[go: up one dir, main page]

CN118460651A - Method for preparing Cemdisiran - Google Patents

Method for preparing Cemdisiran Download PDF

Info

Publication number
CN118460651A
CN118460651A CN202410921736.6A CN202410921736A CN118460651A CN 118460651 A CN118460651 A CN 118460651A CN 202410921736 A CN202410921736 A CN 202410921736A CN 118460651 A CN118460651 A CN 118460651A
Authority
CN
China
Prior art keywords
substrate
seq
sense strand
antisense strand
antisense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410921736.6A
Other languages
Chinese (zh)
Other versions
CN118460651B (en
Inventor
洪浩
詹姆斯·盖吉
张娜
焦学成
王磊
冯骏晨
张冉冉
胡守俊
蒋相军
陈仁芳
贾旭
李少贺
王吉忠
严思堂
金星
刘永贤
王思源
傅绪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Kailaiying Biotechnology Co ltd
Asymchem Laboratories Tianjin Co Ltd
Original Assignee
Tianjin Kailaiying Biotechnology Co ltd
Asymchem Laboratories Tianjin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Kailaiying Biotechnology Co ltd, Asymchem Laboratories Tianjin Co Ltd filed Critical Tianjin Kailaiying Biotechnology Co ltd
Priority to CN202410921736.6A priority Critical patent/CN118460651B/en
Publication of CN118460651A publication Critical patent/CN118460651A/en
Application granted granted Critical
Publication of CN118460651B publication Critical patent/CN118460651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present application provides a method of preparing CEMDISIRAN. Wherein CEMDISIRAN is siRNA, and consists of sense strand and antisense strand which are in complementary pairing; the preparation method comprises the following steps: mixing a sense strand substrate, an antisense strand substrate and RNA ligase, catalyzing the connection between the sense strand substrate and the antisense strand substrate by using the RNA ligase and connecting by a phosphodiester bond to obtain a sense strand and an antisense strand, thereby obtaining CEMDISIRAN; sense strand substrates can constitute the sense strand and antisense strand substrates can constitute the antisense strand. Compared with CEMDISIRAN prepared by chemical synthesis, the preparation method provided by the application has the advantages that the purity of the obtained product is higher, the impurity is less, the reaction condition is mild, and the industrial scale-up production is convenient to realize.

Description

制备Cemdisiran的方法Method for preparing Cemdisiran

技术领域Technical Field

本发明涉及药物生物合成领域,具体而言,涉及一种制备Cemdisiran的方法。The present invention relates to the field of drug biosynthesis, and in particular to a method for preparing Cemdisiran.

背景技术Background Art

小干扰RNA(Small interfering RNA, siRNA)是长度为19-25nt的双链RNA,siRNA进入细胞后能够解离成单链,其中正义链通过碱基匹配能够同靶基因的信使RNA(messenger RNA, mRNA)特异性结合,诱发一系列作用,最终降解靶基因的mRNA,阻止mRNA的翻译以达到阻碍靶基因表达效果。近年来siRNA药物的研发获得的广泛的关注,siRNA药物的作用于mRNA,可成药的靶点要显著大于作用位点是蛋白质的传统小分子药物;此外,siRNA药物可以通过变换序列而作用于新的靶点,研发时间相对较短。Small interfering RNA (siRNA) is a double-stranded RNA with a length of 19-25 nt. After entering the cell, siRNA can dissociate into single strands, in which the positive strand can specifically bind to the messenger RNA (mRNA) of the target gene through base matching, inducing a series of effects, and finally degrading the mRNA of the target gene, preventing the translation of mRNA to achieve the effect of hindering the expression of the target gene. In recent years, the research and development of siRNA drugs has received widespread attention. siRNA drugs act on mRNA, and the druggable targets are significantly larger than traditional small molecule drugs whose action sites are proteins; in addition, siRNA drugs can act on new targets by changing the sequence, and the research and development time is relatively short.

Cemdisiran是Alnylam公司联合Regeneron开发的siRNA类双链RNA药物,目前处于临床3期实验阶段。Cemdisiran可用于改善免疫球蛋白A肾病(IgA nephropathy,IgAN)成人患者的尿蛋白(proteinuria)值。免疫球蛋白A肾病是导致慢性肾病和肾功能衰竭的主要病因,是一种肾损伤相关的慢性、进行性炎症疾病,此病每年在10万人中影响约2.5人,尤其好发于30与40岁左右的患者,全球患者数量约20万。Cemdisiran is a siRNA-type double-stranded RNA drug developed by Alnylam and Regeneron, and is currently in Phase 3 clinical trials. Cemdisiran can be used to improve the urine protein (proteinuria) value of adult patients with immunoglobulin A nephropathy (IgA nephropathy, IgAN). IgA nephropathy is the main cause of chronic kidney disease and renal failure. It is a chronic, progressive inflammatory disease associated with kidney damage. This disease affects about 2.5 people out of 100,000 people each year, especially patients around 30 and 40 years old. The number of patients worldwide is about 200,000.

Cemdisiran的现有合成方法为化学法固相合成,使用固相载体如可控微孔玻璃珠(Controlled Pore Glass, CPG)或聚苯乙烯树脂,通过亚磷酰胺三酯法循环合成,使寡核苷酸链沿3’至5’方向延伸,当合成循环结束后,通过氨解将Cemdisiran链从固相载体切除,再经过纯化获得纯品。上述合成过程需要昂贵的核酸合成仪,且合成的规模受限于合成仪器的规模,批次工艺的规模在kg量级,提高合成通量需要增加更多的仪器或者更多的批次,规模放大的成本非常高。此外,固相合成法为循环方法,合成的收率随着合成链长的增加而降低,而合成过程产生的杂质,如比目标序列多一个核苷酸的杂质(N+1杂质)或比目标序列少一个核苷酸的杂质(N-1杂质),也会随着合成链长的增加而增多,最终N+1和N-1杂质的含量1-3%。The existing synthesis method of Cemdisiran is chemical solid phase synthesis, using a solid phase carrier such as controlled pore glass beads (CPG) or polystyrene resin, and cyclic synthesis through the phosphoramidite triester method to extend the oligonucleotide chain from the 3' to 5' direction. After the synthesis cycle is completed, the Cemdisiran chain is cut off from the solid phase carrier by aminolysis, and then purified to obtain a pure product. The above-mentioned synthesis process requires an expensive nucleic acid synthesizer, and the scale of synthesis is limited by the scale of the synthesis instrument. The scale of the batch process is in the kg level. Increasing the synthesis flux requires adding more instruments or more batches, and the cost of scale expansion is very high. In addition, the solid phase synthesis method is a cyclic method, and the yield of the synthesis decreases with the increase of the synthesis chain length, and the impurities generated in the synthesis process, such as impurities with one more nucleotide than the target sequence (N+1 impurities) or impurities with one less nucleotide than the target sequence (N-1 impurities), will also increase with the increase of the synthesis chain length, and the final content of N+1 and N-1 impurities is 1-3%.

发明内容Summary of the invention

本发明的主要目的在于提供一种制备Cemdisiran的方法,以解决现有技术中制备Cemdisiran的纯度较低的问题。The main purpose of the present invention is to provide a method for preparing Cemdisiran, so as to solve the problem of low purity of Cemdisiran prepared in the prior art.

为了实现上述目的,根据本发明的第一个方面,提供了一种制备Cemdisiran的方法, Cemdisiran为siRNA,由正义链和反义链通过互补配对组成;方法包括:将正义链底物、反义链底物和RNA连接酶混合,其中,正义链底物能够组成正义链,反义链底物能够组成反义链;正义链底物和反义链底物以碱基互补形成的氢键连接,正义链底物和反义链底物的头尾碱基之间均未互相连接,形成含有缺刻的双链核苷酸结构;利用RNA连接酶将缺刻两端的碱基以磷酸二酯键连接,形成Cemdisiran;缺刻两端的碱基分别为不同底物的5’端和3’端,5’端为磷酸根,3’端为羟基;利用RNA连接酶连接缺刻上下游的5’端的磷酸根和3’端的羟基,形成磷酸二酯键,获得Cemdisiran;所述RNA连接酶选自RNA连接酶家族1或RNA连接酶家族2;所述RNA连接酶包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ IDNO:5或SEQ ID NO:6所示的RNA连接酶中的一种或多种;或与SEQ ID NO:1- SEQ ID NO:6中所示的任一RNA连接酶具有70%以上同一性,且具有催化所述磷酸二酯键形成活性的酶。In order to achieve the above-mentioned object, according to the first aspect of the present invention, a method for preparing Cemdisiran is provided, wherein Cemdisiran is siRNA, and is composed of a sense strand and an antisense strand through complementary pairing; the method comprises: mixing a sense strand substrate, an antisense strand substrate and an RNA ligase, wherein the sense strand substrate can form a sense strand, and the antisense strand substrate can form an antisense strand; the sense strand substrate and the antisense strand substrate are connected by hydrogen bonds formed by base complementarity, and the head and tail bases of the sense strand substrate and the antisense strand substrate are not connected to each other, so as to form a double-stranded nucleotide structure containing a nick; using RNA ligase to connect the bases at both ends of the nick by phosphodiester bonds to form Cemdisiran; the bases at both ends of the nick are the 5' end and the 3' end of different substrates, respectively, the 5' end is a phosphate group, and the 3' end is a hydroxyl group; using RNA ligase to connect the phosphate group at the 5' end and the hydroxyl group at the 3' end upstream and downstream of the nick to form a phosphodiester bond to obtain Cemdisiran; the RNA ligase is selected from RNA ligase family 1 or RNA ligase family 2; the RNA ligase comprises SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6; or an enzyme that has 70% or more identity with any RNA ligase shown in SEQ ID NO: 1 to SEQ ID NO: 6 and has the activity of catalyzing the formation of the phosphodiester bond.

进一步地,正义链底物和反义链底物由固相合成方法或液相合成方法得到;优选地,正义链为SEQ ID NO:14所示的核酸序列,反义链为SEQ ID NO:15所示的核酸序列;优选地,正义链由2条及以上的正义链底物组成,正义链底物的长度为3-18nt,更优选为4-16nt;优选地,反义链由2条及以上的反义链底物组成,反义链底物的长度为3-22nt,更优选为8-13nt。Furthermore, the sense chain substrate and the antisense chain substrate are obtained by a solid phase synthesis method or a liquid phase synthesis method; preferably, the sense chain is the nucleic acid sequence shown in SEQ ID NO: 14, and the antisense chain is the nucleic acid sequence shown in SEQ ID NO: 15; preferably, the sense chain is composed of 2 or more sense chain substrates, and the length of the sense chain substrate is 3-18nt, more preferably 4-16nt; preferably, the antisense chain is composed of 2 or more antisense chain substrates, and the length of the antisense chain substrate is 3-22nt, more preferably 8-13nt.

正义链底物与反义链底物经退火后形成的双链RNA存在3个及以上能够互补配对的碱基组合;优选地,双链RNA末端为粘性末端;优选地,粘性末端长度为2-8nt。The double-stranded RNA formed by annealing the sense strand substrate and the antisense strand substrate has 3 or more base combinations capable of complementary pairing; preferably, the ends of the double-stranded RNA are sticky ends; preferably, the length of the sticky ends is 2-8 nt.

进一步地,正义链底物和反义链底物均包括2条底物,正义链底物包括第一正义链底物和第二正义链底物,反义链底物包括第一反义链底物和第二反义链底物;制备方法包括:将第一正义链底物、第二正义链底物、第一反义链底物和第二反义链底物混合,利用RNA连接酶催化第一正义链底物和第二正义链底物连接形成正义链,催化第一反义链底物和第二反义链底物连接形成反义链,正义链和反义链互补配对形成Cemdisiran。Furthermore, the sense chain substrate and the antisense chain substrate each include two substrates, the sense chain substrate includes a first sense chain substrate and a second sense chain substrate, and the antisense chain substrate includes a first antisense chain substrate and a second antisense chain substrate; the preparation method includes: mixing the first sense chain substrate, the second sense chain substrate, the first antisense chain substrate and the second antisense chain substrate, using RNA ligase to catalyze the connection of the first sense chain substrate and the second sense chain substrate to form a sense chain, catalyzing the connection of the first antisense chain substrate and the second antisense chain substrate to form an antisense chain, and the sense chain and the antisense chain complementarily pair to form Cemdisiran.

进一步地,第一正义链底物的3’端与第二正义链底物的5’端在RNA连接酶的催化下连接,形成正义链;第一反义链底物的3’端与第二反义链底物的5’端在RNA连接酶的催化下连接,形成反义链;优选地,第一正义链底物的5’端为羟基基团,3’端为羟基基团;第二正义链底物的5’端为磷酸基团,3’端为L96基团;优选地,第一反义链底物的5’端为羟基基团,3’端为羟基基团;第二反义链底物的5’端为磷酸基团,3’端为羟基基团。Further, the 3’ end of the first sense chain substrate and the 5’ end of the second sense chain substrate are connected under the catalysis of RNA ligase to form a sense chain; the 3’ end of the first antisense chain substrate and the 5’ end of the second antisense chain substrate are connected under the catalysis of RNA ligase to form an antisense chain; preferably, the 5’ end of the first sense chain substrate is a hydroxyl group, and the 3’ end is a hydroxyl group; the 5’ end of the second sense chain substrate is a phosphate group, and the 3’ end is an L96 group; preferably, the 5’ end of the first antisense chain substrate is a hydroxyl group, and the 3’ end is a hydroxyl group; the 5’ end of the second antisense chain substrate is a phosphate group, and the 3’ end is a hydroxyl group.

进一步地,第一正义链底物为SEQ ID NO:10或16所示的核酸序列,第二正义链底物为SEQ ID NO:11或17所示的核酸序列。Furthermore, the first sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 10 or 16, and the second sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 11 or 17.

进一步地,第一反义链底物为SEQ ID NO:13或19所示的核酸序列,第二反义链底物为SEQ ID NO:12或18所示的核酸序列。Furthermore, the first antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 13 or 19, and the second antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 12 or 18.

进一步地,正义链底物和反义链底物均包括3条底物,Furthermore, the sense strand substrate and the antisense strand substrate each include three substrates,

正义链底物包括第一正义链底物、第二正义链底物和第三正义链底物;The sense strand substrate includes a first sense strand substrate, a second sense strand substrate and a third sense strand substrate;

反义链底物包括第一反义链底物、第二反义链底物和第三反义链底物;优选地,第一正义链底物为SEQ ID NO:20所示的核酸序列;第二正义链底物为SEQ ID NO:21所示的核酸序列;第三正义链底物为SEQ ID NO:22所示的核酸序列;优选地,第一反义链底物为SEQID NO:25所示的核酸序列;第二反义链底物为SEQ ID NO:24所示的核酸序列;第三反义链底物为SEQ ID NO:23所示的核酸序列。The antisense strand substrate includes a first antisense strand substrate, a second antisense strand substrate and a third antisense strand substrate; preferably, the first sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 20; the second sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 21; the third sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 22; preferably, the first antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 25; the second antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 24; the third antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 23.

进一步地,正义链底物和反义链底物的浓度为0.1-4.5 mM;优选地,RNA连接酶的浓度为0.05-0.6 mg/mL,更优选为0.2 mg/mL;优选地,在正义链底物、反义链底物和RNA连接酶混合形成的反应体系中,还包括ATP、Tris-HCl、MgCl2和DTT;优选地,酶催化反应的温度为0-60℃,更优选为4-37℃;优选地,酶催化反应的时间为0.5-24 h,更优选为16-24h;优选地,酶催化反应的pH值为6.0-8.5;优选地,酶催化反应后,进行纯化,经冷冻干燥后,得到Cemdisiran。Furthermore, the concentration of the sense strand substrate and the antisense strand substrate is 0.1-4.5 mM; preferably, the concentration of RNA ligase is 0.05-0.6 mg/mL, more preferably 0.2 mg/mL; preferably, the reaction system formed by mixing the sense strand substrate, the antisense strand substrate and the RNA ligase also includes ATP, Tris-HCl, MgCl2 and DTT; preferably, the temperature of the enzyme catalyzed reaction is 0-60°C, more preferably 4-37°C; preferably, the time of the enzyme catalyzed reaction is 0.5-24 h, more preferably 16-24 h; preferably, the pH value of the enzyme catalyzed reaction is 6.0-8.5; preferably, after the enzyme catalyzed reaction, purification is carried out and Cemdisiran is obtained after freeze-drying.

应用本发明的技术方案,利用上述制备方法,通过RNA连接酶催化正义链底物之间连接形成Cemdisiran的正义链,催化反义链底物之间连接形成Cemdisiran的反义链,从而实现利用生物合成的方式制备此种结构复杂、带有多种修饰的siRNA。相较于利用化学合成制备Cemdisiran,本申请的制备方法获得的产物纯度较高、杂质少,且反应条件温和,便于实现工业化放大生产。By applying the technical solution of the present invention and utilizing the above-mentioned preparation method, RNA ligase is used to catalyze the connection between the sense strand substrates to form the sense strand of Cemdisiran, and to catalyze the connection between the antisense strand substrates to form the antisense strand of Cemdisiran, thereby realizing the preparation of such a complex structure and siRNA with multiple modifications by biosynthesis. Compared with the preparation of Cemdisiran by chemical synthesis, the product obtained by the preparation method of the present application has higher purity, less impurities, and mild reaction conditions, which is convenient for industrialized scale-up production.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings constituting a part of the present application are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the drawings:

图1示出了本发明利用RNA连接酶进行Cemdisiran合成的示意图;FIG1 shows a schematic diagram of the synthesis of Cemdisiran using RNA ligase in the present invention;

图2示出了本发明实施例1中的连接酶31、连接酶48和连接酶11催化产物的Urea-PAGE检测结果图;FIG2 shows the Urea-PAGE detection results of the catalytic products of ligase 31, ligase 48 and ligase 11 in Example 1 of the present invention;

图3示出了本发明实施例2中连接酶48的HPLC检测结果图。FIG. 3 shows the HPLC detection result of the ligase 48 in Example 2 of the present invention.

具体实施方式DETAILED DESCRIPTION

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。It should be noted that, in the absence of conflict, the embodiments and features in the embodiments of the present application can be combined with each other. The present invention will be described in detail below in conjunction with the embodiments.

术语解释:Terminology explanation:

N+1杂质:相较于目标合成序列具有单个核苷酸额外连接的核酸杂质。N+1 impurity: A nucleic acid impurity that has a single nucleotide extra attached compared to the target synthetic sequence.

N-1杂质:相较于目标合成序列具有单个核苷酸缺失的核酸杂质。N-1 impurity: A nucleic acid impurity that has a single nucleotide missing compared to the target synthetic sequence.

如背景技术所提到的,现有技术对于Cemdisiran的制备采用化学合成的方式进行,不仅使用大量有机溶剂,不符合绿色化学的发展理念,且合成规模放大的成本非常高。此外,存在制备产物纯度低、杂质多、尤其存在难以去除的N+1杂质和N-1杂质,影响后续对于产物的纯化。在本申请中发明人尝试开发一种治疗免疫球蛋白A肾病的siRNA的制备方法,利用酶催化合成Cemdisiran,因而提出了本申请的一系列保护方案。As mentioned in the background technology, the prior art uses chemical synthesis to prepare Cemdisiran, which not only uses a large amount of organic solvents, but also does not conform to the development concept of green chemistry, and the cost of scale-up of the synthesis is very high. In addition, there are low purity and many impurities in the prepared product, especially N+1 impurities and N-1 impurities that are difficult to remove, which affect the subsequent purification of the product. In this application, the inventor attempts to develop a method for preparing siRNA for treating immunoglobulin A nephropathy, using enzyme-catalyzed synthesis of Cemdisiran, and thus proposes a series of protection schemes of this application.

在本申请第一种典型的实施方式中,提供了一种制备Cemdisiran的方法,Cemdisiran为siRNA,由正义链和反义链通过互补配对组成;方法包括:将正义链底物、反义链底物和RNA连接酶混合,其中,正义链底物能够组成正义链,反义链底物能够组成反义链;正义链底物和反义链底物以碱基互补形成的氢键连接,正义链底物和反义链底物的头尾碱基之间均未互相连接,形成含有缺刻的双链核苷酸结构;利用RNA连接酶将缺刻两端的碱基以磷酸二酯键连接,形成Cemdisiran;缺刻两端的碱基分别为不同底物的5’端和3’端,5’端为磷酸根,3’端为羟基;利用RNA连接酶连接缺刻上下游的5’端的磷酸根和3’端的羟基,形成磷酸二酯键,获得Cemdisiran;RNA连接酶选自RNA连接酶家族1或RNA连接酶家族2;RNA连接酶包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5或SEQ IDNO:6所示的RNA连接酶中的一种或多种;或与SEQ ID NO:1- SEQ ID NO:6中所示的任一RNA连接酶具有70%以上同一性,且具有催化磷酸二酯键形成活性的酶。其中,上述正义链底物与反义链底物形成的含有缺刻的双链核苷酸结构具有黏性末端。In a first typical embodiment of the present application, a method for preparing Cemdisiran is provided, wherein Cemdisiran is siRNA, and is composed of a sense strand and an antisense strand through complementary pairing; the method comprises: mixing a sense strand substrate, an antisense strand substrate and an RNA ligase, wherein the sense strand substrate can form a sense strand, and the antisense strand substrate can form an antisense strand; the sense strand substrate and the antisense strand substrate are connected by hydrogen bonds formed by base complementarity, and the head and tail bases of the sense strand substrate and the antisense strand substrate are not connected to each other, so as to form a double-stranded nucleotide structure containing a nick; using RNA ligase to connect the bases at both ends of the nick by phosphodiester bonds to form Cemdisiran; the bases at both ends of the nick are the 5' end and the 3' end of different substrates, respectively, the 5' end is a phosphate group, and the 3' end is a hydroxyl group; using RNA ligase to connect the phosphate group at the 5' end and the hydroxyl group at the 3' end upstream and downstream of the nick to form a phosphodiester bond to obtain Cemdisiran; the RNA ligase is selected from RNA ligase family 1 or RNA ligase family 2; the RNA ligase comprises SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6, or one or more of the RNA ligases shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6; or an enzyme having 70% or more identity with any RNA ligase shown in SEQ ID NO: 1 to SEQ ID NO: 6 and having activity of catalyzing phosphodiester bond formation. The double-stranded nucleotide structure containing a nick formed by the sense strand substrate and the antisense strand substrate has a sticky end.

正义链底物、反义链底物可通过固相法化学合成,也可以通过液相法化学合成。The sense strand substrate and the antisense strand substrate can be chemically synthesized by a solid phase method or a liquid phase method.

在上述制备方法中,正义链底物为能够组成正义链的2条或更多条核苷酸序列,即正义链底物的多条核苷酸序列能够拼接形成于正义链序列相同的序列,与正义链的区别在于正义链底物之间存在缺刻,未以磷酸二酯键相连接。同理利用RNA连接酶将2条或更多条反义链底物之间以磷酸二酯键相连接,获得Cemdisiran的反义链。In the above preparation method, the sense strand substrate is two or more nucleotide sequences that can form a sense strand, that is, the multiple nucleotide sequences of the sense strand substrate can be spliced to form a sequence identical to the sense strand sequence, and the difference from the sense strand is that there is a nick between the sense strand substrates and they are not connected by a phosphodiester bond. Similarly, RNA ligase is used to connect two or more antisense strand substrates by a phosphodiester bond to obtain the antisense strand of Cemdisiran.

在上述制备方法中,将正义链底物、反义链底物和RNA连接酶共同混合,一锅法直接制备获得Cemdisiran。在一锅法的连接中,正义链底物和反义链底物之间能够进行碱基互补配对,形成双链结构,RNA连接酶识别此种双链结构后对双链结构中存在的缺刻进行连接,从而制备获得目标产物Cemdisiran。In the above preparation method, the sense strand substrate, the antisense strand substrate and the RNA ligase are mixed together, and Cemdisiran is directly prepared in a one-pot method. In the one-pot ligation, the sense strand substrate and the antisense strand substrate can undergo base complementary pairing to form a double-stranded structure, and the RNA ligase recognizes the double-stranded structure and connects the nicks in the double-stranded structure, thereby preparing the target product Cemdisiran.

任何能够进行RNA合成的方法均适用于本申请,在一种优选的实施例中,正义链底物和反义链底物由固相合成方法或液相合成方法得到。在一种优选的实施例中,正义链为SEQ ID NO:14所示的核酸序列,反义链为SEQ ID NO:15所示的核酸序列。Any method capable of RNA synthesis is applicable to the present application. In a preferred embodiment, the sense strand substrate and the antisense strand substrate are obtained by a solid phase synthesis method or a liquid phase synthesis method. In a preferred embodiment, the sense strand is the nucleic acid sequence shown in SEQ ID NO: 14, and the antisense strand is the nucleic acid sequence shown in SEQ ID NO: 15.

SEQ ID NO:14:SEQ ID NO: 14:

AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAfUmAfAmUmAm。AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAfUmAfAmUmAm.

SEQ ID NO:15:SEQ ID NO: 15:

UmsAfsUfUmAfUmAmAfAmAfAmUmAmUfCmUfUmGfCmUmUmsUmsUmdTdT。UmsAfsUfUmAfUmAmAfAmAfAmUmAmUfCmUfUmGfCmUmUmsUmsUmdTdT.

本申请中,A、C、G或U后的m表述对该核糖核苷酸的2’甲氧基修饰。f表示对于该核糖核苷酸的2’氟修饰,“sAm”、“sGf”等写法中的s表示对于该核糖核苷酸的5’磷酸的硫代修饰,A、C、G或T前的d表示该核苷酸为脱氧核糖核苷酸。In the present application, m after A, C, G or U indicates 2' methoxy modification of the ribonucleotide. f indicates 2' fluorine modification of the ribonucleotide, s in "sAm", "sGf" and the like indicates thio modification of the 5' phosphate of the ribonucleotide, and d before A, C, G or T indicates that the nucleotide is a deoxyribonucleotide.

Cemdisiran的正义链长为21nt,反义链为25nt,将正义链/反义链以连接效率分成不同长度的几段正义链/反义链底物以酶催化反应连接,能够得到纯度较高的产物。在一种优选的实施例中,正义链由2条及以上的正义链底物组成,正义链底物的长度为3-18nt,更优选为4-16nt;优选地,反义链由2条及以上的反义链底物组成,反义链底物的长度为3-22nt,更优选为8-13nt。The sense strand of Cemdisiran is 21nt long, and the antisense strand is 25nt long. The sense strand/antisense strand is divided into several sense strand/antisense strand substrates of different lengths according to the connection efficiency, and connected by enzyme-catalyzed reaction, so as to obtain a product with higher purity. In a preferred embodiment, the sense strand is composed of 2 or more sense strand substrates, and the length of the sense strand substrate is 3-18nt, more preferably 4-16nt; preferably, the antisense strand is composed of 2 or more antisense strand substrates, and the length of the antisense strand substrate is 3-22nt, more preferably 8-13nt.

在利用一锅法进行Cemdisiran合成时,如图1所示,正义链底物和反义链底物之间能够进行碱基互补配对,形成双链结构,RNA连接酶识别底物互补配对形成的、带有缺刻的双链结构,从而将正义链底物和反义链底物进行连接得到Cemdisiran。在一种优选的实施例中,正义链底物与反义链底物经退火后形成的双链RNA存在3个及以上能够互补配对的碱基组合。在一种优选的实施例中,双链RNA末端为粘性末端;粘性末端长度为2-8nt。When Cemdisiran is synthesized using a one-pot method, as shown in FIG1 , the sense strand substrate and the antisense strand substrate can undergo base complementary pairing to form a double-stranded structure, and RNA ligase recognizes the double-stranded structure with a nick formed by the complementary pairing of the substrates, thereby connecting the sense strand substrate and the antisense strand substrate to obtain Cemdisiran. In a preferred embodiment, the double-stranded RNA formed by annealing the sense strand substrate and the antisense strand substrate has 3 or more base combinations that can complement each other. In a preferred embodiment, the ends of the double-stranded RNA are sticky ends; the length of the sticky ends is 2-8 nt.

任何能够识别底物互补配对形成的、带有缺刻的双链结构,催化磷酸基团与羟基基团形成磷酸二酯键的RNA连接酶均适用于本申请,在一种优选的实施例中,RNA连接酶选自RNA连接酶家族1或RNA连接酶家族2。Any RNA ligase that can recognize a double-stranded structure with a nick formed by complementary pairing of substrates and catalyze the formation of a phosphodiester bond between a phosphate group and a hydroxyl group is suitable for the present application. In a preferred embodiment, the RNA ligase is selected from RNA ligase family 1 or RNA ligase family 2.

在一种优选的实施例中,RNA连接酶包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5或SEQ ID NO:6所示的RNA连接酶中的一种或多种;或与SEQID NO:1- SEQ ID NO:6中所示的任一RNA连接酶具有70%以上同一性,包括但不限于75%、80%、85%、90%、95%、99%以上(比如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、98.5%、99%、99.5%、99.6%、99.7%、99.8%以上,甚至99.9%以上)且具有催化磷酸二酯键形成活性的酶。其中,RNA连接酶家族1的RNA连接酶包括SEQ ID NO:4或SEQ ID NO:6,RNA连接酶家族2的RNA连接酶包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3或SEQ ID NO:5。In a preferred embodiment, the RNA ligase includes one or more of the RNA ligases shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6; or an enzyme having more than 70% identity with any RNA ligase shown in SEQ ID NO: 1-SEQ ID NO: 6, including but not limited to 75%, 80%, 85%, 90%, 95%, 99% or more (such as 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8% or more, or even 99.9% or more) and having activity in catalyzing phosphodiester bond formation. Among them, the RNA ligase of RNA ligase family 1 includes SEQ ID NO: 4 or SEQ ID NO: 6, and the RNA ligase of RNA ligase family 2 includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 5.

SEQ ID NO:1:(连接酶 48,Escherichia phage JN02)SEQ ID NO: 1: (ligase 48, Escherichia phage JN02)

MFKKYSSLENHYNSKFIEKLYTNGLTTGVWVAREKIHGTNFSLIIERDNVTCAKRTGPILPAEDFYGYEIVLKKYDKAIKAVQEVMESISTSVPVSYQVFGEFAGGGIQKGVDYGEKDFYVFDIIINTESDDTYYMSDYEMQDFCNTFGFKMAPMLGRGTFDSLIMIPNDLDSVLAAYNSTASEDLVEANNCVFDANVIGDNTAEGYVLKPCFPKWLSNGTRVAIKCKNSKFSEKKKSDKPVKTQVPLTEIDKNLLDVLACYVTLNRVNNVISKIGTVTPKDFGKVMGLTVQDILEETSREGIVLTSSDNPNLVKKELVRMVQDVLRPAWIELVS。MFKKYSSLENHYNSKFIEKLYTNGLTTGVWVAREKIHGTNFSLIIERDNVTCAKRTGPILPAEDFYGYEIVLKKYDKAIKAVQEVMESISTSVPVSYQVFGEFAGGGIQKGVDYGEKDFYVFDIIINTESDDTYYMSDYEMQDFCNTFGFKMAPMLGRGTFDSLIMIPNDLDSVLAAYNSTASEDLVEANNCVFDANVIGDNTAEGYVLKPCFP KWLSNGTRVAIKCKNSKFSEKKKSDKPVKTQVPLTEIDKNLLDVLACYVTLNRVNNVISKIGTVTPKDFGKVMGLTVQDILEETSREGIVLTSSDNPNLVKKELVRMVQDVLRPAWIELVS.

SEQ ID NO:2:(连接酶 25,Vibrio phage NT-1)SEQ ID NO: 2: (ligase 25, Vibrio phage NT-1)

MSFVKYTSLENSYRQAFVDKCDMLGVRDWVALEKIHGANFSFIVEFDGGYTVTPAKRTSIIGATATGDYDFYGCTSVVEAHKEKVELVANFLWLNEYINLYEPIIIYGELAGKGIQKEVNYGDKDFWAFDIFLPQREEFVDWDTCVAAFTNAEIKYTKELARGTLDELLRIDPLFKSLHTPAEHEGDNVAEGFVVKQLHSEKRLQSGSRAILKVKNEKFKEKKKKEGKTPTKLVLTPEQEKLHAEFSCYLTENRLKNVLSKLGTVNQKQFGMISGLFVKDAKDEFERDELNEVAIDRDDWNAIRRSLTNIANEILRKNWLNILDGNF。MSFVKYTSLENSYRQAFVDKCDMLGVRDWVALEKIHGANFSFIVEFDGGYTVTPAKRTSIIGATATGDYDFYGCTSVVEAHKEKVELVANFLWLNEYINLYEPIIIYGELAGKGIQKEVNYGDKDFWAFDIFLPQREEFVDWDTCVAAFTNAEIKYTKELARGTLDELLRIDPLFKSLHTPAEHEGDNVAEGFVVKQLHSE KRLQSGSRAILKVKNEKFKEKKKKEGKTPTKLVLTPEQEKLHAEFSCYLTENRLKNVLSKLGTVNQKQFGMISGLFVKDAKDEFERDELNEVAIDRDDWNAIRRSLTNIANEILRKNWLNILDGNF.

SEQ ID NO:3:(连接酶 26,Escherichia phage AR1)SEQ ID NO:3: (ligase 26, Escherichia phage AR1)

MQELFNNLMELCKDSQRKFFYSDDVSASGRTYRIFSYNYASYSDWLLPDALECRGIMFEMDGEKPVRIASRPMEKFFNLNENPFTMNIDLNDVDYILTKEDGSLVSTYLDGDEILFKSKGSIKSEQALMANGILMNINHHQLRDRLKELAEDGFTANFEFVAPTNRIVLAYQEMKIILLNIRENETGEYISYDDIYKDAALRPYLVERYEIDSPKWVEEAKNAENIEGYVAVMKDGSHFKIKSDWYVSLHSTKSSLDNPEKLFKTIIDGASDDLKAMYADDEYSYRKIEAFETTYLKYLDRALFLVLDCHNKHCGKDRKTYAMEAQGVAKGAGMDHLFGIIMSLYQGYDSQEKVMCEIEQNFLKNYKKFIPEGY。MQELFNNLMELCKDSQRKFFYSDDVSASGRTYRIFSYNYASYSDWLLPDALECRGIMFEMDGEKPVRIASRPMEKFFNLNENPFTMNIDLNDVDYILTKEDGSLVSTYLDGDEILFKSKGSIKSEQALMANGILMNINHHQLRDRLKELAEDGFTANFEFVAPTNRIVLAYQEMKIILLNIRENETGEYISYDDIYKDAALRPYLVERYEIDSPKWVE EAKNAENIEGYVAVMKDGSHFKIKSDWYVSLHSTKSSLDNPEKLFKTIIDGASDDLKAMYADDEYSYRKIEAFETTYLKYLDRALFLVLDCHNKHCGKDRKTYAMEAQGVAKGAGMDHLFGIIMSLYQGYDSQEKVMCEIEQNFLKNYKKFIPEGY.

SEQ ID NO:4:(连接酶 31,Vibrio phage VH12019)SEQ ID NO: 4: (ligase 31, Vibrio phage VH12019)

MTTQELYNHLMTLTDDAEGKFFFADHISPLGEKLRVFSYHIASYSDWLLPGALEARGIMFQLDEQDKMVRIVSRPMEKFFNLNENPFTMDLDLTTTVQLMDKADGSLISTYLTGENFALKSKTSIFSEQAVAANRYIKLPENRDLWEFCDDLTQAGCTVNMEWCAPNNRIVLEYPEAKLVILNIRDNETGDYVSFDDIPLPALMRVKKWLVDEYDPETAHADDFVEKLRATKGIEGMILRLANGQSVKIKTQWYVDLHSQKDSVNVPKKLVTTILNNNHDDLYALFADDKPTIDRIREFDSHVSKTVSASFHAVSQFYVKNRHMSRKDYAIAGQKTLKPWEFGVAMIAYQNQTVEGVYEALVGAYLKRPELLIPEKYLNEA。MTTQELYNHLMTLTDDAEGKFFFADHISPLGEKLRVFSYHIASYSDWLLPGALEARGIMFQLDEQDKMVRIVSRPMEKFFNLNENPFTMDLDLTTTVQLMDKADGSLISTYLTGENFALKSKTSIFSEQAVAANRYIKLPENRDLWEFCDDLTQAGCTVNMEWCAPNNRIVLEYPEAKLVILNIRDNETGDYVSFDDIPLPALMRVKKWLVDEYDPETAH ADDFVEKLRATKGIEGMILRLANGQSVKIKTQWYVDLHSQKDSVNVPKKLVTTILNNNHDDLYALFADDKPTIDRIREFDSHVSKTVSASFHAVSQFYVKNRHMSRKDYAIAGQKTLKPWEFGVAMIAYQNQTVEGVYEALVGAYLKRPELLIPEKYLNEA.

SEQ ID NO:5:(连接酶 41,Vibrio phage VH7D)SEQ ID NO: 5: (ligase 41, Vibrio phage VH7D)

MNVQELYKNLMSLADDAEGKFFFADHLSPLGEKFRVFSYHIASYSDWLLPGALEARGIMFQLDDNDEMIRIVSRPMEKFFNLNENPFTMELDLTTTVQLMDKADGSLISTYLSGENFALKSKTSIFSEQAVAANRYIKKPENRDLWEFCDDCTQAGLTVNMEWCAPNNRIVLEYPEAKLVILNIRDNETGDYVSFDDIPQSALMRVKQWLVDEYDPATAHEPDFVEKLRDTKGIEGMILRLANGQSVKIKTQWYVDLHSQKDSVNVPKKLVTTILNGNHDDLYALFADDKPTIERIREFDSHVTKTLTNSFNAVRQFYARNRHLARKDYAIAGQKVLKPWEFGVAMIAYQKQTVEGVYESLVTAYLKRPELAIPEKYLNGV。MNVQELYKNLMSLADDAEGKFFFADHLSPLGEKFRVFSYHIASYSDWLLPGALEARGIMFQLDDNDEMIRIVSRPMEKFFNLNENPFTMELDLTTTVQLMDKADGSLISTYLSGENFALKSKTSIFSEQAVAANRYIKKPENRDLWEFCDDCTQAGLTVNMEWCAPNNRIVLEYPEAKLVILNIRDNETGDYVSFDDIPQSALMRVKQWLVDEYDPATA HEPDFVEKLRDTKGIEGMILRLANGQSVKIKTQWYVDLHSQKDSVNVPKKLVTTILNGNHDDLYALFADDKPTIERIREFDSHVTKTLTNSFNAVRQFYARNRHLARKDYAIAGQKVLKPWEFGVAMIAYQKQTVEGVYESLVTAYLKRPELAIPEKYLNGV.

SEQ ID NO:6:(连接酶 42,Escherichia phage JN02)SEQ ID NO:6: (ligase 42, Escherichia phage JN02)

MEKLYYNLLSLCKSSSDRKFFYSDDVSPIGKKYRIFSYNFASYSDWLLPDALECRGIMFEMDGETPVRIASRPMEKFFNLNENPFTLSINLDDVKYLMTKEDGSLVSTYLDGGTVRFKSKGSIKSDQAVSATSILLDIDHKNLADRLLELCNDGFTANFEYVAPTNKIVLTYPEKRLILLNIRDNNTGEYIEYDDIYLDPVFRKYLVDRFEVPEGDWTSDVKSSTNIEGYVAVMKDGSHFKLKTDWYVALHTTRDSISSPEKLFLAIVNGASDDLKAMYADDEFSFKKVELFEKAYLDFLDRSFYICLDTYDKHKGKDRKTYAIEAQAVCKGAQTPWLFGIIMNLYQGGSKEQMMTALESVFIKNHKNFIPEGY。MEKLYYNLLSLCKSSSDRKFFYSDDVSPIGKKYRIFSYNFASYSDWLLPDALECRGIMFEMDGETPVRIASRPMEKFFNLNENPFTLSINLDDVKYLMTKEDGSLVSTYLDGGTVRFKSKGSIKSDQAVSATSILLDIDHKNLADRLLELCNDGFTANFEYVAPTNKIVLTYPEKRLILLNIRDNNTGEYIEYDDIYLDPVFRKYLVDRFEVPEGDWTSDV KSSTNIEGYVAVMKDGSHFKLKTDWYVALHTTRDSISSPEKLFLAIVNGASDDLKAMYADDEFSFKKVELFEKAYLDFLDRSFYICLDTYDKHKGKDRKTYAIEAQAVCKGAQTPWLFGIIMNLYQGGSKEQMMTALESVFIKNHKNFIPEGY.

SEQ ID NO:7:(连接酶 11,Thermococcus)SEQ ID NO:7: (ligase 11, Thermococcus)

MVSSYFRNLLLKLGLPEERLEVLEGKGALAEDEFEGIRYVRFRDSARNFRRGTVVFETGEAVLGFPHIKRVVQLENGIRRVFKNKPFYVEEKVDGYNVRVVKVKDKILAITRGGFVCPFTTERIEDFVNFDFFKDYPNLVLVGEMAGPESPYLVEGPPYVKEDIEFFLFDIQEKGTGRSLPAEERYRLAEEYGIPQVERFGLYDSSKVGELKELIEWLSEEKREGIVMKSPDMRRIAKYVTPYANINDIKIGSHIFFDLPHGYFMGRIKRLAFYLAENHVRGEEFENYAKALGTALLRPFVESIHEVANGGEVDETFTVRVKNITTAHKMVTHFERLGVKIHIEDIEDLGNGYWRITFKRVYPDATREIRELWNGLAFVD。MVSSYFRNLLLKLGLPEERLEVLEGKGALAEDEFEGIRYVRFRDSARNFRRGTVVFETGEAVLGFPHIKRVVQLENGIRRVFKNKPFYVEEKVDGYNVRVVKVKDKILAITRGGFVCPFTTERIEDFVNFDFFKDYPNLVLVGEMAGPESPYLVEGPPYVKEDIEFFLFDIQEKGTGRSLPAEERYRLAEEYGIPQVERFGLYDSSKV GELKELIEWLSEEKREGIVMKSPDMRRIAKYVTPYANINDIKIGSHIFFDLPHGYFMGRIKRLAFYLAENHVRGEEFENYAKALGTALLRPFVESIHEVANGGEVDETFTVRVKNITTAHKMVTHFERLGVKIHIEDIEDLGNGYWRITFKRVYPDATREIRELWNGLAFVD.

SEQ ID NO:8:(连接酶 20,Archaea)SEQ ID NO: 8: (ligase 20, Archaea)

MVVPLKRIDKIRWEIPKFDKRMRVPGRVYADEVLLEKMKNDRTLEQATNVAMLPGIYKYSIVMPDGHQGYGFPIGGVAAFDVKEGVISPGGIGYDINCGVRLIRTNLTEKEVRPRIKQLVDTLFKNVPSGVGSQGRIKLHWTQIDDVLVDGAKWAVDNGYGWERDLERLEEGGRMEGADPEAVSQRAKQRGAPQLGSLGSGNHFLEVQVVDKIFDPEVAKAYGLFEGQVVVMVHTGSRGLGHQVASDYLRIMERAIRKYRIPWPDRELVSVPFQSEEGQRYFSAMKAAANFAWANRQMITHWVRESFQEVFKQDPEGDLGMDIVYDVAHNIGKVEEHEVDGKRVKVIVHRKGATRAFPPGHEAVPRLYRDVGQPVLIPGSMGTASYILAGTEGAMKETFGSTCHGAGRVLSRKAATRQYRGDRIRQELLNRGIYVRAASMRVVAEEAPGAYKNVDNVVKVVSEAGIAKLVARMRPIGVAKGAAALEH。MVVPLKRIDKIRWEIPKFDKRMRVPGRVYADEVLLEKMKNDRTLEQATNVAMLPGIYKYSIVMPDGHQGYGFPIGGVAAFDVKEGVISPGGIGYDINCGVRLIRTNLTEKEVRPRIKQLVDTLFKNVPSGVGSQGRIKLHWTQIDDVLVDGAKWAVDNGYGWERDLERLEEGGRMEGADPEAVSQRAKQRGAPQLGSLGS GNHFLEVQVVDKIFDPEVAKAYGLFEGQVVVMVHTGSRGLGHQV ASDYLRIMERAIRKYRIPWPDRELLVSVPFQSEEGQRYFSAMKAAANFAWANRQMITHWVRESFQEVFKQDPEGDLGMDIVYDVAHNIGKVEEHEVDGKRVKVIVHRKGATRAFPPGHEAVPRLYRDVGQPVLIPGSMGTASYILAGTEGAMKETFGSTCHGAGRVLSRKAATRQYRGDRIRQELLNRGIYVRAASMRVVAEEAPGAYK NVDNVVKVVSEAGIAKLVARMRPIGVAKGAAALEH.

SEQ ID NO:9:(连接酶 32,bacteria)SEQ ID NO: 9: (ligase 32, bacteria)

MVSLHFKHILLKLGLDKERIEILEMKGGIVEDEFEGLRYLRFKDSAKGLRRGTVVFNESDIILGFPHIKRVVHLRNGVKRIFKSKPFYVEEKVDGYNVRVAKVGEKILALTRGGFVCPFTTERIGDFINEQFFKDHPNLILCGEMAGPESPYLVEGPPYVEEDIQFFLFDIQEKRTGRSIPVEERIKLAEEYGIQSVEIFGLYSYEKIDELYELIERLSKEGREGVVMKSPDMKKIVKYVTPYANVNDIKIGSRIFFDLPHGYFMQRIKRLAFYIAEKRIRREDFDEYAKALGKALLQPFVESIWDVAAGEMIAEIFTVRVKKIETAYKMVSHFERMGLNIHIDDIEELGNGYWKITFKRVYDDATKEIRELWNGHAFVD。MVSLHFKHILLKLGLDKERIEILEMKGGIVEDEFEGLRYLRFKDSAKGLRRGTVVFNESDIILGFPHIKRVVHLRNGVKRIFKSKPFYVEEKVDGYNVRVAKVGEKILALTRGGFVCPFTTERIGDFINEQFFKDHPNLILCGEMAGPESPYLVEGPPYVEEDIQFFLFDIQEKRTGRSIPVEERIKLAEEYGIQSVEIFGLYSYEKIDE LYELIERLSKEGREGVVMKSPDMKKIVKYVTPYANVNDIKIGSRIFFDLPHGYFMQRIKRLAFYIAEKRIRREDFDEYAKALGKALLQPFVESIWDVAAGEMIAEIFTVRVKKIETAYKMVSHFERMGLNIHIDDIEELGNGYWKITFKRVYDDATKEIRELWNGHAFVD.

本申请中的同一性(Identity)是指氨基酸序列或核酸序列之间的“同一性”,即氨基酸序列或核酸序列中的种类相同的氨基酸残基或核苷酸的比率的总计。氨基酸序列或核酸序列的同一性可以利用BLAST(Basic Local Alignment Search Tool)、FASTA等比对程序来确定。Identity in this application refers to the "identity" between amino acid sequences or nucleic acid sequences, that is, the total ratio of the same type of amino acid residues or nucleotides in the amino acid sequence or nucleic acid sequence. The identity of amino acid sequences or nucleic acid sequences can be determined using alignment programs such as BLAST (Basic Local Alignment Search Tool) and FASTA.

70%、75%、80%、85%、90%、95%、99%以上(比如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、98.5%、99%、99.5%、99.6%、99.7%、99.8%以上,甚至99.9%以上)同一性且具有相同功能的蛋白质,其活性位点、活性口袋、活性机制、蛋白结构等均和a)序列提供的蛋白质大概率相同。Proteins with 70%, 75%, 80%, 85%, 90%, 95%, or more than 99% (for example, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 98.5%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, or even more than 99.9%) identity and the same function have a high probability of having the same active site, active pocket, active mechanism, protein structure, etc. as the protein provided by the sequence in a).

如本文所用,氨基酸残基缩写如下:丙氨酸(Ala;A)、天冬酰胺(Asn;N)、天冬氨酸(Asp;D)、精氨酸(Arg;R)、半胱氨酸(Cys;C)、谷氨酸(Glu;E)、谷氨酰胺(Gln;Q)、甘氨酸(Gly;G)、组氨酸(His;H)、异亮氨酸(Ile;I)、亮氨酸(Leu;L)、赖氨酸(Lys;K)、蛋氨酸(Met;M)、苯丙氨酸(Phe;F)、脯氨酸(Pro;P),丝氨酸(Ser;S)、苏氨酸(Thr;T)、色氨酸(Trp;W)、酪氨酸(Tyr;Y)和缬氨酸(Val;V)。As used herein, amino acid residues are abbreviated as follows: alanine (Ala; A), asparagine (Asn; N), aspartic acid (Asp; D), arginine (Arg; R), cysteine (Cys; C), glutamic acid (Glu; E), glutamine (Gln; Q), glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y) and valine (Val; V).

取代、替换等规则,一般情况下,哪些氨基酸性质类似,替换后的效果也类似。例如,在上述同源蛋白中,可发生保守的氨基酸替换。“保守的氨基酸替换”包括但不限于:Substitution and replacement rules. Generally speaking, amino acids with similar properties will have similar effects after replacement. For example, conservative amino acid replacements may occur in the above homologous proteins. "Conservative amino acid replacements" include but are not limited to:

疏水性氨基酸(Ala、Cys、Gly、Pro、Met、Val、Ile、Leu)被其他疏水性氨基酸取代;hydrophobic amino acids (Ala, Cys, Gly, Pro, Met, Val, Ile, Leu) are replaced by other hydrophobic amino acids;

侧链粗大的疏水性氨基酸(Phe、Tyr、Trp)被其他侧链粗大的疏水性氨基酸取代;Substitution of hydrophobic amino acids with bulky side chains (Phe, Tyr, Trp) by other hydrophobic amino acids with bulky side chains;

侧链带正电的氨基酸(Arg、His、Lys)被其他侧链带正电的氨基酸取代;Amino acids with positively charged side chains (Arg, His, Lys) are replaced by other amino acids with positively charged side chains;

侧链有极性不带电的氨基酸(Ser、Thr、Asn、Gln)被其他侧链有极性不带电的氨基酸取代。Amino acids with polar, uncharged side chains (Ser, Thr, Asn, Gln) are replaced by other amino acids with polar, uncharged side chains.

本领域技术人员也可以根据现有技术中的“blosum62评分矩阵”等本领域技术人员熟知的氨基酸替换规则对氨基酸进行保守替换。A person skilled in the art may also perform conservative substitutions on amino acids according to amino acid substitution rules well known to those skilled in the art, such as the "blosum62 scoring matrix" in the prior art.

本申请中只能通过SEQ ID NO:1~SEQ ID NO:6所示的RNA连接酶,或与SEQ ID NO:1~SEQ ID NO:6中所示的任一RNA连接酶具有70%以上同一性的酶催化本申请中底物之间形成磷酸二酯键,获得产物Cemdisiran。在本申请的相关实验中,发明人通过从大量的酶(50种)中进行筛选,获得了能够合成Cemdisiran的上述SEQ ID NO:1~SEQ ID NO:6所示的RNA连接酶。而实验中占比极大(高达70%)的阴性结果显示大多数RNA连接酶难以催化Cemdisiran的合成,包括但不限于SEQ ID NO:7~SEQ ID NO:9中所示的RNA连接酶,在本申请说明书只以SEQ ID NO:7~SEQ ID NO:9为例体现该类没有催化Cemdisiran合成活性的RNA连接酶。In the present application, only the RNA ligase shown in SEQ ID NO: 1 to SEQ ID NO: 6, or an enzyme with more than 70% identity with any RNA ligase shown in SEQ ID NO: 1 to SEQ ID NO: 6, can be used to catalyze the formation of a phosphodiester bond between the substrates in the present application to obtain the product Cemdisiran. In the relevant experiments of the present application, the inventors obtained the RNA ligase shown in SEQ ID NO: 1 to SEQ ID NO: 6 that can synthesize Cemdisiran by screening from a large number of enzymes (50 species). However, the negative results that accounted for a large proportion (up to 70%) in the experiment showed that most RNA ligases were difficult to catalyze the synthesis of Cemdisiran, including but not limited to the RNA ligases shown in SEQ ID NO: 7 to SEQ ID NO: 9. In the present application specification, only SEQ ID NO: 7 to SEQ ID NO: 9 are used as examples to reflect this type of RNA ligase that has no catalytic activity for the synthesis of Cemdisiran.

在一种优选的实施例中,正义链底物和反义链底物均包括2条底物,正义链底物包括第一正义链底物和第二正义链底物,反义链底物包括第一反义链底物和第二反义链底物;制备方法包括:将第一正义链底物、第二正义链底物、第一反义链底物和第二反义链底物混合,利用RNA连接酶催化第一正义链底物和第二正义链底物连接形成正义链,催化第一反义链底物和第二反义链底物连接形成反义链,正义链和反义链互补配对形成Cemdisiran。In a preferred embodiment, the sense chain substrate and the antisense chain substrate each include two substrates, the sense chain substrate includes a first sense chain substrate and a second sense chain substrate, and the antisense chain substrate includes a first antisense chain substrate and a second antisense chain substrate; the preparation method includes: mixing the first sense chain substrate, the second sense chain substrate, the first antisense chain substrate and the second antisense chain substrate, using RNA ligase to catalyze the connection of the first sense chain substrate and the second sense chain substrate to form a sense chain, catalyzing the connection of the first antisense chain substrate and the second antisense chain substrate to form an antisense chain, and the sense chain and the antisense chain are complementary paired to form Cemdisiran.

在一种优选的实施例中,第一正义链底物的3’端与第二正义链底物的5’端在RNA连接酶的催化下连接,形成正义链;第一反义链底物的3’端与第二反义链底物的5’端在RNA连接酶的催化下连接,形成反义链;优选地,第一正义链底物的5’端为羟基基团,3’端为羟基基团;第二正义链底物的5’端为磷酸基团,3’端为L96基团;优选地,第一反义链底物的5’端为羟基基团,3’端为羟基基团;第二反义链底物的5’端为磷酸基团,3’端为羟基基团。In a preferred embodiment, the 3' end of the first sense chain substrate and the 5' end of the second sense chain substrate are connected under the catalysis of RNA ligase to form a sense chain; the 3' end of the first antisense chain substrate and the 5' end of the second antisense chain substrate are connected under the catalysis of RNA ligase to form an antisense chain; preferably, the 5' end of the first sense chain substrate is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second sense chain substrate is a phosphate group, and the 3' end is an L96 group; preferably, the 5' end of the first antisense chain substrate is a hydroxyl group, and the 3' end is a hydroxyl group; the 5' end of the second antisense chain substrate is a phosphate group, and the 3' end is a hydroxyl group.

在一种优选的实施例中,第一正义链底物为SEQ ID NO:10或16所示的核酸序列,第二正义链底物为SEQ ID NO:11或17所示的核酸序列In a preferred embodiment, the first sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 10 or 16, and the second sense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 11 or 17.

在一种优选的实施例中,第一反义链底物为SEQ ID NO:13或19所示的核酸序列,第二反义链底物为SEQ ID NO:12或18所示的核酸序列。In a preferred embodiment, the first antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 13 or 19, and the second antisense strand substrate is the nucleic acid sequence shown in SEQ ID NO: 12 or 18.

利用上述制备方法和SEQ ID NOs:10-13或SEQ ID NOs:16-19所示的底物,能够制备Cemdisiran。但需要说明的是,对于底物的选择并非仅限于上述SEQ ID NO:10-13或SEQID NOs:16-19所示的底物,能够组合形成正义链和反义链的底物均能够应用于上述制备方法中,上述制备方法适用于Cemdisiran的制备但不局限于底物连接位置的不同,上述制备对于Cemdisiran的正义链序列和反义链序列的连接均具有较好的连接效果。正义链底物或反义链底物的数量包括但不限于2条、3条、4条乃至更多条。Cemdisiran can be prepared using the above preparation method and the substrates shown in SEQ ID NOs: 10-13 or SEQ ID NOs: 16-19. However, it should be noted that the selection of substrates is not limited to the substrates shown in SEQ ID NOs: 10-13 or SEQ ID NOs: 16-19. All substrates that can be combined to form a sense chain and an antisense chain can be applied to the above preparation method. The above preparation method is suitable for the preparation of Cemdisiran but is not limited to the difference in substrate connection positions. The above preparation has a good connection effect for the connection of the sense chain sequence and the antisense chain sequence of Cemdisiran. The number of sense chain substrates or antisense chain substrates includes but is not limited to 2, 3, 4 or even more.

SEQ ID NO:10:SEQ ID NO: 10:

AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAf。AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAf.

SEQ ID NO:11:SEQ ID NO: 11:

UmAfAmUmAm。UmAfAmUmAm.

SEQ ID NO:12:SEQ ID NO: 12:

UfCmUfUmGfCmUmUmsUmsUmdTdT。UfCmUfUmGfCmUmUmsUmsUmdTdT.

SEQ ID NO:13:SEQ ID NO: 13:

UmsAfsUfUmAfUmAmAfAmAfAmUmAm。UmsAfsUfUmAfUmAmAfAmAfAmUmAm.

SEQ ID NO:16:SEQ ID NO: 16:

AmsAmsGfCmAfAmGfAmUfAfUfUmUf。AmsAmsGfCmAfAmGfAmUfAfUfUmUf.

SEQ ID NO:17:SEQ ID NO: 17:

UmUmAfUmAfAmUmAm。UmUmAfUmAfAmUmAm.

SEQ ID NO:18:SEQ ID NO: 18:

UmAmUfCmUfUmGfCmUmUmsUmsUmdTdT。UmAmUfCmUfUmGfCmUmUmsUmsUmdTdT.

SEQ ID NO:19:SEQ ID NO: 19:

UmsAfsUfUmAfUmAmAfAmAfAm。UmsAfsUfUmAfUmAmAfAmAfAm.

在一种优选的实施例中,正义链底物和反义链底物均包括3条底物, 正义链底物包括第一正义链底物、第二正义链底物和第三正义链底物;反义链底物包括第一反义链底物、第二反义链底物和第三反义链底物;优选地,第一正义链底物为SEQ ID NO:20所示的核酸序列;第二正义链底物为SEQ ID NO:21所示的核酸序列;第三正义链底物为SEQ ID NO:22所示的核酸序列;优选地,第一反义链底物为SEQ ID NO:25所示的核酸序列;第二反义链底物为SEQ ID NO:24所示的核酸序列;第三反义链底物为SEQ ID NO:23所示的核酸序列。In a preferred embodiment, the sense chain substrate and the antisense chain substrate both include three substrates, the sense chain substrate includes a first sense chain substrate, a second sense chain substrate and a third sense chain substrate; the antisense chain substrate includes a first antisense chain substrate, a second antisense chain substrate and a third antisense chain substrate; preferably, the first sense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 20; the second sense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 21; the third sense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 22; preferably, the first antisense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 25; the second antisense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 24; the third antisense chain substrate is the nucleic acid sequence shown in SEQ ID NO: 23.

SEQ ID NO:20:SEQ ID NO: 20:

AmsAmsGfCmAfAmGf。AmsAmsGfCmAfAmGf.

SEQ ID NO:21:SEQ ID NO: 21:

AmUfAfUfUmUfUmUmAfUm。AmUfAfUfUmUfUmUmAfUm.

SEQ ID NO:22:SEQ ID NO: 22:

AfAmUmAm。AfAmUmAm.

SEQ ID NO:23:SEQ ID NO: 23:

GfCmUmUmsUmsUmdTdT。GfCmUmUmsUmsUmdTdT.

SEQ ID NO:24:SEQ ID NO: 24:

AmAfAmUmAmUfCmUfUm。AmAfAmUmAmUfCmUfUm.

SEQ ID NO:25:SEQ ID NO: 25:

UmsAfsUfUmAfUmAmAf。UmsAfsUfUmAfUmAmAf.

在一种优选的实施例中,正义链底物和反义链底物的浓度为0.1-4.5 mM;优选地,RNA连接酶的浓度为0.05-0.6 mg/mL,更优选为0.2 mg/mL;优选地,在正义链底物、反义链底物和RNA连接酶混合形成的反应体系中,还包括ATP、Tris-HCl、MgCl2和DTT;优选地,酶催化反应的温度为0-60℃,更优选为4-37℃;优选地,酶催化反应的时间为0.5-24 h,更优选为16-24 h;优选地,酶催化反应的pH值为6.0-8.5;优选地,酶催化反应后,进行纯化,经冷冻干燥后,得到Cemdisiran。In a preferred embodiment, the concentration of the sense strand substrate and the antisense strand substrate is 0.1-4.5 mM; preferably, the concentration of RNA ligase is 0.05-0.6 mg/mL, more preferably 0.2 mg/mL; preferably, the reaction system formed by mixing the sense strand substrate, the antisense strand substrate and the RNA ligase further comprises ATP, Tris-HCl, MgCl 2 and DTT; preferably, the temperature of the enzyme catalyzed reaction is 0-60°C, more preferably 4-37°C; preferably, the time of the enzyme catalyzed reaction is 0.5-24 h, more preferably 16-24 h; preferably, the pH value of the enzyme catalyzed reaction is 6.0-8.5; preferably, after the enzyme catalyzed reaction, purification is performed and Cemdisiran is obtained after freeze-drying.

上述正义链底物片段和反义链底物片段的浓度各自选自包括但不限于0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0或4.5mM;上述制备方法的反应温度包括但不限于10、15、16、20、25、30、35或40℃;上述制备方法的反应时间包括但不限于2、5、10、15、16、20、24、25、30、35、40、45或48h。The concentrations of the sense strand substrate fragment and the antisense strand substrate fragment are each selected from, including but not limited to, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 or 4.5 mM; the reaction temperature of the preparation method includes but is not limited to 10, 15, 16, 20, 25, 30, 35 or 40°C; the reaction time of the preparation method includes but is not limited to 2, 5, 10, 15, 16, 20, 24, 25, 30, 35, 40, 45 or 48 h.

以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。The present application is further described in detail below in conjunction with specific embodiments. These embodiments should not be construed as limiting the scope of protection claimed in the present application.

实施例1Example 1

基于Cemdisiran的序列设计如下的4个单链RNA片段:The following four single-stranded RNA fragments were designed based on the sequence of Cemdisiran:

使用固相合成方法制备上述4个单链RNA片段。其中,A、C、G或U后的m表述对该核糖核苷酸的2’甲氧基修饰,f表示对于该核糖核苷酸的2’氟修饰,“sAm”、“sGf”等写法中的s表示对于该核糖核苷酸的5’磷酸的硫代修饰,A、C、G或T前的d表示该核苷酸为脱氧核糖核苷酸,L96为一种N-乙酰半乳糖胺基团(GalNAc),如下式所示,L96保护基团最左侧波浪线表示该基团与正义链最后一位核苷酸连接。The above four single-stranded RNA fragments were prepared by solid phase synthesis. Among them, m after A, C, G or U represents 2'methoxy modification of the ribonucleotide, f represents 2'fluorine modification of the ribonucleotide, s in "sAm", "sGf" and other writings represents thio modification of 5'phosphate of the ribonucleotide, d before A, C, G or T represents that the nucleotide is a deoxyribonucleotide, L96 is an N-acetylgalactosamine group (GalNAc), as shown in the following formula, and the leftmost wavy line of the L96 protective group represents that the group is connected to the last nucleotide of the sense chain.

Cemdisiran-1的第1、2、4、6、8、12、14和15位核糖核苷酸上具有2’甲氧基修饰;第3、5、7、9、10、11、13和16位核糖核苷酸上具有2’氟修饰;第2和3位核糖核苷酸的5’磷酸上具有硫代修饰。Cemdisiran-1 has 2' methoxy modifications on ribonucleotides at positions 1, 2, 4, 6, 8, 12, 14 and 15; 2' fluorine modifications on ribonucleotides at positions 3, 5, 7, 9, 10, 11, 13 and 16; and thio modifications on the 5' phosphates of ribonucleotides at positions 2 and 3.

Cemdisiran-2的第1、3、4、5位核糖核苷酸上均具有2'甲氧基修饰,第2位核糖核苷酸上具有2’氟修饰。Cemdisiran-2 has 2' methoxy modification on the 1st, 3rd, 4th and 5th ribonucleotides and 2' fluorine modification on the 2nd ribonucleotide.

Cemdisiran-3的第2、4、6、7、8、9和10位核糖核苷酸上具有2’甲氧基修饰;第1、3和5位核糖核苷酸上具有2’氟修饰;第9和10位核糖核苷酸的5’磷酸上具有硫代修饰;第11和12位为脱氧核糖核苷酸,为胸腺嘧啶(T)。Cemdisiran-3 has 2’ methoxy modification on the 2nd, 4th, 6th, 7th, 8th, 9th and 10th ribonucleotides; 2’ fluorine modification on the 1st, 3rd and 5th ribonucleotides; thio modification on the 5’ phosphate of the 9th and 10th ribonucleotides; and thymine (T) on the 11th and 12th deoxyribonucleotides.

Cemdisiran-4的第1、4、6、7、9、11、12和13位核糖核苷酸上具有2’甲氧基修饰,第2、3、5、8和10位核糖核苷酸上具有2’氟修饰,第2和3位核糖核苷酸的5’磷酸上具有硫代修饰。Cemdisiran-4 has 2' methoxy modifications on ribonucleotides at positions 1, 4, 6, 7, 9, 11, 12 and 13, 2' fluorine modifications on ribonucleotides at positions 2, 3, 5, 8 and 10, and thio modifications on the 5' phosphates of ribonucleotides at positions 2 and 3.

制备获得的Cemdisiran的正义链为5‘-AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAfUmAfAmUmAm(SEQ ID NO: 14)-L96-3’,反义链为5‘-UmsAfsUfUmAfUmAmAfAmAfAmUmAmUfCmUfUmGfCmUmUmsUmsUmdTdT-3’ (SEQ ID NO: 15)。The positive sense strand of the prepared Cemdisiran is 5'-AmsAmsGfCmAfAmGfAmUfAfUfUmUfUmUmAfUmAfAmUmAm(SEQ ID NO: 14)-L96-3', and the antisense strand is 5'-UmsAfsUfUmAfUmAmAfAmAfAmUmAmUfCmUfUmGfCmUmUmsUmsUmdTdT-3' (SEQ ID NO: 15).

将4个单链RNA片段以等摩尔比例混匀后得到底物混合物,退火,获得退火后的RNA片段混合液。将退火后的RNA片段混合液进行酶催化连接反应,反应条件如下:在10 uL反应器中依次加入底物片段100μM,ATP 10eq,MgCl2 100eq,DTT 10eq,终浓度为0.2 mg/mL的RNA连接酶,1911 V 50 mM Tris-HCl pH 7.5,于16℃反应16h。反应结束后80℃加热5 min使蛋白失活,离心取上清,Urea-PAGE检测结果如图2所示。图2中M泳道代表RNA分子标准(marker),1泳道表示连接酶 31的反应体系,2泳道表示连接酶 48的反应体系,3泳道表示连接酶 11的反应体系。产率以Urea-PAGE结果中产物条带的灰度分析结果估算,最终产率结果如下表所示:The four single-stranded RNA fragments were mixed in an equimolar ratio to obtain a substrate mixture, which was annealed to obtain an annealed RNA fragment mixture. The annealed RNA fragment mixture was subjected to an enzyme-catalyzed ligation reaction. The reaction conditions were as follows: 100 μM substrate fragment, 10 eq ATP, 100 eq MgCl 2 , 10 eq DTT, a final concentration of 0.2 mg/mL RNA ligase, 1911 V 50 mM Tris-HCl pH 7.5 were added in sequence to a 10 uL reactor, and the reaction was carried out at 16°C for 16 hours. After the reaction, the protein was inactivated by heating at 80°C for 5 min, and the supernatant was obtained by centrifugation. The Urea-PAGE detection results are shown in Figure 2. In Figure 2, lane M represents the RNA molecule standard (marker), lane 1 represents the reaction system of ligase 31, lane 2 represents the reaction system of ligase 48, and lane 3 represents the reaction system of ligase 11. The yield was estimated by the grayscale analysis results of the product bands in the Urea-PAGE results. The final yield results are shown in the following table:

实施例1中,产率以Urea-PAGE结果中目标条带的灰度分析结果估算,“无”表示未检测到目标产物条带,“++”表示产率为25~50%(不包括50%的端点值),“+++”表示产率为50~90%,++++表示产率>90%。In Example 1, the yield is estimated based on the grayscale analysis results of the target band in the Urea-PAGE results, "None" means that no target product band is detected, "++" means that the yield is 25-50% (excluding the endpoint value of 50%), "+++" means that the yield is 50-90%, and ++++ means that the yield is >90%.

通过Urea-PAGE凝胶电泳结果图片的灰度分析得到的产品和底物的灰度数据,实施例中产率计算公式为:产率=产品灰度数据/(产品灰度数据+底物灰度数据)。The grayscale data of the product and substrate are obtained by grayscale analysis of the Urea-PAGE gel electrophoresis result image. The yield calculation formula in the embodiment is: yield = product grayscale data/(product grayscale data + substrate grayscale data).

对6种RNA连接酶进行活力筛选,发现连接酶 48、25和31连接效果较好,能够将大部分底物转化为Cemdisiran。Activity screening of six RNA ligases revealed that ligases 48, 25, and 31 had the best ligation effects and were able to convert most substrates into Cemdisiran.

实施例2Example 2

挑选反应活性较好的连接酶 48,使用退火后的底物片段进行酶催化连接反应,反应条件如下:在50 uL反应器中依次加入底物片段800 μM,ATP 4eq,MgCl2 12.5eq,DTT1.25 eq,终浓度为0.2 mg/mL的上述RNA连接酶,239 V 50 mM Tris-HCl pH 7.5,于16℃反应16 h。反应结束后80℃加热5 min使蛋白失活,离心取上清。送检HPLC和LC-MS检测,其中连接酶48的HPLC结果示例如图3所示。Select ligase 48 with good reaction activity, use the annealed substrate fragment for enzyme-catalyzed ligation reaction, the reaction conditions are as follows: add substrate fragment 800 μM, ATP 4eq, MgCl 2 12.5eq, DTT1.25eq, the above RNA ligase with a final concentration of 0.2 mg/mL in a 50 uL reactor, 239 V 50 mM Tris-HCl pH 7.5, and react at 16℃ for 16 h. After the reaction, heat at 80℃ for 5 min to inactivate the protein, and centrifuge to obtain the supernatant. Submit for HPLC and LC-MS detection, and the HPLC result example of ligase 48 is shown in Figure 3.

产率以反应体系样品的HPLC数据中产物峰的粗估占比进行衡量,结果如下表所示:The yield is measured by the rough estimate of the product peak ratio in the HPLC data of the reaction system sample, and the results are shown in the following table:

实施例2中,产率以HPLC结果中目标峰的统计结果计算,++++表示产率>90%。In Example 2, the yield was calculated based on the statistical results of the target peak in the HPLC results, and ++++ indicated a yield of >90%.

用LC-MS鉴定正义链产品分子量为8677.95,反义链产品分子量为8096.11,正义链产品理论值为8677.94±8,反义链产品理论值为8096.11±8,表明连接酶 48连接生成了Cemdisiran。The molecular weight of the sense chain product was identified by LC-MS as 8677.95, and the molecular weight of the antisense chain product was 8096.11. The theoretical values of the sense chain product were 8677.94±8, and the theoretical values of the antisense chain product were 8096.11±8, indicating that Cemdisiran was generated by ligase 48.

对比例1Comparative Example 1

利用固相合成的全长Cemdisiran产品的平均收率为32.6%,N+1和N-1杂质总占比为1.47%。The average yield of the full-length Cemdisiran product synthesized using solid phase synthesis was 32.6%, and the total proportion of N+1 and N-1 impurities was 1.47%.

利用本发明所涉及的酶法连接生产的Cemdisiran产品在酶促合成步骤中收率为87.48%,所用底物的固相合成收率平均值为39.2%,相乘可得整体流程的收率为34.3%;高于固相合成全长Cemdisiran产品的平均收率,且酶法合成的Cemdisiran产品中N+1和N-1杂质总占比为0.4%,低于固相合成的全长Cemdisiran产品的该种杂质占比。The yield of the Cemdisiran product produced by the enzymatic ligation method involved in the present invention is 87.48% in the enzymatic synthesis step, and the average solid phase synthesis yield of the substrate used is 39.2%. Multiplying them together, the yield of the overall process is 34.3%, which is higher than the average yield of the full-length Cemdisiran product synthesized by solid phase, and the total proportion of N+1 and N-1 impurities in the Cemdisiran product synthesized by the enzymatic method is 0.4%, which is lower than the proportion of such impurities in the full-length Cemdisiran product synthesized by solid phase.

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:在本申请的制备方法中,通过RNA连接酶催化正义链底物之间连接形成Cemdisiran的正义链,催化反义链底物之间连接形成Cemdisiran的反义链,从而实现利用生物合成的方式制备此种结构复杂、带有多种修饰的siRNA。相较于利用化学合成制备Cemdisiran,本申请的制备方法获得的产物纯度较高、杂质少(N+1和N-1杂质的含量<0.5%)、后续终产物纯化压力小,且反应条件温和、不使用大量有机试剂,能够降低生产成本,便于实现工业化放大生产。From the above description, it can be seen that the above embodiments of the present invention achieve the following technical effects: In the preparation method of the present application, RNA ligase is used to catalyze the connection between the sense chain substrates to form the sense chain of Cemdisiran, and catalyze the connection between the antisense chain substrates to form the antisense chain of Cemdisiran, thereby realizing the preparation of such a complex structure and siRNA with multiple modifications by biosynthesis. Compared with the preparation of Cemdisiran by chemical synthesis, the product obtained by the preparation method of the present application has higher purity, less impurities (the content of N+1 and N-1 impurities <0.5%), and the subsequent final product purification pressure is small, and the reaction conditions are mild, and a large amount of organic reagents are not used, which can reduce production costs and facilitate industrial scale-up production.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.

Claims (13)

1. A method of preparing CEMDISIRAN, wherein CEMDISIRAN is an siRNA consisting of a sense strand and an antisense strand paired by complementation;
the method comprises the following steps:
Mixing a sense strand substrate, an antisense strand substrate and an RNA ligase,
Wherein the sense strand substrate is capable of constituting the sense strand and the antisense strand substrate is capable of constituting the antisense strand;
The sense strand substrate and the antisense strand substrate are connected through hydrogen bonds formed by base complementation, and the head base and the tail base of the sense strand substrate are not connected with each other, so that a double-stranded nucleotide structure containing an nick is formed;
connecting bases at two ends of the nick with a phosphodiester bond by using the RNA ligase to form CEMDISIRAN;
The bases at the two ends of the notch are respectively the 5 'end and the 3' end of different substrates, the 5 'end is phosphate radical, and the 3' end is hydroxyl radical;
connecting the phosphate at the 5 'end and the hydroxyl at the 3' end at the upstream and downstream of the nick by using the RNA ligase to form the phosphodiester bond, thereby obtaining CEMDISIRAN;
the RNA ligase is selected from RNA ligase family 1 or RNA ligase family 2;
The RNA ligase comprises SEQ ID NO: 1. SEQ ID NO: 2. SEQ ID NO: 3. SEQ ID NO: 4. SEQ ID NO:5 or SEQ ID NO:6, one or more of the RNA ligases shown in fig. 6; or (b)
And SEQ ID NO: 1-SEQ ID NO:6, and has an enzyme that catalyzes the formation of said phosphodiester bond.
2. The method of claim 1, wherein the sense strand substrate and the antisense strand substrate are obtained by a solid phase synthesis method or a liquid phase synthesis method;
The sense strand is SEQ ID NO:14, and the antisense strand is the nucleic acid sequence shown in SEQ ID NO:15, and a nucleic acid sequence shown in seq id no.
3. The method of claim 1, wherein the sense strand consists of 2 and more of the sense strand substrates, the sense strand substrates being 3-18nt in length;
the antisense strand consists of 2 or more antisense strand substrates, and the length of the antisense strand substrates is 3-22nt.
4. The method of claim 2, wherein the double-stranded RNA formed by annealing the sense strand substrate and the antisense strand substrate has 3 or more base combinations capable of complementary pairing.
5. The method of claim 2, wherein the sense strand substrate and the antisense strand substrate each comprise 2 substrates, the sense strand substrate comprises a first sense strand substrate and a second sense strand substrate, and the antisense strand substrate comprises a first antisense strand substrate and a second antisense strand substrate;
the preparation method comprises the following steps: mixing the first sense strand substrate, the second sense strand substrate, the first antisense strand substrate and the second antisense strand substrate, catalyzing the ligation of the first sense strand substrate and the second sense strand substrate to form the sense strand using an RNA ligase, catalyzing the ligation of the first antisense strand substrate and the second antisense strand substrate to form the antisense strand, and complementarily pairing the sense strand and the antisense strand to form the CEMDISIRAN.
6. The method of claim 5, wherein the 3 'end of the first sense strand substrate and the 5' end of the second sense strand substrate are linked under the catalysis of the RNA ligase to form the sense strand; the 3 'end of the first antisense strand substrate and the 5' end of the second antisense strand substrate are connected under the catalysis of the RNA ligase to form the antisense strand;
The 5 'end of the first sense strand substrate is a hydroxyl group, and the 3' end of the first sense strand substrate is a hydroxyl group; the 5 'end of the second sense strand substrate is a phosphate group, and the 3' end of the second sense strand substrate is an L96 group;
The 5 'end of the first antisense strand substrate is a hydroxyl group, and the 3' end of the first antisense strand substrate is a hydroxyl group; the 5 'end of the second antisense strand substrate is a phosphate group, and the 3' end is a hydroxyl group.
7. The method of claim 6, wherein the first sense strand substrate is SEQ ID NO:10 or 16, and the second sense strand substrate is SEQ ID NO:11 or 17.
8. The method of claim 6, wherein the first antisense strand substrate is SEQ ID NO:13 or 19, and the second antisense strand substrate is the nucleic acid sequence set forth in SEQ ID NO:12 or 18.
9. The method of claim 2, wherein the sense strand substrate and the antisense strand substrate each comprise 3 substrates,
The sense strand substrates include a first sense strand substrate, a second sense strand substrate, and a third sense strand substrate;
the antisense strand substrates include a first antisense strand substrate, a second antisense strand substrate, and a third antisense strand substrate.
10. The method of claim 9, wherein the first sense strand substrate is SEQ ID NO:20, a nucleic acid sequence shown in seq id no;
The second sense strand substrate is SEQ ID NO:21, a nucleic acid sequence as set forth in seq id no;
the third sense strand substrate is SEQ ID NO: 22.
11. The method of claim 9, wherein the first antisense strand substrate is SEQ ID NO:25, a nucleic acid sequence shown in seq id no;
The second antisense strand substrate is SEQ ID NO:24, a nucleic acid sequence shown in seq id no;
The third sense strand substrate is SEQ ID NO: 23.
12. The method of any one of claims 1-4, wherein the concentration of the sense strand substrate and the antisense strand substrate is 0.1-4.5 mM.
13. The method of any one of claims 1-4, wherein the concentration of RNA ligase is 0.05-0.6 mg/mL.
CN202410921736.6A 2024-07-10 2024-07-10 Method for preparing CEMDISIRAN Active CN118460651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410921736.6A CN118460651B (en) 2024-07-10 2024-07-10 Method for preparing CEMDISIRAN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410921736.6A CN118460651B (en) 2024-07-10 2024-07-10 Method for preparing CEMDISIRAN

Publications (2)

Publication Number Publication Date
CN118460651A true CN118460651A (en) 2024-08-09
CN118460651B CN118460651B (en) 2025-03-18

Family

ID=92165269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410921736.6A Active CN118460651B (en) 2024-07-10 2024-07-10 Method for preparing CEMDISIRAN

Country Status (1)

Country Link
CN (1) CN118460651B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194537A1 (en) * 2022-04-08 2023-10-12 Glaxosmithkline Intellectual Property Development Limited Novel processes for the production of polynucleotides including oligonucleotides
CN117070583A (en) * 2023-10-16 2023-11-17 吉林凯莱英制药有限公司 Preparation method of siRNA for inhibiting PCSK9 gene expression
CN118166051A (en) * 2022-12-08 2024-06-11 凯莱英生命科学技术(天津)有限公司 Method for synthesizing double-stranded RNA and application of RNA ligase in double-stranded RNA synthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194537A1 (en) * 2022-04-08 2023-10-12 Glaxosmithkline Intellectual Property Development Limited Novel processes for the production of polynucleotides including oligonucleotides
CN118166051A (en) * 2022-12-08 2024-06-11 凯莱英生命科学技术(天津)有限公司 Method for synthesizing double-stranded RNA and application of RNA ligase in double-stranded RNA synthesis
CN117070583A (en) * 2023-10-16 2023-11-17 吉林凯莱英制药有限公司 Preparation method of siRNA for inhibiting PCSK9 gene expression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BADRI, P等: "Pharmacokinetic and Pharmacodynamic Properties of Cemdisiran, an RNAi Therapeutic Targeting Complement Component 5, in Healthy Subjects and Patients with Paroxysmal Nocturnal Hemoglobinuria", 《CLINICAL PHARMACOKINETICS》, vol. 60, no. 3, 31 March 2021 (2021-03-31), pages 365 - 378, XP093247170, DOI: 10.1007/s40262-020-00940-9 *
乐偲等: "补体抑制剂在罕见病的临床应用", 《罕见病研究》, vol. 1, no. 04, 31 December 2022 (2022-12-31), pages 391 - 399 *

Also Published As

Publication number Publication date
CN118460651B (en) 2025-03-18

Similar Documents

Publication Publication Date Title
CN117070583B (en) Preparation method of siRNA for inhibiting PCSK9 gene expression
WO2024119625A1 (en) Synthesis method for double-stranded rna and use of rna ligase in double-stranded rna synthesis
CN111819188A (en) Fusion single-stranded DNA polymerase Bst, nucleic acid molecule for coding fusion DNA polymerase NeqSSB-Bst, preparation method and application thereof
JP2025506416A (en) Sequential precipitation for mRNA purification
WO2022227880A1 (en) Novel phosphorylated adenylase, and preparation method therefor and application thereof
WO2017028548A1 (en) Mirror nucleic acid replication system
CN115820608B (en) λ-carrageenase mutant OUC-CglA-DPQQ and its application
CN117070514B (en) Preparation method of non-natural RNA and product
CN117070513B (en) RNA containing phosphorothioate bond and preparation method thereof
CN118460651A (en) Method for preparing Cemdisiran
CN118460652B (en) Preparation method of siRNA for treating non-arterial ischemic optic neuropathy
CN118460653B (en) Preparation method of siRNA for treating alpha 1-antitrypsin deficiency
CN118460648B (en) A preparation method of QPI-1002
CN118460647B (en) Preparation method of PATISIRAN
JP7022699B2 (en) Transposase competitor control system
CN118460654B (en) A preparation method of Givosiran
CN118460655B (en) Preparation method of siRNA for inhibiting FXI gene expression
CN119173628A (en) Method for removing double-stranded and/or multi-stranded nucleic acid impurities from RNA preparations by low pH treatment
CN118460656B (en) A preparation method of Lumasiran
CN118460649B (en) A kind of preparation method of Vutrisiran
CN118460650B (en) A preparation method of Nedosiran
CN102382187A (en) FBXL15 protein fragment, coding gene thereof, and application of FBXL15 protein fragment and coding gene
CN117106782B (en) GRNA and its biosynthesis method
CN116445453B (en) An efficient thermostable ribonuclease SiRe_0917 and its encoding gene and application
CN117737033B (en) A Cas12a variant and its application in gene editing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant