CN118406711A - A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae - Google Patents
A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae Download PDFInfo
- Publication number
- CN118406711A CN118406711A CN202410565204.3A CN202410565204A CN118406711A CN 118406711 A CN118406711 A CN 118406711A CN 202410565204 A CN202410565204 A CN 202410565204A CN 118406711 A CN118406711 A CN 118406711A
- Authority
- CN
- China
- Prior art keywords
- seq
- saccharomyces cerevisiae
- gene
- derived
- plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1022—Transferases (2.) transferring aldehyde or ketonic groups (2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y202/00—Transferases transferring aldehyde or ketonic groups (2.2)
- C12Y202/01—Transketolases and transaldolases (2.2.1)
- C12Y202/01009—2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase (2.2.1.9)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/02—Thioester hydrolases (3.1.2)
- C12Y301/02028—1,4-Dihydroxy-2-naphthoyl-CoA hydrolase (3.1.2.28)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/03—Oxo-acid-lyases (4.1.3)
- C12Y401/03036—1,4-Dihydroxy-2-naphthoyl-CoA synthase (4.1.3.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01113—Hydro-lyases (4.2.1) o-Succinylbenzoate synthase (4.2.1.113)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03005—Chorismate synthase (4.2.3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/99—Other carbon-oxygen lyases (4.2.99)
- C12Y402/9902—2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (4.2.99.20)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y602/00—Ligases forming carbon-sulfur bonds (6.2)
- C12Y602/01—Acid-Thiol Ligases (6.2.1)
- C12Y602/01026—O-Succinylbenzoate-CoA ligase (6.2.1.26)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/85—Saccharomyces
- C12R2001/865—Saccharomyces cerevisiae
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种能够在酿酒酵母体内生物合成1,4‑二羟基‑2‑萘甲酸(DHNA)的构建方法。旨在通过基因工程、代谢工程和同源重组等手段,构建6种不同的质粒,通过聚合酶链式反应获得同源片段,利用酿酒酵母的高效同源重组将DHNA合成的关键异源基因整合到酿酒酵母染色体中,生物合成产生DHNA,实现DHNA在酿酒酵母体内首次合成,为将来在酿酒酵母体内构建MK‑7的生物合成提供前提物质。
The present invention discloses a construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid (DHNA) in Saccharomyces cerevisiae. The method aims to construct 6 different plasmids by means of genetic engineering, metabolic engineering and homologous recombination, obtain homologous fragments by polymerase chain reaction, integrate key heterologous genes for DHNA synthesis into Saccharomyces cerevisiae chromosomes by utilizing efficient homologous recombination of Saccharomyces cerevisiae, biosynthesize DHNA, realize the first synthesis of DHNA in Saccharomyces cerevisiae, and provide prerequisite substances for constructing the biosynthesis of MK-7 in Saccharomyces cerevisiae in the future.
Description
技术领域Technical Field
本发明属于基因工程和生物代谢技术领域,更具体的说是设计同源片段并导入酿酒酵母Saccharomyces cerevisiae BY4742以改造酿酒酵母的代谢通路,使其能够生物合成1,4-二羟基-4-萘甲酸(DHNA)。The invention belongs to the technical field of gene engineering and biological metabolism, and more specifically, designs homologous fragments and introduces them into brewer's yeast Saccharomyces cerevisiae BY4742 to transform the metabolic pathway of brewer's yeast so that it can biosynthesize 1,4-dihydroxy-4-naphthoic acid (DHNA).
背景技术Background technique
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,使外源基因能在受体细胞内复制、转录、翻译表达的操作,以改变生物原有的遗传特性、获得新品种、生产新产品。Genetic engineering, also known as gene splicing technology and DNA recombination technology, is based on the theory of molecular genetics and uses modern methods of molecular biology and microbiology to construct hybrid DNA molecules in vitro according to a pre-designed blueprint using genes from different sources. These molecules are then introduced into living cells so that the exogenous genes can be replicated, transcribed, translated and expressed in the recipient cells, thereby changing the original genetic characteristics of the organism, obtaining new varieties and producing new products.
在众多模式微生物中,酿酒酵母(Saccharomyces cerevisiae)因其强大的遗传工具以及菌株的GRAS(generally regarded as safe)状态适合大规模的操作而被广泛用于生物技术行业。与原核生物不同,酿酒酵母作为模式真核生物具有多个细胞器,可以为生物合成提供不同的环境和区室,而且可以表达原核生物不能表达的酶,如细胞色素P450酶等。此外,酿酒酵母对苛刻的工业条件也表现出很高的耐受性。因此,酿酒酵母已被开发为用于代谢工程改造生产来自细菌、真菌和植物物种的天然产物的平台微生物。Among many model microorganisms, Saccharomyces cerevisiae is widely used in the biotechnology industry because of its powerful genetic tools and the GRAS (generally regarded as safe) status of the strain, which is suitable for large-scale operations. Unlike prokaryotes, Saccharomyces cerevisiae, as a model eukaryote, has multiple organelles that can provide different environments and compartments for biosynthesis, and can express enzymes that prokaryotes cannot express, such as cytochrome P450 enzymes. In addition, Saccharomyces cerevisiae also shows high tolerance to harsh industrial conditions. Therefore, Saccharomyces cerevisiae has been developed as a platform microorganism for metabolic engineering to produce natural products from bacteria, fungi and plant species.
目前,以酿酒酵母作为宿主进行代谢工程改造的技术已经在生产特定燃料,化学物质和药物,如游离脂肪酸、脂肪酸乙酯、脂肪醇和烷烃等脂肪酸和其衍生物;具有重要商业应用价值的萜类化合物,包括被广泛用作香水成分、食品香料、药剂和杀虫剂的单萜类化合物(如:香叶醇、芳樟醇、薄荷醇、熏衣草花醇等);倍半萜类化合物(如用作香料的橙花叔醇、法尼醇、广藿香醇、抗疟疾的药物青蒿素、抗真菌剂辣椒素、作为生物燃料的法呢烯和红没药烯等);二萜类化合物(如用于化妆品行业中的香紫苏醇、鼠尾草酸以及抗癌症药物紫杉酚等);三萜类化合物,(如角鲨烯、氢化可的松等);四萜类化合物(如β胡萝卜素、番茄红素等);丁醇异构体和药物蛋白等方面取得了很大的进展。At present, the technology of metabolic engineering using Saccharomyces cerevisiae as a host has made great progress in the production of specific fuels, chemicals and drugs, such as free fatty acids, fatty acid ethyl esters, fatty alcohols and alkanes and other fatty acids and their derivatives; terpenoids with important commercial application value, including monoterpenoids (such as geraniol, linalool, menthol, lavandinol, etc.) widely used as perfume ingredients, food flavors, medicines and pesticides; sesquiterpenoids (such as nerolidol, farnesol, patchouli alcohol used as flavors, antimalarial drug artemisinin, antifungal agent capsaicin, farnesene and bisabolene as biofuels, etc.); diterpenoids (such as claryol and carnosic acid used in the cosmetics industry, and anticancer drug taxol, etc.); triterpenoids (such as squalene, hydrocortisone, etc.); tetraterpenoids (such as β-carotene, lycopene, etc.); butanol isomers and pharmaceutical proteins.
维生素K统称为一组脂溶性化合物,含有2-甲基-1,4-萘醌部分,但在3位的类异戊二烯侧链结构不同。维生素K天然以两种形式存在,叶醌和一系列甲萘醌(包括MK-4,MK-7等),这两种物质都在止血中起重要作用。1,4-二羟基-4-萘甲酸是MK-7的前体,利用酿酒酵母生物合成,为未来在酿酒酵母中生物合成MK-7提供重要影响。Vitamin K is collectively referred to as a group of fat-soluble compounds containing a 2-methyl-1,4-naphthoquinone moiety, but with a different isoprenoid side chain structure at position 3. Vitamin K exists naturally in two forms, phylloquinone and a series of menaquinones (including MK-4, MK-7, etc.), both of which play an important role in hemostasis. 1,4-Dihydroxy-4-naphthoic acid is a precursor of MK-7, which is biosynthesized using Saccharomyces cerevisiae, providing important implications for the future biosynthesis of MK-7 in Saccharomyces cerevisiae.
发明内容Summary of the invention
为了解决现有技术的问题,本发明提出如下技术方案:In order to solve the problems of the prior art, the present invention proposes the following technical solutions:
一种生物合成1,4-二羟基-2-萘甲酸酿酒酵母菌株的构建方法,其特征是包括如下步骤:在基础质粒pUC19(SEQ ID NO.1)上构建同源臂片段,通过无缝克隆的方式将编码生物合成DHNA的目的基因连接到pUC19(SEQ ID NO.1)上,获得质粒P1,P2,P3,P4,P6,P7,通过聚合酶链式反应获得片段F1,F2,F3,F4,F6,F7,利用常规的酵母转化方法将6个片段转入酿酒酵母Saccharomyces cerevisiae BY4742中,获得一株能够生物合成1,4-二羟基-2-萘甲酸(DHNA)的工程菌株。所述重组工程菌株构建方法。A method for constructing a 1,4-dihydroxy-2-naphthoic acid biosynthetic yeast strain, characterized by comprising the following steps: constructing homology arm fragments on a basic plasmid pUC19 (SEQ ID NO.1), connecting a target gene encoding biosynthetic DHNA to pUC19 (SEQ ID NO.1) by seamless cloning to obtain plasmids P1, P2, P3, P4, P6, and P7, obtaining fragments F1, F2, F3, F4, F6, and F7 by polymerase chain reaction, and transferring the six fragments into Saccharomyces cerevisiae BY4742 by conventional yeast transformation methods to obtain an engineered strain capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid (DHNA). The method for constructing a recombinant engineered strain.
所述重组工程菌株构建方法P1质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的delta位点上游基因片段delta-UP(SEQ ID NO.9),启动子Ptdh1(SEQID NO.13),终止子Ttef1(SEQ ID NO.14)和启动子Ptef1部分片段(200 bp);含有来源于大肠杆菌Escherichia coli str. K-12 substr. MG1655的编码异分支酸合酶基因entC(SEQID NO.2)。The recombinant engineering strain construction method comprises a P1 plasmid containing a delta site upstream gene fragment delta-UP (SEQ ID NO.9) derived from Saccharomyces cerevisiae BY4742, a promoter Ptdh1 (SEQID NO.13), a terminator Ttef1 (SEQ ID NO.14) and a promoter Ptef1 partial fragment (200 bp); and a gene entC (SEQID NO.2) encoding isochorismate synthase derived from Escherichia coli str. K-12 substr. MG1655.
所述重组工程菌株构建方法P2质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的启动子Ptef1(SEQ ID NO.15),终止子Tpgk1(SEQ ID NO.16),终止子Ttef1部分片段(202 bp)和启动子Ppgk1部分片段(200bp);含有来源于大肠杆菌Escherichia coli str. K-12 substr. MG1655的编码2-丁酰基-5-烯醇丙酮酸-6-羟基-3-环己烯-1-羧酸合酶menD(SEQ ID NO.3)。The recombinant engineering strain construction method comprises a P2 plasmid containing a promoter Ptef1 (SEQ ID NO.15), a terminator Tpgk1 ( SEQ ID NO.16), a partial fragment of the terminator Ttef1 (202 bp) and a partial fragment of the promoter Ppgk1 (200 bp) derived from Saccharomyces cerevisiae BY4742; and a plasmid encoding a 2-butyryl-5-enolpyruvate-6-hydroxy-3-cyclohexene-1-carboxylic acid synthase menD (SEQ ID NO.3) derived from Escherichia coli str. K-12 substr. MG1655.
所述重组工程菌株构建方法P3质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的启动子Ppgk1(SEQ ID NO.17),终止子Tcyc1(SEQ ID NO.18),终止子Tpgk1部分片段(199 bp)和终止子Ttef(SEQ ID NO.22);含有来源于Saccharomyces cerevisiae S288C的编码亮氨酸的LEU2(SEQ ID NO.21)基因;含有来源于大肠杆菌Escherichia coli str. K-12 substr. MG1655的编码2-丁酰基-6-羟基2,4-环己二烯-1-羧酸合酶menH(SEQ ID NO.4)。The recombinant engineering strain construction method comprises a P3 plasmid containing a promoter Ppgk1 (SEQ ID NO.17), a terminator Tcyc1 (SEQ ID NO.18), a partial fragment of the terminator Tpgk1 (199 bp) and a terminator Ttef (SEQ ID NO.22) derived from Saccharomyces cerevisiae BY4742; a LEU2 (SEQ ID NO.21) gene encoding leucine derived from Saccharomyces cerevisiae S288C; and a 2-butyryl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid synthase menH (SEQ ID NO.4) derived from Escherichia coli str. K-12 substr. MG1655.
所述重组工程菌株构建方法P4质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的delta位点下游基因片段delta-DOWN(SEQ ID NO.10),启动子Ptef1(SEQ ID NO.15),终止子Ttpi1(SEQ ID NO.19);含有来源于Saccharomyces cerevisiaeS288C的编码亮氨酸的LUE2(SEQ ID NO.21)部分基因(200bp),启动子Pleu2(SEQ IDNO.20);含有来源于大肠杆菌Escherichia coli str. K-12 substr. MG1655的编码邻琥珀酰苯甲酸合成酶menC(SEQ ID NO.5)。The P4 plasmid of the recombinant engineering strain construction method contains the delta site downstream gene fragment delta-DOWN (SEQ ID NO.10) derived from Saccharomyces cerevisiae BY4742, the promoter Ptef1 (SEQ ID NO.15), and the terminator Ttpi1 (SEQ ID NO.19); contains the partial gene (200bp) of LUE2 (SEQ ID NO.21) encoding leucine derived from Saccharomyces cerevisiae S288C, and the promoter Pleu2 (SEQ ID NO.20); contains the o-succinylbenzoate synthase encoding menC (SEQ ID NO.5) derived from Escherichia coli str. K-12 substr. MG1655.
所述重组工程菌株构建方法:P6质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的rDNA位点下游基因片段rDNA-DOWN(SEQ ID NO.12),启动子Ppgk1(SEQ ID NO.17),终止子Tcyc1(SEQ ID NO.18),终止子Ttpi1(SEQ ID NO.19);含有来源于pRS413质粒的编码组氨酸的His3基因;含有来源于大肠杆菌Escherichia coli str. K-12 substr. MG1655的编码邻琥珀酰苯甲酸辅酶A连接酶基因menE(SEQ ID NO.8)。The recombinant engineering strain construction method comprises the following steps: the P6 plasmid contains the gene fragment rDNA-DOWN (SEQ ID NO.12) downstream of the rDNA site derived from Saccharomyces cerevisiae BY4742, the promoter Ppgk1 (SEQ ID NO.17), the terminator Tcyc1 (SEQ ID NO.18), and the terminator Ttpi1 (SEQ ID NO.19); contains the His3 gene encoding histidine derived from the pRS413 plasmid; and contains the gene menE (SEQ ID NO.8) encoding o-succinylbenzoate coenzyme A ligase derived from Escherichia coli str. K-12 substr. MG1655.
所述重组工程菌株构建方法P7质粒含有来源于酿酒酵母Saccharomyces cerevisiae BY4742的rDNA位点上游基因片段rDNA-UP(SEQ ID NO.11),启动子Ptdh1(SEQID NO.13),终止子Ttef1(SEQ ID NO.14),启动子Ptef1(SEQ ID NO.15),终止子Tpgk1(SEQID NO.16);含有来源于pRS413(SEQ ID NO.23)质粒的编码组氨酸的His3部分基因(200bp),启动子Phis3;含有来源于蓝细菌Synechocystis sp. PCC 6803编码1,4-二羟基-2-萘酰基-辅酶A合酶基因sll1127(SEQ ID NO.6),编码1,4-二羟基-2-萘基辅酶A水解酶基因slr0204(SEQ ID NO.7)。The recombinant engineering strain construction method comprises a P7 plasmid containing a gene fragment rDNA-UP (SEQ ID NO.11) upstream of the rDNA site , a promoter Ptdh1 (SEQ ID NO.13), a terminator Ttef1 (SEQ ID NO.14), a promoter Ptef1 (SEQ ID NO.15), and a terminator Tpgk1 (SEQ ID NO.16) derived from Saccharomyces cerevisiae BY4742; a partial His3 gene (200 bp) encoding histidine and a promoter Phis3 derived from a pRS413 (SEQ ID NO.23) plasmid; and a gene sll1127 (SEQ ID NO.6) encoding a 1,4-dihydroxy-2-naphthoyl-CoA synthase and a gene slr0204 (SEQ ID NO.7) encoding a 1,4-dihydroxy-2-naphthoyl-CoA hydrolase derived from cyanobacteria Synechocystis sp. PCC 6803.
所述重组工程菌株构建方法通过对P1,P2,P3,P4质粒进行聚合酶链式反应获取片段F1,F2,F3,F4,导入野生型酿酒酵母Saccharomyces cerevisiae BY4742,形成1株酿酒酵母工程菌BD-0。The recombinant engineering strain construction method is to obtain fragments F1, F2, F3, and F4 by polymerase chain reaction on P1, P2, P3, and P4 plasmids, and introduce them into wild-type brewer's yeast Saccharomyces cerevisiae BY4742 to form a brewer's yeast engineering strain BD-0.
所述重组工程菌株构建方法通过对P6,P7质粒进行聚合酶链式反应获取片段F6,F7,导入酿酒酵母工程菌BD-0,形成1株酿酒酵母工程菌BD-2。The recombinant engineering strain construction method obtains fragments F6 and F7 by polymerase chain reaction on P6 and P7 plasmids, and introduces the fragments into the cerevisiae engineering bacteria BD-0 to form a cerevisiae engineering bacteria BD-2.
所述重组工程菌株构建方法利用摇床摇瓶培养,分光光度计测量OD600,高效液相色谱仪(HPLC)测量DHNA的产量。The recombinant engineering strain construction method utilizes shaking flask culture, a spectrophotometer to measure OD600, and a high performance liquid chromatography (HPLC) to measure the yield of DHNA.
本发明为了能够在酿酒酵母内生物合成1,4-二羟基-2-萘甲酸(DHNA),通过异源表达技术,结合基因工程等手段,将DHNA代谢路径关键基因引入酿酒酵母Saccharomyces cerevisiae BY4742构建工程菌,获得的工程菌BD-2。In order to biosynthesize 1,4-dihydroxy-2-naphthoic acid (DHNA) in Saccharomyces cerevisiae, the present invention introduces key genes of the DHNA metabolic pathway into Saccharomyces cerevisiae BY4742 through heterologous expression technology combined with genetic engineering and other means to construct an engineered bacterium, thereby obtaining the engineered bacterium BD-2.
本发明构建6种质粒,以酿酒酵母Saccharomyces cerevisiae BY4742为底盘宿主菌,将从6种质粒上通过聚合酶链式反应获得片段转入宿主菌,构建DHNA的代谢通路,使得酿酒酵母能够合成DHNA,为未来在酿酒酵母中生物合成MK-7提供前体。The present invention constructs 6 plasmids, takes Saccharomyces cerevisiae BY4742 as a chassis host bacterium, transfers fragments obtained from the 6 plasmids by polymerase chain reaction into the host bacterium, constructs a DHNA metabolic pathway, enables Saccharomyces cerevisiae to synthesize DHNA, and provides a precursor for the future biosynthesis of MK-7 in Saccharomyces cerevisiae.
以pUC19(SEQ ID NO.1)为基础质粒构建6种重组质粒,通过无缝克隆方式依次将目的基因连接,分别包括:Six recombinant plasmids were constructed using pUC19 (SEQ ID NO.1) as the basic plasmid, and the target genes were connected in sequence by seamless cloning, including:
质粒P1:pUC19-delta-UP-Ptdh1-entC-Ttef1-Ptef1(部分)Plasmid P1: pUC19-delta-UP-Ptdh1-entC-Ttef1-Ptef1 (partial)
质粒P2:pUC19-Ttef1(部分)-Ptef1-menD-Tpgk1-Ppgk1(部分)Plasmid P2: pUC19-Ttef1 (partial)-Ptef1-menD-Tpgk1-Ppgk1 (partial)
质粒P3:pUC19-Tpgk1(部分)-Ppgk1-menH-Tcyc1-Ttef-LEU2Plasmid P3: pUC19-Tpgk1 (partial)-Ppgk1-menH-Tcyc1-Ttef-LEU2
质粒P4:pUC19-LEU2(部分)-Pleu2-Ttpi1-menC-Ptef1-delta-DOWNPlasmid P4: pUC19-LEU2 (partial)-Pleu2-Ttpi1-menC-Ptef1-delta-DOWN
质粒P6:pUC19-His3-Ttpi1-Tcyc1-menE-Ppgk1-rDNA-DOWNPlasmid P6: pUC19-His3-Ttpi1-Tcyc1-menE-Ppgk1-rDNA-DOWN
质粒P7:pUC19-rDNA-UP-Ptdh1-sll1127-Ttef1-Ptef1-slr0204-Tpgk1-Phis3-His3(部分)Plasmid P7: pUC19-rDNA-UP-Ptdh1-sll1127-Ttef1-Ptef1-slr0204-Tpgk1-Phis3-His3 (partial)
通过聚合酶链式反应获得片段,分别包括:The fragments obtained by polymerase chain reaction include:
片段F1:delta-UP-Ptdh1-entC-Ttef1-Ptef1(部分)Fragment F1: delta-UP-Ptdh1-entC-Ttef1-Ptef1 (partial)
片段F2:Ttef1(部分)-Ptef1-menD-Tpgk1-Ppgk1(部分)Fragment F2: Ttef1 (partial)-Ptef1-menD-Tpgk1-Ppgk1 (partial)
片段F3:Tpgk1(部分)-Ppgk1-menH-Tcyc1-Ttef-LEU2Fragment F3: Tpgk1 (partial)-Ppgk1-menH-Tcyc1-Ttef-LEU2
片段F4:LEU2(部分)-Pleu2-Ttpi1-menC-Ptef1-delta-DOWNFragment F4: LEU2 (partial)-Pleu2-Ttpi1-menC-Ptef1-delta-DOWN
片段F6:His3-Ttpi1-Tcyc1-menE-Ppgk1-rDNA-DOWNFragment F6: His3-Ttpi1-Tcyc1-menE-Ppgk1-rDNA-DOWN
片段F7:rDNA-UP-Ptdh1-sll1127-Ttef1-Ptef1-slr0204-Tpgk1-Phis3-His3(部分)Fragment F7: rDNA-UP-Ptdh1-sll1127-Ttef1-Ptef1-slr0204-Tpgk1-Phis3-His3 (partial)
DHNA生物合成途径关键基因:Key genes in DHNA biosynthesis pathway:
entC(SEQ ID NO.2):来自大肠杆菌Escherichia coli str. K-12 substr.MG1655的异分支酸合酶基因entC (SEQ ID NO.2): isochorismate synthase gene from Escherichia coli str. K-12 substr. MG1655
menD(SEQ ID NO.3):来自大肠杆菌Escherichia coli str. K-12 substr.MG1655的2-丁酰基-5-烯醇丙酮酸-6-羟基-3-环己烯-1-羧酸合酶基因menD (SEQ ID NO. 3): 2-butyryl-5-enolpyruvate-6-hydroxy-3-cyclohexene-1-carboxylate synthase gene from Escherichia coli str. K-12 substr. MG1655
menH(SEQ ID NO.4):来自大肠杆菌Escherichia coli str. K-12 substr.MG1655的2-丁酰基-6-羟基2,4-环己二烯-1-羧酸合酶基因menH (SEQ ID NO. 4): 2-butyryl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase gene from Escherichia coli str. K-12 substr. MG1655
menC(SEQ ID NO.5):来自大肠杆菌Escherichia coli str. K-12 substr.MG1655的邻琥珀酰苯甲酸合成酶基因menC (SEQ ID NO.5): o-succinylbenzoate synthase gene from Escherichia coli str. K-12 substr. MG1655
sll1127(SEQ ID NO.6):来自蓝细菌Synechocystis sp. PCC 6803的1,4-二羟基-2-萘酰基-辅酶A合酶基因sll1127 (SEQ ID NO.6): 1,4-dihydroxy-2-naphthoyl-CoA synthase gene from cyanobacterium Synechocystis sp. PCC 6803
slr0204(SEQ ID NO.7):来自蓝细菌Synechocystis sp. PCC 6803的1,4-二羟基-2-萘基辅酶A水解酶基因slr0204 (SEQ ID NO.7): 1,4-dihydroxy-2-naphthyl-CoA hydrolase gene from cyanobacterium Synechocystis sp. PCC 6803
menE(SEQ ID NO.8):来自大肠杆菌Escherichia coli str. K-12 substr.MG1655的邻琥珀酰苯甲酸辅酶A连接酶基因menE (SEQ ID NO.8): o-succinylbenzoate-CoA ligase gene from Escherichia coli str. K-12 substr. MG1655
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1所示为pUC19质粒图谱;Figure 1 shows the pUC19 plasmid map;
图2所示为P1质粒图谱,包括启动子、终止子等关键组件及名称;Figure 2 shows the P1 plasmid map, including key components such as promoters and terminators and their names;
图3所示为P2质粒图谱,包括启动子、终止子等关键组件及名称;Figure 3 shows the P2 plasmid map, including key components such as promoters and terminators and their names;
图4所示为P3质粒图谱,包括启动子、终止子等关键组件及名称;Figure 4 shows the P3 plasmid map, including key components and names such as promoters and terminators;
图5所示为P4质粒图谱,包括启动子、终止子等关键组件及名称;Figure 5 shows the P4 plasmid map, including key components and names such as promoters and terminators;
图6所示为P6质粒图谱,包括启动子、终止子等关键组件及名称;Figure 6 shows the P6 plasmid map, including key components and names such as promoters and terminators;
图7所示为P7质粒图谱,包括启动子、终止子等关键组件及名称;Figure 7 shows the P7 plasmid map, including key components and names such as promoters and terminators;
图8所示为本发明构建DHNA合成通路设计原理图FIG8 is a schematic diagram showing the design principle of the DHNA synthesis pathway of the present invention.
图9所示为DHNA产量图Figure 9 shows the DHNA production graph
具体实施方式Detailed ways
本发明中设计的质粒是本实验室设计,菌株可市售获得。在全合成的本发明所需要的各外源基因过程中,需要将其连接到质粒载体上表达和保存。下面结合实施例,进一步阐述本发明。The plasmid designed in the present invention is designed by this laboratory, and the strain can be obtained commercially. In the process of fully synthesizing the exogenous genes required by the present invention, it is necessary to connect them to a plasmid vector for expression and preservation. The present invention is further described below in conjunction with the embodiments.
实施例1:质粒的构建Example 1: Construction of plasmid
线性载体:以pUC19(SEQ ID NO.1)质粒为模板,利用引物puc19-F/puc19-R,获得线性载体puc19。P1质粒构建:以酿酒酵母Saccharomyces cerevisiae BY4742基因组为模板,利用引物delta-UP-F/ delta-UP-R,获得基因片段delta-UP(SEQ ID NO.9),其中引物detla-UP-F包含线性载体pUC19的3’端20bp基因,引物delta-UP-R包含基因片段Ptdh1(SEQID NO.13)的5’端20bp基因。以合成质粒pUC-Ptdh1为模板,利用引物Ptdh1-F/Ptdh1-R,获得基因片段Ptdh1(SEQ ID NO.13),其中Ptdh1-R包含基因片段entC(SEQ ID NO.2)的5’端20bp基因。以大肠杆菌Escherichia coli str. K-12 substr. MG1655基因组为模板,利用引物entC-F/entC-R,获得基因片段entC(SEQ ID NO.2),其中entC-R包含基因片段Ttef1-Ptef1(部分)的5’端20bp基因。以合成质粒pUC-Ttef1-Ptef1(部分)为模板,利用引物Ttef1-F/Ptef1-bf-R,获得基因片段Ttef1-Ptef1(部分),其中Ptef1-bf-R包含线性载体pUC19的3’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P1。Linear vector: Using pUC19 (SEQ ID NO.1) plasmid as template, primers puc19-F/puc19-R were used to obtain the linear vector puc19. P1 plasmid construction: Using the genome of Saccharomyces cerevisiae BY4742 as template, primers delta-UP-F/delta-UP-R were used to obtain the gene fragment delta-UP (SEQ ID NO.9), wherein primer delta-UP-F contained the 3' end 20bp gene of the linear vector pUC19, and primer delta-UP-R contained the 5' end 20bp gene of the gene fragment Ptdh1 (SEQID NO.13). Using the synthetic plasmid pUC-Ptdh1 as template, primers Ptdh1-F/Ptdh1-R were used to obtain the gene fragment Ptdh1 (SEQ ID NO.13), wherein Ptdh1-R contained the 5' end 20bp gene of the gene fragment entC (SEQ ID NO.2). Using the genome of Escherichia coli str. K-12 substr. MG1655 as a template, primers entC-F/entC-R were used to obtain the gene fragment entC (SEQ ID NO.2), wherein entC-R contained the 5' end 20bp gene of the gene fragment Ttef1-Ptef1 (part). Using the synthetic plasmid pUC-Ttef1-Ptef1 (part) as a template, primers Ttef1-F/Ptef1-bf-R were used to obtain the gene fragment Ttef1-Ptef1 (part), wherein Ptef1-bf-R contained the 3' end 20bp gene of the linear vector pUC19. Using the seamless cloning method, the linear vector pUC19 and the fragment were connected, and the competent Escherichia coli Trans-T1 was transformed. The positive clones were selected for bacterial P and sequencing to obtain the correct plasmid P1.
P2质粒构建:以合成质粒pUC-Ttef1(部分)-Ptef1为模板,利用引物Ttef1-bf-F/Ptef1-R,获得基因片段Ttef1(部分)-Ptef1,其中引物Ttef1-bf-F包含线性载体pUC19的3’端20bp基因,Ptef1-R包含基因片段menD(SEQ ID NO.3)的5’端20bp基因。以大肠杆菌Escherichia coli str. K-12 substr. MG1655基因组为模板,利用引物menD-F/menD-R,获得基因片段menD(SEQ ID NO.3),其中menD-R包含基因片段Tpgk1-Ppgk1(部分)的5’端20bp基因。以合成质粒pUC- Tpgk1-Ppgk1(部分)为模板,利用引物Tpgk1-F/Ppgk1-bf-R,获得基因片段Tpgk1-Ppgk1(部分),其中Ptef1-bf-R包含线性载体pUC19的3’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P2。P2 plasmid construction: Using synthetic plasmid pUC-Ttef1 (partial)-Ptef1 as template, primers Ttef1-bf-F/Ptef1-R were used to obtain gene fragment Ttef1 (partial)-Ptef1, wherein primer Ttef1-bf-F contained the 3' end 20 bp gene of linear vector pUC19, and Ptef1-R contained the 5' end 20 bp gene of gene fragment menD (SEQ ID NO.3). Using Escherichia coli str. K-12 substr. MG1655 genome as template, primers menD-F/menD-R were used to obtain gene fragment menD (SEQ ID NO.3), wherein menD-R contained the 5' end 20 bp gene of gene fragment Tpgk1-Ppgk1 (partial). Using synthetic plasmid pUC- Tpgk1-Ppgk1 (part) as template and primers Tpgk1-F/Ppgk1-bf-R, gene fragment Tpgk1-Ppgk1 (part) was obtained, where Ptef1-bf-R contained the 20bp gene at the 3' end of the linear vector pUC19. The linear vector pUC19 and the fragment were connected by seamless cloning, transformed into Escherichia coli competent Trans-T1, and positive clones were selected for bacterial P and sequencing to obtain the correct plasmid P2.
P3质粒构建:以合成质粒pUC-Tpgk1(部分)-Ppgk1为模板,利用引物Tpgk1-bf-F/Ppgk1-R,获得基因片段Tpgk1(部分)-Ppgk1,其中引物Tpgk1-bf-F包含线性载体pUC19的3’端20bp基因,Ppgk1-R包含基因片段menH(SEQ ID NO.4) 的5’端20bp基因。以大肠杆菌Escherichia coli str. K-12 substr. MG1655基因组为模板,利用引物menH-F/menH-R,获得基因片段menH(SEQ ID NO.4),其中menH-R包含基因片段Tcyc1(SEQ ID NO.18)的5’端20bp基因。以合成质粒pUC-Tcyc1为模板,利用引物Tcyc1-F/Tcyc1-R,获得基因片段Tcyc1(SEQ ID NO.18),其中Tcyc1-R包含基因片段Ttef(SEQ ID NO.22)的5’端20bp基因。以合成质粒pUC-Ttef为模板,利用引物Ttef-F/Ttef-R,获得基因片段Ttef(SEQ ID NO.22),其中Ttef-R包含基因片段LEU2(SEQ ID NO.21)的5’端20bp基因。以合成质粒pUC-LEU2为模板,利用引物LEU2-F/LEU2-R,获得基因片段LEU2(SEQ ID NO.21),其中LEU2-R包含线性载体pUC19的3’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P3。P3 plasmid construction: Using synthetic plasmid pUC-Tpgk1 (partial)-Ppgk1 as template, primers Tpgk1-bf-F/Ppgk1-R were used to obtain gene fragment Tpgk1 (partial)-Ppgk1, wherein primer Tpgk1-bf-F contained the 3' end 20 bp gene of linear vector pUC19, and Ppgk1-R contained the 5' end 20 bp gene of gene fragment menH (SEQ ID NO.4). Using Escherichia coli str. K-12 substr. MG1655 genome as template, primers menH-F/menH-R were used to obtain gene fragment menH (SEQ ID NO.4), wherein menH-R contained the 5' end 20 bp gene of gene fragment Tcyc1 (SEQ ID NO.18). Using synthetic plasmid pUC-Tcyc1 as template and primers Tcyc1-F/Tcyc1-R, gene fragment Tcyc1 (SEQ ID NO.18) was obtained, wherein Tcyc1-R contained the 5' 20 bp gene of gene fragment Ttef (SEQ ID NO.22). Using synthetic plasmid pUC-Ttef as template and primers Ttef-F/Ttef-R, gene fragment Ttef (SEQ ID NO.22) was obtained, wherein Ttef-R contained the 5' 20 bp gene of gene fragment LEU2 (SEQ ID NO.21). Using synthetic plasmid pUC-LEU2 as template and primers LEU2-F/LEU2-R, gene fragment LEU2 (SEQ ID NO.21) was obtained, wherein LEU2-R contained the 3' 20 bp gene of linear vector pUC19. The linear vector pUC19 and the fragment were connected by seamless cloning method, transformed into Escherichia coli competent Trans-T1, and the positive clones were selected for bacterial P and sequencing to obtain the correct plasmid P3.
P4质粒构建:以合成质粒pUC-LEU2(部分)-Pleu2为模板,利用引物LEU2-bf-F/Pleu2-R,获得基因片段LEU2(部分)-Pleu2,其中引物LEU2-bf-F包含线性载体pUC19的3’端20bp基因,Pleu2-R包含基因片段Ttpi1(SEQ ID NO.19) 的5’端20bp基因。以合成质粒pUC-Ttpi1为模板,利用引物Ttpi1-F/Ttpi1-R,获得基因片段Ttpi1(SEQ ID NO.19),其中Ttpi1-R包含基因片段menC(SEQ ID NO.5)的5’端20bp基因。以大肠杆菌Escherichia coli str. K-12 substr. MG1655基因组为模板,利用引物menC-F/menC-R,获得基因片段menC(SEQ ID NO.5),其中menC-R包含基因片段Ptef1(SEQ ID NO.15)的5’端20bp基因。以合成质粒pUC-Ptef1为模板,利用引物Ptef1-F/Ptef1-R,获得基因片段Ptef1(SEQ ID NO.15),其中Ptef1-R包含基因片段delta-DOWN(SEQ ID NO.10)的5’端20bp基因。以酿酒酵母Saccharomyces cerevisiae BY4742基因组为模板,利用引物delta-DOWN-F/delta-DOWN-R,获得基因片段delta-DOWN(SEQ ID NO.10),其中delta-DOWN-R包含线性载体pUC19的5’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P4。P4 plasmid construction: Using synthetic plasmid pUC-LEU2 (partial)-Pleu2 as template, primers LEU2-bf-F/Pleu2-R were used to obtain gene fragment LEU2 (partial)-Pleu2, wherein primer LEU2-bf-F contained the 3' end 20 bp gene of linear vector pUC19, and Pleu2-R contained the 5' end 20 bp gene of gene fragment Ttpi1 (SEQ ID NO.19). Using synthetic plasmid pUC-Ttpi1 as template, primers Ttpi1-F/Ttpi1-R were used to obtain gene fragment Ttpi1 (SEQ ID NO.19), wherein Ttpi1-R contained the 5' end 20 bp gene of gene fragment menC (SEQ ID NO.5). Using the genome of Escherichia coli str. K-12 substr. MG1655 as a template, primers menC-F/menC-R were used to obtain gene fragment menC (SEQ ID NO.5), wherein menC-R contained the 5' end 20 bp gene of gene fragment Ptef1 (SEQ ID NO.15). Using synthetic plasmid pUC-Ptef1 as a template, primers Ptef1-F/Ptef1-R were used to obtain gene fragment Ptef1 (SEQ ID NO.15), wherein Ptef1-R contained the 5' end 20 bp gene of gene fragment delta-DOWN (SEQ ID NO.10). Using the genome of Saccharomyces cerevisiae BY4742 as a template, the primers delta-DOWN-F/delta-DOWN-R were used to obtain the gene fragment delta-DOWN (SEQ ID NO.10), wherein delta-DOWN-R contained the 5' end 20bp gene of the linear vector pUC19. The linear vector pUC19 and the fragment were connected by seamless cloning, and transformed into the competent Escherichia coli Trans-T1. The positive clones were selected for bacterial P and sequencing to obtain the correct plasmid P4.
P6质粒构建:以质粒pRS413(SEQ ID NO.23)为模板,利用引物His3-F/His3-R,获得片段His3,其中引物His3-F包含线性载体pUC19的3’端20bp基因,引物His3-R包含基因片段Ttpi1(SEQ ID NO.19)的5’端20bp基因。以合成质粒pUC-Ttpi1为模板,利用引物Ttpi1-F/Ttpi1-R2,获得基因片段Ttpi1(SEQ ID NO.19)-2,其中Ttpi1-R2包含基因片段Tcyc1(SEQ ID NO.18)的5’端20bp基因。以合成质粒pUC-Tcyc1为模板,利用引物Tcyc1-F/Tcyc1-R2,获得基因片段Tcyc1(SEQ ID NO.18)-2,其中Tcyc1-R2包含基因片段menE(SEQ IDNO.8)的5’端20bp基因。以大肠杆菌Escherichia coli str. K-12 substr. MG1655基因组为模板,利用引物menE-F/menE-R,获得基因片段menE(SEQ ID NO.8),其中menE-R包含基因片段Ppgk1(SEQ ID NO.17)的5’端20bp基因。以合成质粒pUC-Ppgk1为模板,利用引物Ppgk1-F/ Ppgk1-R2,获得基因片段Ppgk1(SEQ ID NO.17)-2,其中Ppgk1-R2包含基因片段rDNA-DOWN(SEQ ID NO.12)的5’端20bp基因。以酿酒酵母Saccharomyces cerevisiaeBY4742基因组为模板,利用引物rDNA-DOWN-F/rDNA-DOWN-R,获得基因片段rDNA-DOWN(SEQID NO.12),其中rDNA-DOWN-R包含线性载体pUC19的5’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P6。Construction of P6 plasmid: Using plasmid pRS413 (SEQ ID NO.23) as template, using primers His3-F/His3-R, fragment His3 was obtained, wherein primer His3-F contained the 3' end 20 bp gene of the linear vector pUC19, and primer His3-R contained the 5' end 20 bp gene of gene fragment Ttpi1 (SEQ ID NO.19). Using synthetic plasmid pUC-Ttpi1 as template, using primers Ttpi1-F/Ttpi1-R2, gene fragment Ttpi1 (SEQ ID NO.19)-2 was obtained, wherein Ttpi1-R2 contained the 5' end 20 bp gene of gene fragment Tcyc1 (SEQ ID NO.18). Using synthetic plasmid pUC-Tcyc1 as template and primers Tcyc1-F/Tcyc1-R2, gene fragment Tcyc1 (SEQ ID NO.18)-2 was obtained, wherein Tcyc1-R2 contained the 5' end 20 bp gene of gene fragment menE (SEQ ID NO.8). Using Escherichia coli str. K-12 substr. MG1655 genome as template and primers menE-F/menE-R, gene fragment menE (SEQ ID NO.8) was obtained, wherein menE-R contained the 5' end 20 bp gene of gene fragment Ppgk1 (SEQ ID NO.17). Using synthetic plasmid pUC-Ppgk1 as template, primers Ppgk1-F/ Ppgk1-R2 were used to obtain gene fragment Ppgk1 (SEQ ID NO.17)-2, wherein Ppgk1-R2 contained the 5' end 20bp gene of gene fragment rDNA-DOWN (SEQ ID NO.12). Using the genome of Saccharomyces cerevisiae BY4742 as template, primers rDNA-DOWN-F/rDNA-DOWN-R were used to obtain gene fragment rDNA-DOWN (SEQID NO.12), wherein rDNA-DOWN-R contained the 5' end 20bp gene of linear vector pUC19. Using seamless cloning method, linear vector pUC19 and fragment were connected, transformed into competent Escherichia coli Trans-T1, positive clones were selected for bacterial P and sequencing, and correct plasmid P6 was obtained.
P7质粒构建:以酿酒酵母Saccharomyces cerevisiae BY4742基因组为模板,利用引物rDNA-UP-F/ rDNA-UP-R,获得基因片段rDNA-UP(SEQ ID NO.11),其中引物rDNA-UP-F包含线性载体pUC19的3’端20bp基因,引物rDNA-UP-R包含基因片段Ptdh1(SEQ ID NO.13)的5’端20bp基因。以合成质粒pUC-Ptdh1为模板,利用引物Ptdh1-F/Ptdh1-R2,获得基因片段Ptdh1(SEQ ID NO.13)-2,其中Ptdh1-R2包含基因片段sll1127的5’端20bp基因。以pUC-sll1127为模板,利用引物sll1127-F/sll1127-R,获得基因片段sll1127,其中sll1127-R包含基因片段Ttef1(SEQ ID NO.14)的5’端20bp基因。以合成质粒pUC-Ttef1为模板,利用引物Ttef1 -F/Ttef1-R,获得基因片段Ttef1(SEQ ID NO.14),其中Ttef1-R包含基因片段Ptef1(SEQ ID NO.15) 的5’端20bp基因。以合成质粒pUC-Ptef1为模板,利用引物Ptef1-F/Ptef1-R2,获得基因片段Ptef1(SEQ ID NO.15)-2,其中Ptef1-R2包含基因片段slr0204的5’端20bp基因。以pUC- slr0204为模板,利用引物slr0204-F/ slr0204-R,获得基因片段slr0204,其中slr0204-R包含基因片段Ppgk1(SEQ ID NO.17)的5’端20bp基因。以合成质粒pUC-Ppgk1为模板,利用引物Ppgk1-F/ Ppgk1-R,获得基因片段Ppgk1(SEQ ID NO.17),其中Ppgk1-R包含基因片段Phis3-His3(部分)的5’端20bp基因。以质粒pRS413(SEQ ID NO.23)为模板,利用引物Phis3-F/His3-bf-R,获得片段Phis3-His3(部分),其中His3-bf-R包含线性载体pUC19的3’端20bp基因。利用无缝克隆的方法,将线性载体pUC19和片段连接起来,转化大肠杆菌感受态Trans-T1,挑选出阳性克隆进行菌P和测序,获得正确质粒P7。P7 plasmid construction: Using the genome of Saccharomyces cerevisiae BY4742 as a template, using primers rDNA-UP-F/ rDNA-UP-R, the gene fragment rDNA-UP (SEQ ID NO.11) was obtained, wherein the primer rDNA-UP-F contained the 3' end 20bp gene of the linear vector pUC19, and the primer rDNA-UP-R contained the 5' end 20bp gene of the gene fragment Ptdh1 (SEQ ID NO.13). Using the synthetic plasmid pUC-Ptdh1 as a template, using primers Ptdh1-F/Ptdh1-R2, the gene fragment Ptdh1 (SEQ ID NO.13)-2 was obtained, wherein Ptdh1-R2 contained the 5' end 20bp gene of the gene fragment sll1127. Using pUC-sll1127 as a template and primers sll1127-F/sll1127-R, gene fragment sll1127 was obtained, wherein sll1127-R contained the 5' end 20 bp gene of gene fragment Ttef1 (SEQ ID NO.14). Using synthetic plasmid pUC-Ttef1 as a template and primers Ttef1-F/Ttef1-R, gene fragment Ttef1 (SEQ ID NO.14) was obtained, wherein Ttef1-R contained the 5' end 20 bp gene of gene fragment Ptef1 (SEQ ID NO.15). Using synthetic plasmid pUC-Ptef1 as a template and primers Ptef1-F/Ptef1-R2, gene fragment Ptef1 (SEQ ID NO.15)-2 was obtained, wherein Ptef1-R2 contained the 5' end 20 bp gene of gene fragment slr0204. Using pUC-slr0204 as a template and primers slr0204-F/slr0204-R, gene fragment slr0204 was obtained, wherein slr0204-R contained the 5' end 20 bp gene of gene fragment Ppgk1 (SEQ ID NO.17). Using synthetic plasmid pUC-Ppgk1 as a template and primers Ppgk1-F/Ppgk1-R, gene fragment Ppgk1 (SEQ ID NO.17) was obtained, wherein Ppgk1-R contained the 5' end 20 bp gene of gene fragment Phis3-His3 (part). Using plasmid pRS413 (SEQ ID NO.23) as a template and primers Phis3-F/His3-bf-R, fragment Phis3-His3 (part) was obtained, wherein His3-bf-R contained the 3' end 20 bp gene of linear vector pUC19. The linear vector pUC19 and the fragment were connected by seamless cloning method, transformed into Escherichia coli competent Trans-T1, and the positive clones were selected for bacterial P and sequencing to obtain the correct plasmid P7.
实施例2:目的片段获得和酿酒酵母工程菌构建Example 2: Obtaining the target fragment and constructing the Saccharomyces cerevisiae engineering strain
目的片段F1:以质粒P1为模板,利用引物F1-F/F1-R,获得片段F1。Target fragment F1: Using plasmid P1 as a template and primers F1-F/F1-R, fragment F1 was obtained.
目的片段F2:以质粒P2为模板,利用引物F2-F/F2-R,获得片段F2。Target fragment F2: Using plasmid P2 as a template and primers F2-F/F2-R, fragment F2 was obtained.
目的片段F3:以质粒P3为模板,利用引物F3-F/F3-R,获得片段F3。Target fragment F3: Using plasmid P3 as template and primers F3-F/F3-R, fragment F3 was obtained.
目的片段F4:以质粒P4为模板,利用引物F4-F/F4-R,获得片段F4。Target fragment F4: Using plasmid P4 as a template and primers F4-F/F4-R, fragment F4 was obtained.
目的片段F6:以质粒P6为模板,利用引物F6-F/F6-R,获得片段F6。Target fragment F6: Using plasmid P6 as template and primers F6-F/F6-R, fragment F6 was obtained.
目的片段F7:以质粒P7为模板,利用引物F7-F/F7-R,获得片段F7。Target fragment F7: Using plasmid P7 as template and primers F7-F/F7-R, fragment F7 was obtained.
将上述得到的片段F1,F2,F3,F4通过常规酵母转化法导入酿酒酵母Saccharomyces cerevisiae BY4742中,获得BD-0。以BD-0为底盘菌,利用常规的酵母转化方法,将片段F6,F7转入,获得酿酒酵母工程菌BD-2。转化后采用SC(-Leu2,-His3)平板(22g/L葡萄糖,6.7 g/L 无氨基酵母氮源,2 g/L drop-out,0.02 g/L Ura,0.02 g/L Trp,20g/L琼脂)进行筛选。在超净台中挑取长势良好的单菌落,将其悬浮于含有20 µL ddH2O的96孔板中,在PCR仪中设定程序,99℃煮沸10 min。配制PCR体系,分装入96孔板,可以比实际需要的多配2-5个体系,防止因枪头沾有溶液造成损失。取煮好菌液,加入一个体系中。配好DNA电泳用的胶,等待凝固。PCR结束后,加DNA loading buffer,点样,每孔各10 μL, 电泳8-12 min。观察有无目的条带并记录对应编号。The fragments F1, F2, F3, and F4 obtained above were introduced into Saccharomyces cerevisiae BY4742 by conventional yeast transformation method to obtain BD-0. Using BD-0 as the base bacteria, the fragments F6 and F7 were transferred by conventional yeast transformation method to obtain the Saccharomyces cerevisiae engineered bacteria BD-2. After transformation, SC (-Leu2, -His3) plates (22g/L glucose, 6.7 g/L amino-free yeast nitrogen source, 2 g/L drop-out, 0.02 g/L Ura, 0.02 g/L Trp, 20g/L agar) were used for screening. Single colonies with good growth were picked in the clean bench, suspended in a 96-well plate containing 20 µL ddH2O, set the program in the PCR instrument, and boiled at 99℃ for 10 min. Prepare the PCR system and load it into 96-well plates. You can prepare 2-5 more systems than actually needed to prevent losses caused by the tip of the gun being stained with solution. Take the boiled bacterial solution and add it to a system. Prepare the gel for DNA electrophoresis and wait for it to solidify. After the PCR is completed, add DNA loading buffer, apply 10 μL to each well, and run electrophoresis for 8-12 minutes. Observe whether there is the target band and record the corresponding number.
PCR反应体系配置:上、下游引物各2 μL; 2x Rapid Taq Master Mix 25 μL;Template 2~5 μL;ddH2O 补加至50 μL。PCR reaction system configuration: 2 μL each of upstream and downstream primers; 25 μL of 2x Rapid Taq Master Mix; 2-5 μL of Template; add ddH2O to 50 μL.
PCR条件为:95 ℃预变性10 min,96 ℃变性15 s,56~66℃退火15 s,72 ℃延伸Xs (1kb需30~60s,只能时间富裕不能不足),35 cycles,最后72℃再延伸5 min,16℃保温。The PCR conditions were as follows: pre-denaturation at 95°C for 10 min, denaturation at 96°C for 15 s, annealing at 56-66°C for 15 s, extension at 72°C for Xs (1 kb requires 30-60 s, so the time must be sufficient), 35 cycles, and finally extension at 72°C for 5 min and insulation at 16°C.
DNA电泳使用:大胶( 100 mL):1XTAE缓冲液100mL,琼脂糖1.0 g,适当冷却后加核酸染料8 μL,摇匀倒入放好透明垫和梳子的槽。中胶50 mL,小胶25 mL,按比例加。DNA electrophoresis: Large gel (100 mL): 100 mL of 1XTAE buffer, 1.0 g of agarose, add 8 μL of nucleic acid dye after appropriate cooling, shake well and pour into the tank with transparent pad and comb. Medium gel 50 mL, small gel 25 mL, add according to the proportion.
drop-out氨基酸混合物:称取腺嘌呤0.5 g,对氨基苯甲酸2 g,精氨酸2 g,异亮氨酸2 g,半胱氨酸2 g,苏氨酸2 g,赖氨酸2 g,天冬氨酸2 g,色氨酸2 g,甲硫氨酸2 g,苯丙氨酸2 g,酪氨酸2 g,脯氨酸2 g,缬氨酸2 g,丝氨酸2 g,肌醇2 g,谷氨酸2 g,谷丙酰胺2g,丙氨酸2 g,置于一个容器中,并加入两块洗干净烘干的大理石块,上下颠倒多次混匀后放置室温备用,用前再次上下颠倒混匀。Drop-out amino acid mixture: weigh 0.5 g adenine, 2 g p-aminobenzoic acid, 2 g arginine, 2 g isoleucine, 2 g cysteine, 2 g threonine, 2 g lysine, 2 g aspartic acid, 2 g tryptophan, 2 g methionine, 2 g phenylalanine, 2 g tyrosine, 2 g proline, 2 g valine, 2 g serine, 2 g inositol, 2 g glutamic acid, 2 g glutamate, and 2 g alanine, put them in a container, add two clean and dried marble blocks, invert the mixture several times to mix well, then place it at room temperature for use, and invert it again to mix well before use.
实施例3:酿酒酵母底盘菌Saccharomyces cerevisiae BY4742和工程菌BD-2在摇瓶发酵培养基中摇瓶发酵(有氧)Example 3: Shake flask fermentation of Saccharomyces cerevisiae BY4742 and engineered bacteria BD-2 in shake flask fermentation medium (aerobic)
在无菌超净台中BD-2划线在SC(-Leu2,-His3)固体平板上,BY4742划线在YPD固体平板上,倒置于30℃恒温培养箱中培养约2天。In a sterile clean bench, BD-2 was streaked on a SC (-Leu2, -His3) solid plate, and BY4742 was streaked on a YPD solid plate, and the plates were inverted and cultured in a 30°C constant temperature incubator for about 2 days.
挑取在固体平板上长势良好的单个菌落并将它接种在有5 mL SC(22 g/L葡萄糖,6.7 g/L 无氨基酵母氮源,2 g/L drop-out,0.02 g/L Ura,0.02 g/L Trp,0.1 g/L Leu,0.02 g/L His)的50 mL离心管中,之后将离心管放在30℃、220 rpm的摇床中培养约20 h后达到对数生长期,此时OD600约为0.5-1。Pick a single colony that grows well on the solid plate and inoculate it into a 50 mL centrifuge tube with 5 mL SC (22 g/L glucose, 6.7 g/L amino-free yeast nitrogen source, 2 g/L drop-out, 0.02 g/L Ura, 0.02 g/L Trp, 0.1 g/L Leu, 0.02 g/L His), then place the centrifuge tube in a shaker at 30°C and 220 rpm for about 20 h to reach the logarithmic growth phase, at which time the OD600 is approximately 0.5-1.
在无菌超净台中按照一定的比例将处于对数期的种子液转接于含有30 mL相应发酵培养基的250 mL锥形瓶中进行发酵培养,使得发酵起始的OD600保持一致为0.1。In a sterile clean bench, the seed solution in the logarithmic phase was transferred to a 250 mL conical flask containing 30 mL of the corresponding fermentation medium in a certain proportion for fermentation culture, so that the OD600 at the beginning of the fermentation remained consistent at 0.1.
按照相应的发酵培养条件(30℃、200 rpm)置于恒温摇床中培养,在72h和96h进行取样测定细胞量以及各发酵产物的含量。The culture was carried out in a constant temperature shaker according to the corresponding fermentation culture conditions (30°C, 200 rpm), and samples were taken at 72h and 96h to determine the cell mass and the content of each fermentation product.
实例4:DHNA提取与检测Example 4: DHNA extraction and detection
将取1ml发酵液在12,000 rpm的条件下离心5 min,去掉上清,留取菌体。Take 1 ml of the fermentation broth and centrifuge it at 12,000 rpm for 5 min, remove the supernatant and keep the bacteria.
在上步所得的菌体中加入与菌体体积相同的石英砂,并加入500μl色谱纯乙酸乙酯,在涡旋震荡器中以2,400 g的速率在室温下震荡15 min。Add quartz sand of the same volume as the bacterial cells obtained in the previous step, and add 500 μl of chromatographically pure ethyl acetate, and vortex at 2,400 g at room temperature for 15 min.
用一次性注射器吸取上清,再用0.2 µm的有机相滤膜过滤后加入样品瓶中,做好标记后进行HPLC检测。The supernatant was drawn up with a disposable syringe, filtered with a 0.2 µm organic phase filter membrane, and added to a sample bottle. After marking, the sample was tested by HPLC.
HPLC检测条件:Shim-pack GIST C18色谱柱(250 mm×4.6 mm,5 μm);检测器:Shimadu SPD-20A,紫外检测波长(nm):254;柱温(℃):40;流动相:纯乙腈:0.1%甲酸(氨水调pH至4.65)=3:7,流速(mL/min):1.0,上样量(μL):10。HPLC detection conditions: Shim-pack GIST C18 column (250 mm×4.6 mm, 5 μm); detector: Shimadu SPD-20A, UV detection wavelength (nm): 254; column temperature (℃): 40; mobile phase: pure acetonitrile: 0.1% formic acid (ammonia water adjusted to pH 4.65) = 3:7, flow rate (mL/min): 1.0, sample volume (μL): 10.
定量方法:使用相同的色谱条件测定标准品DHNA的标准溶液,绘制浓度-峰面积标准曲线,对DHNA定量。Quantitative method: Use the same chromatographic conditions to measure the standard solution of standard DHNA, draw a concentration-peak area standard curve, and quantify DHNA.
本发明的有益效果是:The beneficial effects of the present invention are:
利用异源表达技术,结合基因工程等手段,构建6个质粒,获得6个片段,利用酿酒酵母自身的强同源重组能力,将DHNA生物合成所需基因整合基因组上,重构酿酒酵母代谢通路,实现DHNA在酿酒酵母中的首次合成。结果表明,酿酒酵母工程菌株BD-2生物合成DHNA,其中72h产量最高,达到3.16±1.08 mg/L。可见:By using heterologous expression technology and combining genetic engineering, six plasmids were constructed to obtain six fragments. The strong homologous recombination ability of Saccharomyces cerevisiae was used to integrate the genes required for DHNA biosynthesis into the genome, reconstruct the metabolic pathway of Saccharomyces cerevisiae, and achieve the first synthesis of DHNA in Saccharomyces cerevisiae. The results showed that the Saccharomyces cerevisiae engineered strain BD-2 biosynthesized DHNA, with the highest yield at 72h, reaching 3.16±1.08 mg/L. It can be seen that:
(1)本发明利用异源表达技术和基因工程手段将DHNA合成的关键基因异源引入到酿酒酵母中,使得之前不能合成DHNA的菌株可以合成DHNA,得到菌株BD-2.(1) The present invention utilizes heterologous expression technology and genetic engineering to heterologously introduce key genes for DHNA synthesis into Saccharomyces cerevisiae, thereby enabling strains that were previously unable to synthesize DHNA to synthesize DHNA, thereby obtaining strain BD-2.
(2)本发明的改造菌株为未来生物合成MK-7提供前体物质。(2) The modified strain of the present invention provides precursor substances for the future biosynthesis of MK-7.
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。本发明未尽事宜属于公知技术。The technical solutions disclosed and proposed by the present invention can be realized by those skilled in the art by referring to the contents of this article and appropriately changing the conditions, routes and other links. Although the methods and preparation techniques of the present invention have been described through preferred embodiments, relevant technicians can obviously modify or re-combine the methods and technical routes described herein without departing from the content, spirit and scope of the present invention to achieve the final preparation technology. It is particularly important to point out that all similar substitutions and modifications are obvious to those skilled in the art, and they are all considered to be included in the spirit, scope and content of the present invention. Matters not covered in the present invention belong to the known technology.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410565204.3A CN118406711A (en) | 2024-05-09 | 2024-05-09 | A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410565204.3A CN118406711A (en) | 2024-05-09 | 2024-05-09 | A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118406711A true CN118406711A (en) | 2024-07-30 |
Family
ID=91997270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410565204.3A Pending CN118406711A (en) | 2024-05-09 | 2024-05-09 | A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118406711A (en) |
-
2024
- 2024-05-09 CN CN202410565204.3A patent/CN118406711A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Georgiev et al. | Bioprocessing of plant cell cultures for mass production of targeted compounds | |
EP3645730B1 (en) | Use of type iii polyketide synthases as phloroglucinol synthases | |
CN116731886A (en) | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications | |
EP4516900A1 (en) | Nerolidol synthase and use thereof | |
CN113430215A (en) | Acetyl CoA synthetase gene RKACS1 and application thereof | |
WO2023202122A1 (en) | Curcuma wenyujin y. h. chen & c. ling-derived curcumin synthetase, gene, vector, engineered bacterium, and use thereof | |
CN107119001B (en) | Genetically engineered Rhodobacter sphaeroides, its preparation method and farnesol production method | |
JP2023500781A (en) | Engineered microbes for the production of cannabinoids | |
US11987602B2 (en) | Malonate transporters | |
Zhang et al. | Matching is the key factor to improve the production of patchoulol in the plant chassis of Marchantia paleacea | |
NL2038972A (en) | Biotin ligase mutant and application thereof in biotin production | |
CN118406711A (en) | A construction method capable of biosynthesizing 1,4-dihydroxy-2-naphthoic acid in Saccharomyces cerevisiae | |
WO2022003130A2 (en) | Yeast expression system | |
CN118308432A (en) | A method for promoting Bacillus subtilis to produce nanotubes | |
CN113528365A (en) | Recombinant saccharomyces cerevisiae for producing cannabidiol, construction method and application thereof | |
CN111893137A (en) | A method for expressing Vibrio vitreous hemoglobin in Phaeodactylum tricornutum for autotrophic and symbiotic culture | |
CN117625618A (en) | A kind of santal alcohol biosensor and its application | |
CN106244615A (en) | A kind of engineering bacteria and construction method thereof and the application in preparing geraniol | |
CN119530265A (en) | A method for constructing a 1,4-dihydroxy-2-naphthoic acid biosynthetic yeast strain | |
CN117229934A (en) | Genetically engineered bacterium for synthesizing carotenoid, construction method and application thereof | |
US20220340949A1 (en) | Methods of Isoprenoid Synthesis Using a Genetically Engineered Hydrocarbonoclastic Organism in a Biofilm Bioreactor | |
CN112626103B (en) | A kind of Yarrowia lipolytica engineering bacteria for producing limonene and its application | |
EP3302032B1 (en) | Production of polyunsaturated fatty acids (pufas) using a novel modular docosahexaenoic acid (dha) synthase | |
JP6979484B2 (en) | Recombinant microorganisms for producing 2,3-butanediol and methods for producing 2,3-butanediol | |
JP4943678B2 (en) | Method for modifying fatty acid composition of cells and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |