CN118420430A - A method for preparing mesitylene by hydroisomerization of trimethylol - Google Patents
A method for preparing mesitylene by hydroisomerization of trimethylol Download PDFInfo
- Publication number
- CN118420430A CN118420430A CN202410510388.3A CN202410510388A CN118420430A CN 118420430 A CN118420430 A CN 118420430A CN 202410510388 A CN202410510388 A CN 202410510388A CN 118420430 A CN118420430 A CN 118420430A
- Authority
- CN
- China
- Prior art keywords
- hmor
- copper
- molecular sieve
- mesitylene
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000003054 catalyst Substances 0.000 claims abstract description 68
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000002808 molecular sieve Substances 0.000 claims abstract description 55
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 238000006317 isomerization reaction Methods 0.000 claims abstract description 29
- 239000000843 powder Substances 0.000 claims abstract description 24
- 239000001257 hydrogen Substances 0.000 claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 150000007530 organic bases Chemical class 0.000 claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 238000011068 loading method Methods 0.000 claims abstract description 12
- 150000007529 inorganic bases Chemical class 0.000 claims abstract description 7
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 6
- 229910052680 mordenite Inorganic materials 0.000 claims description 67
- 239000010949 copper Substances 0.000 claims description 58
- 239000000243 solution Substances 0.000 claims description 46
- 239000011148 porous material Substances 0.000 claims description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 22
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 20
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 claims description 18
- 238000005470 impregnation Methods 0.000 claims description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 13
- 241000219782 Sesbania Species 0.000 claims description 13
- 229910001593 boehmite Inorganic materials 0.000 claims description 13
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 230000004048 modification Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- 239000011259 mixed solution Substances 0.000 claims description 10
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 9
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 9
- 238000001354 calcination Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- -1 inorganic base sodium hydroxide Chemical class 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 5
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 230000002829 reductive effect Effects 0.000 claims description 2
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 2
- 230000004913 activation Effects 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000008367 deionised water Substances 0.000 description 20
- 229910021641 deionized water Inorganic materials 0.000 description 20
- DQJJXEZXOYPSNJ-UHFFFAOYSA-N [2,3-bis(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC(CO)=C1CO DQJJXEZXOYPSNJ-UHFFFAOYSA-N 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 230000029936 alkylation Effects 0.000 description 5
- 238000005804 alkylation reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000007323 disproportionation reaction Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000011973 solid acid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000006315 carbonylation Effects 0.000 description 2
- 238000005810 carbonylation reaction Methods 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- HYFLWBNQFMXCPA-UHFFFAOYSA-N 1-ethyl-2-methylbenzene Chemical compound CCC1=CC=CC=C1C HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021472 group 8 element Inorganic materials 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000005199 trimethylbenzenes Chemical class 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
- B01J29/20—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
- B01J29/24—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/22—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
- C07C5/27—Rearrangement of carbon atoms in the hydrocarbon skeleton
- C07C5/2729—Changing the branching point of an open chain or the point of substitution on a ring
- C07C5/2732—Catalytic processes
- C07C5/2737—Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种偏三甲苯临氢异构化制均三甲苯的方法,其特征为:在固定床反应器上,将含有偏三甲苯的原料,在氢气伴随下,通过含有Cu/HMOR的催化剂发生临氢异构化反应,生成含有均三甲苯的产物。含有Cu/HMOR的催化剂的制备包括硅铝比为10~30的MOR分子筛原粉进行有机碱处理、无机碱处理、成型、铵交换、金属Cu担载和活化处理等步骤。Cu的负载量为2~10wt%。采用本发明方案制备的催化剂具有优异的异构化活性,均三甲苯的收率和选择性可达33.11%和75.94%。
The present invention relates to a method for preparing mesitylene by hydroisomerization of paratrimethylbenzene, which is characterized in that: in a fixed bed reactor, a raw material containing paratrimethylbenzene is subjected to hydroisomerization reaction by a catalyst containing Cu/HMOR in the presence of hydrogen to generate a product containing mesitylene. The preparation of the catalyst containing Cu/HMOR comprises the steps of treating the raw powder of MOR molecular sieve with a silicon-aluminum ratio of 10 to 30 with an organic base, an inorganic base, molding, ammonium exchange, metal Cu loading and activation treatment. The loading amount of Cu is 2 to 10 wt%. The catalyst prepared by the scheme of the present invention has excellent isomerization activity, and the yield and selectivity of mesitylene can reach 33.11% and 75.94%.
Description
技术领域Technical Field
本发明属于均三甲苯制备技术领域,涉及一种偏三甲苯临氢异构化制均三甲苯的方法,具体为在固定床反应器上,将含有偏三甲苯的原料通过含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂异构化反应制备均三甲苯的方法。The invention belongs to the technical field of preparation of mesitylene, and relates to a method for preparing mesitylene by hydroisomerization of paratrimethylol. Specifically, in a fixed bed reactor, raw materials containing paratrimethylol are subjected to isomerization reaction with a catalyst containing multi-level porous mordenite Cu/HMOR loaded with copper to prepare mesitylene.
背景技术Background technique
近年来,大量的芳烃联合装置、乙烯装置的兴建以及现代煤化工产业的发展,使得重芳烃的来源变得更加多元化,副产的重芳烃量日益增多,如何有效地利用这一资源对于促进石化行业的发展对推动国家经济和能源发展具有重要意义。C9重芳烃主要是多烷基苯的混合物,共来源主要有两种:一是蒸汽裂解制乙烯的副产馏分,约占乙烯装置总产物的10%~20%;二是来自炼油厂重整装置的二甲苯塔底油。其组成主要以偏三甲苯、均三甲苯、甲乙苯为主,其中均三甲苯由于其高价值以及自身独特的性质而被广泛应用包括用于合成均苯三甲酸、均苯甲酸酐等多种染料的中间体,以及生产抗氧剂、高效麦田除草剂、聚酯树脂固化剂、稳定剂、醇酸树脂增塑剂等。此外,均三甲苯还可用于生产2,4,6-三甲酚,作为橡胶、塑料、液蜡的抗紫外线氧化稳定剂。In recent years, the construction of a large number of aromatics joint units, ethylene units and the development of modern coal chemical industry have made the sources of heavy aromatics more diversified, and the amount of by-product heavy aromatics has increased day by day. How to effectively utilize this resource is of great significance to the development of the petrochemical industry and the development of the national economy and energy. C9 heavy aromatics are mainly a mixture of polyalkylbenzenes, and there are two main sources: one is the by-product fraction of steam cracking to produce ethylene, which accounts for about 10% to 20% of the total product of the ethylene unit; the other is the bottom oil of the xylene tower from the reforming unit of the refinery. Its composition is mainly composed of partial trimethylbenzene, mesitylene, and methyl ethylbenzene. Among them, mesitylene is widely used due to its high value and its unique properties, including the intermediates for the synthesis of various dyes such as trimesic acid and benzoic anhydride, as well as the production of antioxidants, high-efficiency wheat field herbicides, polyester resin curing agents, stabilizers, alkyd resin plasticizers, etc. In addition, mesitylene can also be used to produce 2,4,6-trimethylphenol as an anti-ultraviolet oxidation stabilizer for rubber, plastics, and liquid wax.
均三甲苯的生产方法可以分为合成法和C9芳烃直接分离提纯法两大类。合成法主要包括偏三甲苯异构化法及偏三甲苯烷基化联产均三甲苯、均四甲苯技术;分离提纯法包括萃取精馏法、配合分离法、分子筛吸附分离法、深冷结晶法、抽提法、烷基化分离法等。目前国内均三甲苯的生产方法主要以烷基化分离法和偏三甲苯异构化法为主。烷基化分离法需要消耗烯烃作为烷基化剂(中国专利申请CN1775714A)。异构化法通常以催化重整副产的混合C9或偏三甲苯为原料,在气相或液相条件下,经临氢异构化或非临氢异构化反应生成均三甲苯,临氢异构化技术,在临氢条件下有效的提高了催化剂的抗积炭能力;非临氢异构化技术,反应操作简单,对设备要求低。The production methods of mesitylene can be divided into two categories: synthesis method and direct separation and purification method of C9 aromatics. The synthesis method mainly includes the isomerization method of para-trimethylbenzene and the alkylation of para-trimethylbenzene to produce mesitylene and tetramethylbenzene; the separation and purification method includes extraction distillation, complex separation, molecular sieve adsorption separation, deep cold crystallization, extraction, alkylation separation, etc. At present, the production methods of mesitylene in China are mainly based on alkylation separation and para-trimethylbenzene isomerization. The alkylation separation method requires the consumption of olefins as alkylating agents (Chinese patent application CN1775714A). The isomerization method usually uses mixed C9 or para-trimethylbenzene produced by catalytic reforming as raw materials, and generates mesitylene through hydroisomerization or non-hydroisomerization reaction under gas phase or liquid phase conditions. The hydroisomerization technology effectively improves the catalyst's anti-coking ability under hydrogen conditions; the non-hydroisomerization technology has simple reaction operation and low equipment requirements.
中国专利CN115770611B公开了一种偏三甲苯异构化制备均三甲苯催化剂的制备方法,采用三步铵盐改性处理的MCM-22分子筛催化剂,以偏三甲苯(95-99%)为原料,反应温度为260~300℃,压力为1.0~3.0MPa,质量空速为0.6-1.4h-1。以氮气为载气,氮气流量2~20ml/min的条件下,偏三甲苯转化率40.16%,均三甲苯选择性64.09%,均三甲苯收率为25.74%。Chinese patent CN115770611B discloses a method for preparing a catalyst for preparing mesitylene by isomerization of unsymmetrical trimethylbenzene, using a MCM-22 molecular sieve catalyst modified with three-step ammonium salt, unsymmetrical trimethylbenzene (95-99%) as a raw material, a reaction temperature of 260-300°C, a pressure of 1.0-3.0 MPa, and a mass space velocity of 0.6-1.4 h -1 . With nitrogen as a carrier gas and a nitrogen flow rate of 2-20 ml/min, the unsymmetrical trimethylbenzene conversion rate is 40.16%, the mesitylene selectivity is 64.09%, and the mesitylene yield is 25.74%.
天津大学陈燕杰(陈燕杰.均三甲苯生产工艺研究[D].天津大学,2004.)采用M-2型复合丝光沸石催化剂,以高纯偏三甲苯为原料,非临氢条件下,在反应温度300℃~320℃,反应压力1.0~1.5MPa,体积空速1.5~2.0h-1的条件下,偏三甲苯的单程转化率约为38%,均三甲苯选择性为70%,均三甲苯收率约为26.6%。Chen Yanjie of Tianjin University (Chen Yanjie. Research on the production process of mesitylene [D]. Tianjin University, 2004.) used M-2 composite mordenite catalyst, high-purity trimethylolbenzene as raw material, and under non-hydrogen conditions, at a reaction temperature of 300℃~320℃, a reaction pressure of 1.0~1.5MPa, and a volume space velocity of 1.5~2.0h -1 , the single-pass conversion rate of trimethylolbenzene was about 38%, the selectivity of trimethylolbenzene was 70%, and the yield of trimethylolbenzene was about 26.6%.
天津大学王申江(王申江.非临氢异构化合成均三甲苯工艺的研究[D].天津大学,2007.)以偏三甲苯(98.66%)原料,采用经烧炭再生处理的M-2型复合丝光沸石。在反应温度353℃,压力3.2MPa,体积空速0.9h-1的条件下,偏三甲苯的单程转化率为45.97%,均三甲苯单程收率为20.69%,选择性为47.05%。Wang Shenjiang of Tianjin University (Wang Shenjiang. Research on the process of synthesizing mesitylene by non-hydrogen isomerization [D]. Tianjin University, 2007.) used unisotrilene (98.66%) as raw material and M-2 composite mordenite treated by charcoal burning. Under the conditions of reaction temperature of 353℃, pressure of 3.2MPa and volume space velocity of 0.9h -1 , the one-way conversion rate of unisotrilene was 45.97%, the one-way yield of mesitylene was 20.69% and the selectivity was 47.05%.
中国专利CN116173963B公开了一种用于偏三甲苯异构化制备均三甲苯的方法。采用纳米引发剂制备得到纳米Al2O3-NiO复合催化剂,在反应温度280℃,质量空速为5h-1,常压条件下反应2h,偏三甲苯转化率高达99%,均三甲苯收率高达97%。值得注意的是,该专利技术方案制备的催化剂得到了偏三甲苯转化率接近100%,均三甲苯收率近100%的结果,超出了化学平衡的合理范围。根据三甲苯的热力学平衡数据(叶照坚,贲玉昌,李惠民,等.偏三甲苯液相异构化制均三甲苯[J].石油化工,1991(08):521-526),该反应体系在常压、280℃条件下,三甲苯的平衡组成为:偏三甲苯61.53%,均三甲苯25.68%,连三甲苯12.80%。Chinese patent CN116173963B discloses a method for preparing mesitylene from isomerized trimethylol. A nano -Al2O3 - NiO composite catalyst is prepared by using a nano-initiator. At a reaction temperature of 280°C, a mass space velocity of 5h -1 , and a reaction time of 2h under normal pressure, the conversion rate of trimethylol is as high as 99%, and the yield of mesitylene is as high as 97%. It is worth noting that the catalyst prepared by the patented technical solution has a trimethylol conversion rate of nearly 100% and a mesitylene yield of nearly 100%, which exceeds the reasonable range of chemical equilibrium. According to the thermodynamic equilibrium data of trimethylol (Ye Zhaojian, Ben Yuchang, Li Huimin, et al. Liquid phase isomerization of trimethylol to prepare mesitylene [J]. Petrochemicals, 1991 (08): 521-526), the equilibrium composition of trimethylol in the reaction system under normal pressure and 280°C is: trimethylol 61.53%, mesitylene 25.68%, and trimethylol 12.80%.
上述技术报告中采用的是非临氢异构化技术。偏三甲苯异构化制均三甲苯属于酸催化机理,在非临氢条件下,存在催化剂易积炭失活的问题,难以实现工业化连续反应操作的需求。因此,开发合适工业化应用的偏三甲苯临氢异构化技术仍是人们关注的重要方向。The above technical report uses non-hydrogen isomerization technology. The isomerization of trimethylol to mesitylene is an acid-catalyzed mechanism. Under non-hydrogen conditions, the catalyst is prone to carbon deposition and deactivation, making it difficult to achieve the needs of industrial continuous reaction operations. Therefore, the development of trimethylol hydroisomerization technology suitable for industrial application is still an important direction of people's attention.
南京工业大学周婷(周婷,陈晓蓉,陈长林.改性WO3/ZrO2催化剂上偏三甲苯异构化[J].南京工业大学学报(自然科学版),2008(03):21-25.)采用WO3/ZrO2固体强酸催化剂,负载Ni以及掺碱土金属(Mg、Ca、Sr、Ba),先在450℃活化(空气气氛)3h,然后在固定床反应器中以300℃处理3h(氢气气氛下),在反应温度270℃,体积空速为1h-1。偏三甲苯转化率为59.1%,均三甲苯的选择性仅为31.6%,均三甲苯的单程产率为18.7%。Zhou Ting from Nanjing University of Technology (Zhou Ting, Chen Xiaorong, Chen Changlin. Isomerization of unsatisfactory trimethylbenzene over modified WO 3 /ZrO 2 catalyst [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008 (03): 21-25.) used WO 3 /ZrO 2 solid strong acid catalyst, loaded with Ni and doped with alkaline earth metals (Mg, Ca, Sr, Ba), first activated at 450℃ (air atmosphere) for 3h, then treated at 300℃ for 3h (hydrogen atmosphere) in a fixed bed reactor, at a reaction temperature of 270℃ and a volume space velocity of 1h -1 . The unsatisfactory trimethylbenzene conversion rate was 59.1%, the selectivity of mesitylene was only 31.6%, and the single-pass yield of mesitylene was 18.7%.
中国专利申请CN111039741A公开了一种三甲苯异构化制均三甲苯的方法。采用第VIII族元素的两种金属(Pt、Pd),和第VIB族元素的一种金属改性(Mo)为活性组分,以氢型的EUO型结构催化剂(含有十元环直通孔道)为载体。以高纯偏三甲苯(96-99wt%)为原料,在350~370℃,0.3~0.6MPa,2.5~3.5h-1(WHSV),氢油体积比500-700v/v条件下,偏三甲苯转化率为43.62%,均三甲苯选择性55.73%,收率为24.31%。Chinese patent application CN111039741A discloses a method for isomerizing trimethylbenzene to prepare mesitylene. Two metals (Pt and Pd) of group VIII elements and a metal modification (Mo) of group VIB elements are used as active components, and a hydrogen-type EUO-type structure catalyst (containing a ten-membered ring straight-through channel) is used as a carrier. Using high-purity trimethylbenzene (96-99wt%) as a raw material, at 350-370°C, 0.3-0.6MPa, 2.5-3.5h -1 (WHSV), and a hydrogen-to-oil volume ratio of 500-700v/v, the trimethylbenzene conversion rate is 43.62%, the mesitylene selectivity is 55.73%, and the yield is 24.31%.
中国专利申请CN115869994A公开了一种Pd-Ni-Co/NaOH-Hβ催化剂制备方法。采用Pd-Ni/NaOH-Hβ催化剂,以混合C9中的连三甲苯富集液(9.82~10.54%的偏三甲苯、37.49~39.84%的连三甲苯和49.62~50.91%的重组分)为原料,反应温度290~310℃,压力1.3~1.8MPa,质量空速0.6~1.4h-1,氢油比8-12:1的条件下,连三甲苯转化率达89.18%,偏、均三甲苯总收率为64.50%,未给出均三甲苯实际收率。Chinese patent application CN115869994A discloses a method for preparing a Pd-Ni-Co/NaOH-Hβ catalyst. Using Pd-Ni/NaOH-Hβ catalyst, using a mixed C9 enriched solution (9.82-10.54% of unisex trimethylol, 37.49-39.84% of trimethylol and 49.62-50.91% of heavy components) as raw material, reaction temperature 290-310°C, pressure 1.3-1.8 MPa, mass space velocity 0.6-1.4 h -1 , hydrogen-to-oil ratio 8-12:1, the conversion rate of trimethylol is 89.18%, the total yield of unisex trimethylol and mesitylene is 64.50%, and the actual yield of mesitylene is not given.
中国专利申请CN116786158A公开了一种催化偏三甲苯生产均三甲苯的催化剂的制备方法。采用NaOH溶液改性制备多级孔β沸石分子筛,将多级孔β与氢型丝光沸石分子筛形成复合分子筛催化剂,采用金属Ni、La、Zr、W中的两种或两种以上进行改性。以偏三甲苯(纯度98%)为原料,在反应温度260~300℃,压力1.2~1.4MPa,质量空速为0.8~1.3h-1,氢油比500-800v/v的条件下,偏三甲苯转化率为47.74%,均三甲苯选择性和收率分别为58.19%和27.78%。Chinese patent application CN116786158A discloses a method for preparing a catalyst for catalyzing the production of mesitylene from unsymmetrical trimethylbenzene. A multi-level pore β zeolite molecular sieve is prepared by modification with NaOH solution, and the multi-level pore β and hydrogen-type mordenite molecular sieve form a composite molecular sieve catalyst, which is modified by two or more of the metals Ni, La, Zr, and W. Using unsymmetrical trimethylbenzene (purity 98%) as raw material, under the conditions of reaction temperature 260-300°C, pressure 1.2-1.4MPa, mass space velocity 0.8-1.3h -1 , hydrogen-oil ratio 500-800v/v, the unsymmetrical trimethylbenzene conversion rate is 47.74%, and the mesitylene selectivity and yield are 58.19% and 27.78% respectively.
中国专利CN102746091B公开了一种重芳烃生产BTX芳烃和三甲苯的方法。采用负载质量百分比0.005~0.5%铂和钯的氢型无粘结剂十元环沸石(ZSM-5、ZSM-11)为催化剂,以氢气和重芳烃为原料进行加氢裂解处理,在反应温度320~450℃、反应压力2.0~4.0MPa、质量空速10~4.0h-1,氢气/烃类原料比以摩尔计为3~10∶1的条件下,可以增产BTX芳烃和分离生产均三甲苯和偏三甲苯,其中二甲苯的含量达到27.47%,均三甲苯含量仅为5.26%。Chinese patent CN102746091B discloses a method for producing BTX aromatics and trimethylbenzenes from heavy aromatics. The method uses hydrogen-type binderless ten-membered ring zeolite (ZSM-5, ZSM-11) loaded with 0.005-0.5% platinum and palladium as a catalyst, uses hydrogen and heavy aromatics as raw materials for hydrocracking treatment, and under the conditions of reaction temperature of 320-450°C, reaction pressure of 2.0-4.0MPa, mass space velocity of 10-4.0h -1 , and hydrogen/hydrocarbon raw material ratio of 3-10:1 in mole, the production of BTX aromatics can be increased and trimethylbenzene and trimethylbenzene can be separated and produced, wherein the content of xylene reaches 27.47% and the content of trimethylbenzene is only 5.26%.
中国专利CN1102360B公开了一种烷基芳烃异构化催化剂的制备方法。采用负载VIII族贵金属元素铂的ZSM-5沸石和丝光沸石的复合载体为催化剂。以高纯偏三甲苯(99.12wt%)为原料,在430℃,0.8MPa,3.1h-1(体积空速),氢油摩尔比1.5的反应条件下,偏三甲苯转化率为40.45%,均三甲苯的选择性为49.11%,收率仅为19.86%。Chinese patent CN1102360B discloses a method for preparing an alkyl aromatic hydrocarbon isomerization catalyst. A composite carrier of ZSM-5 zeolite and mordenite loaded with Group VIII noble metal element platinum is used as a catalyst. Using high-purity trimethylolbenzene (99.12 wt%) as a raw material, under the reaction conditions of 430°C, 0.8 MPa, 3.1 h -1 (volume space velocity), and a hydrogen-to-oil molar ratio of 1.5, the trimethylolbenzene conversion rate is 40.45%, the selectivity of trimethylolbenzene is 49.11%, and the yield is only 19.86%.
金陵石化公司炼油厂研究院冯建琳(冯建琳,赵开鹏.高硅丝光沸石的偏三甲苯异构化性能研究[J].化工时刊,2000(06):11-14.)以高纯偏三甲苯(>99%)为原料,以水玻璃和铝盐,在无机氨的条件下合成,硅铝比15-30的高硅丝光沸石为催化剂,在1.2MPa、320℃、体积空速1.0h-1和氢油比(摩尔比)10的条件下进行临氢气相异构化反应,偏三甲苯转化率47.9%,均三甲苯的选择性和单程收率为51.6%和24.7%。Feng Jianlin (Feng Jianlin, Zhao Kaipeng. Study on the isomerization performance of trimethylolene with high-silicon mordenite [J]. Chemical Industry Times, 2000 (06): 11-14.) from the Refinery Research Institute of Jinling Petrochemical Company used high-purity trimethylolene (>99%) as raw material, water glass and aluminum salt, synthesized under the conditions of inorganic ammonia, and high-silicon mordenite with a silicon-aluminum ratio of 15-30 as catalyst. Under the conditions of 1.2 MPa, 320℃, volume space velocity of 1.0 h -1 and hydrogen-to-oil ratio (molar ratio) of 10, the gas phase isomerization reaction in the presence of hydrogen was carried out. The trimethylolene conversion rate was 47.9%, and the selectivity and single-pass yield of mesitylene were 51.6% and 24.7%.
天津大学王燕(王燕,王明,张旭斌,等.Ni-Mo/HM上偏三甲苯异构化性能研究[J].化学工业与工程,2016,33(01):35-39.)以等体积浸渍的方法制备了负载Mo和Ni的丝光沸石催化剂。当金属Ni在丝光沸石催化剂的含量为5wt%,金属Mo的含量为1.25wt%时,在260℃、1.2MPa、质量空速1.0h-1和氢油比(摩尔比)5的条件下,偏三甲苯的转化率49.17%,均三甲苯的收率和选择性分别为23.10%和46.98%。Wang Yan from Tianjin University (Wang Yan, Wang Ming, Zhang Xubin, et al. Study on the isomerization performance of trimethylolene on Ni-Mo/HM [J]. Chemical Industry and Engineering, 2016, 33(01): 35-39.) prepared a mordenite catalyst loaded with Mo and Ni by an equal volume impregnation method. When the content of metal Ni in the mordenite catalyst was 5wt% and the content of metal Mo was 1.25wt%, under the conditions of 260℃, 1.2MPa, mass space velocity 1.0h -1 and hydrogen-to-oil ratio (molar ratio) 5, the conversion rate of trimethylolene was 49.17%, and the yield and selectivity of mesitylene were 23.10% and 46.98%, respectively.
上述报告采用了临氢异构化技术,通过在酸性载体上负载贵金属(Pt、Pd)或非贵金属(Mo、Ni、W)等,提高了催化剂在临氢条件下的抗积炭能力。一般而言,负载型金属催化剂在加氢反应过程中不仅可以活化(解离)H2,还可以解离或异构化反应物分子中的其他化学键。但是上述报告中的催化剂性能不佳,均三甲苯的选择性不高于60%,收率不高于28%。由于均三甲苯在产物中的含量低,导致分离困难,分离成本仍然处于较高的水平。因此,亟需开发具有高异构化性能、可应用于工业化长期稳定使用的偏三甲苯异构化催化剂,重点提高催化剂的偏三甲苯异构化选择性,抑制副反应的发生,以获得较高的均三甲苯收率。The above report adopts the hydroisomerization technology, and improves the anti-coking ability of the catalyst under hydrogen conditions by loading precious metals (Pt, Pd) or non-precious metals (Mo, Ni, W) on acidic carriers. Generally speaking, supported metal catalysts can not only activate (dissociate) H2 during the hydrogenation reaction, but also dissociate or isomerize other chemical bonds in the reactant molecules. However, the catalyst performance in the above report is not good, the selectivity of mesitylene is not higher than 60%, and the yield is not higher than 28%. Due to the low content of mesitylene in the product, separation is difficult, and the separation cost is still at a high level. Therefore, it is urgent to develop a mesitylene isomerization catalyst with high isomerization performance and can be applied to long-term stable industrial use, focusing on improving the isomerization selectivity of the catalyst to mesitylene, inhibiting the occurrence of side reactions, so as to obtain a higher mesitylene yield.
发明内容Summary of the invention
针对上述现有技术存在的问题,本发明提供一种在临氢条件下偏三甲苯异构化制均三甲苯的方法,以实现高选择性、高收率生产均三甲苯,降低生产成本。In view of the problems existing in the above-mentioned prior art, the present invention provides a method for isomerizing unsemanated trimethylolene to prepare mesitylene under hydrogen conditions, so as to achieve high selectivity and high yield production of mesitylene and reduce production costs.
偏三甲苯异构化反应机理属于酸催化,偏三甲苯与催化剂之间通过质子的授受作用,形成活泼的δ-络合物。由于δ-络合物不同异构体的稳定性不同,会发生相互转变。当偏三甲苯的甲基在苯环位置(分子内)移动时,就发生了异构化反应。此外,在固体酸催化剂的作用下,偏三甲苯还易发生歧化反应、烷基转移反应和脱烷基转移等副反应,因此需要对催化剂的制备方法进行改进,对其结构和酸性质进行设计和调控,以提高异构化性能并抑制副反应的发生。偏三甲苯异构化制均三甲苯属于芳烃的骨架异构化反应,采用分子筛催化剂,其催化活性主要取决于其表面相对独立的酸位。另一方面,由于偏三甲苯和均三甲苯的分子尺寸较大,为了使反应物和产物分子能够充分接触催化剂的酸性活性中心,需要采用具有较大孔口和孔道的固体酸催化剂。丝光沸石(MOR)因其独特的孔道结构和特殊的酸中心分布,使MOR其在芳烃烷基化、芳烃异构化、甲苯歧化和羰基化等反应中表现出良好的催化性能。The isomerization reaction mechanism of trimethylolbenzene is acid-catalyzed. Trimethylolbenzene and the catalyst form an active δ-complex through the donation and acceptance of protons. Due to the different stabilities of different isomers of the δ-complex, mutual transformation will occur. When the methyl group of trimethylolbenzene moves within the benzene ring position (within the molecule), an isomerization reaction occurs. In addition, under the action of a solid acid catalyst, trimethylolbenzene is also prone to side reactions such as disproportionation, alkyl transfer, and dealkylation. Therefore, it is necessary to improve the preparation method of the catalyst, design and regulate its structure and acid properties, in order to improve the isomerization performance and inhibit the occurrence of side reactions. The isomerization of trimethylolbenzene to produce mesitylene is a skeletal isomerization reaction of aromatic hydrocarbons. Molecular sieve catalysts are used, and their catalytic activity mainly depends on the relatively independent surface On the other hand, due to the large molecular size of trimethylol and mesitylene, in order to allow the reactant and product molecules to fully contact the acidic active center of the catalyst, a solid acid catalyst with larger pores and channels is required. Mordenite (MOR) has a unique pore structure and special acid center distribution, which makes it exhibit good catalytic performance in reactions such as aromatic alkylation, aromatic isomerization, toluene disproportionation and carbonylation.
MOR型分子筛具有稳定的骨架结构,但由于其十二元环孔道的尺寸(0.67nm×0.70nm)与偏三甲苯(0.7~0.8nm)的分子尺寸相当,受构型扩散效应的影响,反应物分子在孔道中的扩散受到限制。通常对固体酸催化剂采用碱处理的方法可以脱除部分骨架硅,扩大分子筛孔口或形成二次孔,介孔结构得到增加;同时还会产生大量的晶内介孔,改善了分子筛的扩散特性,有效提高反应物分子的扩散速率。但是,发明人通过大量的研究发现,对丝光沸石进行碱处理时,一方面过度的脱硅易破坏分子筛的骨架结构;另一方面,经过强碱处理后脱除的无定形Si、Al组分易堵塞孔道。此外,脱硅过程还可能提高分子筛酸中心密度和强度,造成副反应速率大幅增加,因此对MOR进行碱处理的条件需要严格控制。发明人通过深入研究发现,在温和的水热条件下,采用有机碱处理丝光沸石可以发生“先脱硅再补硅”的保护机制,使MOR表面结构发生一定程度的重排。即有机碱脱除部分非骨架硅和骨架硅,经过重结晶过程在分子筛表面形成富硅层;在此基础上,再采用较强的无机碱处理,MOR的耐受能力大大提高,不仅可以对孔道进行扩孔和修饰,获得稳定的多级孔MOR分子筛载体,还能调变表面酸中心的性质和强度,有利于偏三甲苯异构化反应。另外,对于金属双功能催化剂而言,尤其是在低金属分散度时,在催化芳烃的异构化反应过程中,反应物分子的扩散会受到限制。由于催化反应只发生在孔口,因此大部分的活性位点得不到充分利用,碱处理脱硅产生的新孔道能最大限度减少这一缺陷。MOR molecular sieve has a stable skeleton structure, but because the size of its twelve-membered ring pore (0.67nm×0.70nm) is comparable to the molecular size of trimethylolbenzene (0.7~0.8nm), the diffusion of reactant molecules in the pore is limited by the configuration diffusion effect. Usually, the solid acid catalyst is treated with alkali to remove part of the skeleton silicon, expand the pore opening of the molecular sieve or form secondary pores, and increase the mesoporous structure; at the same time, a large number of intracrystalline mesopores are generated, which improves the diffusion characteristics of the molecular sieve and effectively increases the diffusion rate of the reactant molecules. However, the inventors have found through a lot of research that when mordenite is treated with alkali, on the one hand, excessive desiliconization can easily destroy the skeleton structure of the molecular sieve; on the other hand, the amorphous Si and Al components removed after strong alkali treatment can easily block the pores. In addition, the desiliconization process may also increase the density and strength of the acid center of the molecular sieve, causing a significant increase in the rate of side reactions, so the conditions for alkali treatment of MOR need to be strictly controlled. Through in-depth research, the inventors found that under mild hydrothermal conditions, the use of organic bases to treat mordenite can produce a protective mechanism of "first desiliconization and then silicon replenishment", causing a certain degree of rearrangement of the MOR surface structure. That is, the organic base removes part of the non-framework silicon and framework silicon, and forms a silicon-rich layer on the surface of the molecular sieve through a recrystallization process; on this basis, a stronger inorganic base is used for treatment, and the tolerance of MOR is greatly improved. Not only can the pores be expanded and modified to obtain a stable multi-level pore MOR molecular sieve carrier, but the properties and strength of the surface acid center can also be adjusted, which is beneficial to the isomerization reaction of trimethylolbenzene. In addition, for metal bifunctional catalysts, especially at low metal dispersion, the diffusion of reactant molecules will be restricted during the catalytic isomerization reaction of aromatics. Since the catalytic reaction only occurs at the pore mouth, most of the active sites are not fully utilized. The new pores generated by alkali treatment and desiliconization can minimize this defect.
众所周知,铜负载型催化剂一般用于氨气选择性催化还原、二甲醚羰基化以及油脂加氢等反应有很好的性能,但是将铜负载型催化剂用于芳烃的异构化反应的报道较少。发明人发现,负载金属铜的HMOR催化剂经过活化还原后表现出了优异的异构化活性,高度分散的铜组分经活化还原后与B酸之间的协同催化作用使Cu/HMOR的催化剂的异构化选择性大大提高。As is known to all, copper-supported catalysts are generally used for ammonia selective catalytic reduction, dimethyl ether carbonylation, and oil hydrogenation reactions with good performance, but there are few reports on the use of copper-supported catalysts for isomerization reactions of aromatics. The inventors found that the HMOR catalyst loaded with metallic copper exhibited excellent isomerization activity after activation and reduction, and the synergistic catalytic effect between the highly dispersed copper component and B acid after activation and reduction greatly improved the isomerization selectivity of the Cu/HMOR catalyst.
通常,在制备铜负载型催化剂时,常采用呈酸性的铜盐溶液作为浸渍液如硝酸铜溶液。在酸性环境下浸渍易造成丝光沸石载体发生部分骨架脱铝,导致L酸中心增多。对偏三甲苯异构化反应而言,异构化反应属于单分子反应,需要独立的B酸中心,而B酸中心与L酸中心的协同作用会使得催化剂表面歧化反应更加活跃。因此,本发明采用硝酸铜与铜氨络合物混合溶液作为铜源浸渍液的方法进行铜负载,铜氨络合物中的铵离子提供了一种弱碱性环境,并使金属离子以碱式盐的形式沉淀在多孔分子筛载体上,在保护分子筛结构的同时使得铜物种均匀分散于催化剂表面。在金属担载的步骤中,发明人采用分步超声浸渍、三段程序升温控制干燥及两段程序升温焙烧的方法。分步超声浸渍金属组分,有利于Cu均匀分散在催化剂的表面;三段程序控制干燥过程,可以避免温度过高导致水分蒸发过快,使得金属组分聚集形成大晶粒。由于硝酸铜热分解温度为170℃,铜氨络合物的热分解温度为650℃,故采取两段程序升温焙烧的方式,实现两步热解,首先温度升温至170℃附近使得硝酸铜优先分解,在催化剂表面均匀分布;由于铜氨络合物中的铜氨离子[Cu(NH3)4]2+存在较大的空间位阻效应,并且铵离子与分子筛之间的存在较强的相互作用,使其在第二阶段实现热解,可以避免直接升温焙烧导致大量铜组分受热转移,形成团簇现象。Usually, when preparing copper-loaded catalysts, acidic copper salt solutions such as copper nitrate solutions are often used as impregnation solutions. Impregnation in an acidic environment can easily cause partial skeleton dealumination of the mordenite carrier, resulting in an increase in L acid centers. For the isomerization reaction of trimethylbenzene, the isomerization reaction is a unimolecular reaction and requires an independent B acid center, and the synergistic effect of the B acid center and the L acid center will make the catalyst surface disproportionation reaction more active. Therefore, the present invention uses a mixed solution of copper nitrate and copper ammonia complex as a copper source impregnation solution to carry out copper loading. The ammonium ions in the copper ammonia complex provide a weak alkaline environment, and the metal ions are precipitated on the porous molecular sieve carrier in the form of basic salts, while protecting the molecular sieve structure. The copper species are uniformly dispersed on the catalyst surface. In the step of metal loading, the inventor adopts a method of step-by-step ultrasonic impregnation, three-stage program temperature control drying and two-stage program temperature roasting. Step-by-step ultrasonic impregnation of metal components is conducive to the uniform dispersion of Cu on the surface of the catalyst; the three-stage program control drying process can avoid excessively high temperature and excessive evaporation of water, so that the metal components aggregate to form large grains. Since the thermal decomposition temperature of copper nitrate is 170°C and the thermal decomposition temperature of copper ammine complex is 650°C, a two-stage programmed temperature rise calcination method is adopted to achieve two-step pyrolysis. First, the temperature is raised to about 170°C to make copper nitrate decompose preferentially and evenly distribute on the catalyst surface. Since the copper ammine ion [Cu(NH 3 ) 4 ] 2+ in the copper ammine complex has a large steric hindrance effect and there is a strong interaction between ammonium ions and molecular sieves, it is pyrolyzed in the second stage, which can avoid the direct temperature rise calcination causing a large amount of copper components to be thermally transferred and form clusters.
此外,发明人还发现,由于微波加热技术不仅具有加热速度快,效率高,节约能源,加热均匀的优点,在微波加热条件下进行金属离子浸渍,有利于铜盐组分在催化剂表面的迁移和分散,得到的双功能催化剂具有更优的性能。In addition, the inventors also found that since microwave heating technology not only has the advantages of fast heating speed, high efficiency, energy saving and uniform heating, metal ion impregnation under microwave heating conditions is beneficial to the migration and dispersion of copper salt components on the catalyst surface, and the obtained bifunctional catalyst has better performance.
本发明技术方案如下:The technical solution of the present invention is as follows:
本发明提供的一种偏三甲苯临氢异构化制均三甲苯的方法,将含有偏三甲苯的原料,在氢气伴随下通过含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂,发生异构化反应生成含有均三甲苯的产物。The invention provides a method for preparing mesitylene by hydroisomerization of paratrimethylbenzene. The raw material containing paratrimethylbenzene is passed through a catalyst containing multi-level porous mordenite Cu/HMOR loaded with copper in the presence of hydrogen to undergo an isomerization reaction to generate a product containing mesitylene.
上述Cu/HMOR的制备方法包括多级孔HMOR经金属Cu担载得到;Cu/HMOR中的Cu的负载量为2~10wt%。The preparation method of the Cu/HMOR comprises the following steps: the multi-level porous HMOR is obtained by loading metal Cu; the loading amount of Cu in the Cu/HMOR is 2-10 wt%.
所述多级孔HMOR采用硅铝比为10~30的MOR分子筛原粉经过有机碱改性、无机碱改性、成型、铵交换得到。The multi-level pore HMOR is obtained by using MOR molecular sieve raw powder with a silicon-aluminum ratio of 10 to 30 through organic base modification, inorganic base modification, molding, and ammonium exchange.
上述含Cu/HMOR的催化剂的制备主要包括以下步骤:The preparation of the above-mentioned Cu/HMOR-containing catalyst mainly includes the following steps:
(1)有机碱改性:将MOR分子筛原粉以1:(10~15)的固液质量比与质量浓度为0.5~4.0wt%的有机碱溶液混合,置于水热釜中,在70~110℃搅拌1~5h,经过洗涤、过滤、干燥,在400~550℃焙烧3~8h,得到有机碱改性的MOR分子筛;所述有机碱溶液为四甲基氢氧化铵、四乙基氢氧化铵、六亚甲基亚胺和哌啶溶液中的一种或多种;(1) Organic base modification: The MOR molecular sieve raw powder is mixed with an organic base solution with a mass concentration of 0.5-4.0 wt% at a solid-liquid mass ratio of 1: (10-15), placed in a hydrothermal kettle, stirred at 70-110° C. for 1-5 h, washed, filtered, dried, and calcined at 400-550° C. for 3-8 h to obtain an organic base-modified MOR molecular sieve; the organic base solution is one or more of tetramethylammonium hydroxide, tetraethylammonium hydroxide, hexamethyleneimine and piperidine solution;
(2)无机碱改性:将有机碱改性的MOR分子筛以1:(10~15)的固液质量比加入到质量浓度为0.5~5.0wt%的无机碱氢氧化钠溶液中,在60~90℃下搅拌1~3h,经过洗涤、过滤、干燥,在350~600℃下焙烧3~8h,得到两步碱改性的多级孔MOR分子筛;(2) Inorganic base modification: The organic base-modified MOR molecular sieve is added to an inorganic base sodium hydroxide solution with a mass concentration of 0.5-5.0 wt% at a solid-liquid mass ratio of 1: (10-15), stirred at 60-90°C for 1-3 h, washed, filtered, dried, and calcined at 350-600°C for 3-8 h to obtain a two-step base-modified multi-level pore MOR molecular sieve;
(3)成型、铵交换:将两步碱改性的多级孔MOR分子筛与薄水铝石、田菁粉和稀硝酸捏合得到料浆,挤压成直径为3~6mm的条型,经干燥、焙烧后与硫酸铵、氯化铵和柠檬酸铵中的一种或多种进行铵交换改性1~3次,再经过洗涤、干燥、焙烧,得到多级孔HMOR载体;(3) Forming and ammonium exchange: The two-step alkali-modified multi-level pore MOR molecular sieve is kneaded with boehmite, sesbania powder and dilute nitric acid to obtain a slurry, which is extruded into strips with a diameter of 3 to 6 mm, and then subjected to ammonium exchange modification with one or more of ammonium sulfate, ammonium chloride and ammonium citrate for 1 to 3 times after drying and calcining, and then washed, dried and calcined to obtain a multi-level pore HMOR carrier;
(4)金属担载:将多级孔HMOR载体置于硝酸铜和铜氨络合物混合溶液中,其中硝酸铜:铜氨络合物摩尔比=1:(2.3~14),在超声条件下浸渍20~60min后,采用程序升温控制干燥过程;重复上述步骤,至少两次超声浸渍和干燥后,采用程序升温条件控制焙烧过程,得到含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂。(4) Metal loading: placing the multi-level porous HMOR carrier in a mixed solution of copper nitrate and copper ammine complex, wherein the molar ratio of copper nitrate:copper ammine complex is 1:(2.3-14), and impregnating it under ultrasonic conditions for 20-60 minutes, and then controlling the drying process by programmed temperature rise; repeating the above steps, after at least two ultrasonic impregnations and drying, controlling the calcination process by programmed temperature rise conditions, to obtain a catalyst containing multi-level porous mordenite Cu/HMOR loaded with copper.
其步骤(3)中所述薄水铝石的加入量为料浆质量的10~40wt%;田菁粉的加入量为料浆质量的1~10wt%;稀硝酸的质量浓度为2~8wt%。两步碱改性的多级孔MOR分子筛、薄水铝石和田菁粉与硝酸的质量比为1:(1~2)。In step (3), the amount of boehmite added is 10-40wt% of the slurry mass; the amount of sesbania powder added is 1-10wt% of the slurry mass; the mass concentration of dilute nitric acid is 2-8wt%. The mass ratio of the two-step alkali-modified multi-level pore MOR molecular sieve, boehmite and sesbania powder to nitric acid is 1:(1-2).
其步骤(4)中所述硝酸铜与铜氨络合物混合溶液中,硝酸铜:铜氨络合物摩尔比为1:(3~8)。In the mixed solution of copper nitrate and copper ammonia complex in step (4), the molar ratio of copper nitrate to copper ammonia complex is 1:(3-8).
其步骤(4)中所述的干燥过程采用三段程序升温控制步骤:第一阶段:30~60℃保持2~4h;第二阶段:70~90℃保持3~6h;第三阶段100~120℃保持8~12h。The drying process described in step (4) adopts three-stage programmed temperature control steps: the first stage: 30-60°C maintained for 2-4 hours; the second stage: 70-90°C maintained for 3-6 hours; the third stage: 100-120°C maintained for 8-12 hours.
其步骤(4)中所述的焙烧过程采用两段程序升温控制步骤:第一阶段:以1~4℃/min升温至170~200℃,保持2~5h;第二阶段:以3~6℃/min升温至550~650℃,保持5~8h。The calcination process described in step (4) adopts two stages of programmed temperature control steps: the first stage: heating to 170-200°C at 1-4°C/min and maintaining for 2-5h; the second stage: heating to 550-650°C at 3-6°C/min and maintaining for 5-8h.
上述的步骤(4)中超声条件下浸渍替换为微波加热下浸渍,将浸渍硝酸铜和铜氨络合物混合溶液的多级孔HMOR在微波功率400~1000W的条件下进行处理,处理时间为3~10min。In the above step (4), the impregnation under ultrasonic conditions is replaced by impregnation under microwave heating, and the multi-level porous HMOR impregnated with the mixed solution of copper nitrate and copper ammine complex is treated under microwave power of 400-1000W for 3-10 minutes.
上述Cu/HMOR中Cu的优选负载量为2~6wt%。The preferred loading amount of Cu in the above Cu/HMOR is 2 to 6 wt %.
上述催化偏三甲苯临氢异构化制均三甲苯的方法,包括以偏三甲苯为原料通过泵送入装填有含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂和瓷球的固定床反应器进行反应,以氢气为反应气氛。The method for catalytically hydroisomerizing trimethylol to produce mesitylene comprises pumping trimethylol as a raw material into a fixed bed reactor filled with a catalyst of multi-level porous mordenite Cu/HMOR containing copper and porcelain balls for reaction, with hydrogen as the reaction atmosphere.
上述含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂经氢气活化还原,在反应温度为265~305℃,压力为0.6~1.6MPa,偏三甲苯质量空速为0.6~1.4h-1,氢油比为4~10条件下,将含有偏三甲苯的原料异构化反应生成含有均三甲苯的产物。The catalyst containing copper-loaded hierarchical mordenite Cu/HMOR is activated and reduced by hydrogen, and the raw material containing mesitylene is isomerized to produce a product containing mesitylene at a reaction temperature of 265-305°C, a pressure of 0.6-1.6 MPa, a mass space velocity of mesitylene of 0.6-1.4 h -1 , and a hydrogen-to-oil ratio of 4-10.
本发明具有以下优点:使用含有担载铜的多级孔丝光沸石Cu/HMOR的催化剂催化偏三甲苯临氢异构化反应,在较低的反应温度下,均三甲苯的收率达33.11%,均三甲苯的选择性达75.94%。本发明制备的催化剂在偏三甲苯临氢异构化制均三甲苯时,因其抗结焦能力强,所以活性稳定,寿命长,能够满足工业化连续反应生产的需求。The invention has the following advantages: using a catalyst containing copper-loaded multi-level mordenite Cu/HMOR to catalyze the hydroisomerization reaction of trimethylolbenzene, the yield of trimethylolbenzene reaches 33.11% and the selectivity of trimethylolbenzene reaches 75.94% at a relatively low reaction temperature. When trimethylolbenzene is hydroisomerized to produce trimethylolbenzene, the catalyst prepared by the invention has strong anti-coking ability, thus having stable activity and long service life, and can meet the needs of industrialized continuous reaction production.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为对比例与实施例的XRD图。FIG. 1 is an XRD diagram of a comparative example and an embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,应当理解,此处所举实施例只用于解释本发明专利,并非用于限定本发明专利的范围。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with embodiments. It should be understood that the embodiments given here are only used to explain the present invention patent, and are not used to limit the scope of the present invention patent.
一、关于催化性能指标的计算1. Calculation of catalytic performance indicators
偏三甲苯临氢异构化反应在小型固定床装置上进行,反应物组成为含98.84wt%的高纯偏三甲苯。各性能指标计算公式为:The hydroisomerization reaction of trimethylolbenzene is carried out on a small fixed bed device, and the reactant composition is 98.84wt% high-purity trimethylolbenzene. The calculation formulas for each performance index are:
实施例1Example 1
取15g MOR分子筛原粉,加入150g浓度为2.4wt%四乙基氢氧化铵溶液混合,置于水热釜中,在90℃下搅拌处理2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到有机碱改性MOR分子筛。取有机碱改性的MOR分子筛10g,加入100g浓度为3.2wt%氢氧化钠溶中混合,在80℃下搅拌2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃焙烧下6h,得到两步碱改性的多级孔MOR分子筛。Take 15g of MOR molecular sieve powder, add 150g of 2.4wt% tetraethylammonium hydroxide solution, mix, place in a hydrothermal kettle, stir at 90℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and roast at 550℃ for 6h to obtain organic base modified MOR molecular sieve. Take 10g of organic base modified MOR molecular sieve, add 100g of 3.2wt% sodium hydroxide solution, mix, stir at 80℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and roast at 550℃ for 6h to obtain two-step base modified multi-level pore MOR molecular sieve.
取6g两步碱改性的多级孔MOR分子筛与2.57g薄水铝石、0.26g田菁粉、14.73g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到多级孔MOR载体。取5g多级孔MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到多级孔HMOR载体,破碎为20-40目的颗粒。6g of two-step alkali-modified multi-level porous MOR molecular sieve was kneaded with 2.57g of boehmite, 0.26g of sesbania powder, and 14.73g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain a multi-level porous MOR carrier. 5g of the multi-level porous MOR carrier was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain a multi-level porous HMOR carrier, which was crushed into particles of 20-40 mesh.
取0.6g硫酸铜溶于20g去离子水中,向溶液中滴加1g质量分数为25%的氨水得到铜氨络合物溶液。取0.03g三水合硝酸铜加入到2.16g铜氨络合物溶液中均匀混合,加入3g两步碱改性的多级孔HMOR载体进行超声浸渍30min,将得到的浸渍于硝酸铜与铜氨络合物混合溶液的多级孔HMOR载体放入45℃烘箱保持3h,后升温至80℃保持3h,升温至110℃,保持12h,重复两次。然后将其放入马弗炉中并以2℃/min升温至170℃,保持3h;再以4℃/min升温至650℃保持6h,得到含有Cu/HMOR的催化剂。Take 0.6g of copper sulfate and dissolve it in 20g of deionized water, and add 1g of 25% ammonia water to the solution to obtain a copper ammonia complex solution. Take 0.03g of copper nitrate trihydrate and add it to 2.16g of copper ammonia complex solution and mix it evenly. Add 3g of two-step alkali-modified multi-level porous HMOR carrier for ultrasonic impregnation for 30min. Put the obtained multi-level porous HMOR carrier impregnated in the mixed solution of copper nitrate and copper ammonia complex into a 45℃ oven for 3h, then heat it to 80℃ for 3h, heat it to 110℃, and keep it for 12h, repeat twice. Then put it into a muffle furnace and heat it to 170℃ at 2℃/min, keep it for 3h; then heat it to 650℃ at 4℃/min and keep it for 6h to obtain a catalyst containing Cu/HMOR.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,在反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of catalyst was loaded into a small fixed bed reactor. 15 ml/min hydrogen was introduced at 350°C and 1.2 MPa for activation for 8 h. The catalytic performance was evaluated at a reaction temperature of 295°C, a reaction pressure of 1.2 MPa, a mass space velocity of trimethylol of 1.0 h -1 , and a hydrogen-to-oil molar ratio of 4.8. The results are shown in Table 2.
实施例2Example 2
取15g MOR分子筛原粉,加入150g浓度为3.2wt%四甲基氢氧化铵溶液混合,置于水热釜中,在90℃下搅拌处理2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到有机碱改性MOR分子筛。取有机碱改性的MOR分子筛10g,加入100g浓度为0.8wt%氢氧化钠溶中混合,在80℃下搅拌2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到两步碱改性的多级孔MOR分子筛。Take 15g of MOR molecular sieve powder, add 150g of 3.2wt% tetramethylammonium hydroxide solution, mix, place in a hydrothermal kettle, stir at 90℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain organic base modified MOR molecular sieve. Take 10g of organic base modified MOR molecular sieve, add 100g of 0.8wt% sodium hydroxide solution, mix, stir at 80℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain two-step base modified multi-level pore MOR molecular sieve.
取6g两步碱改性的多级孔MOR分子筛与2.57g薄水铝石、0.26g田菁粉、14.73g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到多级孔MOR载体。取5g多级孔MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到多级孔HMOR载体,破碎为20-40目的颗粒。6g of two-step alkali-modified multi-level porous MOR molecular sieve was kneaded with 2.57g of boehmite, 0.26g of sesbania powder, and 14.73g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain a multi-level porous MOR carrier. 5g of the multi-level porous MOR carrier was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain a multi-level porous HMOR carrier, which was crushed into particles of 20-40 mesh.
取1.8g硫酸铜溶于20g去离子水中,向溶液中滴加3g质量分数为25%的氨水得到铜氨络合物溶液。取0.09g三水合硝酸铜加入到2.48g铜氨络合物溶液中均匀混合,加入3g两步碱改性的多级孔HMOR载体进行超声浸渍30min,将得到的浸渍于硝酸铜与铜氨络合物混合溶液的多级孔HMOR载体放入45℃烘箱保持3h,后升温至80℃保持3h,升温至110℃,保持12h,重复两次。然后将其放入马弗炉中并以2℃/min升温至170℃,保持3h;再以4℃/min升温至650℃保持6h,得到含有Cu/HMOR的催化剂。Take 1.8g of copper sulfate and dissolve it in 20g of deionized water, and add 3g of 25% ammonia water to the solution to obtain a copper ammonia complex solution. Take 0.09g of copper nitrate trihydrate and add it to 2.48g of copper ammonia complex solution and mix it evenly. Add 3g of two-step alkali-modified multi-level porous HMOR carrier and ultrasonically impregnate it for 30min. Put the obtained multi-level porous HMOR carrier impregnated in the mixed solution of copper nitrate and copper ammonia complex into a 45℃ oven for 3h, then heat it to 80℃ for 3h, heat it to 110℃, and keep it for 12h, repeat twice. Then put it into a muffle furnace and heat it to 170℃ at 2℃/min, keep it for 3h; then heat it to 650℃ at 4℃/min and keep it for 6h to obtain a catalyst containing Cu/HMOR.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of catalyst was loaded into a small fixed bed reactor. The catalytic performance was evaluated at 350°C, 1.2 MPa, 15 ml/min hydrogen for activation for 8 h, reaction temperature 295°C, reaction pressure 1.2 MPa, unsymmetrical trimethylol mass space velocity 1.0 h -1 , hydrogen to oil molar ratio 4.8. The results are shown in Table 2.
实施例3Example 3
取15g MOR分子筛原粉,加入150g浓度为2.4wt%四乙基氢氧化铵溶液混合,置于水热釜中,在90℃下搅拌处理2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到有机碱改性MOR分子筛。取有机碱改性的MOR分子筛10g,加入100g浓度为2.4wt%氢氧化钠溶中混合,在80℃下搅拌2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到两步碱改性的多级孔MOR分子筛。Take 15g of MOR molecular sieve powder, add 150g of 2.4wt% tetraethylammonium hydroxide solution, mix, place in a hydrothermal kettle, stir at 90℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain organic base modified MOR molecular sieve. Take 10g of organic base modified MOR molecular sieve, add 100g of 2.4wt% sodium hydroxide solution, mix, stir at 80℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain two-step base modified multi-level pore MOR molecular sieve.
取6g两步碱改性的多级孔MOR分子筛与2.57g薄水铝石、0.26g田菁粉、14.73g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到多级孔MOR载体。取5g多级孔MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到多级孔HMOR载体,破碎为20-40目的颗粒。6g of two-step alkali-modified multi-level porous MOR molecular sieve was kneaded with 2.57g of boehmite, 0.26g of sesbania powder, and 14.73g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain a multi-level porous MOR carrier. 5g of the multi-level porous MOR carrier was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain a multi-level porous HMOR carrier, which was crushed into particles of 20-40 mesh.
取1.2g硫酸铜溶于20g去离子水中,向溶液中滴加2g质量分数为25%的氨水得到铜氨络合物溶液。取0.06g三水合硝酸铜加入到2.32g铜氨络合物溶液中均匀混合,加入3g两步碱改性的多级孔HMOR载体进行超声浸渍30min,将得到的浸渍于硝酸铜与铜氨络合物混合溶液的多级孔HMOR载体放入45℃烘箱保持3h,后升温至80℃保持3h,升温至110℃,保持12h,重复两次。然后将其放入马弗炉中并以2℃/min升温至170℃,保持3h;再以4℃/min升温至650℃保持6h,得到含有Cu/HMOR的催化剂。Take 1.2g of copper sulfate and dissolve it in 20g of deionized water, and add 2g of 25% ammonia water to the solution to obtain a copper ammonia complex solution. Take 0.06g of copper nitrate trihydrate and add it to 2.32g of copper ammonia complex solution and mix it evenly. Add 3g of two-step alkali-modified multi-level porous HMOR carrier for ultrasonic impregnation for 30min, and put the obtained multi-level porous HMOR carrier impregnated in the mixed solution of copper nitrate and copper ammonia complex into a 45℃ oven for 3h, then heat it to 80℃ for 3h, heat it to 110℃, and keep it for 12h, repeat twice. Then put it into a muffle furnace and heat it to 170℃ at 2℃/min, keep it for 3h; then heat it to 650℃ at 4℃/min and keep it for 6h to obtain a catalyst containing Cu/HMOR.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,在反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of catalyst was loaded into a small fixed bed reactor. 15 ml/min hydrogen was introduced at 350°C and 1.2 MPa for activation for 8 h. The catalytic performance was evaluated at a reaction temperature of 295°C, a reaction pressure of 1.2 MPa, a mass space velocity of trimethylol of 1.0 h -1 , and a hydrogen-to-oil molar ratio of 4.8. The results are shown in Table 2.
实施例4Example 4
取15g MOR分子筛原粉,加入150g浓度为0.6wt%四乙基氢氧化铵溶液混合,置于水热釜中,在90℃下搅拌处理2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到有机碱改性MOR分子筛。取有机碱改性的MOR分子筛10g,加入100g浓度为1.6wt%氢氧化钠溶中混合,在80℃下搅拌2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h,得到两步碱改性的多级孔MOR分子筛。Take 15g of MOR molecular sieve powder, add 150g of 0.6wt% tetraethylammonium hydroxide solution, mix, place in a hydrothermal kettle, stir at 90℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain organic base modified MOR molecular sieve. Take 10g of organic base modified MOR molecular sieve, add 100g of 1.6wt% sodium hydroxide solution, mix, stir at 80℃ for 2h, wash with deionized water to neutrality, filter, dry at 110℃ for 12h, and calcine at 550℃ for 6h to obtain two-step base modified multi-level pore MOR molecular sieve.
取6g两步碱改性的多级孔MOR分子筛与2.57g薄水铝石、0.26g田菁粉、14.73g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到多级孔MOR载体。取5g多级孔MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到多级孔HMOR载体,破碎为20-40目的颗粒。6g of two-step alkali-modified multi-level porous MOR molecular sieve was kneaded with 2.57g of boehmite, 0.26g of sesbania powder, and 14.73g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain a multi-level porous MOR carrier. 5g of the multi-level porous MOR carrier was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain a multi-level porous HMOR carrier, which was crushed into particles of 20-40 mesh.
取1.2g硫酸铜溶于20g去离子水中,向溶液中滴加2g质量分数为25%的氨水得到铜氨络合物溶液。取0.06g三水合硝酸铜加入到2.32g铜氨络合物溶液中均匀混合,加入3g两步碱改性的多级孔HMOR载体在微波功率为600W的加热条件下浸渍6min,干燥过程同实施例3,重复两次。然后将其放入马弗炉中并以2℃/min升温至170℃,保持3h;再以4℃/min升温至650℃保持6h,得到含有Cu/HMOR的催化剂。如图1XRD所示,采用硝酸铜和铜氨络合物混合、多次浸渍制备的催化剂中Cu物种高度分散,与对比例2和3相比具有明显的优势;其织构性质表征结果见表1。Take 1.2g of copper sulfate and dissolve it in 20g of deionized water, and add 2g of ammonia water with a mass fraction of 25% to the solution to obtain a copper ammonia complex solution. Take 0.06g of copper nitrate trihydrate and add it to 2.32g of copper ammonia complex solution and mix it evenly. Add 3g of two-step alkali-modified multi-level porous HMOR carrier and immerse it for 6min under the heating condition of microwave power of 600W. The drying process is the same as Example 3 and repeated twice. Then put it into a muffle furnace and heat it to 170℃ at 2℃/min and keep it for 3h; then heat it to 650℃ at 4℃/min and keep it for 6h to obtain a catalyst containing Cu/HMOR. As shown in Figure 1XRD, the Cu species in the catalyst prepared by mixing copper nitrate and copper ammonia complex and impregnating it multiple times is highly dispersed, which has obvious advantages over Comparative Examples 2 and 3; the characterization results of its texture properties are shown in Table 1.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,在反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。长运转200h,均三甲苯的选择性和收率仍分别高达75.67%和30.84%,具有优异的催化稳定性。1.0g of catalyst was taken and loaded into a small fixed bed reactor. 15ml/min hydrogen was introduced at 350℃ and 1.2MPa for activation for 8h. The catalytic performance was evaluated under the conditions of reaction temperature of 295℃, reaction pressure of 1.2MPa, mass space velocity of mesitylene of 1.0h -1 , and hydrogen-oil molar ratio of 4.8. The results are shown in Table 2. After a long operation of 200h, the selectivity and yield of mesitylene were still as high as 75.67% and 30.84% respectively, showing excellent catalytic stability.
对比例1Comparative Example 1
取10g MOR分子筛原粉与4.29g薄水铝石、0.44g田菁粉、24.55g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下干燥6h,在550℃下焙烧6h得到MOR分子筛。取5g MOR分子筛加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到HMOR催化剂,破碎为20-40目的颗粒,其织构性质表征结果见表1。10g of MOR molecular sieve raw powder was kneaded with 4.29g of boehmite, 0.44g of sesbania powder, and 24.55g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain MOR molecular sieve. 5g of MOR molecular sieve was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain HMOR catalyst, which was broken into 20-40 mesh particles. The characterization results of its texture properties are shown in Table 1.
取催化剂1.0g,装入小型固定床反应器。在反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of the catalyst was loaded into a small fixed bed reactor. The catalytic performance was evaluated under the conditions of reaction temperature of 295°C, reaction pressure of 1.2 MPa, mass space velocity of trimethylol 1.0 h -1 , and hydrogen to oil molar ratio of 4.8. The results are shown in Table 2.
对比例2Comparative Example 2
取10g MOR分子筛原粉与4.29g薄水铝石、0.44g田菁粉、24.55g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到MOR载体。取5g MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃下干燥12h,在550℃下焙烧8h,得到HMOR载体,破碎为20-40目的颗粒。Take 10g of MOR molecular sieve powder, knead it with 4.29g of boehmite, 0.44g of sesbania powder, and 24.55g of dilute nitric acid with a concentration of 5wt%, and then extrude it into strips, dry it in the shade for 12h, dry it at 110℃ for 6h, and calcine it at 550℃ for 6h to obtain MOR carrier. Take 5g of MOR carrier and add 50g of 0.4mol/L ammonium sulfate solution, exchange it at 90℃ for 2h, exchange it twice, wash it with deionized water to neutrality, dry it at 120℃ for 12h, and calcine it at 550℃ for 8h to obtain HMOR carrier, which is crushed into 20-40 mesh particles.
取0.92g三水合硝酸铜溶于2.27g水中,加入HMOR载体3.0g进行超声浸渍30min,将得到的浸渍于硝酸铜溶液的HMOR载体放入45℃烘箱保持3h,后升温至80℃保持3h,升温至110℃,保持12h,然后将其放入马弗炉中以4℃/min升温至550℃焙烧6h,得到含有Cu/HMOR的催化剂。0.92 g of copper nitrate trihydrate was dissolved in 2.27 g of water, 3.0 g of HMOR carrier was added and ultrasonically impregnated for 30 min, the HMOR carrier impregnated in the copper nitrate solution was placed in a 45 ° C oven for 3 h, then heated to 80 ° C for 3 h, heated to 110 ° C for 12 h, and then placed in a muffle furnace and heated to 550 ° C at 4 ° C/min for calcination for 6 h to obtain a catalyst containing Cu/HMOR.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of catalyst was loaded into a small fixed bed reactor. The catalytic performance was evaluated at 350°C, 1.2 MPa, 15 ml/min hydrogen for activation for 8 h, reaction temperature 295°C, reaction pressure 1.2 MPa, unsymmetrical trimethylol mass space velocity 1.0 h -1 , hydrogen to oil molar ratio 4.8. The results are shown in Table 2.
对比例3Comparative Example 3
取10g MOR分子筛原粉,加入100g浓度为2.4wt%氢氧化钠溶液中混合,在80℃下搅拌2h,用去离子水洗到中性,过滤、在110℃下干燥12h、在550℃下焙烧6h得到无机碱改性的MOR分子筛。Take 10g of MOR molecular sieve raw powder, add it into 100g of 2.4wt% sodium hydroxide solution, stir it at 80℃ for 2h, wash it with deionized water until it is neutral, filter it, dry it at 110℃ for 12h, and calcine it at 550℃ for 6h to obtain the inorganic base modified MOR molecular sieve.
取6g有无机碱改性的MOR分子筛与2.57g薄水铝石、0.26g田菁粉、14.73g浓度为5wt%的稀硝酸捏合,然后挤压成条型,自然阴干12h,在110℃下烘干6h,在550℃下焙烧6h得到MOR载体。取5g MOR载体加入50g 0.4mol/L的硫酸铵溶液,在90℃下交换2h,交换2次,用去离子水洗到中性,在120℃干燥12h,在550℃下焙烧8h,得到HMOR载体,破碎为20-40目的颗粒,其织构性质表征结果见表1。6g of MOR molecular sieve modified with inorganic base was kneaded with 2.57g of boehmite, 0.26g of sesbania powder, and 14.73g of dilute nitric acid with a concentration of 5wt%, and then extruded into strips, naturally dried in the shade for 12h, dried at 110℃ for 6h, and calcined at 550℃ for 6h to obtain a MOR carrier. 5g of MOR carrier was added with 50g of 0.4mol/L ammonium sulfate solution, exchanged at 90℃ for 2h, exchanged twice, washed with deionized water to neutrality, dried at 120℃ for 12h, and calcined at 550℃ for 8h to obtain a HMOR carrier, which was crushed into 20-40 mesh particles. The characterization results of its texture properties are shown in Table 1.
取0.46g三水合硝酸铜溶于2.27g水中,加入HMOR载体3.0g进行超声浸渍30min,将得到的浸渍于硝酸铜溶液的HMOR载体放入45℃烘箱保持3h,后升温至80℃保持3h,升温至110℃,保持12h,然后将其放入马弗炉中以4℃/min升温至550℃焙烧6h,得到含有Cu/HMOR的催化剂。0.46 g of copper nitrate trihydrate was dissolved in 2.27 g of water, 3.0 g of HMOR carrier was added and ultrasonically impregnated for 30 min, the HMOR carrier impregnated in the copper nitrate solution was placed in a 45 ° C oven for 3 h, then heated to 80 ° C for 3 h, heated to 110 ° C for 12 h, and then placed in a muffle furnace and heated to 550 ° C at 4 ° C/min for calcination for 6 h to obtain a catalyst containing Cu/HMOR.
取催化剂1.0g,装入小型固定床反应器。在350℃、1.2MPa下通入15ml/min氢气进行活化8h,反应温度295℃,反应压力1.2MPa,偏三甲苯质量空速1.0h-1,氢油摩尔比4.8的条件下,进行催化性能评价,结果见表2。1.0 g of catalyst was loaded into a small fixed bed reactor. The catalytic performance was evaluated at 350°C, 1.2 MPa, 15 ml/min hydrogen for activation for 8 h, reaction temperature 295°C, reaction pressure 1.2 MPa, unsymmetrical trimethylol mass space velocity 1.0 h -1 , hydrogen to oil molar ratio 4.8. The results are shown in Table 2.
表1对比例与实施例的织构性质Table 1 Texture properties of comparative examples and examples
表2实施例和对比例的催化异构化评价结果Table 2 Catalytic isomerization evaluation results of Examples and Comparative Examples
以上所述仅为本发明专利的较佳实施例,并不用以限制本发明专利,凡在本发明专利的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在本发明专利的保护范围之内。The above description is only a preferred embodiment of the patent of the present invention and is not intended to limit the patent of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the patent of the present invention are included in the protection scope of the patent of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410510388.3A CN118420430A (en) | 2024-04-26 | 2024-04-26 | A method for preparing mesitylene by hydroisomerization of trimethylol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410510388.3A CN118420430A (en) | 2024-04-26 | 2024-04-26 | A method for preparing mesitylene by hydroisomerization of trimethylol |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118420430A true CN118420430A (en) | 2024-08-02 |
Family
ID=92315540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410510388.3A Pending CN118420430A (en) | 2024-04-26 | 2024-04-26 | A method for preparing mesitylene by hydroisomerization of trimethylol |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118420430A (en) |
-
2024
- 2024-04-26 CN CN202410510388.3A patent/CN118420430A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101380587B (en) | Propane dehydrogenation catalyst to produce propylene and preparation method thereof | |
US10722872B2 (en) | JMZ-5 and JMZ-6, zeolites having an SZR-type crystal structure, and methods of their preparation and use | |
CN101884935A (en) | Catalyst material and preparation method thereof | |
TW201325718A (en) | Catalyst and process for hydrocarbon conversion | |
CN100473461C (en) | Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof | |
CN114804995B (en) | Series reaction process for preparing paraxylene by aromatic hydrocarbon alkylation | |
CN101885663A (en) | Method for converting heavy aromatics to light aromatics and transferring alkyl radical | |
JP2021506909A (en) | Catalyst for the production of para-xylene by methylation of benzene and / or toluene | |
CN112299433B (en) | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application | |
US8252710B2 (en) | Zeolite-binder catalyst composition | |
WO2015018807A2 (en) | Process for the oxygen free conversion of methane to ethylene on zeolite catalysts | |
CN101664695A (en) | Method for preparing microporous-mesoporous composite molecular sieve | |
CN103212434B (en) | Catalyst for preparing dimethylbenzene by converting methanol and preparation method of catalyst | |
CN118420430A (en) | A method for preparing mesitylene by hydroisomerization of trimethylol | |
CN104148114A (en) | Heavy aromatics lightened monolithic catalyst and preparation method thereof | |
CN115646537B (en) | A mosaic catalyst and its preparation method and application | |
CN102872900A (en) | Catalyst for dry gas and benzene alkylation to prepare ethylbenzene | |
CN103831128B (en) | Modified nano molecular sieve hydrogenation aromatization catalyst and preparation method thereof | |
CN102909057B (en) | Catalyst comprising EUO type zeolite, preparation method and applications thereof | |
JP5131624B2 (en) | Paraffin catalytic cracking process | |
JP3302553B2 (en) | Catalyst for converting heavy aromatics to light aromatics and method for converting the same | |
CN112619688B (en) | A kind of preparation method and application of catalyst for one-step methylation of synthesis gas and biphenyl/4-methylbiphenyl | |
CN115869994A (en) | Pd-Ni-Co/NaOH-Hbeta catalyst, and preparation method and application thereof | |
CN103183580A (en) | Method of using Au-loaded zeolite catalyst to transform C6 or more aliphatic hydrocarbon into aromatic hydrocarbon | |
CN101869834A (en) | Selective hydrogen burning catalyst for internal heating of petroleum hydrocarbon cracking raw materials and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |