CN100473461C - Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof - Google Patents
Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof Download PDFInfo
- Publication number
- CN100473461C CN100473461C CNB2004100502023A CN200410050202A CN100473461C CN 100473461 C CN100473461 C CN 100473461C CN B2004100502023 A CNB2004100502023 A CN B2004100502023A CN 200410050202 A CN200410050202 A CN 200410050202A CN 100473461 C CN100473461 C CN 100473461C
- Authority
- CN
- China
- Prior art keywords
- catalyst
- zeolite
- acid
- sihzsm
- acid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明属于石油化工催化剂制备领域,涉及一种适用于碳四液化石油气在固定床反应器中芳构化的催化剂及其制备方法。其技术特征是,催化剂的母体是晶粒度为10~500纳米的高硅沸石,沸石母体用氧化铝成型后用常规方法制备成氢型催化剂,然后对氢型催化剂进行水蒸汽处理调整其酸度,再用酸扩孔处理恢复催化剂孔道的畅通性。本发明的效果和益处是制备的催化剂用于催化碳四液化石油气芳构化时反应温度低,烯烃转化率高,抗积炭能力强。The invention belongs to the field of petrochemical catalyst preparation, and relates to a catalyst suitable for the aromatization of C4 liquefied petroleum gas in a fixed-bed reactor and a preparation method thereof. Its technical feature is that the precursor of the catalyst is a high-silica zeolite with a grain size of 10-500 nanometers. The zeolite precursor is formed by alumina and prepared into a hydrogen-type catalyst by a conventional method, and then the hydrogen-type catalyst is treated with water vapor to adjust its acidity. , and then use acid reaming to restore the smoothness of the catalyst pores. The effect and benefit of the invention are that when the prepared catalyst is used to catalyze the aromatization of C4 liquefied petroleum gas, the reaction temperature is low, the olefin conversion rate is high, and the anti-coking ability is strong.
Description
技术领域 technical field
本发明属于石油化工催化剂制备技术领域。涉及一种适用于碳四液化石油气在固定床反应器中芳构化的催化剂及其制备方法。The invention belongs to the technical field of petrochemical catalyst preparation. It relates to a catalyst suitable for the aromatization of C4 liquefied petroleum gas in a fixed-bed reactor and a preparation method thereof.
背景技术 Background technique
炼油厂的蒸汽裂解装置和各种催化裂化装置副产大量的碳四液化石油气。碳四液化石油气中含有大量的各种丁烯,将丁烯转化为燃料汽油是一条十分有意义的资源利用途径。A large amount of C4 liquefied petroleum gas is produced by steam cracking units and various catalytic cracking units in refineries. C4 liquefied petroleum gas contains a large amount of various butenes, and converting butenes into fuel gasoline is a very meaningful way of resource utilization.
专利文献US3960978(1976年)披露了一种能将低碳烯烃(C2~C5)通过低聚或叠合途径转化为烯烃汽油的催化剂,该催化剂属于用Ni、Zn或者Cr金属离子改性的ZSM-5/ZSM-11。在此专利之后,国内外又出现过许多专利涉及低碳烯烃的低聚或叠合催化剂。将低碳烯烃通过低聚或叠合途径转化为烯烃汽油有一定的应用局限性。这是由于烯烃在汽油中的含量已经受到了严格的限制,所以烯烃汽油必须加氢饱和后才能被接受。而加氢需要增加设备投资,特别是要消耗非常紧缺的氢气资源。Patent document US3960978 (1976) discloses a catalyst capable of converting low-carbon olefins (C 2 -C 5 ) into olefin gasoline through oligomerization or superimposition. The catalyst is modified with Ni, Zn or Cr metal ions The ZSM-5/ZSM-11. After this patent, many patents at home and abroad related to oligomerization or superposition catalysts of low-carbon olefins. The conversion of light olefins into olefinic gasoline through oligomerization or superposition has certain application limitations. This is because the content of olefins in gasoline has been strictly limited, so olefin gasoline must be hydrogenated and saturated before it can be accepted. Hydrogenation requires increased investment in equipment, especially the consumption of very scarce hydrogen resources.
另一方面,通过低碳烯烃(C2~C5)的芳构化反应可以获得芳构化汽油。低碳烯烃的芳构化反应包含以下主要的基元反应步骤:首先,低碳烯烃在较弱的质子酸中心上通过低聚或叠合生成长链烯烃,然后上述长链烯烃在较强的质子酸中心上异构、环化生成芳烃前驱体,最后,芳烃前驱体在中等强度的路易斯酸中心(即L-酸)上脱去氢原子生成芳烃,而被脱去的氢原子则与烯烃的双键进行加成反应,使烯烃(包括低碳烯烃和通过低聚或叠合生成的长链烯烃)的双键饱和。由于芳构化过程中存在上述氢转移反应,所以芳构化汽油(指碳五以上液态烃)中的烯烃含量很少,无须再耗用氢气进行饱和。芳构化汽油中除了大量高辛烷值的芳烃组分之外,还含有许多饱和烷烃,其中有相当多是高辛烷值的异构烷烃,因此从低碳烯烃得到的芳构化汽油成本低、辛烷值高,烯烃及硫含量低,是良好的清洁汽油调和组分。如前所述,芳构化过程是一个质子酸中心和路易斯酸中心协同催化的过程。由于每一个氢原子的转移都需要通过一个碳-氢键的断裂和一个碳-氢键的形成才能完成,而且形成一个芳烃分子需要转移多个氢原子,因此氢转移步骤是芳构化反应中的速度控制步骤,提高催化剂上的路易斯酸中心与质子酸中心的数量比对芳构化反应有利。一般地,芳构化催化剂上的路易斯酸中心与质子酸中心的数量比必须在催化剂改性中进行调节。此外,由于芳构化过程中总是有积炭过程伴随发生,因此芳构化催化剂的积炭失活问题都非常突出。导致芳构化催化剂积炭失活的原因之一,就是催化剂上存在强酸中心(包括质子酸中心和路易斯酸中心)。强酸中心会使反应物和产物产生强吸附,从而加快催化剂的失活速度。因此消除催化剂的强酸中心对提高催化剂的反应稳定性是有利的。一般地,消除芳构化催化剂上的强酸中心也必须在催化剂改性中完成。On the other hand, aromatized gasoline can be obtained through the aromatization reaction of light olefins (C 2 -C 5 ). The aromatization reaction of low-carbon olefins contains the following main elementary reaction steps: first, low-carbon olefins generate long-chain olefins by oligomerization or superposition on weaker proton acid centers, and then the above-mentioned long-chain olefins are formed on stronger proton acid centers. Isomerization and cyclization on the acid center generate aromatic hydrocarbon precursors. Finally, the aromatic hydrocarbon precursor removes hydrogen atoms on the medium-strength Lewis acid center (ie L-acid) to generate aromatic hydrocarbons, and the removed hydrogen atoms are combined with the alkene The double bond undergoes an addition reaction to saturate the double bond of olefins (including low-carbon olefins and long-chain olefins generated by oligomerization or superposition). Due to the above-mentioned hydrogen transfer reaction in the aromatization process, the content of olefins in aromatized gasoline (refers to liquid hydrocarbons with carbon five or more) is very small, and there is no need to consume hydrogen for saturation. In addition to a large number of high-octane aromatic components, aromatized gasoline also contains many saturated alkanes, of which quite a lot are high-octane isoparaffins, so the cost of aromatized gasoline obtained from low-carbon olefins Low, high octane number, low olefin and sulfur content, it is a good clean gasoline blending component. As mentioned above, the aromatization process is a co-catalyzed process of protonic acid centers and Lewis acid centers. Since the transfer of each hydrogen atom needs to be completed through the breaking of a carbon-hydrogen bond and the formation of a carbon-hydrogen bond, and the formation of an aromatic hydrocarbon molecule requires the transfer of multiple hydrogen atoms, the hydrogen transfer step is the aromatization reaction. The rate-controlling step, increasing the ratio of the number of Lewis acid sites to protonic acid sites on the catalyst is beneficial to the aromatization reaction. Generally, the ratio of the number of Lewis acid sites to protic acid sites on the aromatization catalyst must be adjusted in catalyst modification. In addition, since the aromatization process is always accompanied by carbon deposition, the problem of carbon deposition and deactivation of aromatization catalysts is very prominent. One of the reasons leading to the deactivation of aromatization catalyst carbon deposition is the presence of strong acid centers (including protonic acid centers and Lewis acid centers) on the catalyst. Strong acid sites will cause strong adsorption of reactants and products, thereby accelerating the deactivation rate of the catalyst. Therefore, eliminating the strong acid center of the catalyst is beneficial to improve the reaction stability of the catalyst. Generally, elimination of strong acid sites on the aromatization catalyst must also be accomplished in catalyst modification.
以下专利文献中披露了一些低碳烯烃芳构化催化剂及其制备方法:Some low-carbon olefin aromatization catalysts and preparation methods thereof are disclosed in the following patent documents:
US4150062(1979年)披露的一种能用C2~碳四烯烃生产高辛烷值芳烃汽油的沸石催化剂,是金属离子改性的ZSM-5、ZSM-11、ZSM-12、ZSM-35或ZSM-38沸石。其实施例中详细介绍了一种钾改性ZSM-5在固定床反应器中的芳构化反应效果。其中,为了降低催化剂的积碳失活速度,该专利采用水作为共进料(水/烯烃摩尔比为0.5~15)。US4150062 (1979) discloses a zeolite catalyst capable of producing high-octane aromatic gasoline with C 2 -carbon tetraolefins, which is metal ion modified ZSM-5, ZSM-11, ZSM-12, ZSM-35 or ZSM-38 zeolite. The examples describe in detail the aromatization effect of a potassium-modified ZSM-5 in a fixed-bed reactor. Among them, in order to reduce the deactivation rate of the catalyst by carbon deposition, the patent uses water as a co-feed (the water/olefin molar ratio is 0.5-15).
CN1057476(1992年)披露的低碳烯烃芳构化催化剂是含锌ZSM沸石催化剂。其实施例中详细介绍了一种Zn-Ti(SO4)2-ZSM-5沸石催化剂在固定床反应器中的反应效果:在液化石油气原料进料空速为WHSV为1~2h-1,反应温度为500~550℃的条件下,共对所说的催化剂进行了1000小时的反应评价。但是,在1000小时的反应时间里共需要再生6次。在一次连续反应168小时的单程反应评价中,产物中苯、甲苯和二甲苯(BTX)的收率从开始的42.0%最终降至32%。The low carbon olefin aromatization catalyst disclosed in CN1057476 (1992) is a zinc-containing ZSM zeolite catalyst. The examples describe in detail the reaction effect of a Zn-Ti(SO 4 ) 2 -ZSM-5 zeolite catalyst in a fixed bed reactor: when the feed space velocity of the liquefied petroleum gas raw material is WHSV, it is 1 to 2h -1 , under the condition that the reaction temperature was 500-550° C., the catalyst was evaluated for 1000 hours in total. However, a total of 6 regenerations are required in a reaction time of 1000 hours. In a one-way reaction evaluation of a continuous reaction of 168 hours, the yield of benzene, toluene and xylene (BTX) in the product decreased from 42.0% at the beginning to 32% at the end.
CN1154687(1997年)披露了一种水蒸汽钝化改性的ZSM-5沸石催化剂。在双反应塔式固定床单段绝热反应器中,用碳四混合物为原料,在进料空速WHSV为2.8h-1,压力为0.5Mpa,反应温度为530℃的条件下,当反应进行至10小时时C6~C9芳烃产率达到了52.3wt%,连续反应至120小时时C6~C9芳烃产率降至49wt%。CN1154687 (1997) discloses a ZSM-5 zeolite catalyst modified by water vapor passivation. In a fixed-bed single-stage adiabatic reactor with double reaction towers, carbon-four mixtures are used as raw materials, under the conditions of feed space velocity WHSV of 2.8h -1 , pressure of 0.5Mpa, and reaction temperature of 530°C, when the reaction proceeds to The yield of C 6 -C 9 aromatics reached 52.3wt% in 10 hours, and the yield of C 6 -C 9 aromatics dropped to 49wt% when the reaction continued for 120 hours.
CN1232071(1999年)披露的一种芳构化催化剂,是以ZSM-5沸石和γ-Al2O3为载体,Zn与混合稀土改性后再经水汽处理改性的催化剂。当以混合碳四为原料,在固定床反应器中,在反应温度为530℃,反应压力为0.2MPa,进料空速WHSV为0.65h-1的条件下,连续反应450小时,芳烃收率的初始值为50wt%,最终降至43wt%。CN1232071 (1999) discloses an aromatization catalyst, which uses ZSM-5 zeolite and γ-Al 2 O 3 as the carrier, and is modified by Zn and mixed rare earth and then modified by water vapor treatment. When using mixed C4 as raw material, in a fixed bed reactor, under the conditions of reaction temperature 530°C, reaction pressure 0.2MPa, feed space velocity WHSV 0.65h -1 , continuous reaction for 450 hours, yield of aromatics The initial value of 50wt% was finally reduced to 43wt%.
CN1321728(2001年)披露的一种催化剂,是以ZSM-5沸石和γ-Al2O3为载体,Zn与混合稀土改性后再经水汽处理改性得到的。当进料是液化石油气,反应在常压、530-540℃,WHSV为0.6±0.1h-1条件下连续进行16天,反应有效组份的转化率和芳烃产率的初始值分别为85%和40%,最终值分别为68%和38%。A catalyst disclosed in CN1321728 (2001) is obtained by using ZSM-5 zeolite and γ-Al 2 O 3 as the carrier, Zn and mixed rare earth modified and then modified by water vapor treatment. When the feed is liquefied petroleum gas, the reaction is carried out continuously for 16 days under the conditions of normal pressure, 530-540 ° C, and WHSV of 0.6 ± 0.1 h -1 . % and 40%, the final values are 68% and 38%, respectively.
CN1340601(2002年)披露的一种芳构化催化剂,其特征是,以ZSM-5沸石为母体,先浸渍金属离子(Zn),再引入第二改性组份VA或VIB族金属以防止Zn的流失,催化剂用粘结剂成型后再进行水蒸汽钝化改性。当以混合碳四为原料,反应在530℃、0.2MPa,WHSV为0.65h-1条件下进行时,芳烃收率的初始值为50wt%,连续反应450小时后的结果为43wt%。A kind of aromatization catalyst disclosed by CN1340601 (2002), it is characterized in that, take ZSM-5 zeolite as precursor, impregnate metal ion (Zn) earlier, then introduce the second modification component VA or VIB group metal to prevent Zn The loss of the catalyst is molded with a binder and then modified by water vapor passivation. When mixed C4 is used as raw material, the reaction is carried out at 530°C, 0.2MPa, and WHSV of 0.65h -1 , the initial value of aromatics yield is 50wt%, and the result after continuous reaction for 450 hours is 43wt%.
CN1341699(2002年)披露的一种芳构化催化剂,是Zn-Ni-ZSM-5沸石。当混合碳四在固定床反应器中和温度500℃,压力0.5-1MPa,WHSV为1.0-1.5h-1条件下进料反应时,反应40小时时液收为60.37wt%,总芳烃收率为57.30wt%;反应120小时时,液收降至47.80wt%,总芳烃收率降至45.34wt%。An aromatization catalyst disclosed in CN1341699 (2002) is Zn-Ni-ZSM-5 zeolite. When the mixed carbon four reacts in a fixed-bed reactor with a temperature of 500°C, a pressure of 0.5-1MPa, and a WHSV of 1.0-1.5h -1 , the liquid yield is 60.37wt% in 40 hours of reaction, and the total aromatics yield It was 57.30wt%; when reacting for 120 hours, the liquid yield dropped to 47.80wt%, and the total aromatics yield dropped to 45.34wt%.
如上所述,已有的芳构化催化剂的制备改性,是通过采用金属氧化物改性、或者采用水蒸气处理改性、或者采用以上两种方法的组合改性完成的。金属氧化物改性和水蒸气处理改性都有消除催化剂上强酸中心及提高路易斯酸中心与质子酸中心比例的作用。其中,用金属氧化物改性消除催化剂上的强酸中心是通过表面覆盖途径实现的,由于金属氧化物本身属于路易斯酸,因此通过金属氧化物改性可以同时提高路易斯酸中心与质子酸中心比例。用水蒸气处理改性消除催化剂上的强酸中心主要是通过使沸石骨架脱铝实现的,由于沸石骨架铝对应的是质子酸中心,而从沸石骨架上脱下来的铝物种滞留于沸石微孔内,以非骨架铝的形式产生新的路易斯酸中心,因此通过水蒸气处理改性也可以提高路易斯酸中心与质子酸中心比例。As mentioned above, the preparation and modification of existing aromatization catalysts are completed by modification with metal oxides, modification with steam treatment, or a combination of the above two methods. Both metal oxide modification and steam treatment modification can eliminate strong acid sites on the catalyst and increase the ratio of Lewis acid sites to protonic acid sites. Among them, the modification of metal oxides to eliminate the strong acid centers on the catalyst is achieved through surface coverage. Since metal oxides themselves belong to Lewis acids, the ratio of Lewis acid centers to protonic acid centers can be simultaneously increased by metal oxide modification. The removal of strong acid centers on the catalyst by water vapor treatment modification is mainly achieved by dealuminating the zeolite framework. Since the aluminum of the zeolite framework corresponds to the protonic acid center, and the aluminum species detached from the zeolite framework are retained in the micropores of the zeolite, New Lewis acid centers are generated in the form of non-framework aluminum, so the modification by steam treatment can also increase the ratio of Lewis acid centers to protic acid centers.
但是,用已有方法制备的芳构化催化剂虽然具有良好的芳构化催化性能,但是催化剂的结焦失活速度快,单程运转周期短,并且使用温度一般都必须高于500℃。However, although the aromatization catalyst prepared by the existing method has good aromatization catalytic performance, the coking deactivation speed of the catalyst is fast, the single-pass operation period is short, and the operating temperature must generally be higher than 500°C.
发明人经过分析认为,已有的芳构化催化剂制备方法的问题在于,其在消除催化剂上强酸中心和提高催化剂上的路易斯酸中心与质子酸中心比例的同时,都减小了沸石微孔的有效尺寸,结果都相应地增加了微孔内的扩散阻力。这是因为,改性所使用的金属氧化物无论是以高分散状态还是以聚集体状态存在于沸石微孔内,都会成为沸石微孔内的障碍物。同样,由于水蒸气处理产生并滞留在沸石微孔内的非骨架铝物种也是沸石微孔内的障碍物。这些由于改性而产生的微孔障碍物增大了积炭前驱体(产物芳烃分子就属于积炭前驱体)从沸石微孔内向外扩散的阻力,因此增大了这些积炭前驱体在催化剂上深度反应生成积炭的机会。After analysis, the inventor believes that the problem of the existing preparation method of aromatization catalyst is that it reduces the ratio of strong acid centers on the catalyst and increases the ratio of Lewis acid centers to protonic acid centers on the catalyst, and reduces the density of zeolite micropores. The effective size, results in a corresponding increase in the diffusion resistance in the micropores. This is because whether the metal oxide used for modification exists in the micropores of the zeolite in a highly dispersed state or in an aggregated state, it will become an obstacle in the micropores of the zeolite. Likewise, non-framework aluminum species generated due to water vapor treatment and trapped within the pores of zeolites are also obstacles within the pores of zeolites. These micropore obstacles due to modification increase the resistance of carbon deposition precursors (product aromatic molecules belong to carbon deposition precursors) from the zeolite micropores to the outside, thus increasing the carbon deposition precursors in the catalyst. Opportunities for deep reaction to generate carbon deposits.
发明内容 Contents of the invention
本发明的目的是提供一种能够克服上述不足的芳构化催化剂制备方法。The object of the present invention is to provide a method for preparing an aromatization catalyst capable of overcoming the above disadvantages.
本发明的目的可以通过以下两方面实现:一方面,催化剂改性按如下步骤进行:首先采用水蒸气处理消除催化剂表面的强酸中心并提高路易斯酸中心与质子酸中心比例,然后用稀酸溶液处理水蒸气钝化后的催化剂(即酸扩孔),从而使从沸石骨架上脱下的,滞留于沸石微孔中的非骨架铝被溶解清除,恢复沸石微孔的畅通性。另一方面,以晶粒度小于500纳米的高硅沸石为催化剂母体,利用小晶粒沸石孔道短的固有优点,进一步改善芳构化催化剂的扩散性。The object of the present invention can be achieved through the following two aspects: on the one hand, the catalyst modification is carried out as follows: first adopt water vapor treatment to eliminate the strong acid center on the catalyst surface and improve the ratio of Lewis acid center and protonic acid center, then treat with dilute acid solution The catalyst after water vapor passivation (i.e. acid pore expansion), so that the non-skeleton aluminum detached from the zeolite framework and retained in the zeolite micropores is dissolved and removed, and the smoothness of the zeolite micropores is restored. On the other hand, using high-silica zeolite with a grain size of less than 500 nanometers as the catalyst matrix, the inherent advantages of small-grain zeolite with short pores are used to further improve the diffusivity of the aromatization catalyst.
本发明具体可按如下步骤实施:The present invention can specifically be implemented according to the following steps:
首先,用水热合成法制备晶粒度小于500纳米的高硅沸石母体。高硅沸石具体包括ZSM-5、ZSM-11、ZSM-8。用水热合成法制备晶粒度小于500纳米的高硅沸石的方法已经在许多专利文献和公开文献中说明,比如以下专利文献和公开文献中所披露的方法:U.S.Pat.No.3702886,U.S.Pat.No.3709979,U.S.Pat.No.3781226,U.S.Pat.No.3926782,U.S.Pat.No.4205053,U.S.Pat.No.4289607,U.S.Pat.No.5405596,U.S.Pat.No.1334243,EP173901,EP130809,Danish Patent PR 173,486,GB1334243A,Chem.Mater 5(1993)452,Zeolites 14(1994)557,Zeolites 14(1994)643,J.Catal.145(1994)243,Mater.Res.Soc.Symp.Proc.371(1995)21,Aangew.Chem.Int.Ed.Engl.34(1995)73,Chem.Mater.7(1995)920,Colloid Interface Sci.170(1995)449,Micropor.Mater.5(1996)381,Zeolites 18(1997)97,J.Phys.Chem.B101(1997)10094,Micropor.Mesopor.Mater.22(1998)9,Micropor.Mesopor.Mater.25(1998)434,Chem.Comm.673(1999),Micropor.Mesopor.Mater.31(1999)141,Micropor.Mesopor.Mater.31(1999)241,Micropor.Mesopor.Mater.39(2000)393,Inorg.Chem.39(2000)2279,Micropor.Mesopor.Mater.50(2001)121-128,Micropor.Mesopor.Mater.43(2001)51-59,Mater.Sci.Eng.C 19(2002)111-114。因此,任何熟悉本领域的工程师可以按照已有方法水热合成出本发明所说的晶粒度小于500纳米的高硅沸石。根据本领域通常的做法,分别采用X-射线多晶粉末衍射法和扫描(透射)电子显微镜法对沸石结构和沸石晶粒尺寸进行确认。Firstly, a high silica zeolite precursor with a grain size of less than 500 nanometers is prepared by a hydrothermal synthesis method. Silica zeolites specifically include ZSM-5, ZSM-11, and ZSM-8. The method for preparing high-silica zeolite with a grain size of less than 500 nanometers by hydrothermal synthesis has been described in many patent documents and published documents, such as the method disclosed in the following patent documents and published documents: U.S.Pat.No.3702886, U.S.Pat. .No.3709979, U.S.Pat.No.3781226, U.S.Pat.No.3926782, U.S.Pat.No.4205053, U.S.Pat.No.4289607, U.S.Pat.No.5405596, U.S.Pat.No.1334243, EP173901, EP130809 , Danish Patent PR 173,486, GB1334243A, Chem.Mater 5(1993)452, Zeolites 14(1994)557, Zeolites 14(1994)643, J.Catal.145(1994)243, Mater.Res.Soc.Symp.Proc .371(1995)21, Aangew.Chem.Int.Ed.Engl.34(1995)73, Chem.Mater.7(1995)920, Colloid Interface Sci.170(1995)449, Micropor.Mater.5(1996 )381, Zeolites 18(1997)97, J.Phys.Chem.B101(1997)10094, Micropor.Mesopor.Mater.22(1998)9, Micropor.Mesopor.Mater.25(1998)434, Chem.Comm. 673(1999), Micropor.Mesopor.Mater.31(1999)141, Micropor.Mesopor.Mater.31(1999)241, Micropor.Mesopor.Mater.39(2000)393, Inorg.Chem.39(2000)2279 , Micropor. Mesopor. Mater. 50 (2001) 121-128, Micropor. Mesopor. Mater. 43 (2001) 51-59, Mater. Sci. Eng. C 19 (2002) 111-114. Therefore, any engineer familiar with the field can hydrothermally synthesize the silicalite with a grain size of less than 500 nanometers as mentioned in the present invention according to the existing method. According to common practices in the art, the zeolite structure and zeolite grain size were confirmed by X-ray polycrystalline powder diffraction method and scanning (transmission) electron microscope method, respectively.
从水热合成中得到的沸石粉末属于非活性的钠型原粉。将钠型沸石原粉制备成本发明所说的催化剂,应按以下步骤首先将其制成氢型催化剂:The zeolite powder obtained from hydrothermal synthesis belongs to the inactive sodium form raw powder. The former powder of sodium type zeolite is prepared into the said catalyst of the present invention, it should be made into hydrogen type catalyst at first according to the following steps:
首先,将钠型沸石原粉干燥,程序升温焙烧。干燥的适宜温度范围为干燥气氛为空气气氛,干燥时间取3~12小时。程序升温焙烧的适宜温度范围为300~600℃,焙烧气氛为空气气氛,焙烧时间取3~24小时。焙烧的目的是脱除占据在沸石孔道中的有机模板剂。采用程序升温方法能防止有机物燃烧过于剧烈,从而避免沸石晶体内部局部过热,破坏沸石晶体结构。作为一个特例,所说的干燥在110℃下进行,干燥时间取3小时;所说的程序升温焙烧在马弗炉中进行,升温方法为:从室温以1℃/min的升温速率升至300℃,在300℃下恒温1小时;再以同样的升温速率升温至400℃,在400℃下恒温1小时;再以同样的升温速率升温至500℃,在500℃下恒温1小时;再以同样的升温速率升温至550℃,在550℃下恒温12小时。Firstly, the raw sodium zeolite powder is dried and calcined at programmed temperature. The suitable temperature range for drying is that the drying atmosphere is an air atmosphere, and the drying time is 3 to 12 hours. The suitable temperature range for the temperature-programmed roasting is 300-600° C., the roasting atmosphere is air atmosphere, and the roasting time is 3-24 hours. The purpose of calcination is to remove the organic template agent occupied in the zeolite channel. The method of temperature programming can prevent the organic matter from burning too violently, thereby avoiding local overheating inside the zeolite crystal and destroying the zeolite crystal structure. As a special example, the drying is carried out at 110°C, and the drying time is 3 hours; the temperature-programmed roasting is carried out in a muffle furnace, and the heating method is: from room temperature to 300°C at a rate of 1°C/min. ℃, keep the temperature at 300℃ for 1 hour; then raise the temperature to 400℃ at the same heating rate, and keep the temperature at 400℃ for 1 hour; then raise the temperature to 500℃ at the same heating rate, and keep the temperature at 500℃ for 1 hour; The temperature was raised to 550° C. at the same heating rate, and the temperature was kept at 550° C. for 12 hours.
其次,将脱掉有机模板剂的钠型沸石粉末与一定量的氧化铝混合,并用适量的10%稀硝酸(重量百分比)和匀,然后按常规方法进行压片或挤条或喷吐或滚球成型。其中,小晶粒沸石与氧化铝的干基重量比适宜范围为1:9~9:1。如果沸石的含量低于此范围,则催化剂的活性和稳定性差。反之,如果沸石的含量高于此范围,则催化剂颗粒易破碎。成型之后,将颗粒状的钠型沸石进行干燥和焙烧。干燥的适宜条件如上所述。焙烧的适宜条件为:空气气氛,500~600℃,3~8小时。此处焙烧的目的是增强颗粒的机械强度。作为一个特例,所说的沸石成型在一个双螺杆挤条机上进行,条径尺寸选为1毫米,沸石与氧化铝的干基重量比选为8:2,其中氧化铝由薄水铝石提供。干燥在110℃下进行,干燥时间为3小时;焙烧在马弗炉中进行,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。Secondly, mix the sodium zeolite powder that has taken off the organic template with a certain amount of alumina, and mix it with an appropriate amount of 10% dilute nitric acid (percentage by weight), and then press or extrude or spray or roll the ball according to the conventional method. forming. Wherein, the dry basis weight ratio of the small-crystalline zeolite to the alumina is preferably in the range of 1:9-9:1. If the content of zeolite is below this range, the activity and stability of the catalyst will be poor. On the contrary, if the content of zeolite is higher than this range, the catalyst particles are easily broken. After shaping, the granular sodium zeolite is dried and calcined. Suitable conditions for drying are as described above. The suitable conditions for firing are: air atmosphere, 500-600°C, 3-8 hours. The purpose of calcination here is to enhance the mechanical strength of the particles. As a special case, said zeolite molding is carried out on a twin-screw extruder, the rod diameter size is selected as 1 mm, and the dry basis weight ratio of zeolite to alumina is selected as 8:2, wherein the alumina is provided by boehmite . Drying was carried out at 110°C, and the drying time was 3 hours; roasting was carried out in a muffle furnace, and the heating method was as follows: directly increase the temperature from room temperature to 550°C at a rate of 3°C/min, and then keep the temperature for 3 hours.
再其次,将已经成型的小晶粒沸石颗粒用铵盐交换,制成氢型催化剂。铵盐交换在室温下进行,所用交换液的铵离子浓度适宜范围为0.1~1.0摩尔/升,交换液与沸石颗粒固体的液固体积比适宜范围为1~100,交换次数为1~5次,每次交换时间为0.5~10小时。每次交换完成后,倒掉残液,加入新鲜交换液。交换液中的铵离子用硝酸铵,氯化铵、醋酸铵或碳酸铵等铵盐提供。全部铵交换工作完成之后,倒掉残液,用去离子水洗涤沸石颗粒1次。然后,将交换过的沸石颗粒干燥,焙烧。干燥的适宜条件如上所述。焙烧的适宜条件为:空气气氛,500~600℃,3~8小时。此处焙烧的目的是释放氨气,使沸石获得酸性。作为一个特例,所说的铵盐交换使用0.6M的硝酸铵溶液,交换液与沸石颗粒固体的液固体积比选为10,交换次数为4次,每次交换时间为1小时。干燥在110℃下进行,干燥时间为3小时;焙烧在马弗炉中进行,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。Secondly, the formed small crystal grain zeolite particles are exchanged with ammonium salt to make a hydrogen catalyst. The ammonium salt exchange is carried out at room temperature, the appropriate range of the ammonium ion concentration of the exchange liquid used is 0.1-1.0 mol/liter, the appropriate range of the liquid-solid volume ratio of the exchange liquid to the zeolite particle solid is 1-100, and the number of exchanges is 1-5 times , each exchange time is 0.5 to 10 hours. After each exchange, discard the residual solution and add fresh exchange solution. Ammonium ions in the exchange liquid are provided by ammonium nitrate, ammonium chloride, ammonium acetate or ammonium carbonate and other ammonium salts. After all the ammonium exchange work was completed, the residual liquid was poured off, and the zeolite particles were washed once with deionized water. Then, the exchanged zeolite particles are dried and calcined. Suitable conditions for drying are as described above. The suitable conditions for firing are: air atmosphere, 500-600°C, 3-8 hours. The purpose of roasting here is to release ammonia and make the zeolite acidic. As a special example, said ammonium salt exchange uses 0.6M ammonium nitrate solution, the liquid-solid volume ratio of the exchange liquid and the zeolite particle solid is selected as 10, the number of exchanges is 4 times, and each exchange time is 1 hour. Drying was carried out at 110°C, and the drying time was 3 hours; roasting was carried out in a muffle furnace, and the heating method was as follows: directly increase the temperature from room temperature to 550°C at a rate of 3°C/min, and then keep the temperature for 3 hours.
在上述氢型催化剂的基础上,进一步按照如下步骤改性,即可得到本发明所说的芳构化催化剂:On the basis of the above-mentioned hydrogen-type catalyst, further modification according to the following steps can obtain the said aromatization catalyst of the present invention:
首先,对上述氢型沸石催化剂进行水蒸汽钝化处理:水蒸气处理可以方便地在众所周知的固定床反应器中进行,水蒸气处理可以采用纯水蒸汽,也可以采用空气或氮气携带的水蒸气。经过研究确认,在进行水蒸气处理时,气氛中水蒸汽的适宜体积百分数为1%~100%,平衡气为空气或氮气;水蒸汽处理的适宜温度范围为400~800℃;水蒸汽处理的适宜压力范围为常压~5.0MPa;按纯水蒸汽折合的水进料量(单位时间内单位固定床反应器横截面积上通过的水的重量)适宜范围为0.1~1000克×小时-1×平方厘米-1。在上述条件下水蒸汽处理时间的适宜范围为5分钟~200小时。First, the above-mentioned hydrogen-type zeolite catalyst is subjected to water vapor passivation treatment: water vapor treatment can be conveniently carried out in a well-known fixed-bed reactor, and water vapor treatment can use pure water vapor, or water vapor carried by air or nitrogen . It has been confirmed through research that when performing steam treatment, the appropriate volume percentage of water vapor in the atmosphere is 1% to 100%, and the balance gas is air or nitrogen; the suitable temperature range for steam treatment is 400-800°C; The suitable pressure range is from normal pressure to 5.0MPa; the suitable range of the water feed amount converted into pure water vapor (the weight of water passing through the cross-sectional area of the fixed bed reactor per unit time) is 0.1 to 1000 grams × hour -1 × square centimeter -1 . The suitable range of steam treatment time under the above conditions is 5 minutes to 200 hours.
其次,对经过水蒸气处理改性后的催化剂进行酸扩孔处理:酸扩孔处理可以方便地在耐酸的容器中进行。经过研究确认,酸扩孔处理可以选择盐酸、硝酸或硫酸中任何一种酸的水溶液,或者选择以上无机酸的混酸溶液;还可以选择甲酸、乙酸或柠檬酸中任何一种酸的水溶液,或者选择以上有机酸的混酸溶液;在选择上述无机酸的情况下,酸溶液中的氢质子浓度适宜范围为0.001摩尔/升~5.0摩尔/升;在选择上述有机酸的情况下,酸溶液中溶质的重量百分浓度适宜范围为0.1%~20%;酸扩孔处理在常压下进行,适宜的温度范围为1℃~80℃。酸扩孔处理可以在静止情况下进行,也可以在酸溶液循环流动情况下进行。在上述条件下,酸扩孔的适宜时间范围为0.5~200小时。酸扩孔结束后,用去离子水将催化剂洗至中性,然后将其干燥、焙烧,制得成品催化剂。干燥在110℃下进行,干燥时间为3小时;焙烧在马弗炉中进行,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。Secondly, acid pore expansion treatment is carried out on the catalyst modified by steam treatment: acid pore expansion treatment can be conveniently carried out in an acid-resistant container. It has been confirmed by research that acid pore expansion treatment can choose the aqueous solution of any acid in hydrochloric acid, nitric acid or sulfuric acid, or the mixed acid solution of the above inorganic acids; you can also choose the aqueous solution of any acid in formic acid, acetic acid or citric acid, or Select the mixed acid solution of the above organic acids; in the case of selecting the above inorganic acids, the suitable range of hydrogen proton concentration in the acid solution is 0.001 mol/liter to 5.0 mol/liter; in the case of selecting the above organic acids, the solute in the acid solution The suitable range of weight percent concentration is 0.1%-20%; the acid hole expansion treatment is carried out under normal pressure, and the suitable temperature range is 1°C-80°C. Acid pore-enlarging treatment can be carried out under static conditions, or under the condition of circulating acid solution. Under the above conditions, the suitable time range for acid pore expansion is 0.5-200 hours. After acid pore expansion, the catalyst is washed to neutral with deionized water, then dried and calcined to obtain a finished catalyst. Drying was carried out at 110°C, and the drying time was 3 hours; roasting was carried out in a muffle furnace, and the heating method was as follows: directly increase the temperature from room temperature to 550°C at a rate of 3°C/min, and then keep the temperature for 3 hours.
本发明的效果可以用以下方法评价:Effect of the present invention can be evaluated with following method:
评价催化剂酸度采用吡啶吸附-红外光谱法。吡啶吸附-红外光谱法是本领域用于区分质子酸中心和路易斯酸中心的常规方法。该方法能同时提供催化剂酸强度信息。任何熟悉本领域的工程师可以按照文献中记载的吡啶吸附-红外光谱法的实验步骤对本发明的催化剂酸度进行测定。The acidity of the catalyst was evaluated by pyridine adsorption-infrared spectroscopy. Pyridine adsorption-infrared spectroscopy is a routine method in the art for distinguishing protic acid sites from Lewis acid sites. This method can simultaneously provide information on the acid strength of the catalyst. Any engineer familiar with the art can measure the acidity of the catalyst of the present invention according to the experimental procedure of the pyridine adsorption-infrared spectroscopy method recorded in the literature.
评价催化剂微孔扩散畅通性采用正己烷和环己烷吸附量法。测量正己烷和环己烷等烃分子探针的吸附量是本领域用于表征沸石分子筛孔道有效尺寸的常规方法。沸石催化剂的微孔的畅通性可以用孔道有效尺寸来表征。沸石催化剂在改性过程中微孔中出现障碍物时,其孔道的有效尺寸将减小,微孔中出现的障碍物越多,则沸石孔道有效尺寸减小的程度越大。反之,当沸石微孔中的障碍物被清除后,沸石孔道的有效尺寸将得到恢复。在相同吸附条件下,对于同一个烃分子探针而言,在同样的吸附时间里测定的吸附量越大,说明烃分子探针在沸石微孔中的吸附速度越快,也就是说,被测定的沸石样品的微孔有效尺寸越大,孔道内障碍物越少;反之,在同样的吸附时间里测定的吸附量越小,则说明烃分子探针在沸石微孔中的吸附速度越慢,也就是说,被测定的沸石样品的微孔有效尺寸越小,孔道内障碍物越多。任何熟悉本领域的工程师可以按照文献中记载的正己烷和环己烷吸附量法的实验步骤对本发明催化剂的微孔扩散畅通性进行表征。The smoothness of catalyst micropore diffusion was evaluated by the adsorption method of n-hexane and cyclohexane. Measuring the adsorption amount of hydrocarbon molecular probes such as n-hexane and cyclohexane is a conventional method used in this field to characterize the effective size of zeolite molecular sieve channels. The smoothness of micropores of zeolite catalysts can be characterized by the effective size of pores. When obstacles appear in the micropores of the zeolite catalyst during the modification process, the effective size of the pores will decrease. The more obstacles appear in the micropores, the greater the degree of reduction in the effective size of the zeolite pores. Conversely, when the obstacles in the zeolite micropores are removed, the effective size of the zeolite channels will be restored. Under the same adsorption conditions, for the same hydrocarbon molecular probe, the greater the adsorption amount measured in the same adsorption time, the faster the adsorption rate of the hydrocarbon molecular probe in the zeolite micropores, that is to say, the The larger the effective micropore size of the measured zeolite sample, the fewer obstacles in the channel; on the contrary, the smaller the adsorption amount measured in the same adsorption time, the slower the adsorption rate of the hydrocarbon molecular probe in the zeolite micropore , that is to say, the smaller the effective micropore size of the tested zeolite sample, the more obstacles in the channel. Any engineer familiar with the field can characterize the micropore diffusion smoothness of the catalyst of the present invention according to the experimental steps of the n-hexane and cyclohexane adsorption method recorded in the literature.
评价本发明催化剂的芳构化活性及其抗积炭失活稳定性采用常规的固定床加压反应方法。固定床反应的原料为碳四液化气,反应过程中不使用任何载气。作为一个特例,固定床反应的原料为催化裂化装置副产的碳四液化气,其中各种碳四烯烃的含量不少于50%。反应的适宜条件范围为:反应温度300~500℃,反应压力范围是0.1~5MPa,碳四液化气的进料空速(WHSV)0.05~20h-1。反应温度太低或者进料空速太大,均不利于烯烃芳构化反应。反之,反应温度太高或进料空速太小,则催化剂结焦失活严重。To evaluate the aromatization activity of the catalyst of the present invention and its anti-coking deactivation stability, a conventional fixed-bed pressurized reaction method is used. The raw material of the fixed bed reaction is C4 liquefied gas, and no carrier gas is used in the reaction process. As a special case, the raw material for the fixed bed reaction is the C4 liquefied gas by-product of the catalytic cracking unit, in which the content of various C4 olefins is not less than 50%. The range of suitable conditions for the reaction is: the reaction temperature is 300-500°C, the reaction pressure range is 0.1-5 MPa, and the feed space velocity (WHSV) of the C4 liquefied gas is 0.05-20h -1 . If the reaction temperature is too low or the feed space velocity is too high, it is not conducive to the olefin aromatization reaction. On the contrary, if the reaction temperature is too high or the feed space velocity is too small, the coking and deactivation of the catalyst will be severe.
本发明的效果的益处是:对催化剂进行的旨在调节其酸强度和路易斯酸与质子酸比例的改性,能够保持催化剂中沸石微孔的扩散畅通性;通过选择晶粒度小于500纳米的高硅沸石作为催化剂母体,使催化剂中的沸石微孔更有利于分子扩散。因此,用本发明制备的芳构化催化剂反应温度低,芳构化活性高,且抗积炭失活能力强。此外,由于本发明对催化剂的改性步骤少,不使用金属,特别是不使用资源缺乏的金属如镓等,因此本发明制备的催化剂成本低。The benefit of the effect of the present invention is: the catalyst is carried out aiming at adjusting its acid strength and the modification of Lewis acid and protonic acid ratio, can keep the diffusion unimpeded property of zeolite micropore in the catalyst; High-silica zeolite is used as the catalyst matrix, making the zeolite micropores in the catalyst more conducive to molecular diffusion. Therefore, the aromatization catalyst prepared by the invention has low reaction temperature, high aromatization activity and strong anti-coking deactivation ability. In addition, because the present invention has few modification steps for the catalyst and does not use metals, especially metals lacking in resources such as gallium, the cost of the catalyst prepared by the present invention is low.
具体实施方式 Detailed ways
以下结合技术方案详细叙述本发明的具体实施例。Specific embodiments of the present invention will be described in detail below in conjunction with technical solutions.
催化剂制备实施例1:用晶粒度为20-50纳米的钠型ZSM-5沸石制备氢型沸石催化剂。Catalyst Preparation Example 1: A hydrogen-type zeolite catalyst was prepared by using sodium-type ZSM-5 zeolite with a grain size of 20-50 nanometers.
(1)脱有机胺模板剂处理:取晶粒度为20-50纳米的钠型ZSM-5沸石原粉(SiO2/Al2O3摩尔比26),在110℃下干燥3小时,然后在马弗炉中进行程序升温焙烧,升温方法为:从室温以1℃/min的升温速率升至300℃,在300℃下恒温1小时;再以同样的升温速率升温至400℃,在400℃下恒温1小时;再以同样的升温速率升温至500℃,在500℃下恒温1小时;再以同样的升温速率升温至550℃,在550℃下恒温12小时。(1) Removal of organic amine template agent treatment: take sodium ZSM-5 zeolite raw powder (SiO 2 /Al 2 O 3 molar ratio 26) with a grain size of 20-50 nm, dry it at 110° C. for 3 hours, and then Carry out temperature-programmed roasting in a muffle furnace. The heating method is as follows: from room temperature to 300°C at a heating rate of 1°C/min, and keep the temperature at 300°C for 1 hour; Keep the temperature at ℃ for 1 hour; then raise the temperature to 500℃ at the same heating rate, and keep the temperature at 500℃ for 1 hour; then raise the temperature to 550℃ at the same heating rate, and keep the temperature at 550℃ for 12 hours.
(2)成型:按照沸石与氧化铝的干基重量比8:2,分别取烧过有机胺模板剂的钠型沸石80克(干基),薄水铝石20克(干基),手动混合均匀后,用10%的稀硝酸做粘结剂进行混捏,然后用一个双螺杆挤条机进行挤条成型,条径尺寸选为1毫米。挤条成型后的沸石颗粒在110℃下干燥3小时,最后在马弗炉中进行焙烧,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。(2) Molding: According to the weight ratio of zeolite to alumina on a dry basis of 8:2, take 80 grams of sodium zeolite (dry basis) and 20 grams of boehmite (dry basis) that have been burned with organic amine templates, and manually After mixing evenly, use 10% dilute nitric acid as a binder for kneading, and then use a twin-screw extruder for extrusion molding, and the diameter of the strip is selected as 1 mm. The extruded zeolite particles were dried at 110°C for 3 hours, and finally roasted in a muffle furnace. The heating method was as follows: from room temperature to 550°C at a rate of 3°C/min, and then kept at a constant temperature for 3 hours.
(3)铵交换制备氢型催化剂:铵交换用0.6摩尔/升的硝酸铵溶液,交换液与沸石颗粒固体的液固体积比为10,交换4次,每次交换时间为1小时,中间换液。交换完成后的沸石颗粒经过去离子水洗涤,在110℃下进行干燥处理,干燥时间为3小时。然后,在马弗炉中进行焙烧脱氨气,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。至此,得到氢型催化剂HZSM-5(A)。(3) Ammonium exchange to prepare a hydrogen-type catalyst: Ammonium exchange uses 0.6 mol/liter ammonium nitrate solution, the liquid-solid volume ratio of the exchange liquid to the zeolite particle solid is 10, exchange 4 times, each exchange time is 1 hour, and the middle exchange liquid. After the exchange, the zeolite particles were washed with deionized water and dried at 110° C. for 3 hours. Then, the deammonization gas was roasted in a muffle furnace, and the heating method was as follows: from room temperature to 550° C. at a rate of 3° C./min, and then kept at a constant temperature for 3 hours. So far, the hydrogen-type catalyst HZSM-5(A) was obtained.
催化剂制备实施例2:用晶粒度为20-50纳米的钠型ZSM-5沸石制备低分子筛含量的氢型沸石催化剂。Catalyst Preparation Example 2: A hydrogen-type zeolite catalyst with low molecular sieve content was prepared by using sodium-type ZSM-5 zeolite with a grain size of 20-50 nanometers.
重复实施例1,但是所用的20-50纳米ZSM-5沸石(SiO2/Al2O3摩尔比26)与氧化铝的干基重量比50:50。相应地,将所得到的氢型催化剂定为HZSM-5(B)。Example 1 was repeated, but the weight ratio of 20-50 nm ZSM-5 zeolite (SiO 2 /Al 2 O 3 molar ratio 26) to alumina was 50:50 on a dry basis. Accordingly, the obtained hydrogen-form catalyst was designated as HZSM-5(B).
催化剂制备实施例3:用晶粒度为300-500纳米的钠型ZSM-5沸石制备氢型沸石催化剂。Catalyst Preparation Example 3: A hydrogen-type zeolite catalyst was prepared by using sodium-type ZSM-5 zeolite with a grain size of 300-500 nm.
重复实施例1,但是所用钠型ZSM-5沸石原粉晶粒度为300-500纳米(SiO2/Al2O3摩尔比26)。相应地,将所得到的氢型催化剂定为HZSM-5(C)。Repeat Example 1, but the grain size of the sodium ZSM-5 zeolite raw powder used is 300-500 nm (SiO 2 /Al 2 O 3 molar ratio 26). Accordingly, the obtained hydrogen-form catalyst was designated as HZSM-5(C).
催化剂制备实施例4:用晶粒度为100-500纳米的钠型ZSM-11沸石制备氢型沸石催化剂。Catalyst Preparation Example 4: A hydrogen-type zeolite catalyst was prepared by using sodium-type ZSM-11 zeolite with a grain size of 100-500 nm.
重复实施例1,但是所用钠型沸石原粉为晶粒度在100-500纳米范围内的ZSM-11(SiO2/Al2O3摩尔比26)。相应地,将所得到的氢型催化剂定为HZSM-11。Example 1 was repeated, but the raw sodium zeolite powder used was ZSM-11 (SiO 2 /Al 2 O 3 molar ratio 26) with a grain size in the range of 100-500 nm. Accordingly, the obtained hydrogen-type catalyst was designated as HZSM-11.
催化剂制备实施例5:用晶粒度为90-300纳米的钠型ZSM-8沸石制备氢型沸石催化剂。Catalyst Preparation Example 5: A hydrogen-type zeolite catalyst was prepared by using sodium-type ZSM-8 zeolite with a grain size of 90-300 nm.
重复实施例1,但是所用钠型沸石原粉为晶粒度在90-300纳米范围内的ZSM-8(SiO2/Al2O3摩尔比20)。相应地,将所得到的氢型催化剂定为HZSM-8。Example 1 was repeated, but the raw sodium zeolite powder used was ZSM-8 (SiO 2 /Al 2 O 3 molar ratio 20) with a grain size in the range of 90-300 nm. Accordingly, the obtained hydrogen-form catalyst was designated as HZSM-8.
催化剂制备实施例6:从氢型沸石催化剂制备本发明的改性催化剂Catalyst Preparation Example 6: Preparation of the modified catalyst of the present invention from a hydrogen-type zeolite catalyst
取催化剂制备实施例1~例5所制备的氢型沸石催化剂HZSM-5(A)、HZSM-5(B)、HZSM-5(C)、HZSM-11和HZSM-8各3克并将其加工成φ1×(2-3)的柱形颗粒,然后依次将其装于内径φ7的固定床反应器的恒温区,进行水蒸汽处理。水蒸汽处理在100%水蒸汽气氛中进行,水蒸汽处理的温度为550℃,水蒸汽处理的压力为常压,反应器的水进料量(单位时间内单位固定床反应器横截面积上通过的水的重量)为7.8克×小时-1×平方厘米-1,水蒸汽处理时间为3小时。配制0.6摩尔/升的HNO3水溶液(即,酸溶液中的氢质子浓度为0.6摩尔/升)对上述水蒸汽处理催化剂进行酸扩孔处理。酸扩孔处理的条件为:HNO3溶液与催化剂的液固质量比取5:1,酸扩孔处理在常压和25℃的条件下以静止浸泡方式进行,浸泡时间为24小时。酸扩孔结束后,用去离子水将催化剂洗至中性,然后将其干燥、焙烧,制得成品催化剂。干燥在110℃下进行,干燥时间为3小时;焙烧在马弗炉中进行,升温方法为:从室温以3℃/min的升温速率直接升至550℃,然后恒温3小时。经过上述步骤改性的催化剂依次记做SIHZSM-5(A)、SIHZSM-5(B)、SIHZSM-5(C)、SIHZSM-11和SIHZSM-8。Get each 3 grams of hydrogen-type zeolite catalysts HZSM-5 (A), HZSM-5 (B), HZSM-5 (C), HZSM-11 and HZSM-8 prepared by Catalyst Preparation Examples 1~Example 5 and mix them Process it into columnar particles of φ1×(2-3), and then sequentially install them in the constant temperature zone of a fixed-bed reactor with an inner diameter of φ7 for steam treatment. Steam treatment is carried out in 100% steam atmosphere, and the temperature of steam treatment is 550 ℃, and the pressure of steam treatment is normal pressure, and the water feeding amount of reactor (unit fixed-bed reactor cross-sectional area in unit time The weight of passing water) was 7.8 g×hour −1 ×square centimeter −1 , and the steam treatment time was 3 hours. Prepare 0.6 mol/L HNO 3 aqueous solution (that is, the concentration of hydrogen protons in the acid solution is 0.6 mol/L) to carry out acid pore expansion treatment on the above-mentioned steam treatment catalyst. The conditions of the acid pore expansion treatment are: the liquid-solid mass ratio of the HNO 3 solution to the catalyst is 5:1, the acid pore expansion treatment is carried out by static immersion under normal pressure and 25°C, and the immersion time is 24 hours. After acid pore expansion, the catalyst is washed to neutral with deionized water, then dried and calcined to obtain a finished catalyst. Drying was carried out at 110°C, and the drying time was 3 hours; roasting was carried out in a muffle furnace, and the heating method was as follows: directly increase the temperature from room temperature to 550°C at a rate of 3°C/min, and then keep the temperature for 3 hours. The catalysts modified through the above steps are successively recorded as SIHZSM-5(A), SIHZSM-5(B), SIHZSM-5(C), SIHZSM-11 and SIHZSM-8.
催化剂制备实施例7:采用不同水蒸气处理温度从氢型沸石催化剂制备本发明的改性催化剂Catalyst Preparation Example 7: Using different steam treatment temperatures to prepare the modified catalyst of the present invention from a hydrogen-type zeolite catalyst
取催化剂制备实施例1所制备的氢型沸石催化剂HZSM-5(A),重复实施例6,但是水蒸汽处理温度分别为450℃和700℃,相应地,水蒸汽处理时间分别为100小时和0.5小时,则所得到的改性催化剂依次为SIHZSM-5(A)-01和SIHZSM-5(A)-02。Get the hydrogen-type zeolite catalyst HZSM-5 (A) prepared by Catalyst Preparation Example 1, repeat Example 6, but the steam treatment temperature is respectively 450 ° C and 700 ° C, correspondingly, the steam treatment time is respectively 100 hours and After 0.5 hours, the obtained modified catalysts are SIHZSM-5(A)-01 and SIHZSM-5(A)-02 in turn.
催化剂制备实施例8:采用不同水蒸气处理气氛从氢型沸石催化剂制备本发明的改性催化剂Catalyst Preparation Example 8: Using different water vapor treatment atmospheres to prepare the modified catalyst of the present invention from a hydrogen-type zeolite catalyst
取催化剂制备实施例1所制备的氢型沸石催化剂HZSM-5(A),重复实施例6,但是水蒸汽处理过程中分别通入空气(经过除尘、脱二氧化碳和干燥处理)和氮气(普通钢瓶氮气,纯度大于99%),以理想气体计,水蒸汽在混合气中所占的体积百分数为15%,相应地,按纯水蒸汽折合的水进料量(单位时间内单位固定床反应器横截面积上通过的水的重量)取1.0克×小时-1×平方厘米-1,水蒸汽处理的压力采用2.0MPa,水蒸汽处理时间取48小时,则所得到的改性催化剂依次为SIHZSM-5(A)-03和SIHZSM-5(A)-04。Get the hydrogen-type zeolite catalyst HZSM-5 (A) prepared by Catalyst Preparation Example 1, repeat Example 6, but feed air (through dedusting, carbon dioxide removal and drying treatment) and nitrogen (common steel cylinder) respectively in the steam treatment process Nitrogen, purity greater than 99%), in terms of ideal gas, the volume percentage of water vapor in the mixed gas is 15%, correspondingly, the water feed amount converted by pure water vapor (unit fixed bed reactor in unit time The weight of the water passing through the cross-sectional area) is 1.0 g × hour -1 × square centimeter -1 , the pressure of steam treatment is 2.0MPa, and the steam treatment time is 48 hours, then the obtained modified catalyst is SIHZSM -5(A)-03 and SIHZSM-5(A)-04.
催化剂制备实施例9:用不同无机酸溶液对水蒸汽处理催化剂进行扩孔处理制备本发明的改性催化剂Catalyst Preparation Example 9: The modified catalyst of the present invention is prepared by using different inorganic acid solutions to expand the pores of the water vapor treatment catalyst
取催化剂制备实施例1所制备的氢型沸石催化剂HZSM-5(A),重复实施例6,但是在酸扩孔步骤中使用的酸溶液分别为0.01摩尔/升硝酸,2摩尔/升硝酸,0.6摩尔/升盐酸,0.6摩尔/升硫酸,0.2摩尔/升硝酸与0.2摩尔/升硫酸的混酸,则所得到的改性催化剂依次为SIHZSM-5(A)-05,SIHZSM-5(A)-06,SIHZSM-5(A)-07,SIHZSM-5(A)-08,SIHZSM-5(A)-09。Get the hydrogen-type zeolite catalyst HZSM-5 (A) prepared by Catalyst Preparation Example 1, repeat Example 6, but the acid solution used in the acid pore-enlarging step is respectively 0.01 mol/liter of nitric acid, 2 mol/liter of nitric acid, 0.6 mol/L hydrochloric acid, 0.6 mol/L sulfuric acid, mixed acid of 0.2 mol/L nitric acid and 0.2 mol/L sulfuric acid, then the obtained modified catalysts are SIHZSM-5(A)-05, SIHZSM-5(A) -06, SIHZSM-5(A)-07, SIHZSM-5(A)-08, SIHZSM-5(A)-09.
催化剂制备实施例10:用不同有机酸溶液对水蒸汽处理催化剂进行扩孔处理制备本发明的改性催化剂Catalyst Preparation Example 10: Using different organic acid solutions to expand the pores of the water vapor treatment catalyst to prepare the modified catalyst of the present invention
取催化剂制备实施例1所制备的氢型沸石催化剂HZSM-5(A),重复实施例6,但是在酸扩孔步骤中使用的酸溶液分别为0.5%柠檬酸,5%柠檬酸,15%柠檬酸,5%甲酸,5%乙酸,2.5%甲酸与2.5%乙酸组成的混合酸,酸扩孔处理在常压下进行,但温度为80℃,酸溶液循环流动,酸扩孔的时间取120小时。则所得到的改性催化剂依次为SIHZSM-5(A)-10,SIHZSM-5(A)-11,SIHZSM-5(A)-12,SIHZSM-5(A)-13,SIHZSM-5(A)-14,SIHZSM-5(A)-15。Get the hydrogen-type zeolite catalyst HZSM-5 (A) prepared by Catalyst Preparation Example 1, repeat Example 6, but the acid solution used in the acid pore expansion step is respectively 0.5% citric acid, 5% citric acid, 15% Citric acid, 5% formic acid, 5% acetic acid, a mixed acid composed of 2.5% formic acid and 2.5% acetic acid, the acid hole expansion treatment is carried out under normal pressure, but the temperature is 80 ° C, the acid solution circulates, and the time for acid hole expansion takes 120 hours. Then the modified catalyst obtained is successively SIHZSM-5(A)-10, SIHZSM-5(A)-11, SIHZSM-5(A)-12, SIHZSM-5(A)-13, SIHZSM-5(A) )-14, SIHZSM-5(A)-15.
催化剂制备实施例11(对比实施例):用晶粒度为20-50纳米的钠型ZSM-5沸石制备只经过水蒸汽处理的改性催化剂Catalyst preparation example 11 (comparative example): the modification catalyst that only passes through steam treatment is prepared with the sodium type ZSM-5 zeolite that grain size is 20-50 nanometers
取催化剂制备实施例1所制备的氢型沸石催化剂HZSM-5(A),重复实施例6,但是催化剂只进行水蒸汽处理,不进行酸扩孔处理,所制得的改性催化剂记做SHZSM-5(A)。Get the hydrogen-type zeolite catalyst HZSM-5 (A) prepared by Catalyst Preparation Example 1, repeat Example 6, but the catalyst only carries out steam treatment, does not carry out acid pore expansion treatment, and the prepared modified catalyst is recorded as SHZSM -5(A).
催化剂制备实施例12(对比实施例):用晶粒度为1000-2000纳米的大晶粒钠型ZSM-5沸石制备改性催化剂Catalyst preparation example 12 (comparative example): the modified catalyst is prepared by using a large-grain sodium ZSM-5 zeolite with a grain size of 1000-2000 nanometers
取晶粒度为1000-2000纳米的大晶粒钠型ZSM-5沸石(SiO2/Al2O3摩尔比26),重复催化剂制备实施例1和催化剂制备实施例6,所制得的改性催化剂记做SIHZSM-5(LR)。Take the large-grain sodium ZSM-5 zeolite (SiO 2 /Al 2 O 3 molar ratio 26) that the grain size is 1000-2000 nanometers, repeat the catalyst preparation example 1 and the catalyst preparation example 6, the obtained improved The active catalyst is recorded as SIHZSM-5 (LR).
催化剂表征实施例1:用吡啶吸附红外光谱法测定催化剂的酸度Catalyst Characterization Example 1: Determination of Catalyst Acidity by Pyridine Adsorption Infrared Spectroscopy
按照常规做法进行吡啶吸附-红外光谱摄谱实验。其中,样品净化温度为500℃,真空度为0.07帕,净化时间为1小时,吡啶吸附温度为室温。吡啶吸附饱和后样品分别在150℃和350℃温度下脱气并在1000厘米-1~2000厘米-1波数范围内摄取红外吸收光谱。根据普遍接受的知识,将样品在1540厘米-1处的吸收峰归属为质子酸中心,而样品在1450厘米-1处的吸收峰归属为路易斯酸中心。本发明用质子酸中心和路易斯酸中心所对应的吸收峰的相对峰高表示质子酸中心和路易斯酸中心的数量(表示为单位重量催化剂上酸中心的数量,单位:毫摩尔/克),用样品在150℃下的路易斯酸(L酸)中心和质子酸(B酸)中心的数量比(即:总L酸/总B酸)衡量改性对于催化剂路易斯酸中心和质子酸中心的调节效果,用样品在350℃下的路易斯酸中心和质子酸中心的数量之和(强L酸+强B酸)衡量改性对于催化剂强酸中心的消除效果。其结果如下:Pyridine adsorption-infrared spectroscopy experiments were carried out according to conventional methods. Wherein, the sample purification temperature is 500° C., the vacuum degree is 0.07 Pa, the purification time is 1 hour, and the pyridine adsorption temperature is room temperature. After the adsorption of pyridine is saturated, the samples are degassed at 150°C and 350°C, respectively, and the infrared absorption spectrum is taken in the wave number range of 1000 cm -1 to 2000 cm -1 . According to generally accepted knowledge, the absorption peak of the sample at 1540 cm -1 was assigned to the protic acid center, while the absorption peak of the sample at 1450 cm -1 was assigned to the Lewis acid center. The present invention uses the relative peak height of the absorption peak corresponding to the protonic acid center and the Lewis acid center to represent the quantity of the protonic acid center and the Lewis acid center (expressed as the quantity of the acid center on the catalyst per unit weight, unit: mmol/g), with The ratio of the number of Lewis acid (L acid) centers and proton acid (B acid) centers of the sample at 150°C (ie: total L acid/total B acid) measures the adjustment effect of the modification on the catalyst Lewis acid center and proton acid center , using the sum of the number of Lewis acid sites and protonic acid sites (strong L acid + strong B acid) of the sample at 350°C to measure the effect of modification on the elimination of strong acid sites in the catalyst. The result is as follows:
总L酸/总B酸 强L酸+强B酸Total L acid/total B acid strong L acid+strong B acid
HZSM-5(A): 1.39 0.36HZSM-5(A): 1.39 0.36
HZSM-5(B): 1.42 0.21HZSM-5(B): 1.42 0.21
HZSM-5(C): 1.25 0.43HZSM-5(C): 1.25 0.43
HZSM-11: 1.30 0.31HZSM-11: 1.30 0.31
HZSM-8: 1.20 0.25HZSM-8: 1.20 0.25
SIHZSM-5(A): 2.43 0.20SIHZSM-5(A): 2.43 0.20
SIHZSM-5(B): 2.50 0.11SIHZSM-5(B): 2.50 0.11
SIHZSM-5(C): 2.20 0.23SIHZSM-5(C): 2.20 0.23
SIHZSM-11: 2.50 0.18SIHZSM-11: 2.50 0.18
SIHZSM-8: 2.29 0.12SIHZSM-8: 2.29 0.12
SIHZSM-5(A)-01: 1.78 0.29SIHZSM-5(A)-01: 1.78 0.29
SIHZSM-5(A)-02: 3.56 0.08SIHZSM-5(A)-02: 3.56 0.08
SIHZSM-5(A)-03: 2.15 0.26SIHZSM-5(A)-03: 2.15 0.26
SIHZSM-5(A)-04: 2.11 0.25SIHZSM-5(A)-04: 2.11 0.25
SIHZSM-5(A)-05: 2.35 0.19SIHZSM-5(A)-05: 2.35 0.19
SIHZSM-5(A)-06: 2.50 0.20SIHZSM-5(A)-06: 2.50 0.20
SIHZSM-5(A)-07: 2.44 0.21SIHZSM-5(A)-07: 2.44 0.21
SIHZSM-5(A)-08: 2.39 0.19SIHZSM-5(A)-08: 2.39 0.19
SIHZSM-5(A)-09: 2.40 0.22SIHZSM-5(A)-09: 2.40 0.22
SIHZSM-5(A)-10: 2.08 0.18SIHZSM-5(A)-10: 2.08 0.18
SIHZSM-5(A)-11: 2.20 0.19SIHZSM-5(A)-11: 2.20 0.19
SIHZSM-5(A)-12: 2.50 0.15SIHZSM-5(A)-12: 2.50 0.15
SIHZSM-5(A)-13: 2.40 0.22SIHZSM-5(A)-13: 2.40 0.22
SIHZSM-5(A)-14: 2.42 0.20SIHZSM-5(A)-14: 2.42 0.20
SIHZSM-5(A)-15: 2.40 0.20SIHZSM-5(A)-15: 2.40 0.20
SHZSM-5(A) 2.00 0.18SHZSM-5(A) 2.00 0.18
SIHZSM-5(LR) 2.51 0.26SIHZSM-5(LR) 2.51 0.26
催化剂表征实施例2:用正己烷和环己烷吸附量评价催化剂的微孔扩散畅通性Catalyst Characterization Example 2: Evaluation of Catalyst Micropore Diffusion Smoothness by Adsorption of n-Hexane and Cyclohexane
按照常规做法进行正己烷和环己烷吸附量测定实验。其中,样品在流动氮气气氛中净化30分钟,净化温度为350℃,吸附温度为25℃,吸附质分压为20毫米汞柱,大气压力为760毫米汞柱,吸附时间为5小时。本发明将正己烷与环己烷的吸附量比定义为催化剂中沸石微孔的约束指数。本发明用沸石微孔的约束指数反映沸石微孔对扩散分子的阻力情况:约束指数越大,则表示沸石微孔对于扩散分子的阻力越大。其结果如下:The experiments for the determination of the adsorption capacity of n-hexane and cyclohexane were carried out according to the conventional practice. Among them, the sample was purified in a flowing nitrogen atmosphere for 30 minutes, the purification temperature was 350°C, the adsorption temperature was 25°C, the adsorbate partial pressure was 20 mmHg, the atmospheric pressure was 760 mmHg, and the adsorption time was 5 hours. In the present invention, the adsorption amount ratio of n-hexane and cyclohexane is defined as the constraint index of zeolite micropores in the catalyst. The present invention uses the constraint index of zeolite micropores to reflect the resistance of zeolite micropores to diffusion molecules: the larger the constraint index, the greater the resistance of zeolite micropores to diffusion molecules. The result is as follows:
孔道约束指数Pore Constraint Index
HZSM-5(A): 1.12HZSM-5(A): 1.12
HZSM-5(B): 1.10HZSM-5(B): 1.10
HZSM-5(C): 1.16HZSM-5(C): 1.16
HZSM-11: 1.13HZSM-11: 1.13
HZSM-8: 1.11HZSM-8: 1.11
SIHZSM-5(A): 1.14SIHZSM-5(A): 1.14
SIHZSM-5(B): 1.13SIHZSM-5(B): 1.13
SIHZSM-5(C): 1.16SIHZSM-5(C): 1.16
SIHZSM-11: 1.14SIHZSM-11: 1.14
SIHZSM-8: 1.15SIHZSM-8: 1.15
SIHZSM-5(A)-01: 1.13SIHZSM-5(A)-01: 1.13
SIHZSM-5(A)-02: 1.15SIHZSM-5(A)-02: 1.15
SIHZSM-5(A)-03: 1.12SIHZSM-5(A)-03: 1.12
SIHZSM-5(A)-04: 1.13SIHZSM-5(A)-04: 1.13
SIHZSM-5(A)-05: 1.15SIHZSM-5(A)-05: 1.15
SIHZSM-5(A)-06: 1.11SIHZSM-5(A)-06: 1.11
SIHZSM-5(A)-07: 1.13SIHZSM-5(A)-07: 1.13
SIHZSM-5(A)-08: 1.13SIHZSM-5(A)-08: 1.13
SIHZSM-5(A)-09: 1.14SIHZSM-5(A)-09: 1.14
SIHZSM-5(A)-10: 1.16SIHZSM-5(A)-10: 1.16
SIHZSM-5(A)-11: 1.14SIHZSM-5(A)-11: 1.14
SIHZSM-5(A)-12: 1.10SIHZSM-5(A)-12: 1.10
SIHZSM-5(A)-13: 1.14SIHZSM-5(A)-13: 1.14
SIHZSM-5(A)-14: 1.14SIHZSM-5(A)-14: 1.14
SIHZSM-5(A)-15: 1.13SIHZSM-5(A)-15: 1.13
SHZSM-5(A) 1.25SHZSM-5(A) 1.25
SIHZSM-5(LR) 1.50SIHZSM-5(LR) 1.50
芳构化反应实施例1Aromatization reaction embodiment 1
在常规的固定床加压反应器中进行芳构化反应实验,反应原料为催化裂化装置副产的碳四液化气,具体组成为:异丁烷(i碳四0):26.24%,正丁烷(n碳四0):11.53%,正异丁烯(n,i碳四=):29.54%,反丁烯(t碳四=):18.60%,顺丁烯(c碳四=):13.86%,碳五(C5):0.23%,反应过程中不使用任何载气,催化剂为SIHZSM-5(A),装填量为2克,反应温度为400℃,反应压力为3MPa(反应开始前用氮气充压),碳四液化气的进料空速(WHSV)为0.8h-1,在连续反应过程中取样分析,其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第1天、第6天和第10天分别为:Carry out aromatization reaction experiment in conventional fixed-bed pressurized reactor, reaction raw material is the C4 liquefied gas of catalytic cracking unit by-product, concrete composition is: isobutane (i C40 ): 26.24%, n-butane Alkane (n carbon four 0 ): 11.53%, normal isobutene (n, i carbon four = ): 29.54%, trans-butene (t carbon four = ): 18.60%, butene (c c four = ): 13.86% , carbon five (C 5 ): 0.23%, do not use any carrier gas in the reaction process, catalyzer is SIHZSM-5 (A), and loading capacity is 2 grams, and reaction temperature is 400 ℃, and reaction pressure is 3MPa (reaction begins with Nitrogen pressurization), the feed space velocity (WHSV) of C4 liquefied gas is 0.8h -1 , sampling and analysis in the continuous reaction process, its C4 olefin conversion rate (X, %), C5 and above liquid yield (Y , weight %), aromatics content (Z, weight %) in gasoline and olefin content (W, weight %) in gasoline are respectively in reaction the 1st day, the 6th day and the 10th day:
SIHZSM-5(A) X,% Y,重量% Z,重量% W,重量%SIHZSM-5(A) X, % Y, wt % Z, wt % W, wt %
第1天 98 70 53 1.8Day 1 98 70 53 1.8
第6天 98 73 49 2.1Day 6 98 73 49 2.1
第10天 97 74 46 2.5Day 10 97 74 46 2.5
芳构化反应实施例2Aromatization reaction embodiment 2
重复芳构化反应实施例1,但是反应温度分别为370℃和450℃,其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第6天为:Repeat aromatization reaction example 1, but the reaction temperature is 370 DEG C and 450 DEG C respectively, its C4 olefin conversion rate (X, %), the liquid recovery (Y, weight %) above carbon five, aromatics content in gasoline (Z , weight %) and olefin content (W, weight %) in the gasoline in the 6th day of reaction are:
SIHZSM-5(A) X,% Y,重量% Z,重量% W,重量%SIHZSM-5(A) X, % Y, wt % Z, wt % W, wt %
370℃ 88 54 35 18.2370℃ 88 54 35 18.2
450℃ 99.5 77 64 1.5450℃ 99.5 77 64 1.5
芳构化反应实施例3Aromatization reaction embodiment 3
重复芳构化反应实施例1,但是反应压力分别为0.1MPa、1.0MPa和4MPa,其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第6天为:Repeat the aromatization reaction embodiment 1, but the reaction pressure is respectively 0.1MPa, 1.0MPa and 4MPa, its carbon four olefin conversion rate (X, %), the liquid recovery (Y, weight %) above carbon five, aromatic hydrocarbon content in gasoline (Z, weight %) and olefin content (W, weight %) in the gasoline in reaction the 6th day are:
SIHZSM-5(A) X,% Y,重量% Z,重量% W,重量%SIHZSM-5(A) X, % Y, wt % Z, wt % W, wt %
0.1MPa 90 66 34 200.1MPa 90 66 34 20
1.0Mpa 94 68 40 151.0Mpa 94 68 40 15
4.0Mpa 99 75 51 2.04.0Mpa 99 75 51 2.0
芳构化反应实施例4Aromatization reaction embodiment 4
重复芳构化反应实施例1,但是碳四液化气的进料空速(WHSV)分别为0.1-1和5h-1,其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第6天为:Repeat the aromatization reaction example 1, but the feed space velocity (WHSV) of C4 liquefied gas is 0.1 -1 and 5h -1 respectively, the conversion rate of C4 olefins (X, %), and the liquid yield above C5 ( Y, weight %), aromatics content (Z, weight %) in gasoline and olefin content (W, weight %) in gasoline are at the 6th day of reaction:
SIHZSM-5(A) X,% Y,重量% Z,重量% W,重量%SIHZSM-5(A) X, % Y, wt % Z, wt % W, wt %
WHSV=0.1h-1 99 67 58 1.0WHSV=0.1h -1 99 67 58 1.0
WHSV=5h-1 75 48 29 26WHSV=5h -1 75 48 29 26
芳构化反应实施例5Aromatization reaction embodiment 5
重复芳构化反应实施例1,但是所用催化剂依次为SIHZSM-5(B)、SIHZSM-5(C)、SIHZSM-11、SIHZSM-8、SIHZSM-5(A)-01、SIHZSM-5(A)-02、SIHZSM-5(A)-03、SIHZSM-5(A)-04、SIHZSM-5(A)-05、SIHZSM-5(A)-06、SIHZSM-5(A)-07、SIHZSM-5(A)-08、SIHZSM-5(A)-09、SIHZSM-5(A)-10、SIHZSM-5(A)-11、SIHZSM-5(A)-12、SIHZSM-5(A)-13、SIHZSM-5(A)-14、SIHZSM-5(A)-15,其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第6天分别为:Repeat the aromatization reaction example 1, but the catalysts used are SIHZSM-5(B), SIHZSM-5(C), SIHZSM-11, SIHZSM-8, SIHZSM-5(A)-01, SIHZSM-5(A )-02, SIHZSM-5(A)-03, SIHZSM-5(A)-04, SIHZSM-5(A)-05, SIHZSM-5(A)-06, SIHZSM-5(A)-07, SIHZSM -5(A)-08, SIHZSM-5(A)-09, SIHZSM-5(A)-10, SIHZSM-5(A)-11, SIHZSM-5(A)-12, SIHZSM-5(A) -13, SIHZSM-5(A)-14, SIHZSM-5(A)-15, its carbon four olefins conversion rate (X, %), liquid yield (Y, weight %) above carbon five, aromatics content in gasoline ( Z, weight %) and olefin content (W, weight %) in gasoline are respectively on the 6th day of reaction:
X,% Y,重量% Z,重量% W,重量%X, % Y, wt % Z, wt % W, wt %
SIHZSM-5(B): 91 64 39 10.6SIHZSM-5(B): 91 64 39 10.6
SIHZSM-5(C): 96 68 43 7.5SIHZSM-5(C): 96 68 43 7.5
SIHZSM-11: 97 69 46 4.3SIHZSM-11: 97 69 46 4.3
SIHZSM-8: 96 67 44 4.9SIHZSM-8: 96 67 44 4.9
SIHZSM-5(A)-01: 86 53 34 18SIHZSM-5(A)-01: 86 53 34 18
SIHZSM-5(A)-02: 97 70 47 3.1SIHZSM-5(A)-02: 97 70 47 3.1
SIHZSM-5(A)-03: 93 65 43 5.2SIHZSM-5(A)-03: 93 65 43 5.2
SIHZSM-5(A)-04: 92 67 40 7.9SIHZSM-5(A)-04: 92 67 40 7.9
SIHZSM-5(A)-05: 95 64 41 8.3SIHZSM-5(A)-05: 95 64 41 8.3
SIHZSM-5(A)-06: 97 70 48 1.9SIHZSM-5(A)-06: 97 70 48 1.9
SIHZSM-5(A)-07: 97 69 47 2.2SIHZSM-5(A)-07: 97 69 47 2.2
SIHZSM-5(A)-08: 96 71 47 2.0SIHZSM-5(A)-08: 96 71 47 2.0
SIHZSM-5(A)-09: 95 63 42 4.7SIHZSM-5(A)-09: 95 63 42 4.7
SIHZSM-5(A)-10: 90 59 37 12.5SIHZSM-5(A)-10: 90 59 37 12.5
SIHZSM-5(A)-11: 93 61 40 8.0SIHZSM-5(A)-11: 93 61 40 8.0
SIHZSM-5(A)-12: 97 70 46 3.3SIHZSM-5(A)-12: 97 70 46 3.3
SIHZSM-5(A)-13: 94 62 42 7.0SIHZSM-5(A)-13: 94 62 42 7.0
SIHZSM-5(A)-14: 94 60 39 9.2SIHZSM-5(A)-14: 94 60 39 9.2
SIHZSM-5(A)-15: 93 58 37 11.4SIHZSM-5(A)-15: 93 58 37 11.4
芳构化反应实施例6(对比实施例)Aromatization reaction embodiment 6 (comparative example)
重复芳构化反应实施例1,但是所用催化剂依次为SHZSM-5(A)、SIHZSM-5(LR),其碳四烯烃转化率(X,%),碳五以上液收(Y,重量%),汽油中芳烃含量(Z,重量%)和汽油中烯烃含量(W,重量%)在反应第6天分别为:Repeat the aromatization reaction example 1, but the catalysts used are SHZSM-5 (A), SIHZSM-5 (LR) successively, the conversion rate of carbon four olefins (X, %), and the liquid yield above carbon five (Y, weight % ), aromatics content (Z, weight %) in gasoline and olefin content (W, weight %) in gasoline are respectively at the 6th day of reaction:
X,% Y,重量% Z,重量% W,重量%X, % Y, % by weight Z, % by weight W, % by weight
SHZSM-5(A): 86 48 31 24SHZSM-5(A): 86 48 31 24
SIHZSM-5(LR): 80 42 24 29SIHZSM-5(LR): 80 42 24 29
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100502023A CN100473461C (en) | 2004-07-30 | 2004-07-30 | Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100502023A CN100473461C (en) | 2004-07-30 | 2004-07-30 | Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1586721A CN1586721A (en) | 2005-03-02 |
CN100473461C true CN100473461C (en) | 2009-04-01 |
Family
ID=34602185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100502023A Expired - Fee Related CN100473461C (en) | 2004-07-30 | 2004-07-30 | Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100473461C (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857808B (en) * | 2010-06-17 | 2014-02-26 | 宁夏宝塔石化集团有限公司 | Method for preparing gasoline from liquefied gas through aromatization and fixed bed reactor |
CN102649677B (en) * | 2011-02-25 | 2014-07-23 | 中国石油化工股份有限公司 | Method for preparing aromatic hydrocarbon by aromatizing C4 hydrocarbon |
CN102343279A (en) * | 2011-07-18 | 2012-02-08 | 天津市福生染料厂 | Method for preparing catalyst used in preparation of clean gasoline from C4 olefin |
CN102899084B (en) * | 2011-07-25 | 2014-10-15 | 中国石油天然气股份有限公司 | Method for co-production of ethylene cracking raw material by aromatization of carbon tetrad |
CN102895990A (en) * | 2011-07-29 | 2013-01-30 | 中国石油天然气股份有限公司 | Light hydrocarbon aromatization catalyst and preparation method thereof |
CN102389830A (en) * | 2011-10-31 | 2012-03-28 | 中国科学院大连化学物理研究所 | Preparation method of superfine cocrystallized molecular sieve catalyst |
CN103657707B (en) * | 2012-09-05 | 2016-04-13 | 中国石油化工股份有限公司 | Preparation method of low carbon hydrocarbon aromatization catalyst |
CN103831128B (en) * | 2012-11-27 | 2016-12-21 | 中国石油天然气股份有限公司 | Modified nano molecular sieve hydrogenation aromatization catalyst and preparation method thereof |
CN103834435B (en) * | 2012-11-27 | 2016-08-10 | 中国石油天然气股份有限公司 | Two-stage reaction process for hydro-aromatization of carbon-four liquefied gas |
CN103831126A (en) * | 2012-11-27 | 2014-06-04 | 中国石油天然气股份有限公司 | Four carbon liquefied gas hydrogenation aromatization catalyst and preparation method thereof |
CN103831127A (en) * | 2012-11-27 | 2014-06-04 | 中国石油天然气股份有限公司 | Catalyst for carbon four-hydrogen aromatization and preparation method thereof |
CN104923283B (en) * | 2015-05-27 | 2017-10-31 | 安徽皖东树脂科技有限公司 | A kind of liquefied petroleum catalyst of carbon four and preparation method thereof |
CN107282088A (en) * | 2016-04-01 | 2017-10-24 | 神华集团有限责任公司 | The method of organic oxygen-containing compound olefin hydrocarbon molecules sieve catalyst and preparation method thereof and organic oxygen-containing compound alkene |
CN107930676B (en) * | 2016-10-12 | 2021-05-14 | 中国科学院大连化学物理研究所 | A kind of ZSM-11 catalyst for olefin aromatization and preparation method |
US11097263B2 (en) * | 2019-08-30 | 2021-08-24 | China University of Petroleum—Beijing | Aromatization catalyst, preparation method, regeneration method thereof, and aromatization method |
-
2004
- 2004-07-30 CN CNB2004100502023A patent/CN100473461C/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响. 张培青等.催化学报,第24卷第12期. 2003 |
水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响. 张培青等.催化学报,第24卷第12期. 2003 * |
汽油芳构化降烯烃ZSM-5型催化剂的研究. 郭洪臣等.分子催化,第18卷第2期. 2004 |
汽油芳构化降烯烃ZSM-5型催化剂的研究. 郭洪臣等.分子催化,第18卷第2期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1586721A (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100473461C (en) | Catalyst for C4 liquefied petroleum gas aromatization and preparing method thereof | |
US7419930B2 (en) | Catalytic composition for the aromatization of hydrocarbons | |
DE69320195T2 (en) | SYNTHESIS OF ZEOLITE FILMS BONDED TO SUBSTRATES, STRUCTURES AND THEIR USE | |
US20100145127A1 (en) | Catalytic composition for producing olefins by catalytic cracking | |
US20130338419A1 (en) | Production of Olefins | |
CN111111758B (en) | Catalyst for preparing toluene and/or xylene by liquid phase methylation and preparation method thereof | |
US10518249B2 (en) | Methods for dehydrogenating reactant hydrocarbons | |
CN108160101A (en) | A kind of methanol-to-olefin catalyst and its preparation method and application | |
JPH0140656B2 (en) | ||
JP4344853B2 (en) | Dealuminated zeolite NU-86 and its use in hydrocarbon conversion | |
JPH06330055A (en) | Method for converting light hydrocarbon | |
CN110997143A (en) | Composition comprising a mixed metal oxide and a moulded article comprising a zeolitic material having a framework type CHA and an alkaline earth metal | |
CN103831128B (en) | Modified nano molecular sieve hydrogenation aromatization catalyst and preparation method thereof | |
JPH10236819A (en) | Dealuminized zeolite im-5 | |
WO2015152159A1 (en) | Method for producing unsaturated hydrocarbon | |
JP2024538197A (en) | ZSM-5 molecular sieve catalyst, its preparation method and its application | |
CN114192184A (en) | Cracking catalyst and preparation method and application thereof | |
CN108970636B (en) | A kind of preparation method of benzene alkylation catalyst | |
JP3966429B2 (en) | Aromatic hydrocarbon production catalyst | |
JP4159853B2 (en) | Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same | |
JPH0543484A (en) | Production of aromatic hydrocarbon | |
JPH06192135A (en) | Method for converting light hydrocarbon | |
NZ205788A (en) | Producing zeolitic material occluded with multimetalite | |
US20210060540A1 (en) | Aromatization catalyst, preparation method, regeneration method thereof, and aromatization method | |
JPH06346062A (en) | Catalytic conversion of light hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: DALIAN UNIVERSITY OF TECHNOLOGY QIWANGDA CHEMICAL Free format text: FORMER OWNER: DALIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Effective date: 20101216 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 116024 NO. 2, LINGGONG ROAD, GANJINGZI DISTRICT, DALIAN CITY, LIAONING PROVINCE TO: 116023 ROOM 312, TOWER B, KEJI BUILDING, NO. 80, RUANJIANYUAN ROAD, HIGH-TECH. PARK, DALIAN CITY |
|
TR01 | Transfer of patent right |
Effective date of registration: 20101216 Address after: 312, room 116023, building B, building 80, software garden road, Dalian hi tech Park Patentee after: Dalian Ligong Qiwangda Chemical Technology Co., Ltd. Address before: 116024 Liaoning, Dalian, Ganjingzi Ling Road, No. 2 Patentee before: Dalian University of Technology |
|
ASS | Succession or assignment of patent right |
Owner name: DALIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Free format text: FORMER OWNER: DALIAN UNIVERSITY OF TECHNOLOGY QIWANGDA PETROCHEMICAL TECHNOLOGY CO., LTD. Effective date: 20110328 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 116023 ROOM 312, TOWER B, SCI-TECH BUILDING, NO. 80, RUANJIANYUAN ROAD, HIGH-TECH. ZONE, DALIAN CITY TO: 116024 NO. 2, LINGGONG ROAD, HIGH-TECH. ZONE, DALIAN CITY |
|
TR01 | Transfer of patent right |
Effective date of registration: 20110328 Address after: 116024, No. 2, Ling Gong Road, Dalian hi tech Park Patentee after: Dalian University of Technology Address before: 312, room 116023, building B, building 80, software garden road, Dalian hi tech Park Patentee before: Dalian Ligong Qiwangda Chemical Technology Co., Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: DALIAN UNIVERSITY OF TECHNOLOGY INDUSTRIAL INVESTM Free format text: FORMER OWNER: DALIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Effective date: 20110425 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 116024 NO. 2, LINGGONG ROAD, HIGH-TECH. PARK, DALIAN CITY TO: 116023 NO. 2, LINGGONG ROAD, GANJINGZI DISTRICT, DALIAN CITY |
|
TR01 | Transfer of patent right |
Effective date of registration: 20110425 Address after: 116023 No. 2 Ling Road, Ganjingzi District, Dalian Patentee after: Dalian University of Technology Industry Investment Company Limited Address before: 116024, No. 2, Ling Gong Road, Dalian hi tech Park Patentee before: Dalian University of Technology |
|
ASS | Succession or assignment of patent right |
Owner name: DLUT LEADING GROUP CO., LTD. Free format text: FORMER OWNER: DLUT INDUSTRIAL INVESTMENT CO., LTD. Effective date: 20110728 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20110728 Address after: 116023 No. 2 Ling Road, Ganjingzi District, Dalian Patentee after: Dalian union leader group Co., Ltd. Address before: 116023 No. 2 Ling Road, Ganjingzi District, Dalian Patentee before: Dalian University of Technology Industry Investment Company Limited |
|
ASS | Succession or assignment of patent right |
Owner name: DLUT QIWANGDA CHEMICAL TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: DLUT LINGXIAN GROUP CO., LTD. Effective date: 20110921 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 116023 DALIAN, LIAONING PROVINCE TO: 116024 DALIAN, LIAONING PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20110921 Address after: 410, room 116024, building B, building 80, software garden road, Dalian hi tech Park Patentee after: Dalian Ligong Qiwangda Chemical Technology Co., Ltd. Address before: 116023 No. 2 Ling Road, Ganjingzi District, Dalian Patentee before: Dalian union leader group Co., Ltd. |
|
DD01 | Delivery of document by public notice | ||
DD01 | Delivery of document by public notice |
Addressee: Zhang Min Document name: Notice of termination of patent right |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090401 Termination date: 20200730 |
|
CF01 | Termination of patent right due to non-payment of annual fee |