8所示的核苷酸序列,第二反义链底物片段的核苷酸序列SEQ ID NO:7序列所示的核苷酸序列;优选地,第一正义链底物片段的核苷酸序列SEQ ID NO:9所示的核苷酸序列,第二正义链底物片段的核苷酸序列SEQ ID NO:10序列所示的核苷酸序列;优选地,第一反义链底物片段的核苷酸序列为SEQ ID NO:12所示的核苷酸序列,第二反义链底物片段的核苷酸序列为SEQ ID NO:11所示的核苷酸序列。In a preferred embodiment, the nucleotide sequence of the first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 5, and the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 6; preferably, the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 8, and the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 7; preferably, the nucleotide sequence of the first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 9, and the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 10; preferably, the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 12, and the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 11.

利用上述制备方法和SEQ ID NO:5-SEQ ID NO:8或SEQ ID NO:9-SEQ ID NO:12所示的底物片段,能够制备Nedosiran。但需要说明的是,对于底物的选择并非仅限于上述SEQID NO:5-SEQ ID NO:8或SEQ ID NO:9-SEQ ID NO:12所示的底物片段,能够组合形成正义链和反义链的底物均能够应用于上述制备方法中,上述制备方法适用于Nedosiran的制备但不局限于底物连接位置的不同,上述制备对于Nedosiran的正义链序列和反义链序列的连接均具有较好的连接效果。正义链底物或反义链底物的数量包括但不限于2条、3条、4条乃至更多条。Nedosiran can be prepared using the above preparation method and the substrate fragments shown in SEQ ID NO: 5-SEQ ID NO: 8 or SEQ ID NO: 9-SEQ ID NO: 12. However, it should be noted that the selection of substrates is not limited to the substrate fragments shown in SEQ ID NO: 5-SEQ ID NO: 8 or SEQ ID NO: 9-SEQ ID NO: 12. All substrates that can be combined to form a sense chain and an antisense chain can be applied to the above preparation method. The above preparation method is suitable for the preparation of Nedosiran but is not limited to the difference in substrate connection positions. The above preparation has a good connection effect for the connection of the sense chain sequence and the antisense chain sequence of Nedosiran. The number of sense chain substrates or antisense chain substrates includes but is not limited to 2, 3, 4 or even more.

SEQ ID NO:5:AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAf。SEQ ID NO: 5: AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAf.

SEQ ID NO:6:UmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm。SEQ ID NO: 6: UmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm.

SEQ ID NO:7:GmAfCmAfAmCfAmUmsGmsGm。SEQ ID NO: 7: GmAfCmAfAmCfAmUmsGmsGm.

SEQ ID NO:8:U*sCfsAfsGmAfUmAfAmAfAfAmGm。SEQ ID NO: 8: U*sCfsAfsGmAfUmAfAmAfAfAmGm.

SEQ ID NO:9:AmsUmGUmUfGmUmCfCf。SEQ ID NO: 9: AmsUmGUmUfGmUmCfCf.

SEQ ID NO:10:UfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm。SEQ ID NO: 10: UfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm.

SEQ ID NO:11:CmAfAmCfAmUmsGmsGm。SEQ ID NO: 11: CmAfAmCfAmUmsGmsGm.

SEQ ID NO:12:U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAf。SEQ ID NO: 12: U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAf.

在一种优选的实施例中,第一正义链底物片段的3’端与第二正义链底物片段的5’端在RNA连接酶的催化下连接,形成正义链;第一反义链底物片段的3’端与第二反义链底物片段的5’端在RNA连接酶的催化下连接,形成反义链;优选地,在上述制备方法中,第一正义链底物片段的5’端为羟基基团,3’端为羟基基团;第二正义链底物片段的5’端为磷酸基团,3’端为R基基团;第一反义链底物片段的5’端为羟基基团,3’端为羟基基团;第二反义链底物片段的5’端为磷酸基团,3’端为羟基基团。In a preferred embodiment, the 3' end of the first sense chain substrate fragment and the 5' end of the second sense chain substrate fragment are connected under the catalysis of RNA ligase to form a sense chain; the 3' end of the first antisense chain substrate fragment and the 5' end of the second antisense chain substrate fragment are connected under the catalysis of RNA ligase to form an antisense chain; preferably, in the above preparation method, the 5' end of the first sense chain substrate fragment is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second sense chain substrate fragment is a phosphate group, and the 3' end is an R group; the 5' end of the first antisense chain substrate fragment is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second antisense chain substrate fragment is a phosphate group, and the 3' end is a hydroxyl group.

在一种优选的实施例中,正义链底物片段和反义链底物片段均包括3条,正义链底物片段包括第一正义链底物片段、第二正义链底物片段和第三正义链底物片段;反义链底物片段包括第一反义链底物片段、第二反义链底物片段和第三反义链底物片段;优选地,制备方法包括:将第一正义链底物片段、第二正义链底物片段、第三正义链底物片段、第一反义链底物片段、第二反义链底物片段和第三反义链底物片段混合,在RNA连接酶的催化作用下,第一正义链底物片段、第二正义链底物片段和第三正义链底物片段连接形成正义链,催化第一反义链底物片段、第二反义链底物片段和第三反义链底物片段连接形成反义链,正义链和反义链通过碱基互补配对形成Nedosiran;优选地,将正义链底物片段和反义链底物片段退火后与RNA连接酶混合,获得Nedosiran。In a preferred embodiment, the sense chain substrate fragment and the antisense chain substrate fragment each include 3, the sense chain substrate fragment includes a first sense chain substrate fragment, a second sense chain substrate fragment and a third sense chain substrate fragment; the antisense chain substrate fragment includes a first antisense chain substrate fragment, a second antisense chain substrate fragment and a third antisense chain substrate fragment; preferably, the preparation method includes: mixing the first sense chain substrate fragment, the second sense chain substrate fragment, the third sense chain substrate fragment, the first antisense chain substrate fragment, the second antisense chain substrate fragment and the third antisense chain substrate fragment, under the catalytic action of RNA ligase, connecting the first sense chain substrate fragment, the second sense chain substrate fragment and the third sense chain substrate fragment to form a sense chain, catalyzing the connection of the first antisense chain substrate fragment, the second antisense chain substrate fragment and the third antisense chain substrate fragment to form an antisense chain, and the sense chain and the antisense chain form Nedosiran through base complementary pairing; preferably, annealing the sense chain substrate fragment and the antisense chain substrate fragment and mixing them with RNA ligase to obtain Nedosiran.

在一种优选的实施例中,上述第一正义链底物片段的核苷酸序列为SEQ ID NO:13所示的核苷酸序列;第二正义链底物片段的核苷酸序列为SEQ ID NO:14所示的核苷酸序列;第三正义链底物片段的核苷酸序列为SEQ ID NO:15所示的核苷酸序列;优选地,第一反义链底物片段的核苷酸序列为SEQ ID NO:18所示的核苷酸序列;第二反义链底物片段的核苷酸序列为SEQ ID NO:17所示的核苷酸序列;第三反义链底物片段的核苷酸序列为SEQ IDNO:16所示的核苷酸序列。In a preferred embodiment, the nucleotide sequence of the above-mentioned first sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 13; the nucleotide sequence of the second sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 14; the nucleotide sequence of the third sense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 15; preferably, the nucleotide sequence of the first antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 18; the nucleotide sequence of the second antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 17; the nucleotide sequence of the third antisense chain substrate fragment is the nucleotide sequence shown in SEQ ID NO: 16.

SEQ ID NO:13:AmsUmGfUmUfGm。SEQ ID NO: 13: AmsUmGfUmUfGm.

SEQ ID NO:14:UmCfCfUfUfUmUfUm。SEQ ID NO: 14: UmCfCfUfUfUmUfUm.

SEQ ID NO:15:AfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm。SEQ ID NO: 15: AfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm.

SEQ ID NO:16:CfAmUmsGmsGm。SEQ ID NO: 16: CfAmUmsGmsGm.

SEQ ID NO:17:AfAmGmGmAfCmAfAm。SEQ ID NO: 17: AfAmGmGmAfCmAfAm.

SEQ ID NO:18:U*sCfsAfsGmAfUmAfAmAf。SEQ ID NO: 18: U*sCfsAfsGmAfUmAfAmAf.

在一种优选的实施例中,正义链底物片段和反义链底物片段的浓度各自独立选自0.1-4.5mM;优选地,在正义链底物片段、反义链底物片段和RNA连接酶混合形成的反应体系中,还包括ATP、Tris-HCl、MgCl2和DTT;优选地,制备方法的反应温度为10-40℃,更优选为15-30℃;优选地,制备方法的反应时间为2-48h,更优选为12-24h。In a preferred embodiment, the concentrations of the sense strand substrate fragment and the antisense strand substrate fragment are independently selected from 0.1-4.5 mM; preferably, the reaction system formed by mixing the sense strand substrate fragment, the antisense strand substrate fragment and RNA ligase also includes ATP, Tris-HCl, MgCl 2 and DTT; preferably, the reaction temperature of the preparation method is 10-40°C, more preferably 15-30°C; preferably, the reaction time of the preparation method is 2-48h, more preferably 12-24h.

上述正义链底物片段和反义链底物片段的浓度各自选自包括但不限于0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0或4.5 mM;上述制备方法的反应温度包括但不限于10、15、16、20、25、30、35或40℃;上述制备方法的反应时间包括但不限于2、5、10、15、16、20、24、25、30、35、40、45或48h。The concentrations of the sense strand substrate fragment and the antisense strand substrate fragment are each selected from, including but not limited to, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 or 4.5 mM; the reaction temperature of the preparation method includes but is not limited to 10, 15, 16, 20, 25, 30, 35 or 40°C; the reaction time of the preparation method includes but is not limited to 2, 5, 10, 15, 16, 20, 24, 25, 30, 35, 40, 45 or 48h.

下面将结合具体的实施例来进一步详细解释本申请的有益效果。The beneficial effects of the present application will be further explained in detail below in conjunction with specific embodiments.

实施例1Example 1

将底物片段1~4以等摩尔比例加入干净的试剂瓶中,混匀后得到底物混合物,底物混合物中每个底物的浓度均为2.5mM。底物片段1~4的序列如表1所示,长度单位为nt。底物片段混合物退火后或获得RNA片段混合液。反应体系设置为10μL,反应体系中包括100μM的RNA片段混合液,50mM Tris-HCl,10eq的ATP,100eq MgCl2,10eq DTT(1eq=100μM),分别加入终浓度为0.2mg/mL的RNA连接酶Ligase 25、Ligase 11、Ligase 20和Ligase 32。将反应体系于16℃反应16h。得到的反应体系经80℃ 5min失活连接酶,经12000rpm离心去除沉淀。酶催化连接反应示意图如图1所示。Substrate fragments 1 to 4 were added to a clean reagent bottle in an equimolar ratio and mixed to obtain a substrate mixture. The concentration of each substrate in the substrate mixture was 2.5 mM. The sequences of substrate fragments 1 to 4 are shown in Table 1, and the length unit is nt. After the substrate fragment mixture is annealed, an RNA fragment mixture is obtained. The reaction system was set to 10 μL, and the reaction system included 100 μM RNA fragment mixture, 50 mM Tris-HCl, 10 eq ATP, 100 eq MgCl 2 , 10 eq DTT (1 eq = 100 μM), and RNA ligases Ligase 25, Ligase 11, Ligase 20 and Ligase 32 were added at a final concentration of 0.2 mg/mL. The reaction system was reacted at 16°C for 16 hours. The obtained reaction system was inactivated by 80°C for 5 minutes, and the precipitate was removed by centrifugation at 12000 rpm. The schematic diagram of the enzyme-catalyzed ligation reaction is shown in Figure 1.

将RNA连接酶Ligase 25、Ligase 11、Ligase 20和Ligase 32催化得到的产物进行SDS-PAGE检测,RNA连接酶Ligase25和Ligase11催化得到的产物电泳结果图如图3所示,图3中M泳道代表RNA分子标准(marker),1泳道表示Ligase 25的反应体系,2泳道表示Ligase11的反应体系。产率根据Urea-PAGE结果中目标条带的灰度分析结果估算,最终产率结果如表2所示。The products catalyzed by RNA ligase Ligase 25, Ligase 11, Ligase 20 and Ligase 32 were subjected to SDS-PAGE detection. The electrophoresis results of the products catalyzed by RNA ligase Ligase25 and Ligase11 are shown in Figure 3. In Figure 3, lane M represents the RNA molecule standard (marker), lane 1 represents the reaction system of Ligase 25, and lane 2 represents the reaction system of Ligase11. The yield was estimated based on the grayscale analysis results of the target band in the Urea-PAGE results, and the final yield results are shown in Table 2.

使用固相合成方法制备4个单链RNA片段。Four single-stranded RNA fragments were prepared using a solid phase synthesis method.

表1Table 1

.

其中,A、C、G或U后的单独的m表示对该核糖核苷酸的2’甲氧基修饰,f表示对于该核糖核苷酸的2’氟进行修饰,“m*”表示该核糖核苷酸中核糖的2’位R基侧链的修饰基团;A、C、G或U前的s(如“sUm”、“sAf”等写法)表示对于该核糖核苷酸的5’磷酸的硫代修饰。以“Gm*”为例说明了2’位R基的连接情况,如下结构式所示。Among them, the single m after A, C, G or U indicates the 2'methoxy modification of the ribonucleotide, f indicates the modification of the 2'fluorine of the ribonucleotide, "m*" indicates the modification group of the 2'R side chain of the ribose in the ribonucleotide; s before A, C, G or U (such as "sUm", "sAf", etc.) indicates the thio modification of the 5'phosphate of the ribonucleotide. "Gm*" is used as an example to illustrate the connection of the 2'R group, as shown in the following structural formula.

.

底物1的第1、2、4、6、7、12和14位核糖核苷酸具有2’甲氧基修饰,第3、5、8、9、10、11、13和15位核糖核苷酸具有2’氟修饰,第2位核糖核苷酸上的5’磷酸的具有硫代修饰。The ribonucleotides at positions 1, 2, 4, 6, 7, 12 and 14 of substrate 1 have 2' methoxy modifications, the ribonucleotides at positions 3, 5, 8, 9, 10, 11, 13 and 15 have 2' fluorine modifications, and the 5' phosphate on the ribonucleotide at position 2 has a thio modification.

底物2的第1、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20和21位核糖核苷酸具有2’甲氧基修饰,第2位核糖核苷酸具有2’氟修饰,第12、13、14和15位核糖核苷酸具有2’位R基侧链修饰。The ribonucleotides at positions 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 of substrate 2 have 2' methoxy modifications, the ribonucleotide at position 2 has 2' fluorine modification, and the ribonucleotides at positions 12, 13, 14 and 15 have 2' R-group side chain modifications.

底物3的第1、3、5、7、8、9和10位核糖核苷酸具有2’甲氧基修饰,第2、4和6位核糖核苷酸具有2’氟修饰。第9位和第10位核糖核苷酸上的5’磷酸的具有硫代修饰。Substrate 3 has 2' methoxy modification at ribonucleotides 1, 3, 5, 7, 8, 9 and 10, and 2' fluorine modification at ribonucleotides 2, 4 and 6. The 5' phosphates on ribonucleotides 9 and 10 have thio modification.

底物4的第4、6、8、11和12位核糖核苷酸具有2’甲氧基修饰,第2、3、5、7、9和10位核糖核苷酸具有2’氟修饰。第2、3和4位核糖核苷酸上的5’磷酸的具有硫代修饰。第1位核糖核苷酸具有2’位R基侧链修饰。Substrate 4 has 2' methoxy modifications at ribonucleotides 4, 6, 8, 11 and 12, and 2' fluorine modifications at ribonucleotides 2, 3, 5, 7, 9 and 10. The 5' phosphates on ribonucleotides 2, 3 and 4 have thio modifications. Ribonucleotide 1 has a 2' R-side chain modification.

制备获得的Nedosiran的正义链为AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm(SEQ ID NO:19),反义链为U*sCfsAfGmsAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm(SEQ ID NO:20)。The positive sense chain of the prepared Nedosiran is AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm (SEQ ID NO: 19), and the antisense chain is U*sCfsAfGmsAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm (SEQ ID NO: 20).

表2Table 2

.

对于产品产率的表示中,“++”表示产率为25~50%(不包括50%的端点值),“+++”表示产率为50~75%,“++++”表示产率>75%。In expressing the product yield, “++” indicates a yield of 25-50% (excluding the endpoint value of 50%), “+++” indicates a yield of 50-75%, and “++++” indicates a yield of >75%.

通过Urea-PAGE凝胶电泳结果图片的灰度分析得到的产品和底物的灰度数据,此实施例中产率计算公式为:产率=产品灰度数据/(产品灰度数据+底物灰度数据)。The grayscale data of the product and substrate are obtained by grayscale analysis of the Urea-PAGE gel electrophoresis result image. The yield calculation formula in this embodiment is: yield = product grayscale data/(product grayscale data + substrate grayscale data).

实施例2Example 2

将底物片段1~4以等摩尔比例加入干净的试剂瓶中,混匀后得到底物混合物,底物混合物中每个底物的浓度均为2.5mM。底物混合物退火后或获得底物1~4的RNA片段混合液。反应体系设置为50μL,反应体系包括800μM RNA片段混合物,50mM Tris-HCl,4eq ATP,100eq MgCl2,10eq DTT(1eq=800μM),分别加入终浓度为0.2mg/mL的实施例1中催化活性较高的RNA连接酶Ligase 25。将反应体系于16℃反应16h。反应结束后80℃加热5min使蛋白失活,离心去除沉淀。Add the substrate fragments 1 to 4 in an equimolar ratio to a clean reagent bottle, mix well to obtain a substrate mixture, and the concentration of each substrate in the substrate mixture is 2.5mM. After the substrate mixture is annealed, a mixed solution of RNA fragments of substrates 1 to 4 is obtained. The reaction system is set to 50μL, and the reaction system includes 800μM RNA fragment mixture, 50mM Tris-HCl, 4eq ATP, 100eq MgCl 2 , 10eq DTT (1eq=800μM), and the RNA ligase Ligase 25 with high catalytic activity in Example 1 is added at a final concentration of 0.2mg/mL. The reaction system is reacted at 16℃ for 16h. After the reaction is completed, heat at 80℃ for 5min to inactivate the protein, and centrifuge to remove the precipitate.

将Ligase 25催化得到的产物进行HPLC及LC-MS检测,如图4所示,产率根据HPLC结果中目标峰面积的统计结果计算,结果如表3所示。The product catalyzed by Ligase 25 was subjected to HPLC and LC-MS detection, as shown in FIG4 . The yield was calculated based on the statistical results of the target peak area in the HPLC results, and the results are shown in Table 3 .

表3Table 3

.

对于产品产率的表示中,“+++”表示产率为90~95%(不包括95%端点值),“++++”表示产率>95%。In expressing the product yield, “+++” means the yield is 90-95% (excluding the 95% endpoint value), and “++++” means the yield is >95%.

用LC-MS鉴定正义链产品分子量为11871.88,反义链产品分子量为7396.14,正义链产品理论值为11871.85±8,反义链产品理论值为7396.12±8,表明Ligase 25连接生成了Nedosiran,检测结果图如图5所示。The molecular weight of the positive chain product identified by LC-MS was 11871.88, and the molecular weight of the antisense chain product was 7396.14. The theoretical values of the positive chain product were 11871.85±8, and the theoretical values of the antisense chain product were 7396.12±8, indicating that Nedosiran was generated by Ligase 25 ligation. The detection result is shown in Figure 5.

实施例3Example 3

将底物1~4以等摩尔比例加入干净的试剂瓶中,混匀后得到底物混合物,底物混合物中每个底物的浓度均为2.5mM。底物混合物退火后或获得底物1~4的RNA片段混合液。反应体系设置为10mL,反应体系包括800μM RNA片段混合物,50mM Tris-HCl,4eq ATP,12.5eqMgCl2,1.25eq DTT(1eq=800μM),加入终浓度为0.2mg/mL的RNA连接酶Ligase 25。将反应体系于16℃反应16h。得到的反应体系经过50℃加热10-20min灭活蛋白,经12000rpm离心去除沉淀,上清液使用Nano-Q柱纯化,得到的产物经NaCl进行梯度洗脱,进行膜包脱盐处理(截留分子量1kDa),将产物进行冻干处理,经过计算,收率为76.60%,纯度为96.00%。Add substrates 1 to 4 in an equimolar ratio to a clean reagent bottle, mix well to obtain a substrate mixture, and the concentration of each substrate in the substrate mixture is 2.5 mM. After the substrate mixture is annealed, a mixture of RNA fragments of substrates 1 to 4 is obtained. The reaction system is set to 10 mL, and the reaction system includes 800 μM RNA fragment mixture, 50 mM Tris-HCl, 4 eq ATP, 12.5 eq MgCl 2 , 1.25 eq DTT (1 eq = 800 μM), and RNA ligase Ligase 25 is added at a final concentration of 0.2 mg/mL. The reaction system is reacted at 16°C for 16 hours. The obtained reaction system was heated at 50°C for 10-20 min to inactivate the protein, and the precipitate was removed by centrifugation at 12000 rpm. The supernatant was purified using a Nano-Q column, and the obtained product was gradient eluted with NaCl and desalted by membrane packaging (molecular weight cutoff 1 kDa). The product was freeze-dried, and the yield was calculated to be 76.60% and the purity was 96.00%.

实施例4Example 4

将底物5~8以等摩尔比例加入干净的试剂瓶中,混匀后得到底物混合物,底物混合物中每个底物的浓度均为2.5mM。底物5~8的序列如表4所示。底物混合物退火后或获得底物9~14的RNA片段混合液。反应体系设置为50μL,反应体系包括800μM RNA片段混合物,50mMTris-HCl,4eq ATP,12.5eq MgCl2,1.25eq DTT(1eq=800μM);加入终浓度为0.2mg/mL的RNA连接酶Ligase 25。将反应体系于16℃反应16h。得到的反应体系经80℃ 5min失活连接酶,经12000rpm离心去除沉淀,将Ligase 25催化得到的产物进行HPLC检测,酶活以反应体系样品的HPLC数据中产物峰的粗估占比进行衡量,结果显示产率为“+++”,样品中目标峰占比为90.1%。Add substrates 5 to 8 in an equimolar ratio to a clean reagent bottle, mix well to obtain a substrate mixture, and the concentration of each substrate in the substrate mixture is 2.5 mM. The sequences of substrates 5 to 8 are shown in Table 4. After the substrate mixture is annealed, a mixture of RNA fragments of substrates 9 to 14 is obtained. The reaction system is set to 50 μL, and the reaction system includes 800 μM RNA fragment mixture, 50 mMTris-HCl, 4 eq ATP, 12.5 eq MgCl 2 , 1.25 eq DTT (1 eq = 800 μM); add RNA ligase Ligase 25 at a final concentration of 0.2 mg/mL. The reaction system is reacted at 16°C for 16 hours. The obtained reaction system was inactivated by 80°C for 5 min to inactivate the ligase, and the precipitate was removed by centrifugation at 12000 rpm. The product catalyzed by Ligase 25 was detected by HPLC. The enzyme activity was measured by the rough estimated proportion of the product peak in the HPLC data of the reaction system sample. The results showed that the yield was "+++" and the target peak accounted for 90.1% of the sample.

表4Table 4

.

其中,A、C、G或U后的单独的m表示对该核糖核苷酸的2’甲氧基修饰,f表示对于该核糖核苷酸的2’氟进行修饰,A、C、G或U前的s(如“sUm”、“sAf”等写法)表示对于该核糖核苷酸的5’磷酸的硫代修饰。“m*”表示该核糖核苷酸中核糖的2’位R基侧链的修饰基团。Among them, the single m after A, C, G or U indicates the 2' methoxy modification of the ribonucleotide, f indicates the 2' fluorine modification of the ribonucleotide, and s before A, C, G or U (such as "sUm", "sAf", etc.) indicates the thio modification of the 5' phosphate of the ribonucleotide. "m*" indicates the modification group of the 2' R side chain of the ribose in the ribonucleotide.

底物5的第1、2、4、6和7位核糖核苷酸具有2’甲氧基修饰,第3、5、8和9位核糖核苷酸具有2’氟修饰。第2位核糖核苷酸上的5’磷酸的具有硫代修饰。The ribonucleotides at positions 1, 2, 4, 6 and 7 of substrate 5 have 2' methoxy modifications, and the ribonucleotides at positions 3, 5, 8 and 9 have 2' fluorine modifications. The 5' phosphate on the ribonucleotide at position 2 has a thio modification.

底物6的第2、3、5、7、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26和27位核糖核苷酸具有2’甲氧基修饰,第1、4、6和8位核糖核苷酸具有2’氟修饰,第18、19、20和21位核糖核苷酸具有2’位R基侧链修饰。The ribonucleotides at positions 2, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27 of substrate 6 have 2' methoxy modifications, the ribonucleotides at positions 1, 4, 6 and 8 have 2' fluorine modifications, and the ribonucleotides at positions 18, 19, 20 and 21 have 2' R-group side chain modifications.

底物7的第1、3、5、6、7和8位核糖核苷酸具有2’甲氧基修饰,第2和4位核糖核苷酸具有2’氟修饰。第7位和第8位核糖核苷酸上的5’磷酸的具有硫代修饰。The ribonucleotides at positions 1, 3, 5, 6, 7 and 8 of substrate 7 have 2' methoxy modifications, and the ribonucleotides at positions 2 and 4 have 2' fluorine modifications. The 5' phosphates at positions 7 and 8 have thio modifications.

底物8的第4、6、8、11、12和13位核糖核苷酸具有2’甲氧基修饰,第2、3、5、7、9、10和14位核糖核苷酸具有2’氟修饰。第2、3和4位核糖核苷酸上的5’磷酸的具有硫代修饰。第1位核糖核苷酸具有2’位R基侧链修饰。Substrate 8 has 2' methoxy modifications at ribonucleotides 4, 6, 8, 11, 12 and 13, and 2' fluorine modifications at ribonucleotides 2, 3, 5, 7, 9, 10 and 14. The 5' phosphates on ribonucleotides 2, 3 and 4 have thio modifications. Ribonucleotide 1 has a 2' R-side chain modification.

制备获得的Nedosiran的正义链为AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm(SEQ ID NO:19),反义链为U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm(SEQ ID NO:20)。The positive sense chain of the prepared Nedosiran is AmsUmGfUmUfGmUmCfCfUfUfUmUfUmAfUmCfUmGmAmGmCmAmGmCmCmGm*Am*Am*Am*GmGmCmUmGmCm (SEQ ID NO: 19), and the antisense chain is U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm (SEQ ID NO: 20).

实施例5Example 5

将底物9~14以等摩尔比例加入干净的试剂瓶中,混匀后得到底物混合物,底物混合物中每个底物的浓度均为2.5mM。底物9~14的序列如表5所示。底物混合物退火后或获得底物5~8的RNA片段混合液。反应体系设置为50μL。反应体系包括800μM RNA片段混合物,50mM Tris-HCl,4eq ATP,12.5eq MgCl2,1.25eq DTT(1eq=800μM),加入终浓度为0.2 mg/mL的RNA连接酶Ligase 25。将反应体系于16℃反应16h。得到的反应体系经80℃ 5min失活连接酶,经12000rpm离心去除沉淀,将Ligase 25催化得到的产物进行HPLC检测,酶活以反应体系样品的HPLC数据中产物峰的粗估占比进行衡量,结果显示产率为“+++”,样品中目标峰占比为93.5%。Add substrates 9 to 14 in an equimolar ratio to a clean reagent bottle, mix well to obtain a substrate mixture, and the concentration of each substrate in the substrate mixture is 2.5 mM. The sequences of substrates 9 to 14 are shown in Table 5. After the substrate mixture is annealed, a mixture of RNA fragments of substrates 5 to 8 is obtained. The reaction system is set to 50 μL. The reaction system includes 800 μM RNA fragment mixture, 50 mM Tris-HCl, 4 eq ATP, 12.5 eq MgCl 2 , 1.25 eq DTT (1 eq = 800 μM), and RNA ligase Ligase 25 is added at a final concentration of 0.2 mg/mL. The reaction system is reacted at 16°C for 16 hours. The obtained reaction system was inactivated by 80°C for 5 min to inactivate the ligase, and the precipitate was removed by centrifugation at 12000 rpm. The product catalyzed by Ligase 25 was detected by HPLC. The enzyme activity was measured by the rough estimated proportion of the product peak in the HPLC data of the reaction system sample. The results showed that the yield was "+++" and the target peak accounted for 93.5% in the sample.

表5Table 5

.

其中,A、C、G或U后的单独的m表示对该核糖核苷酸的2’甲氧基修饰,f表示对于该核糖核苷酸的2’氟进行修饰,A、C、G或U前的s(如“sUm”、“sAf”等写法)表示对于该核糖核苷酸的5’磷酸的硫代修饰。“m*”表示该核糖核苷酸中核糖的2’位R基侧链的修饰基团。Among them, the single m after A, C, G or U indicates the 2' methoxy modification of the ribonucleotide, f indicates the 2' fluorine modification of the ribonucleotide, and s before A, C, G or U (such as "sUm", "sAf", etc.) indicates the thio modification of the 5' phosphate of the ribonucleotide. "m*" indicates the modification group of the 2' R side chain of the ribose in the ribonucleotide.

底物9的第1、2、4和6位核糖核苷酸具有2’甲氧基修饰,第3和5位核糖核苷酸具有2’氟修饰,第2位核糖核苷酸上的5’磷酸的具有硫代修饰。The ribonucleotides at positions 1, 2, 4 and 6 of substrate 9 have 2' methoxy modifications, the ribonucleotides at positions 3 and 5 have 2' fluorine modifications, and the 5' phosphate on the ribonucleotide at position 2 has a thio modification.

底物10的第1、6和8位核糖核苷酸具有2’甲氧基修饰,第2、3、4、5和7位核糖核苷酸具有2’氟修饰。The ribonucleotides at positions 1, 6 and 8 of substrate 10 have 2' methoxy modifications, and the ribonucleotides at positions 2, 3, 4, 5 and 7 have 2' fluorine modifications.

底物11的第2、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21和22位核糖核苷酸具有2’甲氧基修饰,第1和3位核糖核苷酸具有2’氟修饰,第13、14、15和16位核糖核苷酸具有2’位R基侧链修饰。The ribonucleotides at positions 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 of substrate 11 have 2' methoxy modifications, the ribonucleotides at positions 1 and 3 have 2' fluorine modifications, and the ribonucleotides at positions 13, 14, 15 and 16 have 2' R-group side chain modifications.

底物12的第2、3、4和5位核糖核苷酸具有2’甲氧基修饰,第1位核糖核苷酸具有2’氟修饰。第4和5位核糖核苷酸上的5’磷酸的具有硫代修饰。The ribonucleotides at positions 2, 3, 4 and 5 of substrate 12 have 2' methoxy modifications, and the ribonucleotide at position 1 has 2' fluorine modification. The 5' phosphates on the ribonucleotides at positions 4 and 5 have thio modification.

底物13的第2、3、4、6和8位核糖核苷酸具有2’甲氧基修饰,第1、5和7位核糖核苷酸具有2’氟修饰。The ribonucleotides at positions 2, 3, 4, 6 and 8 of substrate 13 have 2' methoxy modifications, and the ribonucleotides at positions 1, 5 and 7 have 2' fluorine modifications.

底物14的第4、6和8位核糖核苷酸具有2’甲氧基修饰,第2、3、5、7和9位核糖核苷酸具有2’氟修饰,第2、3和4位核糖核苷酸上的5’磷酸的具有硫代修饰,第1位核糖核苷酸2’位R基侧链修饰。The ribonucleotides at positions 4, 6 and 8 of substrate 14 have 2' methoxy modifications, the ribonucleotides at positions 2, 3, 5, 7 and 9 have 2' fluorine modifications, the 5' phosphates on the ribonucleotides at positions 2, 3 and 4 have thio modifications, and the ribonucleotide at position 1 has a 2' R group side chain modification.

制备获得的Nedosiran的正义链为AmsUmGfUm UfGmUmCf CfUfUfUm UfUmAfUmCfUmGmAm GmCmAmGmCmCmGm*Am*Am*Am*GmGm CmUmGmCm(SEQ ID NO:19),反义链为U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm(SEQ ID NO:20)。The positive sense chain of the prepared Nedosiran is AmsUmGfUm UfGmUmCf CfUfUfUm UfUmAfUmCfUmGmAm GmCmAmGmCmCmGm*Am*Am*Am*GmGm CmUmGmCm (SEQ ID NO: 19), and the antisense chain is U*sCfsAfsGmAfUmAfAmAfAfAmGmGmAfCmAfAmCfAmUmsGmsGm (SEQ ID NO: 20).

实施例6Example 6

利用固相合成全长Nedosiran产品的平均收率为39.1%,N+1和N-1杂质总占比为1.52%。The average yield of full-length Nedosiran product synthesized using solid phase synthesis was 39.1%, and the total proportion of N+1 and N-1 impurities was 1.52%.

利用本发明中的酶连法制备获得的Nedosiran产品收率为84.05%,利用固相合成底物的收率为32.9%,相乘后的整体流程的收率为31.6%,虽整体流程的收率略低于固相合成法中获得的产品的平均收率,但是N+1和N-1杂质总占比仅为0.4%,远低于固相合成法合成Nedosiran的过程该种杂质占比。The yield of the Nedosiran product prepared by the enzyme-linked method of the present invention is 84.05%, the yield using the solid phase synthesis substrate is 32.9%, and the yield of the overall process after multiplication is 31.6%. Although the yield of the overall process is slightly lower than the average yield of the product obtained by the solid phase synthesis method, the total proportion of N+1 and N-1 impurities is only 0.4%, which is much lower than the proportion of such impurities in the process of synthesizing Nedosiran by solid phase synthesis.

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:在本申请的制备方法中,通过RNA连接酶催化基于Nedosiran的序列设计的单链RNA片段形成Nedosiran,从而实现利用生物合成的方式制备此种siRNA药物。与化学合成制备法相比,本申请的制备方法获得的产物纯度高,产生的杂质少,制备过程简易,且反应条件温和,有机试剂用量低,降低生产成本,便于实现规模放大的工业化生产。From the above description, it can be seen that the above embodiments of the present invention achieve the following technical effects: in the preparation method of the present application, single-stranded RNA fragments designed based on the sequence of Nedosiran are catalyzed by RNA ligase to form Nedosiran, thereby realizing the preparation of such siRNA drugs by biosynthesis. Compared with the chemical synthesis preparation method, the product obtained by the preparation method of the present application has high purity, less impurities, simple preparation process, mild reaction conditions, low amount of organic reagents, reduced production costs, and is easy to achieve scale-up industrial production.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.

Claims (13)

1. A method of preparing Nedosiran, wherein Nedosiran is a double-stranded siRNA consisting of complementarily paired sense and antisense strands;
The preparation method comprises the following steps:
Mixing a sense strand substrate fragment, an antisense strand substrate fragment, and an RNA ligase, wherein the sense strand substrate fragment is capable of constituting the sense strand and the antisense strand substrate fragment is capable of constituting the antisense strand;
The sense strand substrate fragment and the antisense strand substrate fragment are connected through hydrogen bonds formed by base complementation, and the head base and the tail base of the sense strand substrate fragment and the antisense strand substrate fragment are not connected with each other to form a double-stranded nucleotide structure containing a nick;
connecting bases at two ends of the nick with a phosphodiester bond by using the RNA ligase to form Nedosiran;
the bases at the two ends of the notch are respectively the 5 'end and the 3' end of different substrate fragments, the 5 'end is phosphate radical, and the 3' end is hydroxyl radical;
connecting the phosphate at the 5 'end and the hydroxyl at the 3' end at the upstream and downstream of the nick by using the RNA ligase to form the phosphodiester bond, thereby obtaining Nedosiran;
The RNA ligase is a polypeptide having the sequence of SEQ ID NO:1, and a RNA ligase having the amino acid sequence shown in seq id no;
Or with SEQ ID NO:1, and has an activity of catalyzing the formation of phosphodiester bonds.
2. The method of claim 1, wherein the sense strand has a nucleotide sequence of SEQ ID NO:19, and the nucleotide sequence of the antisense strand is the nucleotide sequence shown in SEQ ID NO:20, and a nucleotide sequence shown in seq id no.
3. The method of any one of claims 1-2, wherein the sense strand substrate fragment comprises 2 or more and the antisense strand substrate fragment comprises 2 or more;
The length of the sense strand substrate fragment is 2-34nt;
The length of the antisense strand substrate fragment is 2-20nt.
4. The method of making according to claim 1, wherein the sense strand substrate fragment and the antisense strand substrate fragment each comprise 2, the sense strand substrate fragment comprises a first sense strand substrate fragment and a second sense strand substrate fragment, and the antisense strand substrate fragment comprises a first antisense strand substrate fragment and a second antisense strand substrate fragment;
The preparation method comprises the following steps: mixing the first sense strand substrate fragment, the second sense strand substrate fragment, the first antisense strand substrate fragment and the second antisense strand substrate fragment, and under the catalysis of the RNA ligase, the first sense strand substrate fragment and the second sense strand substrate fragment are connected to form the sense strand, catalyzing the first antisense strand substrate fragment and the second antisense strand substrate fragment to be connected to form the antisense strand, and the sense strand and the antisense strand are formed into the Nedosiran by base complementary pairing.
5. The method of claim 4, wherein the nucleotide sequence of the first sense strand substrate fragment is SEQ ID NO:5, and the nucleotide sequence of the second sense strand substrate fragment is SEQ ID NO:6, a nucleotide sequence shown in seq id no;
the nucleotide sequence of the first antisense strand substrate fragment is SEQ ID NO:8, and the nucleotide sequence of the second antisense strand substrate fragment is SEQ ID NO:7, and a nucleotide sequence shown in the sequence No.
6. The method of claim 4, wherein the first sense strand substrate fragment has the nucleotide sequence of SEQ ID NO:9, and the nucleotide sequence of the second sense strand substrate fragment is set forth in SEQ ID NO:10, a nucleotide sequence shown in the sequence of seq id no;
The nucleotide sequence of the first antisense strand substrate fragment is SEQ ID NO:12, and the nucleotide sequence of the second antisense strand substrate fragment is set forth in SEQ ID NO:11, and a nucleotide sequence shown in seq id no.
7. The method of claim 4, wherein the 3 'end of the first sense strand substrate fragment is ligated to the 5' end of the second sense strand substrate fragment under the catalysis of the RNA ligase to form the sense strand; the 3 'end of the first antisense strand substrate fragment is ligated to the 5' end of the second antisense strand substrate fragment under the catalysis of the RNA ligase to form the antisense strand.
8. The method of claim 4, wherein the first sense strand substrate fragment has a hydroxyl group at the 5 'end and a hydroxyl group at the 3' end; the 5 'end of the second sense strand substrate fragment is a phosphate group, and the 3' end is an R group;
the 5 'end of the first antisense strand substrate fragment is a hydroxyl group, and the 3' end of the first antisense strand substrate fragment is a hydroxyl group; the 5 'end of the second antisense strand substrate fragment is a phosphate group, and the 3' end is a hydroxyl group.
9. The method of claim 1, wherein the sense strand substrate fragment and the antisense strand substrate fragment each comprise 3,
The sense strand substrate fragments comprise a first sense strand substrate fragment, a second sense strand substrate fragment, and a third sense strand substrate fragment;
The antisense strand substrate fragments include a first antisense strand substrate fragment, a second antisense strand substrate fragment, and a third antisense strand substrate fragment.
10. The preparation method according to claim 9, characterized in that the preparation method comprises: mixing the first sense strand substrate fragment, the second sense strand substrate fragment, the third sense strand substrate fragment, the first antisense strand substrate fragment, the second antisense strand substrate fragment, and the third antisense strand substrate fragment, and under the catalytic action of the RNA ligase, the first sense strand substrate fragment, the second sense strand substrate fragment, and the third sense strand substrate fragment are joined to form the sense strand, and the first antisense strand substrate fragment, the second antisense strand substrate fragment, and the third antisense strand substrate fragment are joined to form the antisense strand, and the sense strand and the antisense strand are paired by base complementarity to form the Nedosiran.
11. The method of claim 9, wherein the first sense strand substrate fragment is SEQ ID NO:13, a nucleotide sequence shown in seq id no;
the nucleotide sequence of the second sense strand substrate fragment is SEQ ID NO:14, a nucleotide sequence shown in seq id no;
The nucleotide sequence of the third sense strand substrate fragment is SEQ ID NO:15, a nucleotide sequence shown in seq id no;
the nucleotide sequence of the first antisense strand substrate fragment is SEQ ID NO:18, a nucleotide sequence shown in seq id no;
the nucleotide sequence of the second antisense strand substrate fragment is SEQ ID NO:17, a nucleotide sequence shown in seq id no;
The nucleotide sequence of the third antisense strand substrate fragment is SEQ ID NO:16, and a nucleotide sequence shown in seq id no.
12. The method of claim 1, wherein the sense strand substrate fragment and the antisense strand substrate fragment concentrations are each independently selected from 0.1-4.5mM;
The reaction system formed by mixing the sense strand substrate fragment, the antisense strand substrate fragment and the RNA ligase further comprises ATP, tris-HCl, mgCl 2 and DTT.
13. The preparation method according to claim 1, wherein the reaction temperature of the preparation method is 10-40 ℃;
the reaction time of the preparation method is 2-48h.
CN202410921733.2A 2024-07-10 2024-07-10 A preparation method of Nedosiran Active CN118460650B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410921733.2A CN118460650B (en) 2024-07-10 2024-07-10 A preparation method of Nedosiran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410921733.2A CN118460650B (en) 2024-07-10 2024-07-10 A preparation method of Nedosiran

Publications (2)

Publication Number Publication Date
CN118460650A true CN118460650A (en) 2024-08-09
CN118460650B CN118460650B (en) 2025-02-14

Family

ID=92164324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410921733.2A Active CN118460650B (en) 2024-07-10 2024-07-10 A preparation method of Nedosiran

Country Status (1)

Country Link
CN (1) CN118460650B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842381A (en) * 2007-08-27 2010-09-22 波士顿生物医药公司 Composition of asymmetric RNA duplex as microrna mimetic or inhibitor
CN117070583A (en) * 2023-10-16 2023-11-17 吉林凯莱英制药有限公司 Preparation method of siRNA for inhibiting PCSK9 gene expression
US20240122960A1 (en) * 2021-02-10 2024-04-18 Charité - Universitätsmedizin Berlin Composition and method for reducing oxalate levels in patients receiving maintenance dialysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842381A (en) * 2007-08-27 2010-09-22 波士顿生物医药公司 Composition of asymmetric RNA duplex as microrna mimetic or inhibitor
US20240122960A1 (en) * 2021-02-10 2024-04-18 Charité - Universitätsmedizin Berlin Composition and method for reducing oxalate levels in patients receiving maintenance dialysis
CN117070583A (en) * 2023-10-16 2023-11-17 吉林凯莱英制药有限公司 Preparation method of siRNA for inhibiting PCSK9 gene expression

Also Published As

Publication number Publication date
CN118460650B (en) 2025-02-14

Similar Documents

Publication Publication Date Title
JP2023061983A (en) RNA-guided targeting of genomic and epigenomic regulatory proteins to specific genomic loci
CN117070583B (en) Preparation method of siRNA for inhibiting PCSK9 gene expression
WO2024119625A1 (en) Synthesis method for double-stranded rna and use of rna ligase in double-stranded rna synthesis
WO2017028548A1 (en) Mirror nucleic acid replication system
Musier-Forsyth et al. Acceptor helix interactions in a class II tRNA synthetase: photoaffinity crosslinking of an RNA miniduplex substrate
CN112063622A (en) Construction method and application of I-type IFNAR function-deficient cell line
Fusi et al. Ribonucleases from the extreme thermophilic archaebacterium S. solfataricus
WO2012028945A2 (en) Mutants of l-asparagine
CN117070514B (en) Preparation method of non-natural RNA and product
CN118460650A (en) A preparation method of Nedosiran
CN118460649A (en) A kind of preparation method of Vutrisiran
CN118460656A (en) A preparation method of Lumasiran
CN118460655A (en) Preparation method of siRNA for inhibiting FXI gene expression
CN118460647B (en) Preparation method of PATISIRAN
CN118460654A (en) A preparation method of Givosiran
CN118460648A (en) A preparation method of QPI-1002
CN118460651A (en) Method for preparing Cemdisiran
CN118460652B (en) Preparation method of siRNA for treating non-arterial ischemic optic neuropathy
CN102382187A (en) FBXL15 protein fragment, coding gene thereof, and application of FBXL15 protein fragment and coding gene
CN118460653B (en) Preparation method of siRNA for treating alpha 1-antitrypsin deficiency
KR102789465B1 (en) New crispr/cas12a system and gene-editing use thereof
CN116445453B (en) An efficient thermostable ribonuclease SiRe_0917 and its encoding gene and application
CA2817218C (en) Nuclions and ribocapsids
US20230049215A1 (en) Catalytic nucleic acid-based genetic engineering method
WO2023207607A1 (en) Deaminase mutant, composition, and method for modifying mitochondrial dna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant