[go: up one dir, main page]

CN118401658A - Methods of regulating PCSK9 and uses thereof - Google Patents

Methods of regulating PCSK9 and uses thereof Download PDF

Info

Publication number
CN118401658A
CN118401658A CN202280078159.8A CN202280078159A CN118401658A CN 118401658 A CN118401658 A CN 118401658A CN 202280078159 A CN202280078159 A CN 202280078159A CN 118401658 A CN118401658 A CN 118401658A
Authority
CN
China
Prior art keywords
pcsk9
gene
dna
dcas9
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280078159.8A
Other languages
Chinese (zh)
Inventor
周昌阳
孙怡迪
彭文博
毛少帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yijie Lico Singapore Ltd.
Original Assignee
Yijielike Shanghai Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yijielike Shanghai Biotechnology Co ltd filed Critical Yijielike Shanghai Biotechnology Co ltd
Publication of CN118401658A publication Critical patent/CN118401658A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01037DNA (cytosine-5-)-methyltransferase (2.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01072Site-specific DNA-methyltransferase (adenine-specific) (2.1.1.72)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01113Site-specific DNA-methyltransferase (cytosine-N4-specific) (2.1.1.113)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/71Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)

Abstract

本公开提供了用于体内靶向减少或消除PCSK9基因产物的基于CRISPR/Cas9的融合分子和引导RNA。本公开还涉及制剂、其生产方法和使用方法。

The present disclosure provides CRISPR/Cas9-based fusion molecules and guide RNAs for targeted reduction or elimination of PCSK9 gene products in vivo. The present disclosure also relates to preparations, methods of production thereof, and methods of use thereof.

Description

调节PCSK9的方法及其用途Methods of regulating PCSK9 and uses thereof

相关申请Related Applications

本申请要求于2021年11月26日提交的PCT申请号PCT/CN2021/133681的优先权和权益,其内容通过引用整体并入本文。This application claims priority and the benefits of PCT application No. PCT/CN2021/133681 filed on November 26, 2021, the contents of which are incorporated herein by reference in their entirety.

通过引用序列表并入Incorporation by Reference to the Sequence Listing

与本申请相关的序列表XML以XML文件格式通过电子方式提供,并通过引用并入本说明书。含有序列表XML的XML文件的名称是“EPIG-001_001WO_SequenceListing_ST26”。该XML文件的大小为220,215字节,创建于2022年11月1日。The sequence listing XML associated with this application is provided electronically in XML file format and is incorporated into this specification by reference. The name of the XML file containing the sequence listing XML is "EPIG-001_001WO_SequenceListing_ST26". The size of this XML file is 220,215 bytes and was created on November 1, 2022.

背景技术Background technique

可被定制来靶向哺乳动物细胞中的任何基因的工程化DNA结合蛋白使生物医学研究取得了快速进展,并且是用于基因治疗的理想平台。RNA引导的CRISPR-Cas9系统已成为用于可编程靶向基因调控的有前景平台。无催化活性的“死亡”Cas9(dCas9)与Kruppel相关盒(KRAB)结构域的融合产生合成阻遏物,其能够在细胞培养实验中高度特异性且有效地调节或沉默靶基因。Engineered DNA-binding proteins that can be customized to target any gene in mammalian cells have enabled rapid advances in biomedical research and are an ideal platform for gene therapy. The RNA-guided CRISPR-Cas9 system has emerged as a promising platform for programmable targeted gene regulation. Fusion of a catalytically inactive "dead" Cas9 (dCas9) to a Kruppel-associated box (KRAB) domain generates synthetic repressors that are able to regulate or silence target genes with high specificity and potency in cell culture experiments.

然而,使用合成的dCas9-KRAB融合蛋白对内源基因的持续调节和沉默,给体内治疗的应用带来了挑战。合成阻遏物超过了病毒载体递送方法的包装尺寸限制。安全性、毒性、免疫原性和脱靶效应是限制合成阻遏物在体内使用的其他挑战。本领域需要用于产生遗传工程合成基因阻遏物和所述合成基因阻抑物的体内递送以用作治疗剂的替代方法。本公开解决了本领域中这种尚未满足的需求。However, the continuous regulation and silencing of endogenous genes using synthetic dCas9-KRAB fusion proteins poses challenges for in vivo therapeutic applications. Synthetic repressors exceed the packaging size limitations of viral vector delivery methods. Safety, toxicity, immunogenicity, and off-target effects are other challenges that limit the use of synthetic repressors in vivo. There is a need in the art for alternative methods for producing genetically engineered synthetic gene repressors and in vivo delivery of the synthetic gene repressors for use as therapeutic agents. The present disclosure addresses this unmet need in the art.

发明内容Summary of the invention

本公开提供了一种用于在细胞中调节(例如减少或消除)前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)基因产物的表达的方法,所述方法包括在所述细胞中引入下述物质的步骤:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,从而调节(例如减少或消除)所述细胞中PCSK9基因产物的表达。The present disclosure provides a method for regulating (e.g., reducing or eliminating) the expression of a proprotein convertase subtilisin/Kexin type 9 (PCSK9) gene product in a cell, the method comprising the step of introducing the following substances into the cell: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby regulating (e.g., reducing or eliminating) the expression of the PCSK9 gene product in the cell.

本公开提供了一种调节(例如减少或消除)受试者中PCSK9基因产物的表达的体内方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,从而调节(例如减少或消除)所述受试者中PCSK9基因产物的表达。The present disclosure provides an in vivo method for regulating (e.g., reducing or eliminating) the expression of a PCSK9 gene product in a subject, the method comprising the step of introducing the following substances into the cells of the subject: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby regulating (e.g., reducing or eliminating) the expression of the PCSK9 gene product in the subject.

本公开提供了一种调节(例如减少)受试者中低密度脂蛋白(LDL)胆固醇的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,从而调节(例如减少)所述受试者中的LDL胆固醇。The present disclosure provides a method for regulating (e.g., reducing) low-density lipoprotein (LDL) cholesterol in a subject, the method comprising the step of introducing the following substances into the cells of the subject: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby regulating (e.g., reducing) the LDL cholesterol in the subject.

本公开提供了一种治疗或缓解受试者中PCSK9相关疾病的症状的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,从而治疗或缓解所述受试者中的PCSK9相关疾病的症状。The present disclosure provides a method for treating or alleviating the symptoms of a PCSK9-related disease in a subject, the method comprising the step of introducing the following substances into the cells of the subject: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby treating or alleviating the symptoms of the PCSK9-related disease in the subject.

本公开提供了一种扩增PCSK9基因产物的表达减少的细胞群体的方法,所述方法包括下述步骤:i)将包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子或编码所述融合分子的核酸序列引入到多个细胞中,其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰;ii)扩增所述多个细胞以产生具有稳定减少PCSK9基因产物的表达减少的多个修饰细胞,其中,相对于未引入所述基因表达调节剂的细胞,所述多个修饰细胞的PCSK9基因产物表达减少至少50%、至少60%、至少70%、至少80%或至少90%,并且其中所述细胞是肝细胞。在某些实施方式中,所述PCSK9基因产物表达的减少是瞬时减少。在某些实施方式中,所述PCSK9基因产物表达的减少是稳定减少。The present disclosure provides a method for amplifying a cell population with reduced expression of a PCSK9 gene product, the method comprising the following steps: i) introducing a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator or a nucleic acid sequence encoding the fusion molecule into a plurality of cells, wherein the gene expression regulator provides a modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element; ii) amplifying the plurality of cells to produce a plurality of modified cells with a stable reduction in expression of a PCSK9 gene product, wherein the expression of the PCSK9 gene product of the plurality of modified cells is reduced by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% relative to cells into which the gene expression regulator is not introduced, and wherein the cells are hepatocytes. In certain embodiments, the reduction in expression of the PCSK9 gene product is a transient reduction. In certain embodiments, the reduction in expression of the PCSK9 gene product is a stable reduction.

在某些实施方式中,所述PCSK9调控元件是核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。In certain embodiments, the PCSK9 regulatory element is a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element, or a locus control region.

在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰所述PCSK9基因的转录起始位点上游位于300bp以内。In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp upstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000bp upstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 300bp upstream of the transcription start site of the PCSK9 gene.

在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约300bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内和所述转录起始位点下游300bp以内。In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp downstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 300bp downstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000bp upstream of the transcription start site of the PCSK9 gene and within 300bp downstream of the transcription start site.

在某些实施方式中,所述至少一个核苷酸的修饰是DNA甲基化。In certain embodiments, the modification of the at least one nucleotide is DNA methylation.

在某些实施方式中,所述至少一种基因表达调节剂包括DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分。In certain embodiments, the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase, or a portion thereof.

在某些实施方式中,所述至少一种基因表达调节剂包括DNA甲基转移酶(DNMT)或其部分。在某些实施方式中,所述DNA甲基转移酶是DNMT3A、DNMT3B、DNMT3L、DNMT1或DNMT2。在某些实施方式中,所述DNMT3A包含SEQ ID NO:23的氨基酸序列。在某些实施方式中,所述DNMT3L包含SEQ ID NO:24的氨基酸序列。In certain embodiments, the at least one gene expression regulator comprises a DNA methyltransferase (DNMT) or a portion thereof. In certain embodiments, the DNA methyltransferase is DNMT3A, DNMT3B, DNMT3L, DNMT1 or DNMT2. In certain embodiments, the DNMT3A comprises the amino acid sequence of SEQ ID NO: 23. In certain embodiments, the DNMT3L comprises the amino acid sequence of SEQ ID NO: 24.

在某些实施方式中,所述至少一种基因表达调节剂包括基于锌指蛋白的转录因子或其部分。在某些实施方式中,所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。在某些实施方式中,所述KRAB包含SEQ ID NO:22的氨基酸序列。In certain embodiments, the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof. In certain embodiments, the zinc finger protein-based transcription factor is a Kruppel-associated repression cassette (KRAB). In certain embodiments, the KRAB comprises the amino acid sequence of SEQ ID NO: 22.

在某些实施方式中,所述至少一种基因表达调节剂包括DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。在某些实施方式中,所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。In some embodiments, the at least one gene expression regulator comprises a DNA methyltransferase or a portion thereof and a zinc finger protein-based transcription factor or a portion thereof. In some embodiments, the DNA methyltransferase is selected from DNMT3A and DNMT3L and a combination thereof, and the zinc finger protein-based transcription factor is KRAB.

在某些实施方式中,所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。在某些实施方式中,所述至少一种DNA结合蛋白是dCas9。在某些实施方式中,所述dCas9包括金黄色葡萄球菌(Staphylococcus aureus)dCas9、化脓性链球菌(Streptococcus pyogenes)dCas9、空肠弯曲菌(Campylobacter jejuni)dCas9、白喉棒状杆菌(Corynebacterium diphtheria)dCas9、凸腹真杆菌(Eubacterium ventriosum)dCas9、巴氏链球菌(Streptococcus pasteurianus)dCas9、香肠乳杆菌(Lactobacillusfarciminis)dCas9、螺旋体球菌(Sphaerochaeta globus)dCas9、固氮螺菌属(Azospirillum)(例如菌株B510)dCas9、嗜重氮葡糖醋杆菌(Gluconacetobacterdiazotrophicus)dCas9、灰色奈瑟菌(Neisseria cinerea)dCas9、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9、食清洁剂细小棒菌(Parvibaculum lavamentivorans)dCas9、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(例如菌株DSM 16511)dCas9、海鸥弯曲菌(Campylobacter lari)(例如菌株CF89-12)dCas9、嗜热链球菌(Streptococcusthermophilus)(例如菌株LMD-9)dCas9。在某些实施方式中,所述dCas9包含SEQ ID NO:1的氨基酸序列。In some embodiments, the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease. In some embodiments, the at least one DNA binding protein is dCas9. In certain embodiments, the dCas9 comprises Staphylococcus aureus dCas9, Streptococcus pyogenes dCas9, Campylobacter jejuni dCas9, Corynebacterium diphtheria dCas9, Eubacterium ventriosum dCas9, Streptococcus pasteurianus dCas9, Lactobacillus farciminis dCas9, Sphaerochaeta globus dCas9, Azospirillum (e.g., strain B510) dCas9, Gluconacetobacter diazotrophicus dCas9, Neisseria cinerea dCas9, Roseburia enterica dCas9, and Streptococcus pasteurianus dCas9. intestinalis) dCas9, Parvibaculum lavamentivorans) dCas9, Nitratifractor salsuginis (e.g., strain DSM 16511) dCas9, Campylobacter lari (e.g., strain CF89-12) dCas9, Streptococcus thermophilus (e.g., strain LMD-9) dCas9. In some embodiments, the dCas9 comprises the amino acid sequence of SEQ ID NO: 1.

在某些实施方式中,所述融合分子包含与所述至少一种DNA结合蛋白的C-端、N-端或两者融合的所述至少一种基因表达调节剂。In certain embodiments, the fusion molecule comprises the at least one gene expression regulator fused to the C-terminus, the N-terminus, or both, of the at least one DNA binding protein.

在某些实施方式中,所述至少一种基因表达调节剂与所述至少一种DNA结合蛋白直接融合。在某些实施方式中,所述至少一种基因表达调节剂通过非调节剂、第二调节剂或接头与所述至少一种DNA结合蛋白间接融合。在某些实施方式中,所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。在某些实施方式中,所述融合分子包含SEQ ID NO:97的氨基酸序列。In some embodiments, the at least one gene expression regulator is directly fused to the at least one DNA binding protein. In some embodiments, the at least one gene expression regulator is indirectly fused to the at least one DNA binding protein through a non-regulator, a second regulator, or a linker. In some embodiments, the fusion molecule comprises a dCas9 fused to KRAB on the C-terminal end and to DNMT3A and DNMT3L on the N-terminal end. In some embodiments, the fusion molecule comprises the amino acid sequence of SEQ ID NO: 97.

在某些实施方式中,所述融合分子还包含至少一个核定位序列。在某些实施方式中,所述至少一个核定位序列与所述至少一种DNA结合蛋白的C-端、N-端或两者直接融合。在某些实施方式中,所述至少一个核定位序列通过接头与所述至少一种DNA结合蛋白的C-端、N-端或两者间接融合。In some embodiments, the fusion molecule further comprises at least one nuclear localization sequence. In some embodiments, the at least one nuclear localization sequence is directly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein. In some embodiments, the at least one nuclear localization sequence is indirectly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein via a linker.

在某些实施方式中,所述编码融合分子的核酸序列是脱氧核糖核酸(DNA)。在某些实施方式中,所述编码融合分子的核酸序列是信使核糖核酸(mRNA)。In some embodiments, the nucleic acid sequence encoding the fusion molecule is deoxyribonucleic acid (DNA). In some embodiments, the nucleic acid sequence encoding the fusion molecule is messenger ribonucleic acid (mRNA).

在某些实施方式中,所述方法进一步包括引入至少一个单一引导RNA(sgRNA)或编码所述sgRNA的DNA的步骤,所述sgRNA与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补,从而将所述融合分子靶向所述PCSK9基因或PCSK9调控元件。在某些实施方式中,所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。In some embodiments, the method further comprises the step of introducing at least one single guide RNA (sgRNA) or DNA encoding the sgRNA, wherein the sgRNA is complementary to a DNA sequence near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby targeting the fusion molecule to the PCSK9 gene or PCSK9 regulatory element. In some embodiments, the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108.

在某些实施方式中,所述融合分子被配制在脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被配制在脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被配制在同一脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被配制在不同脂质体或脂质纳米颗粒中。In some embodiments, the fusion molecule is formulated in a liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are formulated in a liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are formulated in the same liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are formulated in different liposomes or lipid nanoparticles.

在某些实施方式中,所述脂质体或脂质纳米颗粒包含可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(5%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)。在某些实施方式中,所述可电离脂质选自pH响应性可电离脂质、热响应性可电离脂质和光响应性可电离脂质。In certain embodiments, the liposome or lipid nanoparticle comprises an ionizable lipid (20%-70%, molar ratio), a PEGylated lipid (0%-30%, molar ratio), a supporting lipid (5%-50%, molar ratio) and cholesterol (10%-50%, molar ratio). In certain embodiments, the ionizable lipid is selected from a pH-responsive ionizable lipid, a thermally responsive ionizable lipid and a light-responsive ionizable lipid.

在某些实施方式中,所述融合分子被配制在AAV载体中。在某些实施方式中,所述融合分子和所述sgRNA被配制在AAV载体中。在某些实施方式中,所述融合分子和所述sgRNA被配制在同一AAV载体中。在某些实施方式中,所述融合分子和所述sgRNA被配制在不同AAV载体中。In some embodiments, the fusion molecule is formulated in an AAV vector. In some embodiments, the fusion molecule and the sgRNA are formulated in an AAV vector. In some embodiments, the fusion molecule and the sgRNA are formulated in the same AAV vector. In some embodiments, the fusion molecule and the sgRNA are formulated in different AAV vectors.

在某些实施方式中,所述融合分子通过局部注射、系统性输注或其组合递送到所述细胞。In certain embodiments, the fusion molecule is delivered to the cell by local injection, systemic infusion, or a combination thereof.

在某些实施方式中,所述受试者是人。In certain embodiments, the subject is a human.

在某些实施方式中,所述PCSK9相关疾病是高动脉粥样硬化性心血管疾病。在某些实施方式中,所述PCSK9相关疾病是高胆固醇血症。在某些实施方式中,所述细胞是肝细胞。In certain embodiments, the PCSK9-related disease is atherosclerotic cardiovascular disease. In certain embodiments, the PCSK9-related disease is hypercholesterolemia. In certain embodiments, the cell is a hepatocyte.

本公开提供了一种sgRNA,其包含SEQ ID NO:27-95或98-108中任一者的核酸序列。本公开提供了一种DNA序列,其编码本文公开的sgRNA中的任一者。The present disclosure provides an sgRNA comprising a nucleic acid sequence of any one of SEQ ID NOs: 27-95 or 98-108. The present disclosure provides a DNA sequence encoding any one of the sgRNAs disclosed herein.

本公开提供了一种药物组合物,其包含:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,其中所述融合分子靶向PCSK9基因附近和/或PCSK9调控元件内的基因组区域,其中所述至少一种基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分、或基于锌指蛋白的转录因子或其部分,或其组合,并且其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。The present disclosure provides a pharmaceutical composition, comprising: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, wherein the fusion molecule targets a genomic region near a PCSK9 gene and/or within a PCSK9 regulatory element, wherein the at least one gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within a PCSK9 regulatory element, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase or a portion thereof, or a zinc finger protein-based transcription factor or a portion thereof, or a combination thereof, and wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, a zinc finger nuclease (ZNF), a transcription activator-like effector nuclease (TALEN), a homing endonuclease, a dCas9-FokI nuclease, or a MegaTal nuclease.

在某些实施方式中,所述PCSK9调控元件是转录起始位点、核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。In certain embodiments, the PCSK9 regulatory element is a transcription start site, a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element, or a locus control region.

在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游300bp以内。In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp upstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000bp upstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 300bp upstream of the transcription start site of the PCSK9 gene.

在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约300bp以内。在某些实施方式中,所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内和所述转录起始位点下游300bp以内。In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp downstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 300bp downstream of the transcription start site of the PCSK9 gene. In some embodiments, the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000bp upstream of the transcription start site of the PCSK9 gene and within 300bp downstream of the transcription start site.

在某些实施方式中,所述至少一个核苷酸的修饰是DNA甲基化。在某些实施方式中,所述至少一种基因表达调节剂包括DNA甲基转移酶(DNMT)或其部分。在某些实施方式中,所述DNA甲基转移酶是DNMT3A、DNMT3B、DNMT3L、DNMT1或DNMT2。在某些实施方式中,所述DNMT3A包含SEQ ID NO:23的氨基酸序列。在某些实施方式中,所述DNMT3L包含SEQ ID NO:24的氨基酸序列。In some embodiments, the modification of at least one nucleotide is DNA methylation. In some embodiments, the at least one gene expression regulator comprises a DNA methyltransferase (DNMT) or a portion thereof. In some embodiments, the DNA methyltransferase is DNMT3A, DNMT3B, DNMT3L, DNMT1 or DNMT2. In some embodiments, the DNMT3A comprises the amino acid sequence of SEQ ID NO: 23. In some embodiments, the DNMT3L comprises the amino acid sequence of SEQ ID NO: 24.

在某些实施方式中,所述至少一种基因表达调节剂包括基于锌指蛋白的转录因子或其部分。在某些实施方式中,所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。在某些实施方式中,所述KRAB包含SEQ ID NO:22的氨基酸序列。In certain embodiments, the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof. In certain embodiments, the zinc finger protein-based transcription factor is a Kruppel-associated repression cassette (KRAB). In certain embodiments, the KRAB comprises the amino acid sequence of SEQ ID NO: 22.

在某些实施方式中,所述至少一种基因表达调节剂包括DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。在某些实施方式中,所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。在某些实施方式中,所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。In some embodiments, the at least one gene expression regulator includes a DNA methyltransferase or a portion thereof and a transcription factor or a portion thereof based on a zinc finger protein. In some embodiments, the DNA methyltransferase is selected from DNMT3A and DNMT3L and a combination thereof, and the transcription factor based on the zinc finger protein is KRAB. In some embodiments, the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease.

在某些实施方式中,所述至少一种DNA结合蛋白是dCas9。在某些实施方式中,所述dCas9包括金黄色葡萄球菌(Staphylococcus aureus)dCas9、化脓性链球菌(Streptococcus pyogenes)dCas9、空肠弯曲菌(Campylobacter jejuni)dCas9、白喉棒状杆菌(Corynebacterium diphtheria)dCas9、凸腹真杆菌(Eubacterium ventriosum)dCas9、巴氏链球菌(Streptococcus pasteurianus)dCas9、香肠乳杆菌(Lactobacillusfarciminis)dCas9、螺旋体球菌(Sphaerochaeta globus)dCas9、固氮螺菌属(Azospirillum)(例如菌株B510)dCas9、嗜重氮葡糖醋杆菌(Gluconacetobacterdiazotrophicus)dCas9、灰色奈瑟菌(Neisseria cinerea)dCas9、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9、食清洁剂细小棒菌(Parvibaculum lavamentivorans)dCas9、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(例如菌株DSM 16511)dCas9、海鸥弯曲菌(Campylobacter lari)(例如菌株CF89-12)dCas9、嗜热链球菌(Streptococcusthermophilus)(例如菌株LMD-9)dCas9。在某些实施方式中,所述dCas9包含SEQ ID NO:1的氨基酸序列。In certain embodiments, the at least one DNA binding protein is dCas9. In certain embodiments, the dCas9 comprises Staphylococcus aureus dCas9, Streptococcus pyogenes dCas9, Campylobacter jejuni dCas9, Corynebacterium diphtheria dCas9, Eubacterium ventriosum dCas9, Streptococcus pasteurianus dCas9, Lactobacillus farciminis dCas9, Sphaerochaeta globus dCas9, Azospirillum (e.g., strain B510) dCas9, Gluconacetobacter diazotrophicus dCas9, Neisseria cinerea dCas9, Roseburia enterica dCas9, and Streptococcus pasteurianus dCas9. intestinalis) dCas9, Parvibaculum lavamentivorans) dCas9, Nitratifractor salsuginis (e.g., strain DSM 16511) dCas9, Campylobacter lari (e.g., strain CF89-12) dCas9, Streptococcus thermophilus (e.g., strain LMD-9) dCas9. In some embodiments, the dCas9 comprises the amino acid sequence of SEQ ID NO: 1.

在某些实施方式中,所述融合分子包含与所述至少一种DNA结合蛋白的C-端、N-端或两者融合的所述至少一种基因表达调节剂。In certain embodiments, the fusion molecule comprises the at least one gene expression regulator fused to the C-terminus, the N-terminus, or both, of the at least one DNA binding protein.

在某些实施方式中,所述至少一种基因表达调节剂与所述至少一种DNA结合蛋白直接融合。在某些实施方式中,所述至少一种基因表达调节剂通过非调节剂、第二调节剂或接头与所述至少一种DNA结合蛋白间接融合。In some embodiments, the at least one gene expression regulator is directly fused to the at least one DNA binding protein. In some embodiments, the at least one gene expression regulator is indirectly fused to the at least one DNA binding protein via a non-regulator, a second regulator, or a linker.

在某些实施方式中,所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。在某些实施方式中,所述融合分子包含SEQ ID NO:97的氨基酸序列。In certain embodiments, the fusion molecule comprises dCas9 fused to KRAB on the C-terminal end and to DNMT3A and DNMT3L on the N-terminal end. In certain embodiments, the fusion molecule comprises the amino acid sequence of SEQ ID NO:97.

在某些实施方式中,所述融合分子还包含至少一个核定位序列。在某些实施方式中,所述至少一个核定位序列与所述至少一种DNA结合蛋白的C-端、N-端或两者直接融合。在某些实施方式中,所述至少一个核定位序列通过接头与所述至少一种DNA结合蛋白的C-端、N-端或两者间接融合。In some embodiments, the fusion molecule further comprises at least one nuclear localization sequence. In some embodiments, the at least one nuclear localization sequence is directly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein. In some embodiments, the at least one nuclear localization sequence is indirectly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein via a linker.

在某些实施方式中,所述编码融合分子的核酸序列是脱氧核糖核酸(DNA)。在某些实施方式中,所述编码融合分子的核酸序列是信使核糖核酸(mRNA)。In some embodiments, the nucleic acid sequence encoding the fusion molecule is deoxyribonucleic acid (DNA). In some embodiments, the nucleic acid sequence encoding the fusion molecule is messenger ribonucleic acid (mRNA).

在某些实施方式中,所述药物组合物进一步包含与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补的至少一个单一引导RNA(sgRNA)。在某些实施方式中,所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。In certain embodiments, the pharmaceutical composition further comprises at least one single guide RNA (sgRNA) complementary to a DNA sequence near the PCSK9 gene and/or within a PCSK9 regulatory element. In certain embodiments, the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108.

在某些实施方式中,所述融合分子被包装在脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被包装在脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被包装在同一脂质体或脂质纳米颗粒中。在某些实施方式中,所述融合分子和所述sgRNA被包装在不同脂质体或脂质纳米颗粒中。In some embodiments, the fusion molecule is packaged in a liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are packaged in a liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are packaged in the same liposome or lipid nanoparticle. In some embodiments, the fusion molecule and the sgRNA are packaged in different liposomes or lipid nanoparticles.

在某些实施方式中,所述脂质体或所述脂质纳米颗粒包含可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(5%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)。在某些实施方式中,所述可电离脂质选自pH响应性可电离脂质、热响应性可电离脂质和光响应性可电离脂质。In certain embodiments, the liposome or the lipid nanoparticle comprises an ionizable lipid (20%-70%, molar ratio), a PEGylated lipid (0%-30%, molar ratio), a supporting lipid (5%-50%, molar ratio) and cholesterol (10%-50%, molar ratio). In certain embodiments, the ionizable lipid is selected from a pH-responsive ionizable lipid, a thermally responsive ionizable lipid and a light-responsive ionizable lipid.

在某些实施方式中,所述融合分子被包装在AAV载体中。在某些实施方式中,所述融合分子和所述sgRNA被包装在AAV载体中。在某些实施方式中,所述融合分子所述融合分子和所述sgRNA被包装在同一AAV载体中。In some embodiments, the fusion molecule is packaged in an AAV vector. In some embodiments, the fusion molecule and the sgRNA are packaged in an AAV vector. In some embodiments, the fusion molecule, the fusion molecule and the sgRNA are packaged in the same AAV vector.

在某些实施方式中,所述融合分子和所述sgRNA被包装在不同AAV载体中。In certain embodiments, the fusion molecule and the sgRNA are packaged in different AAV vectors.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1A是示出了靶向小鼠PCSK9表达的“EPICAS”(也被称为“CRISPRoff”)双质粒系统和sgRNA平铺式筛选设计的示意图。第一质粒(“催化蛋白”质粒或“融合分子”质粒)编码在CAG启动子控制之下的DNMT3A-DNMT3L(3A3L)-dCas9-KRAB以及被2A元件分开的GFP标志物。第二质粒(“sgRNA”质粒)具有在U6启动子控制之下的sgRNA支架以及在CMV启动子控制之下的mCherry标志物。平铺式筛选的sgRNA靶向小鼠PCSK9蛋白编码序列(CDS)的转录起始位点(TSS)上游+250bp。Figure 1A is a schematic diagram showing the "EPICAS" (also known as "CRISPRoff") dual plasmid system and sgRNA tiled screening design targeting mouse PCSK9 expression. The first plasmid ("catalytic protein" plasmid or "fusion molecule" plasmid) encodes DNMT3A-DNMT3L (3A3L)-dCas9-KRAB under the control of the CAG promoter and a GFP marker separated by a 2A element. The second plasmid ("sgRNA" plasmid) has an sgRNA scaffold under the control of the U6 promoter and an mCherry marker under the control of the CMV promoter. The sgRNA for tiled screening targets +250bp upstream of the transcription start site (TSS) of the mouse PCSK9 protein coding sequence (CDS).

图1B是示出了在用催化蛋白质粒和单个PCSK9 sgRNA质粒转染小鼠AML12细胞系后的相对mRNA表达的条形图。每组n=3个生物学平行样。Figure 1B is a bar graph showing relative mRNA expression of mouse AML12 cell line after transfection with catalytic protein plasmid and single PCSK9 sgRNA plasmid. n=3 biological replicates per group.

图1C是示出了在用催化蛋白质粒和各种PCSK9 sgRNA质粒的混合物转染小鼠AML12细胞系后的相对mRNA表达的条形图。FIG1C is a bar graph showing relative mRNA expression after transfection of the mouse AML12 cell line with a mixture of catalytic protein plasmids and various PCSK9 sgRNA plasmids.

图1D是示出了在用催化蛋白质粒和各种PCSK9 sgRNA质粒的混合物转染小鼠Ai9原代肝细胞后的相对mRNA表达的条形图。FIG. 1D is a bar graph showing relative mRNA expression after transfection of mouse Ai9 primary hepatocytes with a mixture of catalytic protein plasmids and various PCSK9 sgRNA plasmids.

图2A是示出了EPICAS mRNA质粒设计的示意图。EPICAS ORF包含DNMT3A-DNMT3L-dCas9-KRAB表达盒。可以将质粒在XbaI和BpiI限制性位点处消化,以形成线性化质粒。Figure 2A is a schematic diagram showing the design of the EPICAS mRNA plasmid. The EPICAS ORF contains a DNMT3A-DNMT3L-dCas9-KRAB expression cassette. The plasmid can be digested at the XbaI and BpiI restriction sites to form a linearized plasmid.

图2B是从EPICAS mRNA质粒表达的纯化的mRNA的电泳图。FIG. 2B is an electropherogram of purified mRNA expressed from the EPICAS mRNA plasmid.

图2C是示出了Snrpn-GFP报告系统的示意图。FIG. 2C is a schematic diagram showing the Snrpn-GFP reporter system.

图2D是示出了在用Snrpn sgRNA或非靶向sgRNA转染后8天或用Snrpn sgRNA转染后30天、150天和400天的Snrpn-GFP表达的一系列流式细胞术图。FIG. 2D is a series of flow cytometry graphs showing Snrpn-GFP expression 8 days after transfection with Snrpn sgRNA or non-targeting sgRNA or 30 days, 150 days, and 400 days after transfection with Snrpn sgRNA.

图2E是示出了在用Snrpn sgRNA或非靶向sgRNA(NT-sgRNA)转染后8天或用SnrpnsgRNA转染后30天、150天和400天的GFP-off的细胞的百分比的折线图。FIG. 2E is a line graph showing the percentage of GFP-off cells 8 days after transfection with Snrpn sgRNA or non-targeting sgRNA (NT-sgRNA) or 30 days, 150 days, and 400 days after transfection with SnrpnsgRNA.

图2F是使用亚硫酸氢盐PCR分析获得的Snrpn基因座的DNA甲基化水平的示意图。示出了在转染后8天,CRISPRoff靶向和非靶向细胞之间Snrpn基因座的亚硫酸氢盐测序分析。每一行代表一个单个克隆和测序读出,每一列指示了一个特定基因组位置。白点代表未甲基化的CpG二核苷酸,黑点代表甲基化的CpG二核苷酸。下图表示在Snrpn基因座的13个位置处的甲基化。Figure 2F is a schematic diagram of DNA methylation levels of the Snrpn locus obtained using bisulfite PCR analysis. Bisulfite sequencing analysis of the Snrpn locus between CRISPRoff targeted and non-targeted cells is shown 8 days after transfection. Each row represents a single clone and sequencing readout, and each column indicates a specific genomic position. White dots represent unmethylated CpG dinucleotides, and black dots represent methylated CpG dinucleotides. The figure below represents methylation at 13 positions of the Snrpn locus.

图2G是在转染后400天,在CRISPRoff靶向和非靶向细胞之间Snrpn基因座的亚硫酸氢盐测序分析的示意图。圆圈的背面区域代表每个CpG二核苷酸的甲基化的平均程度(n=9个测序读出)。Figure 2G is a schematic diagram of bisulfite sequencing analysis of the Snrpn locus between CRISPRoff targeted and non-targeted cells 400 days after transfection. The area behind the circle represents the average degree of methylation of each CpG dinucleotide (n=9 sequencing reads).

图2H是示出了通过体外转录获得的CRISPRoff mRNA的纯度的毛细管凝胶电泳。FIG2H is a capillary gel electrophoresis showing the purity of CRISPRoff mRNA obtained by in vitro transcription.

图2I是示出了在CRISPRoff转染后70和90天时,GFP-off的细胞的百分比的一系列图。FIG. 2I is a series of graphs showing the percentage of GFP-off cells at 70 and 90 days after CRISPRoff transfection.

图3A是脂质纳米颗粒(LNP)设计的示意图。表观遗传学CRISPR/Cas元件和sgRNA元件可以被LNP包封。Figure 3A is a schematic diagram of lipid nanoparticle (LNP) design. Epigenetic CRISPR/Cas elements and sgRNA elements can be encapsulated by LNP.

图3B是示出了含有EPICAS的LNP的透射电子显微镜图像。FIG. 3B is a transmission electron microscopy image showing LNPs containing EPICAS.

图3C是示出了LNP的尺寸分布的图。FIG. 3C is a graph showing the size distribution of LNPs.

图3D是示出了通过肌肉内注射用脂质纳米颗粒递送到小鼠肝细胞的萤光素酶mRNA的体内荧光成像的一系列照片。FIG. 3D is a series of photographs showing in vivo fluorescence imaging of luciferase mRNA delivered to mouse hepatocytes using lipid nanoparticles via intramuscular injection.

图3E是用于递送含有EPICAS mRNA和小鼠PCSK9靶向sgRNA的LNP的体内实验设计的示意图。将LNP通过注射到尾侧静脉中施用到C57CB/6J小鼠,并在注射后5天分析PCSK9基因表达。Figure 3E is a schematic diagram of the in vivo experimental design for delivering LNPs containing EPICAS mRNA and mouse PCSK9 targeting sgRNA. LNPs were administered to C57CB/6J mice by injection into the lateral tail vein, and PCSK9 gene expression was analyzed 5 days after injection.

图3F是示出了在用PBS或含有EPICAS mRNA和靶向小鼠PCSK9的sgRNA的LNP注射后,小鼠PCSK9的相对mRNA表达的条形图。FIG. 3F is a bar graph showing relative mRNA expression of mouse PCSK9 after injection with PBS or LNPs containing EPICAS mRNA and sgRNA targeting mouse PCSK9.

图4A是用于猴PCSK9的sgRNA平铺式筛选设计的示意图。平铺式筛选的sgRNA靶向猴PCSK9蛋白编码序列(CDS)的转录起始位点(TSS)上游+250bp。Figure 4A is a schematic diagram of the sgRNA tiling screening design for monkey PCSK9. The sgRNAs in the tiling screening target +250bp upstream of the transcription start site (TSS) of the monkey PCSK9 protein coding sequence (CDS).

图4B是示出了在用催化蛋白质粒和单个PCSK9 sgRNA质粒转染猴细胞后相对mRNA表达的条形图。FIG4B is a bar graph showing relative mRNA expression following transfection of monkey cells with catalytic protein plasmids and individual PCSK9 sgRNA plasmids.

图5A是示出了靶向人PCSK9的sgRNA平铺式筛选的实验设计的示意图。FIG. 5A is a schematic diagram showing the experimental design of a tiling screen of sgRNAs targeting human PCSK9.

图5B是示出了在用靶向人PCSK9 TSS上游300bp和下游300bp区域的各种sgRNA转染人PCSK9报告细胞系后PCSK9的平均荧光强度率的一系列条形图。左侧的图示出了转染后72小时的结果。右侧的图示出了转染后120小时的结果。Fig. 5B is a series of bar graphs showing the mean fluorescence intensity rate of PCSK9 after transfection of human PCSK9 reporter cell lines with various sgRNAs targeting the upstream 300bp and downstream 300bp regions of human PCSK9 TSS. The figure on the left shows the results 72 hours after transfection. The figure on the right shows the results 120 hours after transfection.

图5C是示出了在用靶向人PCSK9 TSS上游300bp和下游300bp区域的各种sgRNA转染人PCSK9报告细胞系后72小时PCSK9的平均荧光强率的一系列图。FIG5C is a series of graphs showing the mean fluorescence intensity of PCSK9 72 hours after transfection of the human PCSK9 reporter cell line with various sgRNAs targeting the 300 bp upstream and 300 bp downstream regions of the human PCSK9 TSS.

图5D是示出了使用各种PCSK9靶向sgRNA,在用EPICAS双质粒系统转染后PCSK9mRNA表达的一系列图。左侧的图示出了在用各种sgRNA转染后48小时内源表达人PCSK9的Hep3B细胞系中的PCSK9 mRNA表达。右侧的图示出了在用各种sgRNA转染人PCSK9报告细胞系后120小时PCSK9的平均荧光强度率。Figure 5D is a series of graphs showing PCSK9 mRNA expression after transfection with the EPICAS dual plasmid system using various PCSK9 targeting sgRNAs. The graph on the left shows PCSK9 mRNA expression in a Hep3B cell line endogenously expressing human PCSK9 within 48 hours after transfection with various sgRNAs. The graph on the right shows the mean fluorescence intensity rate of PCSK9 120 hours after transfection of a human PCSK9 reporter cell line with various sgRNAs.

图6A是示出了小鼠肝脏的荧光染色的图像。示出了tdTomato染色(CRISPRoffmRNA)和DAPI染色。表现出tdTomato荧光的细胞的高比例显示了LNP介导的CRISPRoff mRNA在小鼠肝脏中的功效。Fig. 6A is an image showing fluorescent staining of mouse liver. TdTomato staining (CRISPRoffmRNA) and DAPI staining are shown. The high proportion of cells showing tdTomato fluorescence shows the efficacy of LNP-mediated CRISPRoffmRNA in mouse liver.

图6B是示出了在LNP介导的CRISPRoff mRNA递送后小鼠器官的图像。萤光素酶成像显示了CRISPRoff mRNA被定位到肝脏。Figure 6B is an image showing mouse organs after LNP-mediated CRISPRoff mRNA delivery. Luciferase imaging showed that CRISPRoff mRNA was localized to the liver.

图6C是示出了在施用后6h、12h、24h和48h通过萤光素酶成像获得的Luc mRNA-LNP的体内分布的一系列图像。FIG. 6C is a series of images showing the in vivo distribution of Luc mRNA-LNPs obtained by luciferase imaging at 6 h, 12 h, 24 h, and 48 h after administration.

图6D是示出了野生型小鼠肝脏中的Pcsk9 mRNA水平的图。在用指定剂量(mg RNA/kg体重)的具有CRISPRoff mRNA和Pcsk9靶向sgRNA的LNP制剂治疗后一周,评估相对mRNA表达水平。对于PBS而言n=5,对于LNP制剂组而言n=6。mg/kg(MPK)。Fig. 6D is a graph showing the Pcsk9 mRNA levels in wild-type mouse livers. Relative mRNA expression levels were assessed one week after treatment with LNP formulations with CRISPRoff mRNA and Pcsk9 targeting sgRNA at a specified dose (mg RNA/kg body weight). n=5 for PBS and n=6 for LNP formulation groups. mg/kg (MPK).

图6E是示出了在用指定剂量(mg RNA/kg体重)的具有CRISPRoff mRNA和Pcsk9靶向sgRNA的LNP制剂治疗的小鼠的血液中Pcsk9的蛋白质水平的图。对于PBS而言n=5,对于LNP制剂组而言n=6。Figure 6E is a graph showing protein levels of Pcsk9 in the blood of mice treated with LNP formulations with CRISPRoff mRNA and Pcsk9 targeting sgRNA at the indicated doses (mg RNA/kg body weight). n=5 for PBS and n=6 for LNP formulation groups.

图6F是示出了在用3mg/kg含有CRISPRoff mRNA和Pcsk9靶向sgRNA的LNP制剂治疗后2、4、6和8周时小鼠血液中Pcsk9的蛋白质水平。对于每组而言n=4。Figure 6F is a graph showing the protein level of Pcsk9 in the blood of mice at 2, 4, 6 and 8 weeks after treatment with 3 mg/kg of LNP formulations containing CRISPRoff mRNA and Pcsk9 targeting sgRNA. n=4 for each group.

图6G是部分肝切除术(PHx)和肝再生实验的示意图。FIG6G is a schematic diagram of partial hepatectomy (PHx) and liver regeneration experiment.

图6H是示出了在PHx或假手术后7天小鼠中的肝Pcsk9 mRNA水平的比较的图。FIG. 6H is a graph showing comparison of hepatic Pcsk9 mRNA levels in mice 7 days after PHx or sham surgery.

图6I是示出了在PCSK9基因的启动子处CpG二核苷酸的靶向亚硫酸氢盐测序分析的图。每个CpG二核苷酸处的甲基化水平通过来自4或3个生物学平行样的平均β值进行量化。对于PBS、假手术和PHx而言n=4、3和4。PHx,部分肝切除术。P值通过学生t-检验来计算。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。FIG. 6I is a diagram showing targeted bisulfite sequencing analysis of CpG dinucleotides at the promoter of the PCSK9 gene. The methylation level at each CpG dinucleotide is quantified by the average β value from 4 or 3 biological parallel samples. n=4, 3 and 4 for PBS, sham and PHx. PHx, partial hepatectomy. P values are calculated by Student's t-test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

图7A是在高脂肪饮食(HFD)小鼠中通过表观基因组编辑进行的Pcsk9阻遏的示意图。FIG. 7A is a schematic diagram of Pcsk9 repression by epigenome editing in high-fat diet (HFD) mice.

图7B是示出了在用PBS、4mg/kg或6mg/kg含有CRISPRoff mRNA和Pcsk9靶向sgRNA的LNP制剂治疗后7天HFD小鼠的血液中Pcsk9的相对蛋白质水平的图。mg/kg(MPK)。7B is a graph showing the relative protein levels of Pcsk9 in the blood of HFD mice 7 days after treatment with PBS, 4 mg/kg or 6 mg/kg of LNP formulations containing CRISPRoff mRNA and Pcsk9-targeting sgRNA. mg/kg (MPK).

图7C是示出了在治疗后14天HFD小鼠的血液中Pcsk9的相对蛋白质水平的图。FIG. 7C is a graph showing the relative protein levels of Pcsk9 in the blood of HFD mice 14 days after treatment.

图7D是示出了在治疗之前和之后HFD小鼠中血浆LDL-C水平的比较的图。每组n=5个生物学平行样。P值通过学生t-检验计算。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。FIG. 7D is a graph showing comparison of plasma LDL-C levels in HFD mice before and after treatment. n=5 biological replicates per group. P values were calculated by Student's t-test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

图8A是两个组中基因的log2转换的TPM的散点图。标记的点与PCSK9基因相对应。数据代表三个独立生物学平行样的平均值。Fig. 8A is a scatter plot of log2-transformed TPMs of genes in two groups. The marked points correspond to the PCSK9 gene. The data represent the average of three independent biological parallel samples.

图8B是靶基因Pcsk9的上游和下游1Mb内的基因表达变化的图示。x轴表示每个基因的基因组位置。Figure 8B is a graphical representation of gene expression changes within 1 Mb upstream and downstream of the target gene Pcsk9. The x-axis represents the genomic position of each gene.

图8C是示出了在CRISPRoff和PBS治疗的小鼠之间全基因组上差异甲基化的CpG的曼哈顿图。-log10(p-值)大于0的点指示在CRISPRoff治疗的小鼠中基因座的甲基化水平较高,-log10(p-值)小于0的点指示在PBS治疗的小鼠中甲基化水平较高。箭头标记了Pcsk9的基因组位置。Figure 8C is a Manhattan plot showing differentially methylated CpGs across the genome between CRISPRoff and PBS treated mice. -log10 (p-value) greater than 0 indicates a higher methylation level at the locus in CRISPRoff treated mice, -log10 (p-value) less than 0 indicates a higher methylation level in PBS treated mice. Arrows mark the genomic location of Pcsk9.

图8D是Pcsk9的上游和下游1kb内的甲基化变化的图示。x轴表示基因组位置。y轴表示-log(p-值)。红点指示在PCSK9基因的从转录起始位点到其终止密码子末端的范围以内,蓝点指示在该范围以外。被两种sgRNA靶向的前间区序列位点被标记为“sgRNA7”和“sgRNA9”。Figure 8D is a diagram of methylation changes within 1 kb upstream and downstream of Pcsk9. The x-axis represents the genomic position. The y-axis represents -log (p-value). The red dots indicate that the PCSK9 gene is within the range from the transcription start site to the end of its stop codon, and the blue dots indicate that it is outside this range. The protospacer sequence sites targeted by the two sgRNAs are marked as "sgRNA7" and "sgRNA9".

图8E是示出了预测的sgRNA依赖性脱靶基因和靶基因的基因表达变化的火山图。x轴表示通过DESeq2获得的所指示基因的log2变换的倍数变化,y轴表示log10变换的调整P值。每组n=3个生物学平行样。Figure 8E is a volcano plot showing gene expression changes of predicted sgRNA-dependent off-target genes and target genes. The x-axis represents the log2-transformed fold change of the indicated gene obtained by DESeq2, and the y-axis represents the log10-transformed adjusted P value. n = 3 biological replicates per group.

图9A是示出了包封CRISPRoff和Pcsk9靶向sgRNA的LNP的尺寸分布的图。FIG. 9A is a graph showing the size distribution of LNPs encapsulating CRISPRoff and Pcsk9 targeting sgRNAs.

图9B是包封CRISPRoff和Pcsk9靶向sgRNA的LNP的Cryo-EM图像。FIG. 9B is a Cryo-EM image of LNPs encapsulating CRISPRoff and Pcsk9 targeting sgRNA.

图9C示出了用不同剂量的包封CRISPRoff的LNP处理的PCSK9基因上的CpG二核苷酸的靶向亚硫酸氢盐测序分析的图。每个CpG二核苷酸处的甲基化水平通过来自4或3个生物学平行样的平均β值进行量化。每组n=3。mg/kg(MPK)。Figure 9C shows a graph of targeted bisulfite sequencing analysis of CpG dinucleotides on the PCSK9 gene treated with different doses of CRISPRoff-encapsulated LNPs. The methylation level at each CpG dinucleotide was quantified by the average β value from 4 or 3 biological parallel samples. n = 3 per group. mg/kg (MPK).

图9D是示出了在用3或6mg/kg LNP包封的CRISPRoff治疗之前和之后4天和7天,小鼠中天冬氨酸转氨酶(ALT)、丙氨酸转氨酶(AST)、碱性磷酸酶(ALP)和白蛋白(ALB)的血液水平的绝对值的一系列图。每组n=6。P值通过学生t-检验来计算。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。Figure 9D is a series of graphs showing the absolute values of blood levels of aspartate aminotransferase (ALT), alanine aminotransferase (AST), alkaline phosphatase (ALP), and albumin (ALB) in mice before and 4 and 7 days after treatment with 3 or 6 mg/kg LNP-encapsulated CRISPRoff. n = 6 per group. P values were calculated by Student's t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

图10A示出了全转录组基因的基因表达变化的火山图。代表Pcsk9的点被指明。Figure 10A shows a volcano plot of gene expression changes for the entire transcriptome. Points representing Pcsk9 are indicated.

图10B示出了在PCSK9基因两侧50kb基因组窗口内的甲基化水平的比较的图。x轴上方的条形表示甲基化水平大于0.5的基因座,x轴下方的条形表示甲基化水平小于0.5。被两种sgRNA靶向的前间区序列位点被标记为“sgRNA7”和“sgRNA9”。Figure 10B shows a graph comparing methylation levels within a 50 kb genomic window on either side of the PCSK9 gene. The bars above the x-axis represent loci with methylation levels greater than 0.5, and the bars below the x-axis represent loci with methylation levels less than 0.5. The protospacer sequence sites targeted by the two sgRNAs are labeled "sgRNA7" and "sgRNA9".

图10C是示出了所指示基因的甲基化和基因表达水平的log2变换的倍数变化的条形图,显示了CRISPRoff和PBS治疗的小鼠之间基因表达水平的统计显著性。FIG. 10C is a bar graph showing the log2 transformed fold changes in methylation and gene expression levels of the indicated genes, demonstrating the statistical significance of gene expression levels between CRISPRoff and PBS treated mice. FIG.

图10D是示出了所指示基因的甲基化和基因表达水平的log2变换的倍数变化的条形图,显示了CRISPRoff和PBS治疗的小鼠之间甲基化水平的统计显著性。每组n=3个生物学平行样。Figure 10D is a bar graph showing methylation of the indicated genes and log2 transformed fold changes in gene expression levels, showing statistical significance of methylation levels between CRISPRoff and PBS treated mice. n=3 biological replicates per group.

具体实施方式Detailed ways

本公开通过提供基因工程改造的融合分子(例如DNMT3A-DNMT3L(3A3L)-dCas9-KRAB融合分子)用于细胞中的基因产物(例如PCSK9)的靶向减少或消除以用于体内基因治疗,克服了与当前技术相关的问题。本公开的基因工程改造的融合分子可用于治疗遗传性疾病,包括例如肝脏疾病、与高胆固醇相关的疾病和与胆固醇(例如低密度脂蛋白(LDL)胆固醇)失调相关的疾病。因此,还提供了制备基因工程融合分子及其用于体内递送的药物制剂(例如脂质纳米颗粒制剂)的方法。The present disclosure overcomes the problems associated with current technologies by providing genetically engineered fusion molecules (e.g., DNMT3A-DNMT3L (3A3L)-dCas9-KRAB fusion molecules) for targeted reduction or elimination of gene products (e.g., PCSK9) in cells for in vivo gene therapy. The genetically engineered fusion molecules disclosed herein can be used to treat genetic diseases, including, for example, liver diseases, diseases associated with high cholesterol, and diseases associated with cholesterol (e.g., low-density lipoprotein (LDL) cholesterol) disorders. Therefore, methods for preparing genetically engineered fusion molecules and pharmaceutical preparations (e.g., lipid nanoparticle preparations) thereof for in vivo delivery are also provided.

I.定义I. Definitions

本文所使用的术语“编码序列”或“编码核酸”是指包含编码蛋白质的核苷酸序列的核酸(RNA或DNA分子)。所述编码序列可以进一步包括与调控元件可操作连接的起始和终止信号,包括能够在施用所述核酸的个体或哺乳动物的细胞中指导表达的启动子和多腺苷酸化信号。所述编码序列可以是被密码子优化的。The term "coding sequence" or "coding nucleic acid" as used herein refers to a nucleic acid (RNA or DNA molecule) comprising a nucleotide sequence encoding a protein. The coding sequence may further include start and stop signals operably linked to regulatory elements, including a promoter and polyadenylation signal capable of directing expression in cells of an individual or mammal to which the nucleic acid is administered. The coding sequence may be codon optimized.

本文所使用的术语“互补”或“互补的”对于核酸而言,可以是指核酸分子的核苷酸或核苷酸类似物之间的Watson-Crick(例如A-T/U和C-G)或Hoogsteen碱基配对。“互补性”是指两个核酸序列之间共享的特性,使得当将它们彼此反向平行对齐时,每个位置处的核苷酸碱基将是互补的。As used herein, the term "complementary" or "complementary" with respect to nucleic acids can refer to Watson-Crick (e.g., A-T/U and C-G) or Hoogsteen base pairing between nucleotides or nucleotide analogs of a nucleic acid molecule. "Complementarity" refers to a property shared between two nucleic acid sequences such that when they are aligned antiparallel to each other, the nucleotide bases at each position will be complementary.

术语“校正”、“基因组编辑”和“恢复”是指改变编码突变蛋白、截短蛋白或完全不编码蛋白的突变基因,从而获得全长功能性或部分全长功能性蛋白的表达。校正或恢复突变基因可以包括利用诸如同源性定向修复(HDR)的修复机制,用不具有所述突变的基因的拷贝代替所述基因的具有所述突变的区域或代替整个突变基因。校正或恢复突变基因还可以包括通过在基因中产生双链断裂,然后使用非同源末端连接(NHEJ)进行修复,来修复引起提前终止密码子、异常剪接受体位点或异常剪接供体位点的移码突变。NHEJ可以在修复过程中添加或删除至少一个碱基对,这可以恢复正确的阅读框并消除提前终止密码子。校正或恢复突变基因还可以包括破坏异常剪接受体位点或剪接供体序列。校正或恢复突变基因还可以包括通过两种核酸酶对同一DNA链的同时作用来删除非必需基因区段,以便通过移除两个核酸酶靶位点之间的DNA并通过NHEJ修复DNA断裂来恢复正确的阅读框。The terms "correction", "genome editing" and "restoration" refer to changing a mutant gene that encodes a mutant protein, a truncated protein, or does not encode a protein at all, so as to obtain the expression of a full-length functional or partially full-length functional protein. Correcting or restoring a mutant gene can include replacing a region of the gene with the mutation or replacing the entire mutant gene with a copy of a gene that does not have the mutation using a repair mechanism such as homology-directed repair (HDR). Correcting or restoring a mutant gene can also include repairing a frameshift mutation that causes a premature stop codon, an abnormal splice acceptor site, or an abnormal splice donor site by creating a double-strand break in the gene and then repairing it using non-homologous end joining (NHEJ). NHEJ can add or delete at least one base pair during the repair process, which can restore the correct reading frame and eliminate premature stop codons. Correcting or restoring a mutant gene can also include destroying an abnormal splice acceptor site or a splice donor sequence. Correcting or restoring a mutant gene can also include deleting a non-essential gene segment by the simultaneous action of two nucleases on the same DNA chain, so as to restore the correct reading frame by removing the DNA between the two nuclease target sites and repairing the DNA break by NHEJ.

本文所使用的术语“供体DNA”、“供体模板”和“修复模板”是指包括感兴趣基因的至少一部分的双链DNA片段或分子。供体DNA可以编码全功能性蛋白或部分功能性蛋白。As used herein, the terms "donor DNA", "donor template" and "repair template" refer to a double-stranded DNA fragment or molecule that includes at least a portion of a gene of interest. The donor DNA may encode a fully functional protein or a partially functional protein.

本文所使用的术语“移码”或“移码突变”可互换使用,并且是指一种基因突变类型,其中一个或多个核苷酸的添加或缺失导致mRNA中密码子的阅读框发生偏移。阅读框的偏移可能导致蛋白质翻译时氨基酸序列的改变,如错义突变或提前终止密码子。The term "frameshift" or "frameshift mutation" as used herein is used interchangeably and refers to a type of gene mutation in which the addition or deletion of one or more nucleotides causes the reading frame of the codon in the mRNA to shift. The shift of the reading frame may lead to changes in the amino acid sequence during protein translation, such as missense mutations or premature stop codons.

本文所使用的术语“功能性”和“全功能性”描述具有生物活性的蛋白质。“功能性基因”是指转录成mRNA的基因,所述mRNA被翻译成功能性蛋白。As used herein, the terms "functional" and "fully functional" describe a protein that has biological activity. A "functional gene" refers to a gene that is transcribed into mRNA, which is translated into a functional protein.

本文所使用的术语“融合蛋白”是指通过两个或更多个基因的共价或非共价连接直接或间接产生的嵌合蛋白,这些基因最初编码单独的蛋白质。在某些实施方式中,所述融合基因的翻译产生具有衍生自每个原始蛋白质的功能特性的单个多肽。The term "fusion protein" as used herein refers to a chimeric protein produced directly or indirectly by covalent or non-covalent linkage of two or more genes, which originally encoded separate proteins. In certain embodiments, translation of the fusion gene produces a single polypeptide having functional properties derived from each original protein.

本文所使用的术语“遗传构建体”是指包含编码蛋白质的核苷酸序列的DNA或RNA分子。编码序列包括与调控元件可操作地连接的起始和终止信号,所述调控元件包括能够在细胞中指导表达的启动子和多腺苷酸化信号。The term "genetic construct" as used herein refers to a DNA or RNA molecule comprising a nucleotide sequence encoding a protein. The coding sequence includes start and stop signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in a cell.

在本文中可互换使用的术语“同源定向修复”或“HDR”是指当细胞核中存在同源DNA片段时(主要在细胞周期的G2和S期),细胞中修复双链DNA损伤的机制。HDR使用供体DNA模板来指导修复,并可用于对基因组产生特定序列变化,包括整个基因的靶向插入。如果供体模板与位点特异性核酸酶一起提供,例如与基于CRISPR/Cas9的系统一起提供,那么细胞机制将通过同源重组修复断裂,其在DNA切割存在下增强几个数量级。当同源DNA片段不存在时,可能代之以发生非同源末端连接。The term "homologous directed repair" or "HDR", used interchangeably herein, refers to a mechanism for repairing double-stranded DNA damage in cells when homologous DNA fragments are present in the nucleus (mainly in the G2 and S phases of the cell cycle). HDR uses a donor DNA template to guide repair and can be used to produce specific sequence changes to the genome, including targeted insertion of entire genes. If the donor template is provided together with a site-specific nuclease, such as provided together with a CRISPR/Cas9-based system, the cellular mechanism will repair the break by homologous recombination, which is enhanced by several orders of magnitude in the presence of DNA cutting. When homologous DNA fragments are not present, non-homologous end joining may occur instead.

本文所使用的术语“基因组编辑”是指改变基因。基因组编辑可以包括校正或恢复突变基因。基因组编辑可以包括敲除基因,例如突变基因或正常基因。基因组编辑可用于通过改变感兴趣的基因来治疗疾病。The term "genome editing" as used herein refers to changing a gene. Genome editing can include correcting or restoring a mutant gene. Genome editing can include knocking out a gene, such as a mutant gene or a normal gene. Genome editing can be used to treat a disease by changing a gene of interest.

在两个或更多个核酸或多肽序列的情况下,本文所使用的术语“相同的”或“同一性”是指序列在特定区域内具有特定百分率的相同残基。所述百分率可以如下计算:最佳比对两个序列,在指定区域内比较两个序列,确定两个序列中出现相同残基的位置的数量以产生匹配位置的数量,用匹配位置的数量除以所述指定区域中的位置总数,并将结果乘以100以产生序列同一性的百分率。在两个序列长度不同或比对产生一个或多个交错末端并且指定的比较区域仅包括单个序列的情况下,单个序列的残基被包括在计算的分母中,但不包括在分子中。当比较DNA和RNA时,胸腺嘧啶(T)和尿嘧啶(U)可以被认为是等同的。同一性可以手动执行,或者通过使用诸如BLAST或BLAST 2.0的计算机序列算法来执行。可以通过已知的方法容易地计算出相关肽的同一性。此类方法包括但不限于在下述文献中描述的方法:Computational Molecular Biology,Lesk,A.M.,ed.,Oxford University Press,New York,1988;Biocomputing:Informatics and Genome Projects,Smith,D.W.,ed.,Academic Press,New York,1993;Computer Analysis of Sequence Data,Part1,Griffin,A.M.,and Griffin,H.G.,eds.,Humana Press,New Jersey,1994;SequenceAnalysis in Molecular Biology,von Heinje,G.,Academic Press,1987;SequenceAnalysis Primer,Gribskov,M.and Devereux,J.,eds.,M.Stockton Press,New York,1991;和Carillo et al,SIAM J.Applied Math.48,1073(1988),所述文献整体通过引用并入本文。In the case of two or more nucleic acid or polypeptide sequences, the term "identical" or "identity" as used herein refers to a sequence having a specific percentage of identical residues within a specified region. The percentage can be calculated as follows: optimally align the two sequences, compare the two sequences within a specified region, determine the number of positions where identical residues occur in the two sequences to produce the number of matching positions, divide the number of matching positions by the total number of positions in the specified region, and multiply the result by 100 to produce the percentage of sequence identity. In the case where the two sequences are of different lengths or the alignment produces one or more staggered ends and the specified comparison region includes only a single sequence, the residues of the single sequence are included in the denominator of the calculation, but not in the numerator. When comparing DNA and RNA, thymine (T) and uracil (U) can be considered to be equivalent. Identity can be performed manually or by using a computer sequence algorithm such as BLAST or BLAST 2.0. The identity of related peptides can be easily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al, SIAM J. Applied Math. 48, 1073 (1988), the entireties of which are incorporated herein by reference.

当在本文中使用时,本文中可互换使用的术语“突变基因”或“突变的基因”是指已发生可检测突变的基因。突变基因发生了变化,例如遗传物质的丢失、获得或交换,其影响基因的正常传递和表达。本文所使用的“被破坏的基因”是指具有引起提前终止密码子的突变的突变基因。被破坏的基因的产物相对于全长的未被破坏的基因产物被截短。As used herein, the terms "mutant gene" or "mutated gene" used interchangeably herein refer to a gene that has undergone a detectable mutation. A mutant gene has undergone a change, such as a loss, gain or exchange of genetic material, which affects the normal transmission and expression of the gene. As used herein, a "disrupted gene" refers to a mutant gene having a mutation that causes a premature stop codon. The product of a disrupted gene is truncated relative to the full-length non-disrupted gene product.

本文所使用的术语“表观遗传学修饰调节剂”是指通过表观遗传学修饰(例如通过组蛋白乙酰化或甲基化,或靶基因的调控元件例如启动子、增强子或转录起始位点处的DNA甲基化)靶向基因表达的试剂。染色质重塑和DNA甲基化是调控基因转录的两个主要机制。特定的表观遗传学标记(例如DNA甲基化)在结构上或生物化学上指导基因转录或基因沉默/阻遏。例如,调控转录活性的区域的DNA甲基化改变基因表达而不改变构成基础的DNA序列。使用表观遗传学修饰(例如DNA甲基化)的转录调控允许靶向调节基因表达,而不影响其他基因产物的表达。The term "epigenetic modification regulator" as used herein refers to an agent that targets gene expression by epigenetic modification (e.g., by histone acetylation or methylation, or regulatory elements of target genes such as promoters, enhancers, or DNA methylation at the transcription start site). Chromatin remodeling and DNA methylation are two main mechanisms for regulating gene transcription. Specific epigenetic marks (e.g., DNA methylation) structurally or biochemically guide gene transcription or gene silencing/repression. For example, DNA methylation in a region that regulates transcriptional activity changes gene expression without changing the underlying DNA sequence. Transcriptional regulation using epigenetic modifications (e.g., DNA methylation) allows targeted regulation of gene expression without affecting the expression of other gene products.

本文所使用的术语“非同源末端连接(NHEJ)途径”是指在不需要同源模板的情况下通过直接连接断裂末端来修复DNA中的双链断裂的途径。NHEJ对DNA末端的模板独立重新连接是一个随机的、容易出错的修复过程,在DNA断点处引入随机的微插入和微缺失(插入缺失)。这种方法可用于故意破坏、缺失或改变靶基因序列的阅读框。NHEJ通常使用被称为微同源物的短同源DNA序列来指导修复。这些微同源物通常存在于双链断裂末端上的单链悬突(overhang)中。当悬突完全相容时,NHEJ通常准确地修复断裂,然而也可能发生导致核苷酸丢失的不精确修复,但其在悬突不相容时更为常见。The term "non-homologous end joining (NHEJ) pathway" as used herein refers to a pathway for repairing double-strand breaks in DNA by directly joining the broken ends without the need for a homologous template. The template-independent rejoining of DNA ends by NHEJ is a random, error-prone repair process that introduces random micro-insertions and micro-deletions (indels) at the DNA breakpoints. This method can be used to intentionally destroy, delete or change the reading frame of the target gene sequence. NHEJ typically uses short homologous DNA sequences called microhomologs to guide repair. These microhomologs are typically present in single-stranded overhangs at the ends of double-strand breaks. When the overhangs are fully compatible, NHEJ usually accurately repairs the break, however, imprecise repairs that result in nucleotide loss may also occur, but are more common when the overhangs are incompatible.

本文所使用的术语“正常基因”是指未发生变化例如遗传物质的丢失、获得或交换的基因。正常基因经历正常的基因传递和基因表达。The term "normal gene" as used herein refers to a gene that has not undergone changes such as loss, gain or exchange of genetic material. A normal gene undergoes normal gene transmission and gene expression.

本文所使用的术语“核酸酶介导的NHEJ”是指在核酸酶例如cas9切割双链DNA后启动的NHEJ。As used herein, the term "nuclease-mediated NHEJ" refers to NHEJ initiated after a nuclease, such as cas9, cleaves double-stranded DNA.

本文所使用的术语“核酸”或“寡核苷酸”或“多核苷酸”是指共价连接在一起的至少两个核苷酸。单链的描述也定义了互补链的序列。因此,核酸也涵盖所描述的单链的互补链。核酸的许多变体可用于与给定核酸相同的目的。因此,核酸还涵盖基本相同的核酸及其互补体。单链提供了可以在严格杂交条件下与靶序列杂交的探针。因此,核酸还涵盖在严格杂交条件下杂交的探针。核酸可以是单链或双链,或者可以含有具有双链和单链序列两者的部分。核酸可以是DNA(基因组DNA和cDNA两者)、RNA或杂交体,其中核酸可以含有脱氧核糖核苷酸和核糖核苷酸的组合,以及包括尿嘧啶、腺嘌呤、胸腺嘧啶、胞嘧啶、鸟嘌呤、肌苷、黄嘌呤、次黄嘌呤、异胞嘧啶和异鸟嘌呤在内的碱基的组合。核酸可以通过化学合成方法或通过重组方法获得。The term "nucleic acid" or "oligonucleotide" or "polynucleotide" as used herein refers to at least two nucleotides covalently linked together. The description of a single strand also defines the sequence of the complementary strand. Therefore, nucleic acid also encompasses the complementary strand of the described single strand. Many variants of nucleic acid can be used for the same purpose as a given nucleic acid. Therefore, nucleic acid also encompasses substantially identical nucleic acids and their complements. The single strand provides a probe that can hybridize with a target sequence under stringent hybridization conditions. Therefore, nucleic acid also encompasses probes that hybridize under stringent hybridization conditions. Nucleic acid can be single-stranded or double-stranded, or can contain parts having both double-stranded and single-stranded sequences. Nucleic acid can be DNA (both genomic DNA and cDNA), RNA or a hybrid, wherein the nucleic acid can contain a combination of deoxyribonucleotides and ribonucleotides, and a combination of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine, isocytosine and isoguanine. Nucleic acid can be obtained by chemical synthesis methods or by recombinant methods.

本文所使用的术语“可操作连接”是指基因的表达在与其空间上连接的启动子的控制之下。启动子可以位于在其控制之下的基因的5'(上游)或3'(下游)。启动子与基因之间的距离可以与该启动子和它在所述启动子来源的基因中控制的基因之间的距离大致相同。正如本领域中已知的,可以在不损失启动子功能的情况下容许该距离的变化。As used herein, the term "operably linked" means that the expression of a gene is under the control of a promoter to which it is spatially linked. A promoter may be located 5' (upstream) or 3' (downstream) of the gene under its control. The distance between a promoter and a gene may be about the same as the distance between the promoter and the gene it controls in the gene from which the promoter is derived. As is known in the art, variations in this distance may be tolerated without loss of promoter function.

本文所使用的术语“部分功能性”描述了由突变基因编码的具有比功能性蛋白更低但比非功能性蛋白更高的生物活性的蛋白质。在一个实施方式中,部分功能性蛋白显示出低于相应的功能性蛋白的生物活性的95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%或30%的生物活性。The term "partial functionality" as used herein describes a protein encoded by a mutant gene that has a biological activity lower than a functional protein but higher than a non-functional protein. In one embodiment, a partially functional protein demonstrates a biological activity lower than 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% or 30% of the biological activity of a corresponding functional protein.

本文所使用的术语“提前终止密码子”或“框外终止密码子”是指DNA序列中的无义突变,其在野生型基因中通常未发现的位置处产生终止密码子。提前终止密码子可能导致蛋白质被截短或与蛋白质的全长版本相比更短。As used herein, the term "premature stop codon" or "out-of-frame stop codon" refers to a nonsense mutation in a DNA sequence that produces a stop codon at a position not normally found in the wild-type gene. A premature stop codon may cause a protein to be truncated or shorter than the full-length version of the protein.

本文所使用的术语“启动子”或“核心启动子”是指能够在细胞中赋予、激活或增强核酸表达的合成或天然衍生的分子。启动子可以包含一个或多个特异性转录调控序列,以进一步增强核酸的表达和/或改变核酸的空间表达和/或者时间表达。启动子还可以包括远端增强子或阻遏物元件,其可以位于距离转录起始位点多达几千个碱基对的位置。启动子可以源自包括病毒、细菌、真菌、植物、昆虫和动物在内的来源。启动子可以组成型地或相对于发生表达的细胞、组织或器官或相对于发生表达的发育阶段或对外部刺激例如生理胁迫、病原体、金属离子或诱导剂做出响应差异性地调控基因组分的表达。启动子的代表性实例包括噬菌体T7启动子、噬菌体T3启动子、SP6启动子、lac操纵基因启动子、tac启动子、SV40晚期启动子、SV40早期启动子、RSV-LTR启动子和CMV IE启动子。The term "promoter" or "core promoter" as used herein refers to a synthetic or naturally derived molecule that can confer, activate or enhance nucleic acid expression in a cell. A promoter may include one or more specific transcriptional regulatory sequences to further enhance the expression of nucleic acids and/or change the spatial expression and/or temporal expression of nucleic acids. A promoter may also include a distal enhancer or repressor element, which may be located at a position up to several thousand base pairs from the transcription start site. A promoter may be derived from sources including viruses, bacteria, fungi, plants, insects and animals. A promoter may constitutively or relative to cells, tissues or organs in which expression occurs or relative to the developmental stage in which expression occurs or to external stimuli such as physiological stress, pathogens, metal ions or inducers to respond differentially to regulate the expression of gene components. Representative examples of promoters include bacteriophage T7 promoter, bacteriophage T3 promoter, SP6 promoter, lac operator promoter, tac promoter, SV40 late promoter, SV40 early promoter, RSV-LTR promoter and CMV IE promoter.

本文所使用的术语“靶基因”是指编码已知或推定基因产物的任何核苷酸序列。靶基因可以是涉及遗传疾病或紊乱的突变基因。The term "target gene" as used herein refers to any nucleotide sequence encoding a known or putative gene product. The target gene may be a mutant gene involved in a genetic disease or disorder.

本文所使用的术语“靶区域”是指位点特异性核酸酶被设计与之结合的靶基因的区域。As used herein, the term "target region" refers to the region of a target gene to which a site-specific nuclease is designed to bind.

本文所使用的术语“转基因”是指含有从一种生物体分离并引入到不同生物体中的基因或含有基因序列的遗传物质。或者,术语“转基因”也指化学合成并引入到生物体中的基因或遗传物质。这种非天然DNA区段可以保留在转基因生物体中产生RNA或蛋白质的能力,或者它可以改变转基因生物体的遗传密码的正常功能。转基因的引入具有改变生物体的表型的潜力。As used herein, the term "transgenic" refers to a gene or genetic material containing a gene sequence that is isolated from one organism and introduced into a different organism. Alternatively, the term "transgenic" also refers to a gene or genetic material that is chemically synthesized and introduced into an organism. This non-natural DNA segment can retain the ability to produce RNA or protein in a transgenic organism, or it can change the normal function of the genetic code of a transgenic organism. The introduction of a transgenic has the potential to change the phenotype of an organism.

本文所使用的术语“变体”在用于核酸时是指(i)参比核苷酸序列的一部分或片段;(ii)参比核苷酸序列或其部分的互补序列;(iii)与参比核酸或其互补序列基本上相同的核酸;或(iv)在严格条件下与参比核酸、其互补序列或与其基本上相同的序列杂交的核酸。对于肽或多肽而言,“变体”的氨基酸序列因氨基酸的插入、缺失或保守取代而不同,但保留至少一种生物活性。As used herein, the term "variant" refers to (i) a portion or fragment of a reference nucleotide sequence; (ii) a complementary sequence of a reference nucleotide sequence or a portion thereof; (iii) a nucleic acid substantially identical to a reference nucleic acid or its complementary sequence; or (iv) a nucleic acid that hybridizes to a reference nucleic acid, its complementary sequence, or a sequence substantially identical thereto under stringent conditions. For peptides or polypeptides, the amino acid sequence of a "variant" differs by insertion, deletion, or conservative substitution of amino acids, but retains at least one biological activity.

变体也可以是指具有与保留至少一种生物活性的参比蛋白质的氨基酸序列基本上相同的氨基酸序列的蛋白质。氨基酸的保守取代,即将氨基酸用具有相似性质(例如亲水性、带电荷区域的程度和分布)的不同氨基酸代替,在本领域中被认为通常涉及微小的变化。正如本领域中所理解的,这些微小的变化可以部分地通过考虑氨基酸的亲水指数来鉴定。Kyte et al.,J.Mol.Biol.157:105-132(1982),其整体通过引用并入本文。氨基酸的亲水指数是基于其疏水性和电荷的考虑因素。在本领域中已知,具有相似亲水指数的氨基酸可以被取代并仍然保留蛋白质功能。在一个方面中,具有±2的亲水指数的氨基酸被取代。氨基酸的亲水性也可用于揭示将产生保留生物功能的蛋白质的取代。在肽的情况下考虑氨基酸的亲水性允许计算该肽的最大局部平均亲水性。可以用彼此的亲水性值在±2以内的氨基酸进行取代。氨基酸的疏水性指数和亲水性值都受到该氨基酸的特定侧链的影响。与该观察结果相一致,与生物功能相容的氨基酸取代被理解为取决于氨基酸、特别是那些氨基酸的侧链的相对相似性,正如由疏水性、亲水性、电荷、大小和其他性质所揭示的。Variant can also refer to a protein having an amino acid sequence substantially identical to the amino acid sequence of a reference protein retaining at least one biological activity. Conservative substitution of amino acids, i.e. replacing amino acids with different amino acids having similar properties (e.g., hydrophilicity, degree and distribution of charged regions), is considered in the art to generally involve minor changes. As understood in the art, these minor changes can be identified in part by considering the hydropathic index of amino acids. Kyte et al., J. Mol. Biol. 157: 105-132 (1982), which is incorporated herein by reference in its entirety. The hydropathic index of amino acids is a consideration based on their hydrophobicity and charge. It is known in the art that amino acids with similar hydropathic indexes can be substituted and still retain protein function. In one aspect, amino acids with a hydropathic index of ±2 are substituted. The hydrophilicity of amino acids can also be used to reveal substitutions that will produce proteins that retain biological function. Considering the hydrophilicity of amino acids in the case of peptides allows the calculation of the maximum local average hydrophilicity of the peptide. Amino acids with hydrophilicity values within ±2 of each other can be substituted. Both the hydrophobicity index and the hydrophilicity value of an amino acid are influenced by the particular side chain of that amino acid. Consistent with this observation, amino acid substitutions compatible with biological function are understood to depend on the relative similarity of the amino acids, particularly those of the side chains, as revealed by hydrophobicity, hydrophilicity, charge, size, and other properties.

当在本文中使用时,本文所使用的术语“载体”是指含有复制原点的核酸序列。载体可以是病毒载体、噬菌体、细菌人工染色体或酵母人工染色体。载体可以是DNA或RNA载体。载体可以是自我复制的染色体外载体,例如DNA质粒。When used in this article, the term "vector" used herein refers to a nucleic acid sequence containing a replication origin. The vector can be a viral vector, a bacteriophage, a bacterial artificial chromosome or a yeast artificial chromosome. The vector can be a DNA or RNA vector. The vector can be a self-replicating extrachromosomal vector, such as a DNA plasmid.

本文所使用的术语“基因转移”、“基因递送”和“基因转导”是指用于将特定核苷酸序列(如DNA或RNA)、融合蛋白、多肽等可靠插入到靶细胞中的方法或系统。As used herein, the terms "gene transfer," "gene delivery," and "gene transduction" refer to methods or systems for reliably inserting specific nucleotide sequences (such as DNA or RNA), fusion proteins, polypeptides, etc. into target cells.

本文所使用的术语“腺相关病毒(AAV)载体”、“AAV基因治疗载体”和“基因治疗载体”是指具有功能性或部分功能性ITR序列和转基因的载体。本文所使用的术语“ITR”是指反向末端重复序列(ITR)。ITR序列可以衍生自腺相关病毒血清型,包括但不限于AAV-1、AAV-2、AAV-3、AAV-4、AAV-5和AAV-6。然而,ITR不必须是野生型核苷酸序列,并且可以被改变(例如通过核苷酸的插入、缺失或取代),只要所述序列保留功能以提供功能性拯救、复制和包装即可。AAV载体的一个或多个AAV野生型基因、优选为rep和/或cap基因可以被全部或部分缺失,但保留功能性侧翼ITR序列。功能性ITR序列的功能是例如拯救、复制和包装AAV病毒粒子或颗粒。因此,“AAV载体”在本文中定义为至少包括那些将转基因插入到受试者的细胞中所需的序列。任选地包括那些对于病毒的复制和包装而言必需采取顺式的序列(例如功能性ITR)。As used herein, the terms "adeno-associated virus (AAV) vector", "AAV gene therapy vector" and "gene therapy vector" refer to vectors having functional or partially functional ITR sequences and transgenes. As used herein, the term "ITR" refers to an inverted terminal repeat (ITR). The ITR sequence can be derived from an adeno-associated virus serotype, including but not limited to AAV-1, AAV-2, AAV-3, AAV-4, AAV-5 and AAV-6. However, the ITR does not have to be a wild-type nucleotide sequence and can be altered (e.g., by insertion, deletion or substitution of nucleotides) as long as the sequence retains function to provide functional rescue, replication and packaging. One or more AAV wild-type genes of the AAV vector, preferably the rep and/or cap genes, can be deleted in whole or in part, but retain functional flanking ITR sequences. The function of the functional ITR sequence is, for example, to rescue, replicate and package AAV virus particles or particles. Therefore, an "AAV vector" is defined herein as including at least those sequences required for inserting a transgene into a subject's cells. Optionally, sequences that are necessary to be in cis for viral replication and packaging (e.g., functional ITRs) are included.

本文所使用的术语“基因疗法”是指治疗患者的方法,其中将多肽或核酸序列转移到患者的细胞中,以便调节特定基因的活性和/或表达。在某些实施方式中,所述基因的表达被抑制。在某些实施方式中,所述基因的表达被增强。在某些实施方式中,所述基因表达的时间或空间模式被调节。As used herein, the term "gene therapy" refers to a method of treating a patient in which a polypeptide or nucleic acid sequence is transferred into the patient's cells in order to modulate the activity and/or expression of a particular gene. In some embodiments, the expression of the gene is inhibited. In some embodiments, the expression of the gene is enhanced. In some embodiments, the temporal or spatial pattern of gene expression is modulated.

所述“转基因”可以含有转基因序列或天然或野生型DNA序列。所述转基因可以成为灵长类动物受试者基因组的一部分。转基因序列可以是部分或完全物种异源的,即转基因序列或其部分可以来自不同于其被引入的细胞的物种。The "transgene" may contain a transgenic sequence or a native or wild-type DNA sequence. The transgenic may become part of the genome of a primate subject. The transgenic sequence may be partially or completely species heterologous, i.e., the transgenic sequence or a portion thereof may be from a species different from the cell into which it is introduced.

本文所使用的术语“稳定维持的”是指转基因受试者(例如人或非人灵长类动物)通过多代细胞维持其至少一种转基因元件(即所需的元件)的特征。例如,所述术语旨在涵盖最初转染的细胞的许多细胞分裂周期。术语“稳定转染”或“稳定转染的”是指将外源DNA引入并整合到细胞的基因组中。术语“稳定转染子”是指已将外源DNA稳定整合到基因组DNA中的细胞。As used herein, the term "stably maintained" refers to a feature of a transgenic subject (e.g., a human or non-human primate) that maintains at least one transgenic element (i.e., a desired element) through multiple generations of cells. For example, the term is intended to encompass many cell division cycles of the initially transfected cells. The term "stable transfection" or "stably transfected" refers to the introduction and integration of exogenous DNA into the genome of a cell. The term "stable transfectant" refers to a cell that has stably integrated exogenous DNA into genomic DNA.

本文所使用的术语“编码……的转基因”、“编码……的核酸分子”、“编码……的DNA序列”和“编码……的DNA”是指脱氧核糖核苷酸沿着脱氧核糖核酸链的顺序或序列。例如,这些脱氧核糖核苷酸的顺序可以决定沿着多肽(蛋白质)链的氨基酸的顺序。因此,所述DNA序列可以编码所述氨基酸序列。As used herein, the terms "transgene encoding ...," "nucleic acid molecule encoding ...," "DNA sequence encoding ...," and "DNA encoding ..." refer to the order or sequence of deoxyribonucleotides along a deoxyribonucleic acid chain. For example, the order of these deoxyribonucleotides can determine the order of amino acids along a polypeptide (protein) chain. Thus, the DNA sequence can encode the amino acid sequence.

本文所使用的术语“野生型”(wt)是指当从天然存在的来源分离时具有该基因或基因产物的特征的基因或基因产物。野生型基因是在种群中最常观察到的基因,因此被任意设计为基因的“正常”或“野生型”形式。相反,术语“修饰的”或“突变体”是指当与野生型基因或基因产物相比时在序列和/或功能特性方面表现出修饰(即改变的特征)的基因或基因产品。值得注意的是,可以分离到天然存在的突变体,其通过与野生型基因或基因产物相比获得改变的特征来鉴定。The term "wild type" (wt) as used herein refers to a gene or gene product having the characteristics of the gene or gene product when isolated from a naturally occurring source. A wild-type gene is a gene most often observed in a population and is therefore arbitrarily designed to be the "normal" or "wild-type" form of a gene. In contrast, the term "modified" or "mutant" refers to a gene or gene product that exhibits modification (i.e., the characteristics of a change) in terms of sequence and/or functional properties when compared to a wild-type gene or gene product. It is noteworthy that naturally occurring mutants can be isolated that are identified by obtaining the characteristics of a change compared to a wild-type gene or gene product.

本文所使用的术语“转染”是指细胞对外来核酸(例如DNA或RNA)的摄取。当外源核酸(DNA或RNA)被引入到细胞膜内部时,细胞已被“转染”。许多转染技术在本领域中是公知的(参见例如Graham et al.,Virol.,52:456(1973);Sambrook et al.,MolecularCloning,a Laboratory Manual,Cold Spring Harbor Laboratories,New York(1989);Davis et al.,Basic Methods in Molecular Biology,Elsevier,(1986);and Chu etal.,Gene 13:197(1981),其整体通过引用并入本文)。此类技术可用于将一个或多个外源DNA部分例如基因转移载体和其他核酸分子引入到适合的受体细胞中。The term "transfection" as used herein refers to the uptake of foreign nucleic acids (e.g., DNA or RNA) by a cell. A cell has been "transfected" when an exogenous nucleic acid (DNA or RNA) is introduced into the interior of a cell membrane. Many transfection techniques are well known in the art (see, e.g., Graham et al., Virol., 52: 456 (1973); Sambrook et al., Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratories, New York (1989); Davis et al., Basic Methods in Molecular Biology, Elsevier, (1986); and Chu et al., Gene 13: 197 (1981), which are incorporated herein by reference in their entirety). Such techniques can be used to introduce one or more exogenous DNA portions, such as gene transfer vectors and other nucleic acid molecules, into suitable recipient cells.

本文所使用的术语“稳定转染”和“稳定转染的”是指将外来DNA引入并整合到被转染细胞的基因组中。术语“稳定转染子”是指已将外来DNA稳定整合到基因组DNA中的细胞。As used herein, the terms "stable transfection" and "stably transfected" refer to the introduction and integration of foreign DNA into the genome of the transfected cell. The term "stable transfectant" refers to a cell that has stably integrated foreign DNA into its genomic DNA.

本文所使用的术语“瞬时转染”或“瞬时转染的”是指将外来DNA引入到细胞中,其中所述外来DNA未能整合到被转染细胞的基因组中,并作为附加体维持。在此期间,所述外来DNA受到控制染色体中内源基因的表达的调控。术语“瞬时转染子”是指已摄入外来DNA但未能整合该DNA的细胞。本文所使用的术语“转导”表示通过复制缺陷型病毒载体例如通过重组AAV病毒颗粒,在体内或体外将DNA分子递送到受体细胞。As used herein, the term "transient transfection" or "transiently transfected" refers to the introduction of foreign DNA into a cell, wherein the foreign DNA fails to integrate into the genome of the transfected cell and is maintained as an episome. During this period, the foreign DNA is regulated by the expression of endogenous genes in the chromosome. The term "transient transfectant" refers to a cell that has taken up foreign DNA but has failed to integrate the DNA. As used herein, the term "transduction" means delivering a DNA molecule to a recipient cell in vivo or in vitro by a replication-defective viral vector, such as by a recombinant AAV viral particle.

本文所使用的术语“受体细胞”是指已被携带所选的感兴趣的核苷酸序列的核酸构建体或载体转染或转导,或能够被其转染或转导的细胞。该术语包括亲本细胞的子代,无论所述子代在形态或遗传构成上是否与原始亲本相同,只要所选的核苷酸序列存在即可。受体细胞可以是基因治疗颗粒和/或基因治疗载体已被施用到的受试者的细胞。The term "recipient cell" as used herein refers to a cell that has been transfected or transduced, or is capable of being transfected or transduced, by a nucleic acid construct or vector carrying a selected nucleotide sequence of interest. The term includes progeny of a parent cell, whether or not the progeny is identical to the original parent in morphology or genetic makeup, as long as the selected nucleotide sequence is present. A recipient cell can be a cell of a subject to which the gene therapy particles and/or gene therapy vector have been administered.

本文所使用的术语“重组DNA分子”是指由通过分子生物学技术连接在一起的DNA片段组成的DNA分子。As used herein, the term "recombinant DNA molecule" refers to a DNA molecule composed of DNA fragments linked together by molecular biology techniques.

本文所使用的术语“调控元件”是指可以控制核酸序列的表达的遗传元件。例如,启动子是一种有助于启动可操作连接的编码区的转录的调控元件。其他调控元件是剪接信号、多腺苷酸化信号、终止信号等。As used herein, the term "regulatory element" refers to a genetic element that can control the expression of a nucleic acid sequence. For example, a promoter is a regulatory element that helps initiate transcription of an operably linked coding region. Other regulatory elements are splicing signals, polyadenylation signals, termination signals, etc.

术语DNA“控制序列”被统称为调控元件,例如启动子序列、多腺苷酸化信号、转录终止序列、上游调控结构域、复制原点、内部核糖体进入位点(“IRES”)、增强子等,它们共同提供受体细胞中编码序列的复制、转录和翻译。这些控制序列并非所有都需要存在。The term DNA "control sequences" refers collectively to regulatory elements such as promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, replication origins, internal ribosome entry sites ("IRES"), enhancers, etc., which together provide for the replication, transcription, and translation of coding sequences in recipient cells. Not all of these control sequences need to be present.

本文所使用的术语“增强子”是指包含多个激活因子和阻遏物结合位点的非编码DNA序列。增强子的长度范围为50bp到1500bp,可以位于启动子上游5’的近端、受调控基因的任何内含子内,也可以位于远端、邻近基因的内含子中或远离基因座的基因间区域,或在不同染色体上的区域。一种以上的增强子可以与启动子相互作用。同样,增强子可以在没有连锁限制的情况下调节一个以上的基因,并且可以“跳过”邻近的基因来调节更远的基因。转录调控可能涉及位于与启动子所在染色体不同的染色体上的元件。邻近基因的近端增强子或启动子可以作为招募更多远端元件的平台。所用的增强子和启动子相对于它们可操作连接的基因可以是“内源的”、“外源的”或“异源的”。“内源性”增强子/启动子是与基因组中给定基因自然相关的增强子/启动子。“外源”或“异源”增强子或启动子是通过遗传操作(即分子生物学技术)与基因并列放置的增强子或启动子,使得该基因的转录由连接的增强子/启动子指导。The term "enhancer" as used herein refers to a non-coding DNA sequence comprising multiple activators and repressor binding sites. The length range of the enhancer is 50bp to 1500bp, and it can be located at the proximal end 5' upstream of the promoter, in any intron of the regulated gene, or at the distal end, in the intron of the adjacent gene, or in the intergenic region away from the locus, or in the region on different chromosomes. More than one enhancer can interact with the promoter. Similarly, the enhancer can regulate more than one gene without linkage restriction, and can "skip" adjacent genes to regulate more distant genes. Transcriptional regulation may involve elements located on chromosomes different from the chromosomes where the promoter is located. The proximal enhancer or promoter of the adjacent gene can serve as a platform for recruiting more distal elements. The enhancer and promoter used can be "endogenous", "exogenous" or "heterologous" relative to the genes to which they are operably connected. "Endogenous" enhancer/promoter is an enhancer/promoter naturally associated with a given gene in the genome. A "foreign" or "heterologous" enhancer or promoter is one that has been placed in juxtaposition to a gene by genetic manipulation (ie, molecular biology techniques) such that transcription of the gene is directed by the ligated enhancer/promoter.

本文所使用的术语“绝缘子”或“绝缘子元件”是指阻断增强子和启动子之间的相互作用的遗传边界元件。通过位于增强子和启动子之间,绝缘子可以抑制它们随后的相互作用。绝缘子可以决定增强子可影响的基因组。当染色体上的两个相邻基因具有非常不同的转录模式并且其中一个基因的诱导或抑制机制不干扰相邻基因时,就需要绝缘子。还发现绝缘子聚集在拓扑关联域(TAD)的边界处,并且可能在将基因组划分为“染色体邻域”即发生调控的基因组区域中发挥作用。绝缘体活性被认为主要通过由包括CTCF在内的蛋白质介导的DNA的3D结构实现。绝缘子可能通过多种机制发挥作用。许多增强子形成DNA环,使它们在转录激活过程中在物理上靠近启动子区域。绝缘子可能会促进DNA环的形成,从而阻止启动子-增强子环的形成。屏障绝缘子可以防止异染色质从沉默基因向活跃转录基因扩散。The term "insulator" or "insulator element" as used herein refers to a genetic boundary element that blocks the interaction between an enhancer and a promoter. By being located between an enhancer and a promoter, an insulator can inhibit their subsequent interaction. An insulator can determine the genome that an enhancer can affect. When two adjacent genes on a chromosome have very different transcription patterns and the induction or inhibition mechanism of one of the genes does not interfere with the adjacent gene, an insulator is needed. It has also been found that insulators are gathered at the boundaries of topologically associated domains (TADs) and may play a role in dividing the genome into "chromosome neighborhoods", that is, the genomic regions where regulation occurs. Insulator activity is believed to be mainly achieved by the 3D structure of DNA mediated by proteins including CTCF. Insulators may play a role through a variety of mechanisms. Many enhancers form DNA loops that physically approach the promoter region during transcriptional activation. Insulators may promote the formation of DNA loops, thereby preventing the formation of promoter-enhancer loops. Barrier insulators can prevent heterochromatin from spreading from silent genes to actively transcribed genes.

本文所使用的术语“基因座控制区(locus control region)”是指能够增强远端染色质位点处连接基因的表达的长距离顺式调节元件。其以拷贝数依赖的方式发挥作用,并且具有组织特异性,如红细胞中3-球蛋白基因的选择性表达。通过LCR和基因近端元件(例如启动子、增强子和沉默子)可以改变基因的表达水平。LCR通过募集染色质修饰、共激活因子和转录复合物发挥作用。它的序列在许多脊椎动物中是保守的,特定位点的保守可能表明其功能的重要性。The term "locus control region" as used herein refers to a long-distance cis-regulatory element that can enhance the expression of a gene connected to a distal chromatin site. It functions in a copy number-dependent manner and has tissue specificity, such as the selective expression of 3-globulin genes in erythrocytes. The expression level of a gene can be changed by LCR and gene proximal elements (e.g., promoters, enhancers, and silencers). LCR functions by recruiting chromatin modifications, coactivators, and transcriptional complexes. Its sequence is conserved in many vertebrates, and the conservation of specific sites may indicate the importance of its function.

本文所使用的术语“沉默子”或“阻遏物”可互换使用,是指能够结合转录调节因子并阻止基因表达为蛋白质的DNA序列。沉默子是一种序列特异性元件,可对其特定基因的转录产生负面影响。沉默子元件可以位于DNA中的许多位置。最常见的位置是在目标基因的上游,它可以帮助抑制基因的转录。该距离在基因上游的约-20bp到-2000bp之间可能有较大变化。某些沉默子位于基因本身的内含子或外显子内的启动子下游。在mRNA的3’非翻译区(3'UTR)中也发现了沉默子。DNA中的沉默子主要有两种类型,即经典沉默子元件和非经典负调节元件(NRE)。在经典沉默子中,基因被沉默子元件主动抑制,主要是通过干扰通用转录因子(GTF)组装。NRE被动抑制基因,通常是通过抑制基因上游的其他元件。The terms "silencer" or "repressor" as used herein are used interchangeably and refer to DNA sequences that can bind transcriptional regulators and prevent genes from being expressed as proteins. A silencer is a sequence-specific element that can negatively affect the transcription of its specific gene. Silencer elements can be located at many locations in DNA. The most common location is upstream of the target gene, where it can help inhibit the transcription of the gene. The distance may vary greatly between about -20bp and -2000bp upstream of the gene. Some silencers are located downstream of the promoter within the introns or exons of the gene itself. Silencers are also found in the 3' untranslated region (3'UTR) of mRNA. There are two main types of silencers in DNA, namely classical silencer elements and non-classical negative regulatory elements (NREs). In classical silencers, genes are actively inhibited by silencer elements, mainly by interfering with the assembly of general transcription factors (GTFs). NREs passively inhibit genes, usually by inhibiting other elements upstream of the gene.

本文所使用的术语“组织特异性”是指调控元件或控制序列例如启动子、增强子等,其中核酸序列在特定细胞类型或组织中的表达显著更高。As used herein, the term "tissue specificity" refers to regulatory elements or control sequences such as promoters, enhancers, etc., wherein the expression of a nucleic acid sequence is significantly higher in a specific cell type or tissue.

表达载体上“剪接信号”的存在通常导致重组转录物的表达水平更高。剪接信号介导从初级RNA转录物中去除内含子,并由剪接供体和受体位点组成(Sambrook et al.,Molecular Cloning:A Laboratory Manual,2nd ed.,Cold Spring Harbor LaboratoryPress,New York(1989),pp.16.7-16.8,其整体通过引用并入本文)。常用的剪接供体和受体位点是来自SV40的16S RNA的剪接接头。The presence of a "splicing signal" on an expression vector generally results in a higher expression level of the recombinant transcript. The splicing signal mediates the removal of introns from the primary RNA transcript and consists of a splicing donor and acceptor site (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989), pp. 16.7-16.8, which is incorporated herein by reference in its entirety). Commonly used splicing donor and acceptor sites are the splicing junctions of the 16S RNA from SV40.

转录终止信号通常存在于多腺苷酸化信号的下游,长度为几百个核苷酸。本文所使用的术语“poly A位点”或“poly A序列”表示指导新生RNA转录物的终止和多腺苷酸化两者的DNA序列。重组转录物的有效多腺苷酸化是合乎需要的,因为缺少poly A尾部的转录物是不稳定的并且会被快速降解。表达载体中使用的poly A信号可能是“异源的”或“内源的”。内源poly A信号是天然存在于基因组中给定基因的编码区的3'末端的信号。异源polyA信号是从一个基因中分离并可操作地连接到另一个基因的3'末端的信号。一种常用的异源poly A信号是SV40 poly A信号。SV40 poly A信号被包含在237bp的BamHI/BclI限制性片段上,并指导终止和多腺苷酸化两者(Sambrook et al.,同上,16.6-16.7,其整体通过引用并入本文)。Transcription termination signals are usually present downstream of the polyadenylation signal and are several hundred nucleotides in length. The term "poly A site" or "poly A sequence" as used herein refers to a DNA sequence that directs both termination and polyadenylation of a nascent RNA transcript. Effective polyadenylation of a recombinant transcript is desirable because transcripts lacking a poly A tail are unstable and rapidly degraded. The poly A signal used in the expression vector may be "heterologous" or "endogenous". An endogenous poly A signal is a signal naturally present at the 3' end of the coding region of a given gene in the genome. A heterologous poly A signal is a signal that is separated from a gene and operably connected to the 3' end of another gene. A commonly used heterologous poly A signal is the SV40 poly A signal. The SV40 poly A signal is contained on a 237bp BamHI/BclI restriction fragment and directs both termination and polyadenylation (Sambrook et al., supra, 16.6-16.7, which are incorporated herein by reference in their entirety).

本文所使用的术语“受试者”和“患者”在本文中可互换使用,并且是指人和非人类动物。本公开的术语“非人类动物”包括所有脊椎动物,例如哺乳动物和非哺乳动物,例如非人灵长类动物、羊、狗、猫、马、牛、鸡、两栖动物、爬行动物等。The terms "subject" and "patient" as used herein are used interchangeably herein and refer to humans and non-human animals. The term "non-human animal" of the present disclosure includes all vertebrates, such as mammals and non-mammals, such as non-human primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc.

本文所定义的“治疗有效量”或“治疗有效剂量”是融合蛋白、多肽、核酸、脂质纳米颗粒、脂质体、AAV颗粒或病毒颗粒的量或剂量,其能够产生足够量的所需蛋白质,以所需方式调节所述蛋白质的活性,从而为临床干预提供缓解工具。在某些实施方式中,如本文所述的被转染的融合蛋白、多肽、核酸、AAV颗粒或病毒颗粒的治疗有效量或剂量足以抑制被所述融合蛋白/基因治疗构建体靶向的基因。As defined herein, a "therapeutically effective amount" or "therapeutically effective dose" is an amount or dose of a fusion protein, polypeptide, nucleic acid, lipid nanoparticle, liposome, AAV particle, or viral particle that is capable of producing a sufficient amount of the desired protein to modulate the activity of the protein in the desired manner, thereby providing a relief tool for clinical intervention. In certain embodiments, the therapeutically effective amount or dose of the transfected fusion protein, polypeptide, nucleic acid, AAV particle, or viral particle as described herein is sufficient to inhibit the gene targeted by the fusion protein/gene therapy construct.

本文所使用的术语“治疗”例如疾病,是指患有疾病、具有患疾病的风险和/或经历疾病症状的受试者(例如人类),在一个实施方式中,当施用例如本文所描述的融合分子或编码所述融合分子的核酸和/或gRNA或编码所述gRNA的核酸时,与从未施用所述融合分子或编码所述融合分子的核酸和/或所述gRNA或编码所述gRNA的核酸的情况相比,将遭受更轻微的症状和/或将更快地恢复。As used herein, the term "treating," e.g., treating, a disease, refers to a subject (e.g., a human) who has a disease, is at risk of having a disease, and/or experiences symptoms of a disease, and in one embodiment, when administered, e.g., a fusion molecule or a nucleic acid encoding the fusion molecule and/or a gRNA or a nucleic acid encoding the gRNA as described herein, will suffer milder symptoms and/or will recover faster than if the fusion molecule or a nucleic acid encoding the fusion molecule and/or the gRNA or a nucleic acid encoding the gRNA had never been administered.

II.DNA结合蛋白II. DNA Binding Proteins

在根据本公开的如本文所定义的方法和组合物的某些实施方式中,所述DNA结合蛋白(例如DNA靶向剂)包括(DNA)核酸酶,例如可以以序列特异性方式靶向DNA或可以以序列特异性方式定向或指示靶向DNA的核酸酶,例如CRISPR-Cas系统、锌指核酸酶(ZFN)、转录激活因子样效应物核酸酶(TALEN)或大范围核酸酶。在某些实施方式中,所述DNA结合蛋白是源自CRISPR-Cas系统的DNA核酸酶。In certain embodiments of the methods and compositions as defined herein according to the present disclosure, the DNA binding protein (e.g., DNA targeting agent) includes a (DNA) nuclease, such as a nuclease that can target DNA in a sequence-specific manner or can direct or indicate targeting DNA in a sequence-specific manner, such as a CRISPR-Cas system, a zinc finger nuclease (ZFN), a transcription activator-like effector nuclease (TALEN) or a meganuclease. In certain embodiments, the DNA binding protein is a DNA nuclease derived from a CRISPR-Cas system.

转录激活因子样效应物核酸酶(TALEN)系统Transcription Activator-Like Effector Nuclease (TALEN) System

在某些实施方式中,核酸结合蛋白是(修饰的)转录激活因子样效应物核酸酶(TALEN)系统。转录激活因子样效应物(TALE)可以被工程化改造以结合实际上任何所需DNA序列。使用TALEN系统的基因组编辑的示例性方法可以例如在下述文献中找到:CermakT.Doyle EL.Christian M.Wang L.Zhang Y.Schmidt C,et al.Efficient design andassembly of custom TALEN and other TAL effector-based constructs for DNAtargeting.Nucleic Acids Res.2011;39:e82;Zhang F.Cong L.Lodato S.KosuriS.Church GM.Arlotta PEfficient construction of sequence-specific TALeffectors for modulating mammalian transcription.Nat Biotechnol.2011;29:149-153,以及美国专利号8,450,471、8,440,431和8,440,432,其中每一篇均整体通过引用并入本文。In certain embodiments, the nucleic acid binding protein is a (modified) transcription activator-like effector nuclease (TALEN) system. Transcription activator-like effectors (TALEs) can be engineered to bind to virtually any desired DNA sequence. Exemplary methods for genome editing using the TALEN system can be found, for example, in the following literature: Cermak T. Doyle EL. Christian M. Wang L. Zhang Y. Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011; 39: e82; Zhang F. Cong L. Lodato S. Kosuri S. Church GM. Arlotta PE Efficient construction of sequence-specific TALeffectors for modulating mammalian transcription. Nat Biotechnol. 2011; 29: 149-153, and U.S. Patent Nos. 8,450,471, 8,440,431 and 8,440,432, each of which is incorporated herein by reference in its entirety.

作为进一步的指导,但不限于此,天然存在的TALE或“野生型TALE”是由多种变形菌物种分泌的核酸结合蛋白。TALE多肽含有由高度保守的单体多肽的串联重复序列构成的核酸结合结构域,所述单体多肽的长度主要为33、34或35个氨基酸,彼此之间主要在氨基酸位置12和13上不同。在某些实施方式中,所述核酸是DNA。As further guidance, but not limited thereto, naturally occurring TALEs or "wild-type TALEs" are nucleic acid binding proteins secreted by a variety of Proteobacterial species. TALE polypeptides contain a nucleic acid binding domain composed of tandem repeats of highly conserved monomeric polypeptides that are primarily 33, 34, or 35 amino acids in length, differing from each other primarily at amino acid positions 12 and 13. In certain embodiments, the nucleic acid is DNA.

本文所使用的术语“多肽单体”或“TALE单体”用于指称TALE核酸结合结构域内高度保守的重复多肽序列,术语“重复可变双残基”或“RVD”用于表示多肽单体的第12和13位处高度可变的氨基酸。As used herein, the term "polypeptide monomer" or "TALE monomer" is used to refer to the highly conserved repetitive polypeptide sequence within the TALE nucleic acid binding domain, and the term "repeat variable diresidue" or "RVD" is used to indicate the highly variable amino acids at positions 12 and 13 of the polypeptide monomer.

正如在整个本公开中提供的,RVD的氨基酸残基使用氨基酸的IUPAC单字母代码来描述。包含在DNA结合结构域内的TALE单体的一般性表示为X1-11-(X12X13)-X14-33或34或35,其中下标表示氨基酸位置,X表示任何氨基酸。X12X13表示RVD。在某些多肽单体中,第13位的可变氨基酸缺失或不存在,并且在此类多肽单体中,RVD由单个氨基酸组成。在此类情况下,RVD可以可选地被表示为X*,其中X表示X12,并且(*)表示X13不存在。所述DNA结合结构域包含TALE单体的几个重复,这可以被表示为(X1-11-(X12X13)-X14-33或34或35)z,其中在有利实施方式中,z为至少5至40。在另一个有利实施方式中,z为至少10至26。TALE单体具有核苷酸结合亲和性,其由RVD中氨基酸的同一性决定。例如,RVD为NI的多肽单体优先与腺嘌呤(A)结合,RVD为NG的多肽单体优先与胸腺嘧啶(T)结合,RVD为HD的多肽单体优先与胞嘧啶(C)结合,并且RVD为NN的多肽单体优先与腺嘌呤(A)和鸟嘌呤(G)两者结合。在本公开的又一个实施方式中,RVD为IG的多肽单体优先与T结合。因此,TALE的核酸结合结构域中多肽单体重复的数量和顺序决定了其核酸靶特异性。在本公开的更进一步的实施方式中,RVD为NS的多肽单体识别所有四种碱基对,并且可以与A、T、G或C结合。TALE的结构和功能被进一步描述在例如下述文献中:Moscou et al.,Science 326:1501(2009);Boch et al.,Science326:1509-1512(2009);和Zhang et al.,Nature Biotechnology 29:149-153(2011),其每一篇均整体通过引用并入本文。在某些实施方式中,靶向通过结合多核酸的TALEN片段来实现。在某些实施方式中,靶向结构域包含无催化活性的TALEN或其核酸结合片段或由其组成。As provided throughout this disclosure, the amino acid residues of the RVD are described using the IUPAC single-letter code for amino acids. The general representation of the TALE monomer contained in the DNA binding domain is X1-11-(X12X13)-X14-33 or 34 or 35, wherein the subscript represents the amino acid position and X represents any amino acid. X12X13 represents the RVD. In some polypeptide monomers, the variable amino acid at position 13 is missing or absent, and in such polypeptide monomers, the RVD consists of a single amino acid. In such cases, the RVD can be alternatively represented as X*, wherein X represents X12, and (*) represents that X13 does not exist. The DNA binding domain comprises several repeats of the TALE monomer, which can be represented as (X1-11-(X12X13)-X14-33 or 34 or 35)z, wherein in a favorable embodiment, z is at least 5 to 40. In another favorable embodiment, z is at least 10 to 26. TALE monomers have nucleotide binding affinity, which is determined by the identity of the amino acids in the RVD. For example, a polypeptide monomer with an RVD of NI preferentially binds to adenine (A), a polypeptide monomer with an RVD of NG preferentially binds to thymine (T), a polypeptide monomer with an RVD of HD preferentially binds to cytosine (C), and a polypeptide monomer with an RVD of NN preferentially binds to both adenine (A) and guanine (G). In another embodiment of the present disclosure, a polypeptide monomer with an RVD of IG preferentially binds to T. Therefore, the number and order of polypeptide monomer repetitions in the nucleic acid binding domain of TALE determine its nucleic acid target specificity. In a further embodiment of the present disclosure, a polypeptide monomer with an RVD of NS recognizes all four base pairs and can bind to A, T, G or C. The structure and function of TALEs are further described in, for example, Moscou et al., Science 326:1501 (2009); Boch et al., Science 326:1509-1512 (2009); and Zhang et al., Nature Biotechnology 29:149-153 (2011), each of which is incorporated herein by reference in its entirety. In certain embodiments, targeting is achieved by TALEN fragments that bind to polynucleic acids. In certain embodiments, the targeting domain comprises or consists of a catalytically inactive TALEN or a nucleic acid binding fragment thereof.

锌指核酸酶(ZFN)系统Zinc Finger Nuclease (ZFN) System

在某些实施方式中,所述核酸结构蛋白(例如DNA结合蛋白)包含(修饰的)锌指核酸酶(ZFN)系统或由所述系统组成。所述ZFN系统使用通过将锌指DNA结合结构域与DNA切割结构域融合而产生的人工限制性酶,其可以被工程化以靶向所需的DNA序列。使用ZFN的基因组编辑的示例性方法可以在例如美国专利号6,534,261、6,607,882、6,746,838、6,794,136、6,824,978、6,866,997、6,933,113、6,979,539、7,013,219、7,030,215、7,220,719、7,241,573、7,241,574、7,585,849、7,595,376、6,903,185和6,479,626中找到,其每一篇均整体通过引用并入本文。作为进一步的指导,但不限于此,人工锌指(ZF)技术涉及ZF模块阵列,以靶向基因组中新的DNA结合位点。ZF阵列中的每个指模块靶向三个DNA碱基。各个锌指结构域的定制阵列被组装成ZF蛋白(ZFP)。ZFP可以包含功能性结构域。通过将ZF蛋白与IIS型限制性酶FokI的催化结构域融合,开发了第一种合成的锌指核酸酶(ZFN)。(Kim,Y.G.etal.,1994,Chimeric restriction endonuclease,Proc.Natl.Acad.Sci.U.S.A.91,883-887;Kim,Y.G.et al.,1996,Hybrid restriction enzymes:zinc finger fusions toFokI cleavage domain.Proc.Natl.Acad.Sci.U.S.A.93,1156-1160)。通过使用成对的ZFN异二聚体,其各自靶向由短间隔区分开的不同核苷酸序列,可以在降低脱靶活性的情况下获得提高的切割特异性。(Doyon,Y.et al.,2011,Enhancing zinc-finger-nucleaseactivity with improved obligate heterodimeric architectures.Nat.Methods 8,74-79)。ZFP也可以被设计为转录激活因子和阻遏物,并已被用于靶向多种生物体中的许多基因。在某些实施方式中,所述靶向结构域包含结合核酸的锌指核酸酶或其核酸结合片段或由其组成。在某些实施方式中,所述结合核酸的锌指核酸酶(其片段)是无催化活性的。In certain embodiments, the nucleic acid structural protein (e.g., DNA binding protein) comprises or consists of a (modified) zinc finger nuclease (ZFN) system. The ZFN system uses an artificial restriction enzyme generated by fusing a zinc finger DNA binding domain to a DNA cleavage domain, which can be engineered to target a desired DNA sequence. Exemplary methods of genome editing using ZFNs can be found in, for example, U.S. Patent Nos. 6,534,261, 6,607,882, 6,746,838, 6,794,136, 6,824,978, 6,866,997, 6,933,113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903,185, and 6,479,626, each of which is incorporated herein by reference in its entirety. As further guidance, but not limited thereto, artificial zinc finger (ZF) technology involves arrays of ZF modules to target new DNA binding sites in the genome. Each finger module in the ZF array targets three DNA bases. Custom arrays of individual zinc finger domains are assembled into ZF proteins (ZFPs). ZFPs can include functional domains. The first synthetic zinc finger nuclease (ZFN) was developed by fusing the ZF protein with the catalytic domain of the IIS type restriction enzyme FokI. (Kim, Y.G. et al., 1994, Chimeric restriction endonuclease, Proc. Natl. Acad. Sci. U.S.A. 91, 883-887; Kim, Y.G. et al., 1996, Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 93, 1156-1160). By using paired ZFN heterodimers, each of which targets a different nucleotide sequence separated by a short spacer, improved cutting specificity can be obtained while reducing off-target activity. (Doyon, Y.et al., 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures.Nat.Methods 8, 74-79). ZFP can also be designed as transcriptional activators and repressors, and has been used to target many genes in a variety of organisms. In some embodiments, the targeting domain comprises or consists of a zinc finger nuclease or a nucleic acid binding fragment thereof that binds nucleic acid. In some embodiments, the zinc finger nuclease (its fragment) that binds nucleic acid is catalytically inactive.

大范围核酸酶Meganuclease

在某些实施方式中,所述核酸结构蛋白(例如DNA结合蛋白)包含(修饰的)大范围核酸酶,其是以大的识别位点(12-40个碱基对的双链DNA序列)为特征的内切脱氧核糖核酸酶。使用大范围核酸酶的示例性方法可以在美国专利号8,163,514、8,133,697、8,021,867、8,119,361、8,119,381、8,124,369和8,129,134中找到,其每一篇均整体通过引用并入本文。在某些实施方式中,靶向通过结合多核酸的大范围核酸酶片段来实现。在某些实施方式中,靶向通过结合多核酸的无催化活性的大范围核酸酶(片段)来实现。因此,在特定实施方式中,所述靶向结构域包含结合核酸的大范围核酸酶或其核酸结合片段,或由其组成。In some embodiments, the nucleic acid structural protein (e.g., DNA binding protein) comprises a (modified) meganuclease, which is an endodeoxyribonuclease characterized by a large recognition site (a double-stranded DNA sequence of 12-40 base pairs). Exemplary methods for using meganucleases can be found in U.S. Patent Nos. 8,163,514, 8,133,697, 8,021,867, 8,119,361, 8,119,381, 8,124,369, and 8,129,134, each of which is incorporated herein by reference in its entirety. In some embodiments, targeting is achieved by a meganuclease fragment that binds to polynucleic acids. In some embodiments, targeting is achieved by a catalytically inactive meganuclease (fragment) that binds to polynucleic acids. Therefore, in a specific embodiment, the targeting domain comprises a meganuclease or a nucleic acid binding fragment thereof that binds to nucleic acids, or is composed of it.

CRISPR-Cas系统CRISPR-Cas system

在某些实施方式中,所述核酸结构蛋白(例如DNA结合蛋白)和单一引导RNA序列源自CRISPR-Cas系统。本公开提供了基于CRISPR/Cas9的工程化改造的系统,用于基因组编辑和治疗遗传疾病。所述基于CRISPR/Cas9的工程化改造的系统可以被设计成靶向任何基因(例如PCSK9),包括与遗传疾病、肝病和胆固醇例如LDL失调有关的基因。本公开提供了一种CRISPR-Cas系统,其包含具有所需特异性和活性(例如减少或消除了PCSK9基因产物的表达)的基因工程改造的Cas蛋白和/或引导RNA。所述基于CRISPR/Cas9的系统可以包括Cas9蛋白、突变的Cas9蛋白或Cas9融合蛋白(例如DNMT3A-DNMT3L(3A3L)-dCas9-KRAB融合分子)和至少一种sgRNA(例如PCSK9 sgRNA)。所述Cas9融合蛋白可以例如包括与Cas9的内源结构域(例如DNMT3A、DNMT3L或KRAB)具有不同活性的结构域。In certain embodiments, the nucleic acid structural protein (e.g., DNA binding protein) and the single guide RNA sequence are derived from the CRISPR-Cas system. The present disclosure provides an engineered system based on CRISPR/Cas9 for genome editing and treatment of genetic diseases. The engineered system based on CRISPR/Cas9 can be designed to target any gene (e.g., PCSK9), including genes related to genetic diseases, liver diseases, and cholesterol, such as LDL disorders. The present disclosure provides a CRISPR-Cas system comprising a genetically engineered Cas protein and/or guide RNA with the desired specificity and activity (e.g., reducing or eliminating the expression of the PCSK9 gene product). The CRISPR/Cas9-based system may include a Cas9 protein, a mutated Cas9 protein, or a Cas9 fusion protein (e.g., DNMT3A-DNMT3L (3A3L)-dCas9-KRAB fusion molecule) and at least one sgRNA (e.g., PCSK9 sgRNA). The Cas9 fusion protein may, for example, include a domain having different activities from the endogenous domain of Cas9 (e.g., DNMT3A, DNMT3L, or KRAB).

一般而言,Cas蛋白(在本文中可以与CRISPR蛋白、CRISPR酶、CRISPR-Cas蛋白、CRISPR-Cas酶、Cas、CRISPR效应物或Cas效应蛋白互换使用)和/或引导序列是CRISPR-Cas系统的组分。CRISPR-Cas系统或CRISPR系统统指参与CRISPR相关(“Cas”)基因的表达或指导其活性的转录物和其他元件,包括编码Cas基因的序列、tracr(反式激活CRISPR)序列(例如tracrRNA或有活性的部分tracrRNA)、tracr-mate序列(在内源CRISPR系统的情况下涵盖“正向重复”和tracrRNA加工的部分正向重复)、引导序列(在内源CRISPR系统的情况下也被称为“间隔区”)或本文中使用的术语“RNA”(例如的RNA,例如CRISPR RNA和反式激活(tracr)RNA或单一引导RNA(也被称为sgRNA;嵌合RNA))或来自CRISPR基因座的其他序列和转录物。In general, Cas proteins (which can be used interchangeably herein with CRISPR proteins, CRISPR enzymes, CRISPR-Cas proteins, CRISPR-Cas enzymes, Cas, CRISPR effectors, or Cas effector proteins) and/or guide sequences are components of CRISPR-Cas systems. CRISPR-Cas systems or CRISPR systems collectively refer to transcripts and other elements that participate in the expression of CRISPR-associated ("Cas") genes or direct their activity, including sequences encoding Cas genes, tracr (trans-activating CRISPR) sequences (e.g., tracrRNA or active partial tracrRNA), tracr-mate sequences (covering "direct repeats" and tracrRNA-processed partial direct repeats in the case of endogenous CRISPR systems), guide sequences (also referred to as "spacers" in the case of endogenous CRISPR systems), or the term "RNA" used herein (e.g., RNA, such as CRISPR RNA and trans-activating (tracr) RNA or single guide RNA (also referred to as sgRNA; chimeric RNA)) or other sequences and transcripts from CRISPR loci.

一般而言,CRISPR系统的特征在于在靶序列位点处促进CRISPR复合物形成的元件(在内源CRISPR系统的情况下也被称为前间隔序列)。在本公开的工程化系统中,正向重复序列(direct repeat)可以包括天然存在的序列或非天然存在的序列。本公开的正向重复序列不限于天然存在的长度和序列。此外,本公开的正向重复序列可以包括核苷酸的插入,例如适体或与衔接蛋白结合的序列(用于与功能结构域结合)。在某些实施方式中,含有例如插入的正向重复序列一个末端大致是短DR的前半部分,并且该末端大致是所述短DR的后半部分。In general, the CRISPR system is characterized by an element that promotes the formation of the CRISPR complex at the target sequence site (also referred to as a pre-spacer sequence in the case of an endogenous CRISPR system). In the engineered system of the present disclosure, the direct repeat sequence (direct repeat) may include a naturally occurring sequence or a non-naturally occurring sequence. The direct repeat sequence of the present disclosure is not limited to the length and sequence of naturally occurring. In addition, the direct repeat sequence of the present disclosure may include the insertion of nucleotides, such as an aptamer or a sequence that binds to an adapter protein (for binding to a functional domain). In certain embodiments, one end of the direct repeat sequence containing, for example, an insertion is roughly the first half of a short DR, and the end is roughly the second half of the short DR.

在形成CRISPR复合物的情况下,“靶序列”或“靶多核苷酸”是指引导序列被设计与其具有互补性的序列,其中靶序列和引导序列之间的杂交促进CRISPR复合物的形成。靶序列可以包括任何多核苷酸,例如DNA或RNA多核苷酸。在某些实施方式中,靶序列位于细胞的细胞核或细胞质中。In the context of forming a CRISPR complex, a "target sequence" or "target polynucleotide" refers to a sequence to which a guide sequence is designed to have complementarity, wherein hybridization between the target sequence and the guide sequence promotes the formation of a CRISPR complex. The target sequence may include any polynucleotide, such as a DNA or RNA polynucleotide. In certain embodiments, the target sequence is located in the nucleus or cytoplasm of a cell.

通常,引导序列(或间隔序列)可以是与靶多核苷酸序列具有足够互补性,以与所述靶序列杂交并指导CRISPR复合物与所述靶序列的序列特异性结合的任何多核苷酸序列。在某些实施方式中,当使用适合的比对算法进行最佳比对时,引导序列与其相应的靶序列之间的互补性程度等于或大于约50%、60%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高。Typically, a guide sequence (or spacer sequence) can be any polynucleotide sequence that has sufficient complementarity to a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of the CRISPR complex to the target sequence. In certain embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence is equal to or greater than about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more when optimally aligned using a suitable alignment algorithm.

在某些实施方式中,可以通过引入错配例如1个或多个错配,例如间隔序列和靶序列之间的1或2个错配(包括所述错配沿着间隔区/靶的位置),来利用切割效率的调节。例如,双重错配越靠近中心(即不在3'或5'),对切割效率的影响就越大。因此,通过选择错配沿着间隔区的位置,可以调节切割效率。例如,如果希望靶的切割小于100%(例如在细胞群体中),则可以在间隔序列中引入间隔区与靶序列之间的1个或更多个,例如优选2个错配。所述错配位置沿着间隔区越靠近中心,切割百分率越低。In certain embodiments, modulation of cleavage efficiency can be utilized by introducing mismatches, such as 1 or more mismatches, such as 1 or 2 mismatches between the spacer sequence and the target sequence (including the position of the mismatches along the spacer/target). For example, the closer the double mismatch is to the center (i.e., not at 3' or 5'), the greater the effect on cleavage efficiency. Therefore, by selecting the position of the mismatch along the spacer, the cleavage efficiency can be modulated. For example, if less than 100% cleavage of the target is desired (e.g., in a cell population), 1 or more, such as preferably 2, mismatches between the spacer and the target sequence can be introduced into the spacer sequence. The closer the position of the mismatch is to the center along the spacer, the lower the percentage of cleavage.

CRISPR-Cas系统或其组分可用于在靶基因座或核酸序列中引入一个或多个突变。所述突变可以包括通过引导RNA或sgRNA在细胞的每个靶序列处引入、缺失或取代一个或多个核苷酸。所述突变可以包括通过引导RNA在所述细胞的每个靶序列处引入、缺失或取代1-75个核苷酸。The CRISPR-Cas system or its components can be used to introduce one or more mutations in a target locus or nucleic acid sequence. The mutation can include introducing, deleting or replacing one or more nucleotides at each target sequence of the cell by a guide RNA or sgRNA. The mutation can include introducing, deleting or replacing 1-75 nucleotides at each target sequence of the cell by a guide RNA.

通常,在内源CRISPR-Cas系统的情况下,CRISPR复合物(包含与靶序列杂交并与一种或多种Cas蛋白复合的引导序列)的形成导致在所述靶序列中或附近(例如距其1、2、3、4、5、6、7、8、9、10、20、50或更多个碱基对以内)的切割,但可能取决于例如二级结构,特别是在RNA靶的情况下。在某些情况下,在内源CRISPR系统的情况下,CRISPR复合物(包含与靶序列杂交并与一种或多种Cas蛋白复合的引导序列)的形成导致在所述靶序列中或附近(例如距其1、2、3、4、5、6、7、8、9、10、20、50或更多个碱基对以内)一条或两条链(如果适用)的切割。Typically, in the case of an endogenous CRISPR-Cas system, formation of a CRISPR complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage in or near (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50 or more base pairs of) the target sequence, but may depend, for example, on secondary structure, particularly in the case of RNA targets. In some cases, in the case of an endogenous CRISPR system, formation of a CRISPR complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage of one or both strands (if applicable) in or near (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50 or more base pairs of) the target sequence.

在某些实施方式中,所述引导RNA(能够将Cas引导到靶基因座)可以包含(1)能够与真核细胞中的靶基因座(多核苷酸靶基因座,例如RNA靶基因座)杂交的引导序列;(2)正向重复(DR)序列,其存在于单个RNA、即sgRNA(以5'至3'方向排列)或crRNA中。In certain embodiments, the guide RNA (capable of guiding Cas to the target locus) may comprise (1) a guide sequence capable of hybridizing to a target locus (a polynucleotide target locus, such as an RNA target locus) in a eukaryotic cell; (2) a direct repeat (DR) sequence present in a single RNA, i.e., sgRNA (arranged in a 5' to 3' direction) or crRNA.

关于CRISPR-Cas系统、其组分和此类组分的递送的一般性信息,包括在本公开的实践中有用的所有方法、材料、递送媒介物、载体、颗粒、AAV及其制备和使用,包括量和制剂,参考下述文献:美国专利号8,999,641、8,993,233、8,945,839、8,932,814、8,906,616、8,895,308、8,889,418、8,889,356、8,871,445、8,865,406、8,795,965、8,771,945和8,697,359;美国专利公开号US 2014-0310830、US 2014-0287938 A1、US 2014-0273234 A1、US2014-0273232 A1、US 2014-0273231 A1、US2014-0256046 A1、US 2014-0248702 A1、US2014-0242700 A1、US 2014-0242699 A1、US 2014-0242664 A1、US 2014-0234972 A1、US2014-0227787 A1、US 2014-0189896 A1、US 2014-0186958、US 2014-0186919 A1、US2014-0186843 A1、US 2014-0179770 A1、US 2014-0179006 A1、US 2014-0170753;欧洲专利EP 2784162 B1和EP 2771468 B1;欧洲专利申请EP 2771468、EP 2764103和EP 2784162;以及PCT专利公开WO 2021/183807A1(PCT/US2021/021973)、WO 2014/093661(PCT/US2013/074743)、WO 2014/093694(PCT/US2013/074790)、WO 2014/093595(PCT/US2013/074611)、WO 2014/093718(PCT/US2013/074825)、WO 2014/093709(PCT/US2013/074812)、WO 2014/093622(PCT/US2013/074667)、WO 2014/093635(PCT/US2013/074691)、WO 2014/093655(PCT/US2013/074736)、WO 2014/093712(PCT/US2013/074819)、WO 2014/093701(PCT/US2013/074800)、WO 2014/018423(PCT/US2013/051418)、WO 2014/204723(PCT/US2014/041790)、WO 2014/204724(PCT/US2014/041800)、WO2014/204725(PCT/US2014/041803)、WO2014/204726(PCT/US2014/041804)、WO 2014/204727(PCT/US2014/041806)、WO 2014/204728(PCT/US2014/041808)、WO 2014/204729(PCT/US2014/041809),其中每一篇均整体通过引用并入本文。For general information about CRISPR-Cas systems, components thereof, and delivery of such components, including all methods, materials, delivery vehicles, vectors, particles, AAVs, and preparation and use thereof, including amounts and formulations, useful in the practice of the present disclosure, reference is made to the following: U.S. Patent Nos. 8,999,641; 8,993,233; 8,945,839; 8,932,814; 8,906,616; 8,895,308; 8,889,418; 8,889,356; 8,871,445; 8,865,406; 8,795,965; 8,771,945; and 8,697,359; U.S. Patent Publication Nos. US 2014-0310830; US 2014-0287938 A1; US 2014-0273234; A1, US2014-0273232 A1, US 2014-0273231 A1, US2014-0256046 A1, US 2014-0248702 A1, US2014-0242700 A1, US 2014-0242699 A1, US 2014-0242664 A1, US 20 14-0234972 A1, US2014-0227787 A1, US 2014-0189896 A1, US 2014-0186958, US 2014-0186919 A1, US2014-0186843 A1, US 2014-0179770 A1, US 2014-0179006 A1, US 2014-0170753; European patents EP 2784162 B1 and EP 2771468 B1; European patent applications EP 2771468, EP 2764103 and EP 2784162; and PCT patent publications WO 2021/183807A1 (PCT/US2021/021973), WO 2014/093661 (PCT/US2013/074743), WO 2014/093694 (PCT/US2013/074790), WO 2014/093595 (PCT/US2013/074611), WO 2014/093718(PCT/US2013/074825), WO 2014/093709(PCT/US2013/074812), WO 2014/093622(PCT/US2013/074667), WO 2014/093635(PCT/US2013/074691), WO 2014/093655(PCT/US2013/074736), WO 2014/093712(PCT/US2013/074819), WO 2014/093701(PCT/US2013/074800), WO 2014/018423(PCT/US2013/051418), WO 2014/204723 (PCT/US2014/041790), WO 2014/204724 (PCT/US2014/041800), WO 2014/204725 (PCT/US2014/041803), WO 2014/204726 (PCT/US2014/041804), WO 2014/204727 (PCT/US2014/041806), WO 2014/204728 (PCT/US2014/041808), and WO 2014/204729 (PCT/US2014/041809), each of which is incorporated herein by reference in its entirety.

Cas蛋白Cas proteins

所述Cas蛋白(例如工程化Cas蛋白)可以具有与对应的野生型Cas蛋白基本上相同(例如80%至100%之间、90%至100%之间、95%至100%之间、98%至100%之间、99%至100%之间、99.9%至100%之间或约100%)的核酸酶活性。在某些情况下,所述工程化Cas蛋白具有比对应的野生型Cas蛋白更高(例如高出至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%)的核酸酶活性。The Cas protein (e.g., engineered Cas protein) may have a nuclease activity substantially the same as the corresponding wild-type Cas protein (e.g., between 80% and 100%, between 90% and 100%, between 95% and 100%, between 98% and 100%, between 99% and 100%, between 99.9% and 100%, or about 100%). In some cases, the engineered Cas protein has a higher nuclease activity than the corresponding wild-type Cas protein (e.g., at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%).

可选地或此外,所述Cas蛋白(例如工程化Cas蛋白)可以具有比对应的野生型Cas蛋白高至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%的特异性。在特定实例中,所述Cas蛋白(例如工程化Cas蛋白)可以具有比对应的野生型Cas蛋白高至少30%的特异性。本文所使用的术语Cas的“特异性”可以对应于中靶多核苷酸切割事件的数目或百分率相对于包括中靶和脱靶事件在内的所有多核苷酸切割事件的数目或百分率。Cas蛋白的活性和特异性与下述文献中描述的一致:Hsu PDet al.,DNA targeting specificity of RNA-guided Cas9nucleases,NatBiotechnol.2013Sep;31(9):827-832;和Slaymaker IM,et al.,Rationally engineeredCas9 nucleases with improved specificity,Science.2016Jan l;351(6268):84-88,所述文献也描述了用于检测Cas蛋白的活性和特异性的方法的实例,并整体通过引用并入本文,并且在本文中别处详细描述。Alternatively or in addition, the Cas protein (e.g., engineered Cas protein) may have a specificity that is at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% higher than the corresponding wild-type Cas protein. In a particular example, the Cas protein (e.g., engineered Cas protein) may have a specificity that is at least 30% higher than the corresponding wild-type Cas protein. The term "specificity" of Cas as used herein may correspond to the number or percentage of on-target polynucleotide cleavage events relative to the number or percentage of all polynucleotide cleavage events including on-target and off-target events. The activity and specificity of the Cas protein are consistent with those described in the following literature: Hsu PD et al., DNA targeting specificity of RNA-guided Cas9 nucleases, Nat Biotechnol. 2013 Sep; 31 (9): 827-832; and Slaymaker IM, et al., Rationally engineered Cas9 nucleases with improved specificity, Science. 2016 Jan l; 351 (6268): 84-88, which also describe examples of methods for detecting the activity and specificity of Cas proteins, and are incorporated herein by reference in their entirety and described in detail elsewhere herein.

在某些实施方式中,所述Cas蛋白(例如其RuvC结构域)可以向上游(相对于PAM)滑动一个碱基,并产生交错切口,其可以被填充并导致单个碱基的复制(即+1插入)。+1插入位置的实例描述在Zuo,Z.,and Liu,J.(2016).Cas9-catalyzed DNA Cleavage GeneratesStaggered Ends:Evidence from Molecular Dynamics Simulations.ScientificReports 6,37584中。在某些实施方式中,所述工程化Cas蛋白具有与对应的野生型Cas蛋白不同的+1插入频率。例如,当鸟嘌呤存在于相对于PAM的-2位置中时,+1插入频率高于当胸苷、胞苷或腺嘌呤存在于相对于PAM的-2位置中时的+1插入频率。在某些情况下,+1插入依赖于人类细胞中的宿主机制。在某些实例中,所述Cas蛋白可以产生交错切口。所述交错切口可以是1个bp或1个核苷酸的5'的悬突部分。所述交错切口可以是1个bp或1个核苷酸的3'的悬突部分。In some embodiments, the Cas protein (e.g., its RuvC domain) can slide one base upstream (relative to PAM) and produce staggered cuts, which can be filled and cause the duplication of a single base (i.e., +1 insertion). Examples of +1 insertion positions are described in Zuo, Z., and Liu, J. (2016). Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Scientific Reports 6, 37584. In some embodiments, the engineered Cas protein has a +1 insertion frequency different from that of the corresponding wild-type Cas protein. For example, when guanine is present in the -2 position relative to PAM, the +1 insertion frequency is higher than the +1 insertion frequency when thymidine, cytidine or adenine is present in the -2 position relative to PAM. In some cases, +1 insertion depends on the host mechanism in human cells. In some instances, the Cas protein can produce staggered cuts. The staggered cuts can be 1 bp or 1 nucleotide 5' overhanging part. The staggered cuts may be 1 bp or 1 nucleotide 3' overhangs.

编码Cas的核酸分子可以被密码子优化。在这种情况下,密码子优化的序列的一个实例是为了在真核生物中表达而优化的序列,例如人类(即为在人类中表达而优化的序列),或为了在本文所讨论的另一种真核生物、动物或哺乳动物中表达而优化的序列;参见例如WO 2014/093622(PCT/US2013/074667)中的SaCas9人密码子优化的序列。尽管这是优选的,但应当理解其他实例也是可能的,并且为除了人类以外的宿主物种的密码子优化或为特定器官的密码子优化是已知的。在某些实施方式中,编码Cas的酶编码序列为在特定细胞例如真核细胞中表达而密码子优化。所述真核细胞可以是特定生物体的细胞或源自特定生物体,例如哺乳动物,包括但不限于人类或非人真核生物或本文所讨论的动物或哺乳动物,例如小鼠、大鼠、兔、狗、牲畜或非人哺乳动物或灵长类动物。在某些实施方式中,可以排除可能导致人或动物遭受痛苦而对它们没有任何实质性医疗益处的用于修饰人类的种系遗传特性的过程和/或用于修饰动物的遗传特性的过程,以及由此类过程产生的动物。通常,密码子优化是指通过用在宿主细胞的基因中更频繁或最频繁使用的密码子取代天然序列的至少一个密码子(例如约或多于约1、2、3、4、5、10、15、20、25、50个或更多个密码子)并同时维持天然氨基酸序列,来修饰核酸序列以在感兴趣的宿主细胞中增强表达的过程。各种物种对特定氨基酸的某些密码子表现出特定偏好。密码子偏倚(生物体之间密码子使用的差异)通常与信使RNA(mRNA)的翻译效率相关,所述翻译效率进而据信取决于被翻译的密码子的性质和特定转移RNA(tRNA)分子的可用性等。细胞中所选tRNA的数量优势通常反映了肽合成中最频繁使用的密码子。因此,可以基于密码子优化对基因进行定制,用于给定生物体中的最佳基因表达。密码子使用表容易获得,例如在www.kazusa.orjp/codon/上的“密码子使用数据库”中,并且这些表可以通过多种方式进行调整。参见Nakamura,Y.,et al.“Codon usage tabulated from the international DNA sequence databases:statusfor the year 2000”Nucl.Acids Res.28:292(2000)。用于对特定序列进行密码子优化以在特定宿主细胞中表达的计算机算法也是可用的,例如Gene Forge(Aptagen;Jacobus,PA)也是可用的。在某些实施方式中,编码Cas的序列中的一个或多个密码子(例如1、2、3、4、5、10、15、20、25、50个或更多个或所有密码子)对应于特定氨基酸的最频繁使用的密码子。The nucleic acid molecule encoding Cas can be codon optimized. In this case, an example of a codon optimized sequence is a sequence optimized for expression in a eukaryote, such as humans (i.e., a sequence optimized for expression in humans), or a sequence optimized for expression in another eukaryote, animal, or mammal discussed herein; see, for example, WO 2014/093622 (PCT/US2013/074667) SaCas9 human codon optimized sequence. Although this is preferred, it should be understood that other examples are also possible, and codon optimization for host species other than humans or codon optimization for specific organs is known. In certain embodiments, the enzyme coding sequence encoding Cas is codon optimized for expression in a specific cell, such as a eukaryotic cell. The eukaryotic cell may be a cell of a specific organism or may be derived from a specific organism, such as a mammal, including but not limited to humans or non-human eukaryotes or animals or mammals discussed herein, such as mice, rats, rabbits, dogs, livestock, or non-human mammals or primates. In certain embodiments, processes for modifying the germline genetic characteristics of humans and/or processes for modifying the genetic characteristics of animals, and animals produced by such processes, which may cause humans or animals to suffer without any substantial medical benefit to them, can be excluded. Generally, codon optimization refers to the process of modifying nucleic acid sequences to enhance expression in host cells of interest by replacing at least one codon (e.g., about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 or more codons) of a native sequence with a codon that is more frequently or most frequently used in the genes of a host cell and simultaneously maintaining a native amino acid sequence. Various species show specific preferences for certain codons of specific amino acids. Codon bias (differences in codon usage between organisms) is generally related to the translation efficiency of messenger RNA (mRNA), and the translation efficiency is then believed to depend on the properties of the codons translated and the availability of specific transfer RNA (tRNA) molecules, etc. The quantitative advantage of selected tRNA in a cell generally reflects the most frequently used codons in peptide synthesis. Therefore, genes can be customized based on codon optimization for optimal gene expression in a given organism. Codon usage tables are readily available, for example, in the "Codon Usage Database" at www.kazusa.orjp/codon/, and these tables can be adjusted in a variety of ways. See Nakamura, Y., et al. "Codon usage tabulated from the international DNA sequence databases: status for the year 2000" Nucl. Acids Res. 28: 292 (2000). Computer algorithms for codon optimization of specific sequences for expression in specific host cells are also available, such as Gene Forge (Aptagen; Jacobus, PA). In some embodiments, one or more codons (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 or more or all codons) in the sequence encoding Cas correspond to the most frequently used codons for a specific amino acid.

在某些实施方式中,所述Cas蛋白可以具有核酸切割活性。所述Cas蛋白可以具有RNA结合和DNA切割功能。在某些实施方式中,Cas可以在靶序列或其附近的位置处,例如在靶序列内和/或靶序列的互补体内或与靶序列相关的序列处,例如在距靶序列的第一个或最后一个核苷酸约1、2、3、4、5、6、7、8、9、10、15、20、25、50、100、200、500个或更多个碱基对以内,指导一条或两条核酸链的切割。在某些实施方式中,所述Cas蛋白可以在靶序列内和/或靶序列的互补体内或与靶序列相关的序列处和/或距靶序列的第一个或最后一个核苷酸约1、2、3、4、5、6、7、8、9、10、15、20、25、50、100、200、500个或更多个碱基对以内,指导一条或两条链的超过一个切割(例如1、2、3、4、5个或更多个切割)。在某些实施方式中,所述切割可以是平端的,即产生平末端。在某些实施方式中,所述切割可以是交错的,即产生黏性末端。In some embodiments, the Cas protein may have nucleic acid cleavage activity. The Cas protein may have RNA binding and DNA cutting functions. In some embodiments, Cas may be at a position in or near a target sequence, such as within a target sequence and/or within the complement of a target sequence or at a sequence associated with a target sequence, such as within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500 or more base pairs from the first or last nucleotide of the target sequence, to guide the cutting of one or two nucleic acid chains. In some embodiments, the Cas protein may be within the target sequence and/or within the complement of a target sequence or at a sequence associated with a target sequence and/or within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500 or more base pairs from the first or last nucleotide of the target sequence, to guide more than one cutting (e.g., 1, 2, 3, 4, 5 or more cuttings) of one or two chains. In certain embodiments, the cleavage may be blunt-ended, i.e., produce blunt ends. In certain embodiments, the cleavage may be staggered, i.e., produce sticky ends.

在某些实施方式中,载体编码一种靶向核酸的Cas蛋白,其可以相对于相应的野生型酶发生突变,使得突变的靶向核酸的Cas蛋白缺少切割含有靶序列的靶多核苷酸的一条或两条链的能力,例如HNH结构域中的改变或突变,以产生基本上缺少所有DNA切割活性的突变Cas,例如突变酶的DNA切割活性大约不超过非突变形式的酶的核酸切割活性的25%、10%、5%、1%、0.1%、0.01%或更低;实例可以是与非突变形式相比,所述突变形式的核酸切割活性为零或可忽略不计。对于酶而言,本文所使用的术语“衍生”是指衍生酶在很大程度上基于野生型酶(在与野生型酶具有高度序列同源性的意义上),但它已以本领域已知或本文中所述的某种方式进行了突变(修饰)。In certain embodiments, the vector encodes a nucleic acid-targeting Cas protein that can be mutated relative to the corresponding wild-type enzyme, so that the mutant nucleic acid-targeting Cas protein lacks the ability to cut one or both chains of a target polynucleotide containing a target sequence, such as a change or mutation in the HNH domain, to produce a mutant Cas that substantially lacks all DNA cleavage activity, such as a mutant enzyme whose DNA cleavage activity is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01% or less of the nucleic acid cleavage activity of the non-mutated form of the enzyme; an example can be that the nucleic acid cleavage activity of the mutant form is zero or negligible compared to the non-mutated form. For enzymes, the term "derivative" as used herein means that the derivative enzyme is largely based on the wild-type enzyme (in the sense of having a high degree of sequence homology with the wild-type enzyme), but it has been mutated (modified) in a manner known in the art or described herein.

通常,在内源核酸靶向系统的情况下,核酸靶向复合物(包含与靶序列杂交并与一种或多种靶向核酸的效应蛋白复合的引导RNA或crRNA)的形成导致所述靶序列中或附近(例如在1、2、3、4、5、6、7、8、9、10、20、50个或更多个碱基对以内)的DNA链的切割。本文所使用的术语“与感兴趣的靶基因座相关的序列”是指在靶序列附近的序列(例如在距所述靶序列1、2、3、4、5、6、7、8、9、10、20、50个或更多个碱基对以内,其中所述靶序列被包含在感兴趣的靶基因座内)。Typically, in the case of an endogenous nucleic acid targeting system, the formation of a nucleic acid targeting complex (comprising a guide RNA or crRNA hybridized to a target sequence and complexed with one or more nucleic acid targeting effector proteins) results in the cleavage of a DNA strand in or near (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50 or more base pairs of) the target sequence. As used herein, the term "sequence associated with a target locus of interest" refers to a sequence near a target sequence (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50 or more base pairs from the target sequence, wherein the target sequence is contained within the target locus of interest).

应当理解,效应蛋白是基于酶或衍生自酶,因此在某些实施方式中术语“效应蛋白”当然包括“酶”。然而,也应当理解,在某些实施方式中,根据需要,效应蛋白可以具有DNA或RNA结合活性,但不一定具有切割或缺刻活性,包括死Cas蛋白功能。It should be understood that the effector protein is based on or derived from an enzyme, so in certain embodiments the term "effector protein" certainly includes "enzyme". However, it should also be understood that in certain embodiments, the effector protein may have DNA or RNA binding activity, but not necessarily cleavage or nicking activity, including dead Cas protein function, as desired.

在某些实施方式中,Cas蛋白可以形成诱导型系统的组分。所述系统的可诱导性将允许使用某种形式的能量对基因编辑或基因表达进行时空控制。所述能量的形式可以包括但不限于电磁辐射、声能、化学能和热能。诱导型系统的实例包括四环素诱导型启动子(Tet-On或Tet-Off)、小分子双杂交转录激活系统(FKBP、ABA等)或光诱导型系统(植物光敏色素、LOV结构域或隐花色素)。在一个实施方式中,所述CRISPR效应蛋白可以是光诱导型转录效应物(LITE)的一部分,以序列特异性的方式指导转录活性的变化。光诱导型转录效应物的组分可以包括CRISPR效应蛋白、光响应性细胞色素异二聚体(例如来自拟南芥)和转录激活/阻遏结构域。诱导型DNA结合蛋白的进一步实例及其使用方法被提供在US 61/736465和US 61/721,283以及WO 2014018423A2中,其整体通过引用并入本文。In some embodiments, Cas proteins can form components of inducible systems. The inducibility of the system will allow the use of some form of energy to control gene editing or gene expression in time and space. The form of the energy may include, but is not limited to, electromagnetic radiation, acoustic energy, chemical energy, and thermal energy. Examples of inducible systems include tetracycline-inducible promoters (Tet-On or Tet-Off), small molecule double hybrid transcription activation systems (FKBP, ABA, etc.), or light-inducible systems (plant phytochromes, LOV domains, or cryptochromes). In one embodiment, the CRISPR effector protein may be part of a light-inducible transcription effector (LITE) that directs changes in transcriptional activity in a sequence-specific manner. The components of light-inducible transcription effectors may include CRISPR effector proteins, light-responsive cytochrome heterodimers (e.g., from Arabidopsis thaliana), and transcriptional activation/repression domains. Further examples of inducible DNA binding proteins and methods of use thereof are provided in US 61/736465 and US 61/721,283 and WO 2014018423A2, which are incorporated herein by reference in their entireties.

在某些实施方式中,突变的Cas可以具有一个或多个导致脱靶效应降低的突变,例如,例如在与引导RNA复合时改进的CRISPR酶对靶基因座进行修饰但降低或消除了对脱靶的活性,以及例如在与引导RNA复合时改进的CRISPR酶提高CRISPR酶活性。应当理解,下文所描述的突变酶可用于本文别处描述的根据本公开的任何方法。本文别处描述的任何方法、产品、组合物和用途同样适用于下文进一步详述的突变的CRISPR酶。In certain embodiments, the mutant Cas may have one or more mutations that result in reduced off-target effects, for example, the improved CRISPR enzyme modifies the target locus but reduces or eliminates off-target activity when complexed with the guide RNA, and the improved CRISPR enzyme increases CRISPR enzyme activity when complexed with the guide RNA. It should be understood that the mutant enzymes described below can be used in any of the methods described elsewhere herein according to the present disclosure. Any methods, products, compositions and uses described elsewhere herein are also applicable to the mutant CRISPR enzymes described in further detail below.

可以以各种组合使用以提高或降低相对于脱靶活性的靶向活性和/或特异性、或者提高或降低相对于脱靶结合的靶向结合和/或特异性的方法和突变,可用于补偿或增强为促进其他效果而进行的突变或修饰。此类为促进其他效果而进行的突变或修饰包括对Cas的突变或修饰和/或对引导RNA进行的突变或修饰。本公开的方法和突变用于调节Cas核酸酶活性和/或与化学修饰的引导RNA结合。Methods and mutations that can be used in various combinations to increase or decrease the targeted activity and/or specificity relative to off-target activity, or to increase or decrease the targeted binding and/or specificity relative to off-target binding, can be used to compensate for or enhance mutations or modifications performed to promote other effects. Such mutations or modifications performed to promote other effects include mutations or modifications to Cas and/or mutations or modifications to guide RNA. The methods and mutations disclosed herein are used to regulate Cas nuclease activity and/or bind to chemically modified guide RNA.

在某些实施方式中,本公开的Cas蛋白的催化活性被改变或修饰。应当理解,如果催化活性不同于相应的野生型Cas蛋白(例如未突变的Cas蛋白)的催化活性,则突变的Cas具有改变或修饰的催化活性。催化活性可以通过本领域中已知的手段来确定。例如但不限于,催化活性可以在体外或体内通过测定插入缺失百分率(例如在给定时间后或在给定剂量下)来确定。在某些实施方式中,催化活性提高。在某些实施方式中,催化活性提高至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%或至少100%。在某些实施方式中,催化活性降低。在某些实施方式中,催化活性降低至少5%,优选地至少10%,更优选地至少20%,例如至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%或(基本上)100%。本文中的一个或多个突变可以使催化活性失活,这可显著降低所有催化活性,将活性降低到低于可检测水平,或降低到没有可测量的催化活性。In certain embodiments, the catalytic activity of the Cas protein of the present disclosure is changed or modified. It should be understood that if the catalytic activity is different from the catalytic activity of the corresponding wild-type Cas protein (e.g., an unmutated Cas protein), the mutated Cas has a changed or modified catalytic activity. The catalytic activity can be determined by means known in the art. For example, but not limited to, the catalytic activity can be determined in vitro or in vivo by measuring the insertion and deletion percentage (e.g., after a given time or at a given dose). In certain embodiments, the catalytic activity is improved. In certain embodiments, the catalytic activity is increased by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 100%. In certain embodiments, the catalytic activity is reduced. In certain embodiments, the catalytic activity is reduced by at least 5%, preferably at least 10%, more preferably at least 20%, for example, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or (substantially) 100%. One or more mutations herein can inactivate catalytic activity, which can significantly reduce all catalytic activity, reduce the activity to below detectable levels, or reduce it to no measurable catalytic activity.

所述工程化Cas蛋白的一种或多种特征可能不同于相应的野生型Cas蛋白。此类特征的实例包括催化活性、gRNA结合、Cas蛋白的特异性(例如编辑限定靶的特异性)、Cas蛋白的稳定性、脱靶结合、靶结合、蛋白酶活性、切口酶活性、PFS识别。在某些实例中,工程化Cas蛋白可以包含相应的野生型Cas蛋白的一个或多个突变。在某些实施方式中,与相应的野生型Cas蛋白相比,所述工程化Cas蛋白的催化活性提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述工程化Cas蛋白的催化活性降低。在某些实施方式中,与相应的野生型Cas蛋白相比,所述工程化Cas蛋白的gRNA结合提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述工程化Cas蛋白的gRNA结合降低。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的特异性提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的特异性降低。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的稳定性提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的稳定性降低。在某些实施方式中,所述工程化Cas蛋白进一步包含一个或多个使催化活性失活的突变。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的脱靶结合提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的脱靶结合降低。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的靶结合提高。在某些实施方式中,与相应的野生型Cas蛋白相比,所述Cas蛋白的靶结合降低。在某些实施方式中,与相应的野生型Cas蛋白相比,所述工程化Cas蛋白具有更高的蛋白酶活性或多核苷酸结合能力。在某些实施方式中,与相应的野生型Cas蛋白相比,PFS识别被改变。One or more features of the engineered Cas protein may be different from the corresponding wild-type Cas protein. Examples of such features include catalytic activity, gRNA binding, specificity of Cas protein (e.g., editing the specificity of the defined target), stability of Cas protein, off-target binding, target binding, protease activity, nickase activity, PFS recognition. In some examples, the engineered Cas protein may include one or more mutations of the corresponding wild-type Cas protein. In some embodiments, the catalytic activity of the engineered Cas protein is improved compared with the corresponding wild-type Cas protein. In some embodiments, the catalytic activity of the engineered Cas protein is reduced compared with the corresponding wild-type Cas protein. In some embodiments, the gRNA binding of the engineered Cas protein is improved compared with the corresponding wild-type Cas protein. In some embodiments, the gRNA binding of the engineered Cas protein is reduced compared with the corresponding wild-type Cas protein. In some embodiments, the specificity of the Cas protein is improved compared with the corresponding wild-type Cas protein. In some embodiments, the specificity of the Cas protein is reduced compared with the corresponding wild-type Cas protein. In some embodiments, the stability of the Cas protein is improved compared with the corresponding wild-type Cas protein. In some embodiments, the stability of the Cas protein is reduced compared to the corresponding wild-type Cas protein. In some embodiments, the engineered Cas protein further comprises one or more mutations that inactivate catalytic activity. In some embodiments, the off-target binding of the Cas protein is improved compared to the corresponding wild-type Cas protein. In some embodiments, the off-target binding of the Cas protein is reduced compared to the corresponding wild-type Cas protein. In some embodiments, the target binding of the Cas protein is improved compared to the corresponding wild-type Cas protein. In some embodiments, the target binding of the Cas protein is reduced compared to the corresponding wild-type Cas protein. In some embodiments, the engineered Cas protein has higher protease activity or polynucleotide binding ability compared to the corresponding wild-type Cas protein. In some embodiments, PFS recognition is changed compared to the corresponding wild-type Cas protein.

Cas蛋白的实例Examples of Cas proteins

Cas蛋白的实例包括I类(例如I型、III型和IV型)和II类(例如II型、V型和VI型)Cas蛋白,例如Cas9、Cas12(例如Cas12a、Cas12b、Cas12c、Cas12d)、Cas13(例如Cas13a、Cas13b、Cas13c、Cas13d)、CasX、CasY、Cas14、其变体(例如突变形式、截短形式)、其同源物及其直向同源物。术语“直向同源物”和“同源物”在本领域中是公知的。通过进一步的指导,本文所使用的蛋白质的“同源物”是执行与作为其同源物的蛋白质相同或相似的功能的同一物种的蛋白质。同源蛋白可以但不必定在结构上相关,或者仅在结构上部分相关。本文所使用的蛋白质的“直向同源物”是执行与作为其直向同源物的蛋白质相同或相似的功能的不同物种的蛋白质。直向同源蛋白可以但不必定在结构上相关,或者仅在结构上部分相关。Examples of Cas proteins include Class I (e.g., Type I, Type III, and Type IV) and Class II (e.g., Type II, Type V, and Type VI) Cas proteins, such as Cas9, Cas12 (e.g., Cas12a, Cas12b, Cas12c, Cas12d), Cas13 (e.g., Cas13a, Cas13b, Cas13c, Cas13d), CasX, CasY, Cas14, variants thereof (e.g., mutant forms, truncated forms), homologs thereof, and orthologs thereof. The terms "orthologs" and "homologs" are well known in the art. By further guidance, a "homolog" of a protein used herein is a protein of the same species that performs the same or similar function as a protein as its homolog. Homologous proteins may, but are not necessarily, structurally related, or only partially related in structure. A "ortholog" of a protein used herein is a protein of a different species that performs the same or similar function as a protein as its ortholog. Orthologous proteins may, but are not necessarily, structurally related, or may be only partially related in structure.

2类Cas蛋白Class 2 Cas proteins

在某些实施方式中,所述Cas蛋白是2类Cas蛋白,即2类CRISPR-Cas系统的Cas蛋白。2类CRISPR-Cas系统可以是亚型,例如II-A型、II-B型、II-C型、V-A型、V-B型、V-C型或V-U型。在某些实施方式中,所述Cas蛋白是Cas9、Cas12a、Cas12b、Cas12c或Cas12d。在某些实施方式中,Cas9可以是SpCas9、SaCas9、StCas9和其他Cas9直向同源物。Cas12可以是Cas12a、Cas12b和Cas12c,包括FnCas12a,或其同源物或直向同源物。CRISPR-Cas系统的定义和示例性成员包括在下述文献中所描述的:Kira S.Makarova and Eugene V.Koonin,Annotation and Classification of CRISPR-Cas systems,Methods Mol Biol.2015;1311:47-75;和Sergey Shmakov et al.,Diversity and evolution of class 2CRISPR-Cas systems,Nat Rev Microbial.2017Mar;15(3):169-182。In some embodiments, the Cas protein is a Class 2 Cas protein, i.e., a Class 2 CRISPR-Cas system Cas protein. Class 2 CRISPR-Cas systems can be subtypes, such as Type II-A, Type II-B, Type II-C, Type V-A, Type V-B, Type V-C, or Type V-U. In some embodiments, the Cas protein is Cas9, Cas12a, Cas12b, Cas12c, or Cas12d. In some embodiments, Cas9 can be SpCas9, SaCas9, StCas9, and other Cas9 orthologs. Cas12 can be Cas12a, Cas12b, and Cas12c, including FnCas12a, or homologs or orthologs thereof. Definitions and exemplary members of CRISPR-Cas systems include those described in Kira S. Makarova and Eugene V. Koonin, Annotation and Classification of CRISPR-Cas systems, Methods Mol Biol. 2015; 1311: 47-75; and Sergey Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems, Nat Rev Microbial. 2017 Mar; 15(3): 169-182.

Cas蛋白接头Cas protein adaptors

在某些实例中,所述Cas蛋白包含至少一个RuvC结构域和至少一个HNH结构域。所述Cas蛋白可以进一步包含连接RuvC结构域和HNH结构域的第一和第二接头结构域。Cas9中连接HNH和RuvC结构域的第一接头(L1)和第二接头(L2)被描述在下述研究中:Nishimasu,H.et al.“Crystal structure of Cas9 in complex with guide RNA and target RNA”Cell 156(Feb.27,2014):935-949和Ribeiro,L.et al.(2018)“Protein engineeringstrategies to expand CRISPR-Cas9 applications”International Journal ofGenomics Volume2018,Article ID 1652567(doi.org/10.1155/2018/1652567)。Ribeiro的图1示出了Cas9的整体组织、结构和功能,其具体通过引用并入本文。具体而言,图1A示出了SpCas9的结构域组织的示意图,指示了本文所描述的包括接头L1(跨越第765-780位氨基酸)和L2(跨越第906-918位氨基酸)在内的HNH和RuvC结构域的遗传结构。In some instances, the Cas protein includes at least one RuvC domain and at least one HNH domain. The Cas protein may further include the first and second joint domains connecting the RuvC domain and the HNH domain. The first joint (L1) and the second joint (L2) connecting the HNH and RuvC domains in Cas9 are described in the following studies: Nishimasu, H. et al. "Crystal structure of Cas9 in complex with guide RNA and target RNA" Cell 156 (Feb. 27, 2014): 935-949 and Ribeiro, L. et al. (2018) "Protein engineering strategies to expand CRISPR-Cas9 applications" International Journal of Genomics Volume 2018, Article ID 1652567 (doi.org/10.1155/2018/1652567). Ribeiro's Figure 1 shows the overall organization, structure and function of Cas9, which is specifically incorporated herein by reference. Specifically, Figure 1A shows a schematic diagram of the domain organization of SpCas9, indicating the genetic structure of the HNH and RuvC domains including the linkers L1 (spanning amino acids 765-780) and L2 (spanning amino acids 906-918) described herein.

类似地,当参比第一和第二接头结构域时,可以利用金黄色葡萄球菌(Staphylococcus aureus)Cas9(SaCas9)的结构域组织。在一个方面,接头1结构域区域跨越第481-519位残基,并将RuvC-II结构域连接到SaCas9中的HNH结构域。在某些实施方式中,接头2区域跨越第629-649位残基,并连接SaCas9的RuvC-III结构域和HNH结构域。因此,在Cas9直向同源物中所述第一和/或第二接头结构域可以被突变,并且可以参考对应于野生型SaCas9的氨基酸的氨基酸残基。参见,Nishimasu,Cell.2015Aug 27;162(5):1113-1126;doi:10.1016/j.cell.2015.08.007,其通过引用并入本文。具体而言,Nishimasu的图1、S1-S3详细描述了Cas9蛋白的结构域组织,并具体通过引用并入本文以供参考。Similarly, when referencing the first and second linker domains, the domain organization of Staphylococcus aureus Cas9 (SaCas9) can be utilized. In one aspect, the linker 1 domain region spans residues 481-519 and connects the RuvC-II domain to the HNH domain in SaCas9. In certain embodiments, the linker 2 region spans residues 629-649 and connects the RuvC-III domain and the HNH domain of SaCas9. Therefore, the first and/or second linker domains in the Cas9 orthologs can be mutated, and reference can be made to the amino acid residues corresponding to the amino acids of wild-type SaCas9. See, Nishimasu, Cell. 2015 Aug 27; 162 (5): 1113-1126; doi: 10.1016 / j.cell.2015.08.007, which is incorporated herein by reference. Specifically, Figures 1, S1-S3 of Nishimasu describe the domain organization of the Cas9 protein in detail and are specifically incorporated herein by reference.

第一和第二接头可以包含约10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45个或更多个氨基酸。第一和第二接头可以对应于野生型接头。在某些方面,第一和第二接头可以在第一和/或第二接头中包含一个或多个突变。在一个方面,第一和/或第二接头包含一个或多个提高Cas9蛋白的特异性的突变。The first and second joints can comprise about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 or more amino acids. The first and second joints can correspond to wild-type joints. In some aspects, the first and second joints can comprise one or more mutations in the first and/or second joints. In one aspect, the first and/or second joints comprise one or more mutations that improve the specificity of the Cas9 protein.

在某些实施方式中,连接Cas9的HNH和RuvC结构域的接头L1和L2含有野生型氨基酸序列。在某些实施方式中,连接HNH和RuvC结构域的接头含有一个或多个氨基酸的突变。在一个示例性实施方式中,第一接头(L1)含有对应于SpCas9的氨基酸T769I的突变,和/或所述第二接头(L2)含有对应于SpCas9的氨基酸G915M的突变。在一个示例性实施方式中,一个或多个接头突变例如T769I和G915M赋予了对Cas9蛋白的改进的特异性。In certain embodiments, the linkers L1 and L2 connecting the HNH and RuvC domains of Cas9 contain wild-type amino acid sequences. In certain embodiments, the linkers connecting the HNH and RuvC domains contain mutations in one or more amino acids. In an exemplary embodiment, the first linker (L1) contains a mutation corresponding to the amino acid T769I of SpCas9, and/or the second linker (L2) contains a mutation corresponding to the amino acid G915M of SpCas9. In an exemplary embodiment, one or more linker mutations such as T769I and G915M confer improved specificity to the Cas9 protein.

在一个实施方式中,第一和第二接头中的一个或多个突变可以与所述Cas9蛋白的其他部分中的一个或多个突变组合,用于进一步改进特异性和/或保持与野生型Cas9蛋白基本上等同的活性,正如本文中描述的。在一个实施方式中,接头中的突变和/或Cas蛋白内的附加突变可以利用本文详述的方法来鉴定,其增强/改进特异性并基本上保持野生型Cas9的野生型活性。In one embodiment, one or more mutations in the first and second linkers can be combined with one or more mutations in other parts of the Cas9 protein to further improve specificity and/or maintain activity substantially equivalent to that of a wild-type Cas9 protein, as described herein. In one embodiment, mutations in the linkers and/or additional mutations within the Cas protein can be identified using the methods detailed herein that enhance/improve specificity and substantially maintain the wild-type activity of a wild-type Cas9.

2类II型Cas蛋白(例如Cas9)2. Type II Cas proteins (e.g. Cas9)

在某些实施方式中,所述Cas蛋白可以是2类II型CRISPR-Cas系统的Cas蛋白(II型Cas蛋白)。在某些实施方式中,所述Cas蛋白可以是2类II型Cas蛋白,例如Cas9。在某些实施方式中,所述基于CRISPR/Cas9的系统可以包括Cas9蛋白或其片段、Cas9融合蛋白、编码Cas9蛋白或其片段的核酸或编码Cas9融合蛋白的核酸。所谓“Cas9(CRISPR相关蛋白9)”是指与NCBI登录号NP_269215具有至少约85%的氨基酸同一性并具有RNA结合活性、DNA结合活性和/或DNA切割活性(例如核酸内切酶或切口酶活性)的多肽或其片段。“Cas9功能”可以通过多种测定法中的任一者来定义,包括但不限于基于荧光偏振的核酸结合测定法、基于荧光偏振链入侵测定法、转录测定法、EGFP破坏测定法、DNA切割测定法和/或Surveyor测定法,例如本文中所描述的。所谓的“Cas 9核酸分子”是指编码Cas 9多肽或其片段的多核苷酸。示例性的Cas9核酸分子序列被提供在基因组序列号NC_002737处。在某些实施方式中,本文公开了Cas9、例如化脓性链球菌(S.pyogenes)(SpCas9)或金黄色葡萄球菌(S.aureus)(SaCas9)中天然存在的Cas9或其变体的抑制剂。Cas9使用前间隔序列邻近基序(PAM)序列和引导RNA(gRNA)与靶DNA的碱基配对来识别外来DNA。Cas9在任何基因组位点处诱导靶向链断裂的相对容易性使得能够在多种细胞类型和生物体中进行高效的基因组编辑。Cas9衍生物也可用作转录激活因子/阻遏物。In some embodiments, the Cas protein can be a Cas protein (Type II Cas protein) of a Type II CRISPR-Cas system of type 2. In some embodiments, the Cas protein can be a Type II Cas protein of type 2, such as Cas9. In some embodiments, the system based on CRISPR/Cas9 can include a Cas9 protein or a fragment thereof, a Cas9 fusion protein, a nucleic acid encoding a Cas9 protein or a fragment thereof, or a nucleic acid encoding a Cas9 fusion protein. The so-called "Cas9 (CRISPR-associated protein 9)" refers to a polypeptide or a fragment thereof having at least about 85% amino acid identity with NCBI accession number NP_269215 and having RNA binding activity, DNA binding activity and/or DNA cleavage activity (e.g., endonuclease or nickase activity). "Cas9 function" can be defined by any one of a variety of assays, including but not limited to a nucleic acid binding assay based on fluorescence polarization, a fluorescence polarization chain invasion assay, a transcription assay, an EGFP destruction assay, a DNA cleavage assay, and/or a Surveyor assay, such as described herein. The so-called "Cas 9 nucleic acid molecule" refers to a polynucleotide encoding a Cas 9 polypeptide or a fragment thereof. Exemplary Cas9 nucleic acid molecule sequences are provided at genomic sequence number NC_002737. In certain embodiments, disclosed herein are inhibitors of Cas9 or its variants naturally occurring in Cas9, such as Streptococcus pyogenes (S.pyogenes) (SpCas9) or Staphylococcus aureus (S.aureus) (SaCas9). Cas9 uses the base pairing of the protoplast adjacent motif (PAM) sequence and guide RNA (gRNA) with the target DNA to identify foreign DNA. The relative ease with which Cas9 induces targeted chain breaks at any genomic site enables efficient genome editing in a variety of cell types and organisms. Cas9 derivatives can also be used as transcriptional activators/repressors.

在某些情况下,所述CRISPR-Cas蛋白是Cas9或其变体。在某些实例中,Cas9可以是野生型Cas9,包括任何天然存在的细菌Cas9。Cas9直向同源物通常共有3-4个RuvC结构域和一个HNH结构域的一般组织。最靠5'端的RuvC结构域切割非互补链,HNH结构域切割互补链。所有符号均参照引导序列。5'RuvC结构域中的催化残基通过将感兴趣的Cas9与其他Cas9直向同源物(来自化脓性链球菌(S.pyogenes)II型CRISPR基因座、嗜热链球菌(S.thermophilus)CRISPR基因座1、嗜热链球菌(S.thermophilus)CRISPR基因座3和新凶手弗朗西斯菌(Franciscilla novicida)II型CRISPR基因座)进行同源性比较来鉴定,并将保守的Asp残基(D10)突变成丙氨酸,以将Cas9转变成互补链切割酶。因此,所述Cas酶可以是野生型Cas9,包括任何天然存在的细菌Cas9。CRISPR、Cas或Cas9酶可以是密码子优化的,或者是修饰的版本,包括任何嵌合体、突变体、同源物或直向同源物。在本公开的另一个方面,Cas9酶可以包含一个或多个突变,并且可以用作与或不与功能性结构域融合的通用DNA结合蛋白。In some cases, the CRISPR-Cas protein is Cas9 or a variant thereof. In some instances, Cas9 can be wild-type Cas9, including any naturally occurring bacterial Cas9. Cas9 orthologs generally have a general organization of 3-4 RuvC domains and one HNH domain. The RuvC domain closest to the 5' end cuts the non-complementary chain, and the HNH domain cuts the complementary chain. All symbols refer to the guide sequence. The catalytic residues in the 5' RuvC domain are identified by comparing the Cas9 of interest with other Cas9 orthologs (from S.pyogenes type II CRISPR loci, S.thermophilus CRISPR loci 1, S.thermophilus CRISPR loci 3, and Franciscilla novicida type II CRISPR loci), and the conserved Asp residue (D10) is mutated to alanine to convert Cas9 into a complementary chain cutting enzyme. Therefore, the Cas enzyme can be wild-type Cas9, including any naturally occurring bacterial Cas9. CRISPR, Cas or Cas9 enzymes can be codon-optimized, or modified versions, including any chimeras, mutants, homologs or orthologs. In another aspect of the present disclosure, the Cas9 enzyme can contain one or more mutations and can be used as a universal DNA binding protein with or without fusion to a functional domain.

所述突变可以是人工引入的突变或功能获得或功能丧失突变。在某些实施方式中,所述转录激活结构域可以是VP64。在某些实施方式中,所述转录阻遏物结构域可以是KRAB或SID4X。本公开的其他方面涉及与结构域融合的突变的Cas9酶,所述结构域包括但不限于核酸酶、转录激活因子、阻遏物、重组酶、转座酶、组蛋白重塑物、去甲基化酶、DNA甲基转移酶、隐花色素、光诱导/可控结构域或化学诱导/可控结构域。本公开可以涉及sgRNA或tracrRNA或允许增强这些RNA在细胞中的性能的引导或嵌合引导序列。这种II型CRISPR酶可以是任何Cas酶。在某些情况下,所述Cas9酶来自或衍生自SpCas9或SaCas9。本文所使用的术语“衍生的”对于酶而言是指衍生的酶在很大程度上基于野生型酶(在与野生型酶具有高度序列同源性的意义上),但其已以本领域中已知或本文中所述的某种方式进行突变(修饰)。在一个实例中,所述突变可以包括第一连接结构域、第二连接结构域和/或蛋白质的其他部分中的一个或多个突变。高度序列同源性可以包括相对于野生型酶至少80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高。The mutation may be an artificially introduced mutation or a gain-of-function or loss-of-function mutation. In certain embodiments, the transcriptional activation domain may be VP64. In certain embodiments, the transcriptional repressor domain may be KRAB or SID4X. Other aspects of the disclosure relate to mutated Cas9 enzymes fused to domains, including but not limited to nucleases, transcriptional activators, repressors, recombinases, transposases, histone remodelers, demethylases, DNA methyltransferases, cryptochromes, light-induced/controllable domains, or chemically induced/controllable domains. The disclosure may relate to guides or chimeric guide sequences that allow sgRNA or tracrRNA or allow enhancement of the performance of these RNAs in cells. This type II CRISPR enzyme may be any Cas enzyme. In some cases, the Cas9 enzyme is from or derived from SpCas9 or SaCas9. The term "derived" as used herein refers to an enzyme that is largely based on a wild-type enzyme (in the sense of having a high degree of sequence homology to the wild-type enzyme), but has been mutated (modified) in a manner known in the art or described herein. In one example, the mutation may include one or more mutations in the first connecting domain, the second connecting domain, and/or other portions of the protein. A high degree of sequence homology may include at least 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more relative to the wild-type enzyme.

Cas酶可以是鉴定的Cas9,因为这可以是指与来自II型CRISPR系统的具有多个核酸酶结构域的最大核酸酶享有同源性的酶的通用类别。在某些情况下,所述Cas9酶来自或衍生自SpCas9(化脓性链球菌(S.pyogenes)Cas9)或saCas9(金黄色葡萄球菌(S.aureus)Cas9)。“StCas9”是指来自嗜热链球菌(S.thermophilus)的野生型Cas9(UniProt ID:G3ECR1)。类似地,“SpCas9”是指来自化脓性链球菌(S.pyogenes)的野生型Cas9(UniProtID:Q99ZW2)。本文所使用的术语“衍生的”对于酶而言是指衍生的酶在很大程度上基于野生型酶(在与野生型酶具有高度序列同源性的意义上),但其已以本领域中已知或本文中所述的某种方式进行突变(修饰)。应当理解,术语Cas和CRISPR酶在本文中通常可互换地使用,除非另有明确说明。如上所述,本文中使用的许多残基编号参照来自化脓性链球菌(Streptococcus pyogenes)中II型CRISPR基因座的Cas9酶。The Cas enzyme may be an identified Cas9, as this may refer to a general category of enzymes that share homology with the largest nuclease with multiple nuclease domains from a type II CRISPR system. In some cases, the Cas9 enzyme is from or derived from SpCas9 (Streptococcus pyogenes (S.pyogenes) Cas9) or saCas9 (Staphylococcus aureus (S.aureus) Cas9). "StCas9" refers to wild-type Cas9 (UniProt ID: G3ECR1) from Streptococcus thermophilus (S.thermophilus). Similarly, "SpCas9" refers to wild-type Cas9 (UniProtID: Q99ZW2) from Streptococcus pyogenes (S.pyogenes). The term "derived" as used herein refers to an enzyme that is largely based on a wild-type enzyme (in the sense of having a high degree of sequence homology with the wild-type enzyme), but it has been mutated (modified) in a manner known in the art or described herein. It should be understood that the terms Cas and CRISPR enzymes are generally used interchangeably herein unless otherwise expressly stated. As noted above, many of the residue numbers used herein refer to the Cas9 enzyme from a type II CRISPR locus in Streptococcus pyogenes.

在特定实施方式中,所述效应蛋白是来自或源自下述属的生物体的Cas9效应蛋白:链球菌属(Streptococcus)、弯曲杆菌属(Campylobacter)、硝酸盐裂解菌属(Nitratifractor)、葡萄球菌属(Staphylococcus)、细小棒菌属(Parvibaculum)、罗氏菌属(Roseburia)、奈瑟菌属(Neisseria)、葡糖醋杆菌属(Gluconacetobacter)、固氮螺菌属(Azospirillum)、Sphaerochaeta、乳杆菌属(Lactobacillus)、真杆菌属(Eubacterium)、棒状杆菌属(Corynebacter)、肉食杆菌属(Carnobacterium)、红细菌属(Rhodobacter)、李斯特菌属(Listeria)、Paludibacter、梭菌属(Clostridium)、毛螺菌科(Lachnospiraceae)、Clostridiaridium、纤毛菌属(Leptotrichia)、弗朗西斯菌属(Francisella)、军团菌属(Legionella)、脂环酸芽孢杆菌属(Alicyclobacillus)、Methanomethyophilus、卟啉单胞菌属(Porphyromonas)、普雷沃氏菌属(Prevotella)、拟杆菌门(Bacteroidetes)、创伤球菌属(Helcococcus)、钩端螺旋体属(Letospira)、脱硫弧菌属(Desulfovibrio)、脱硫弯曲杆菌属(Desulfonatronum)、丰佑菌科(Opitutaceae)、肿块芽孢杆菌属(Tuberibacillus)、芽孢杆菌属(Bacillus)、短小芽孢杆菌属(Brevibacilus)、甲基杆菌属(Methylobacterium)或氨基酸球菌属(Acidaminococcus)、链球菌属(Streptococcus)、弯曲杆菌属(Campylobacter)、硝酸盐裂解菌属(Nitratifractor)、葡萄球菌属(Staphylococcus)、细小棒菌属(Parvibaculum)、罗氏菌属(Roseburia)、奈瑟菌属(Neisseria)、葡糖醋杆菌属(Gluconacetobacter)、固氮螺菌属(Azospirillum)、Sphaerochaeta、乳杆菌属(Lactobacillus)、真杆菌属(Eubacterium)、棒状杆菌属(Corynebacter)、萨特氏菌属(Sutterella)、军团菌属(Legionella)、密螺旋体属(Treponema)、产线菌属(Filifactor)、真杆菌属(Eubacterium)、链球菌属(Streptococcus)、乳杆菌属(Lactobacillus)、支原体属(Mycoplasma)、拟杆菌属(Bacteroides)、Flaviivola、黄杆菌属(Flavobacterium)、Sphaerochaeta、固氮螺菌属(Azospirillum)、葡糖醋杆菌属(Gluconacetobacter)、奈瑟菌属(Neisseria)、罗氏菌属(Roseburia)、细小棒菌属(Parvibaculum)、葡萄球菌属(Staphylococcus)、硝酸盐裂解菌属(Nitratifractor)、支原体属(Mycoplasma)或弯曲杆菌属(Campylobacter)。In a specific embodiment, the effector protein is a Cas9 effector protein from or derived from an organism of the genera Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium, Corynebacter, Carnobacterium, Rhodobacter, Listeria, Paludibac ter, Clostridium, Lachnospiraceae, Clostridiaridium, Leptotrichia, Francisella, Legionella, Alicyclobacillus, Methanomethyophilus, Porphyromonas, Prevotella, Bacteroidetes, Helcococcus, Letospira, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacill us), Brevibacilus, Methylobacterium or Acidaminococcus, Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium, Corynebacter, Sutterella, Legionella ella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, or Campylobacter.

在某些实施方式中,所述Cas9蛋白来自或源自选自下述的生物体:变形链球菌(S.mutans)、无乳链球菌(S.agalactiae)、似马链球菌(S.equisimilis)、血链球菌(S.sanguinis)、肺炎链球菌(S.pneumonia)、空肠弯曲菌(C.jejuni)、大肠弯曲杆菌(C.coli)、卤水硝酸盐裂解菌(N.salsuginis)、N.tergarcus、耳葡萄球菌(S.auricularis)、肉葡萄球菌(S.carnosus)、脑膜炎奈瑟菌(Nmeningitides)、淋病奈瑟菌(N gonorrhoeae)、单核细胞增生李斯特菌(L.monocytogenes)、伊氏李斯特菌(L.ivanovii)、肉毒梭菌(C.botulinum)、艰难梭菌(C.difficile)、破伤风梭菌(C.tetani)或索氏梭菌(C.sordellii)、土拉热弗朗西斯菌(Francisella tularensis)1、土拉热弗朗西斯菌诺维亚种(Francisella tularensis subsp.novicida)、阿尔伯普雷沃氏菌(Prevotella albensis)、毛螺菌科细菌(Lachnospiraceae bacterium)MC2017 1、蛋白溶解丁酸弧菌(Butyrivibrio proteoclasticus)、异域菌门细菌(Peregrinibacteriabacterium)GW2011 GWA2_33_10、俭菌超门细菌(Parcubacteria bacterium)GW2011 GWC2_44_17、史密斯氏菌属的种SCADC(Smithella sp.SCADC)、氨基酸球菌属的种(Acidaminococcus sp.)BV3L6、毛螺菌科细菌(Lachnospiraceae bacterium)MA2020、候选白蚁甲烷支原体(Candidatus Methanoplasma termitum)、挑剔真杆菌(Eubacteriumeligens)、牛眼莫拉氏菌(Moraxella bovoculi)237、稻田钩端螺旋体(Leptospirainadai)、毛螺菌科细菌(Lachnospiraceae bacterium)ND2006、狗口腔卟啉单胞菌(Porphyromonas crevioricanis)3、解糖胨普雷沃氏菌(Prevotella disiens)和猕猴卟啉单胞菌(Porphyromonas macacae)。在某些实施方式中,Cas9蛋白是来自或源自生物体化脓性链球菌(Streptococcus pyogenes)、金黄色葡萄球菌(Staphylococcus aureus)或嗜热链球菌(Streptococcus thermophilus)的Cas9。In certain embodiments, the Cas9 protein is from or derived from an organism selected from the group consisting of: Streptococcus mutans, Streptococcus agalactiae, Streptococcus equisimilis, Streptococcus sanguinis, Streptococcus pneumoniae, Campylobacter jejuni, Campylobacter coli, N. salsuginis, N. tergarcus, Staphylococcus auricularis, Staphylococcus carnosus, Neisseria meningitidis, Neisseria gonorrhoeae. gonorrhoeae), Listeria monocytogenes, Listeria ivanovii, C. botulinum, C. difficile, C. tetani or C. sordellii, Francisella tularensis 1, Francisella tularensis subsp. novicida, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011 GWA2_33_10, Parcubacteria bacterium GW2011 GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira in adai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens and Porphyromonas macacae. In certain embodiments, the Cas9 protein is a Cas9 from or derived from the organism Streptococcus pyogenes, Staphylococcus aureus, or Streptococcus thermophilus.

在更优选实施方式中,所述Cas9蛋白源自选自化脓性链球菌(Streptococcuspyogenes)、金黄色葡萄球菌(Staphylococcus aureus)或嗜热链球菌(Streptococcusthermophilus)的细菌物种。在某些实施方式中,所述Cas9源自选自下述的细菌物种:土拉热弗朗西斯菌(Francisella tularensis)1、阿尔伯普雷沃氏菌(Prevotella albensis)、毛螺菌科细菌(Lachnospiraceae bacterium)MC20171、蛋白溶解丁酸弧菌(Butyrivibrioproteoclasticus)、异域菌门细菌(Peregrinibacteria bacterium)GW2011 GWA2 33JO、俭菌超门细菌(Parcubacteria bacterium)GW2011 GWC2_44_17、史密斯氏菌属的种SCADC(Smithella sp.SCADC)、氨基酸球菌属的种(Acidaminococcus sp.)BV3L6、毛螺菌科细菌(Lachnospiraceae bacterium)MA2020、候选白蚁甲烷支原体(Candidatus Methanoplasmatermitum)、挑剔真杆菌(Eubacterium eligens)、牛眼莫拉氏菌(Moraxella bovoculi)237、稻田钩端螺旋体(Leptospira inadai)、毛螺菌科细菌(Lachnospiraceae bacterium)ND2006、狗口腔卟啉单胞菌(Porphyromonas crevioricanis)3、解糖胨普氏菌(Prevotelladisiens)和猕猴卟啉单胞菌(Porphyromonas macacae)。在某些实施方式中,所述Cas9蛋白源自选自氨基酸球菌属的种(Acidaminococcus sp.)BV3L6、毛螺菌科细菌(Lachnospiraceae bacterium)MA2020的细菌物种。在某些实施方式中,所述效应蛋白源自土拉热弗朗西斯菌(Francisella tularensis)1的亚种,包括但不限于土拉热弗朗西斯菌诺维亚种(Francisella tularensis subsp.novicida)。In a more preferred embodiment, the Cas9 protein is derived from a bacterial species selected from Streptococcus pyogenes, Staphylococcus aureus or Streptococcus thermophilus. In certain embodiments, the Cas9 is derived from a bacterial species selected from the group consisting of Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC20171, Butyrivibrioproteoclasticus, Peregrinibacteria bacterium GW2011 GWA2 33JO, Parcubacteria bacterium GW2011 GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasmatermitum), Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotelladisiens and Porphyromonas macacae. In certain embodiments, the Cas9 protein is derived from a bacterial species selected from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium MA2020. In certain embodiments, the effector protein is derived from a subspecies of Francisella tularensis 1, including but not limited to Francisella tularensis subsp. novicida.

Cas9酶包括但不限于化脓性链球菌(S.pyogenes)血清型M1(UniProtID:Q99ZW2)、金黄色葡萄球菌(S.aureus)Cas9(UniProt ID:J7RUA5)、凸腹真杆菌(Eubacteriumventriosum)Cas9(UniProt ID:A5Z395)、固氮螺菌属(Azospirillum)(菌株B510)Cas9(UniProt ID:D3NT09)、嗜重氮葡糖醋杆菌(Gluconacetobacter diazotrophicus)(菌株ATCC 49037)Cas9(UnitProt ID:A9HKP2)、灰色奈瑟菌(Neisseria cinerea)Cas9(UniProtID:D0W2Z9)、肠道罗斯拜瑞氏菌(Roseburia intestinalis)Cas9(UniProt ID:C7G697)、食清洁剂细小棒菌(Parvibaculum lavamentivorans)(菌株DS-1)Cas9(UniProt ID:A7HP89)、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(菌株DSM 16511)Cas9(UniProt ID:E6WZS9)、海鸥弯曲菌(Campylobacter lari)Cas9(UniProt ID:G1UFN3)。Cas9 enzymes include, but are not limited to, Streptococcus pyogenes serotype M1 (UniProt ID: Q99ZW2), Staphylococcus aureus Cas9 (UniProt ID: J7RUA5), Eubacterium ventriosum Cas9 (UniProt ID: A5Z395), Azospirillum (strain B510) Cas9 (UniProt ID: D3NT09), Gluconacetobacter diazotrophicus (strain ATCC 49037) Cas9 (UnitProt ID: A9HKP2), Neisseria cinerea Cas9 (UniProt ID: D0W2Z9), Roseburia intestinalis Cas9 (UniProt ID: C7G697), Parvibaculum lavamentivorans) (strain DS-1) Cas9 (UniProt ID: A7HP89), Nitratifractor salsuginis (strain DSM 16511) Cas9 (UniProt ID: E6WZS9), Campylobacter lari Cas9 (UniProt ID: G1UFN3).

源自化脓性链球菌(Streptococcus pyogenes)的Cas9或任何密切相关的Cas9的酶作用在靶位点序列处产生双链断裂,所述靶位点序列与引导序列的20个核苷酸杂交,并且在所述靶序列的20个核苷酸之后具有前间隔序列邻近基序(PAM)序列(实例包括NGG/NRG或可以如本文所述确定的PAM)。通过Cas9进行位点特异性DNA识别和切割的CRISPR活性由引导序列、与引导序列部分杂交的tracr序列和PAM序列定义。CRISPR系统的更多方面被描述在Karginov and Hannon,The CRISPR system:small RNA-guided defense inbacteria and archaea,Mole Cell 2010,January 15;37(1):7中。来自化脓性链球菌(Streptococcus pyogenes)SF370的II型CRISPR基因座含有四个基因Cas9、Cas1、Cas2和Csnl的簇,以及两个非编码RNA元件tracrRNA和被短的非重复序列(间隔区,每个约30bp)隔开的重复序列(正向重复)的特征性阵列。在该系统中,靶向DNA双链断裂(DSB)在四个连续步骤中产生。首先,从CRISPR基因座转录两个非编码RNA,即pre-crRNA阵列和tracrRNA。其次,tracrRNA与pre-crRNA的正向重复序列杂交,然后将其加工成含有各个间隔序列的成熟crRNA。第三,成熟的crRNA:tracrRNA复合物通过crRNA的间隔区与前间隔序列DNA之间的异源双链体形成,将Cas9引导到由前间隔序列和相应的PAM组成的DNA靶。最后,Cas9介导PAM上游的靶DNA的切割,在前间隔序列内产生DSB。由两侧带有两个正向重复序列(DR)的单个间隔区组成的pre-crRNA阵列也被术语“tracr-mate序列”涵盖。在某些实施方式中,Cas9可以组成性存在或诱导性存在或条件性存在或施用或递送。Cas9优化可用于增强功能或开发新功能。可以产生嵌合Cas9蛋白,并且Cas9可用作通用DNA结合蛋白。为Cas9提供的结构信息可用于进一步工程化和优化CRISPR-Cas系统,并且这也可以推断出其他CRISPR酶系统的结构-功能关系,特别是其他II型CRISPR酶或Cas9直向同源物中的结构-功能关系。晶体结构信息(描述在2013年12月12日提交的美国临时申请61/915,251、2014年1月22日提交的61/930,214、2014年4月15日提交的61/980,012;以及Nishimasu et al,“CrystalStructure of Cas9in Complex with Guide RNA and Target DNA,”Cell 156(5):935-949,DOI:http://dx.doi.org/10.1016/j.cell.2014.02.001(2014)中,其每一篇均整体通过引用并入本文)提供了截短和产生可以被并入到诱导型CRISPR-Cas系统中的模块化或多部分CRISPR酶的结构信息。具体而言,提供了化脓性链球菌(S.pyogenes)Cas9(SpCas9)的结构信息,并且这可以被外推到其他Cas9直向同源物或其他II型CRISPR酶。Cas9基因存在于几种不同的细菌基因组中,通常与cas1、cas2和cas4基因以及CRISPR盒在同一个基因座中。此外,Cas9蛋白含有可容易地鉴定的C-端区域,其与转座子ORF-B同源,并包括活性RuvC样核酸酶、富含精氨酸的区域。The enzyme action of Cas9 derived from Streptococcus pyogenes or any closely related Cas9 produces a double-strand break at the target site sequence, which is hybridized to 20 nucleotides of the guide sequence and has a pre-spacer adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) after the 20 nucleotides of the target sequence. The CRISPR activity of site-specific DNA recognition and cleavage by Cas9 is defined by the guide sequence, the tracr sequence that partially hybridizes to the guide sequence, and the PAM sequence. More aspects of the CRISPR system are described in Karginov and Hannon, The CRISPR system: small RNA-guided defense in bacteria and archaea, Mole Cell 2010, January 15; 37(1):7. The type II CRISPR locus from Streptococcus pyogenes SF370 contains a cluster of four genes Cas9, Cas1, Cas2 and Csnl, as well as two non-coding RNA elements tracrRNA and a characteristic array of repetitive sequences (forward repeats) separated by short non-repetitive sequences (spacers, each about 30bp). In this system, targeted DNA double-strand breaks (DSBs) are produced in four consecutive steps. First, two non-coding RNAs, i.e., pre-crRNA arrays and tracrRNA, are transcribed from the CRISPR locus. Secondly, tracrRNA hybridizes with the forward repeats of pre-crRNA and is then processed into mature crRNA containing each spacer sequence. Third, mature crRNA:tracrRNA complexes are formed by heteroduplexes between the crRNA spacer and the pre-spacer DNA, and Cas9 is guided to a DNA target consisting of a pre-spacer sequence and a corresponding PAM. Finally, Cas9 mediates the cutting of the target DNA upstream of the PAM, producing DSBs in the pre-spacer sequence. The pre-crRNA array consisting of a single spacer with two forward repeats (DRs) on both sides is also covered by the term "tracr-mate sequence". In certain embodiments, Cas9 can be constitutively present or inducibly present or conditionally present or administered or delivered. Cas9 optimization can be used to enhance function or develop new functions. Chimeric Cas9 proteins can be produced, and Cas9 can be used as a universal DNA binding protein. The structural information provided for Cas9 can be used to further engineer and optimize the CRISPR-Cas system, and this can also infer the structure-function relationship of other CRISPR enzyme systems, particularly other type II CRISPR enzymes or Cas9 orthologs. Structure-function relationships. Crystal structure information (described in U.S. Provisional Applications 61/915,251, filed December 12, 2013; 61/930,214, filed January 22, 2014; 61/980,012, filed April 15, 2014; and Nishimasu et al, "Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA," Cell 156(5):935-949, DOI: http://dx.doi.org/10.1016/j.cell.2014.02.001 (2014), each of which is incorporated herein by reference in its entirety) provides structural information for truncating and generating modular or multipartite CRISPR enzymes that can be incorporated into inducible CRISPR-Cas systems. Specifically, structural information for Streptococcus pyogenes (S. pyogenes) Cas9 (SpCas9) is provided, and this can be extrapolated to other Cas9 orthologs or other type II CRISPR enzymes. The Cas9 gene is present in several different bacterial genomes, often in the same locus as the cas1, cas2, and cas4 genes and the CRISPR box. In addition, the Cas9 protein contains an easily identifiable C-terminal region that is homologous to the transposon ORF-B and includes an active RuvC-like nuclease, an arginine-rich region.

dCas9dCas9

所述Cas9蛋白可以被突变,以便失活核酸酶活性。一种不具备核酸内切酶活性的来自化脓性链球菌(S.pyogenes)的失活Cas9蛋白(iCas9,也被称为“dCas9”)最近已被gRNA靶向到细菌、酵母和人类细胞中的基因,以通过空间位阻沉默基因表达。本文所使用的“dCas分子”可以是指dCas蛋白或其片段。本文所使用的“dCas9分子”可以是指dCas9蛋白或其片段。本文所使用的术语“iCas”和“dCas”可互换使用,并且是指催化失活的CRISPR相关蛋白。在一个实施方式中,所述dCas分子在DNA切割结构域中包含一个或多个突变。在一个实施方式中,所述dCas分子在RuvC或HNH结构域中包含一个或多个突变。在一个实施方式中,所述dCas分子在RuvC和HNH结构域两者中都包含一个或多个突变。在一个实施方式中,所述dCas分子是野生型Cas分子的片段。在一个实施方式中,所述dCas分子包含来自野生型Cas分子的功能结构域,其中所述功能结构域选自Reel结构域、桥螺旋结构域或PAM相互作用结构域。在一个实施方式中,与相应的野生型Cas分子相比,所述dCas分子的核酸酶活性降低了至少40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%。The Cas9 protein can be mutated to inactivate nuclease activity. An inactivated Cas9 protein (iCas9, also referred to as "dCas9") from Streptococcus pyogenes (S.pyogenes) without endonuclease activity has recently been targeted by gRNA to genes in bacteria, yeast and human cells to silence gene expression by steric hindrance. "DCas molecule" used herein may refer to dCas protein or a fragment thereof. "DCas9 molecule" used herein may refer to dCas9 protein or a fragment thereof. The terms "iCas" and "dCas" used herein are used interchangeably and refer to catalytically inactivated CRISPR-associated proteins. In one embodiment, the dCas molecule includes one or more mutations in the DNA cleavage domain. In one embodiment, the dCas molecule includes one or more mutations in the RuvC or HNH domain. In one embodiment, the dCas molecule includes one or more mutations in both the RuvC and HNH domains. In one embodiment, the dCas molecule is a fragment of a wild-type Cas molecule. In one embodiment, the dCas molecule comprises a functional domain from a wild-type Cas molecule, wherein the functional domain is selected from a Reel domain, a bridge helical domain, or a PAM interaction domain. In one embodiment, the nuclease activity of the dCas molecule is reduced by at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% compared to the corresponding wild-type Cas molecule.

适合的dCas分子可以衍生自野生型Cas分子。所述Cas分子可以来自I型、II型或III型CRISPR-Cas系统。在一个实施方式中,适合的dCas分子可以衍生自Cas1、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9或Cas10分子。在一个实施方式中,所述dCas分子衍生自Cas9分子。所述dCas9分子可以通过例如在Cas9分子中的DNA切割结构域例如核酸酶结构域、例如RuvC和/或HNH结构域处引入点突变(例如取代、缺失或添加)来获得。参见例如,Jinek et al.,Science(2012)337:816-21,其整体通过引用并入本文。例如,在RuvC和HNH结构域中引入两个点突变降低了Cas9核酸酶活性,同时保留Cas9 sgRNA和DNA结合活性。在一个实施方式中,所述RuvC和HNH活性位点内的两个点突变是化脓性链球菌(S.pyogenes)Cas9分子的D10A和H840A突变。或者,可以缺失Cas9分子的D10和H840以使Cas9核酸酶活性失活,同时保留其sgRNA和DNA结合活性。在一个实施方式中,所述RuvC和HNH活性位点内的两个点突变是化脓性链球菌(S.pyogenes)Cas9分子的D10A和N580A突变。Suitable dCas molecules can be derived from wild-type Cas molecules. The Cas molecules can be from type I, type II or type III CRISPR-Cas systems. In one embodiment, suitable dCas molecules can be derived from Cas1, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 or Cas10 molecules. In one embodiment, the dCas molecules are derived from Cas9 molecules. The dCas9 molecules can be obtained by, for example, introducing point mutations (e.g., substitutions, deletions or additions) in DNA cleavage domains such as nuclease domains, such as RuvC and/or HNH domains in Cas9 molecules. See, for example, Jinek et al., Science (2012) 337: 816-21, which is incorporated herein by reference in its entirety. For example, introducing two point mutations in RuvC and HNH domains reduces Cas9 nuclease activity while retaining Cas9 sgRNA and DNA binding activity. In one embodiment, the two point mutations in the RuvC and HNH active sites are D10A and H840A mutations of the S. pyogenes Cas9 molecule. Alternatively, D10 and H840 of the Cas9 molecule can be deleted to inactivate the Cas9 nuclease activity while retaining its sgRNA and DNA binding activity. In one embodiment, the two point mutations in the RuvC and HNH active sites are D10A and N580A mutations of the S. pyogenes Cas9 molecule.

在一个实施方式中,所述dCas分子是按照SEQ ID NO:1编号的金黄色葡萄球菌(S.aureus)dCas9分子,其包含D10和/或N580处的突变。在一个实施方式中,所述dCas分子是按照SEQ ID NO:1编号的金黄色葡萄球菌(S.aureus)dCas9分子,其包含D10A和/或N580A突变。In one embodiment, the dCas molecule is a Staphylococcus aureus (S. aureus) dCas9 molecule numbered according to SEQ ID NO: 1, comprising mutations at D10 and/or N580. In one embodiment, the dCas molecule is a Staphylococcus aureus (S. aureus) dCas9 molecule numbered according to SEQ ID NO: 1, comprising D10A and/or N580A mutations.

金黄色葡萄球菌(S.aureus)dCas9Staphylococcus aureus (S. aureus) dCas9

在一个实施方式中,所述dCas9分子是金黄色葡萄球菌(S.aureus)dCas9分子,其包含SEQ ID NO:2或3的氨基酸序列、与SEQ ID NO:2或3基本上相同的序列(例如序列同一性为至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高)或相对于SEQ ID NO:2或3具有1、2、3、4、5个或更多个变化(例如氨基酸取代、插入或缺失)的序列或其任何片段。In one embodiment, the dCas9 molecule is a Staphylococcus aureus (S. aureus) dCas9 molecule, which comprises the amino acid sequence of SEQ ID NO: 2 or 3, a sequence substantially identical to SEQ ID NO: 2 or 3 (e.g., a sequence identity of at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more), or a sequence having 1, 2, 3, 4, 5 or more changes (e.g., amino acid substitutions, insertions or deletions) relative to SEQ ID NO: 2 or 3, or any fragment thereof.

类似的突变也可以应用于任何其他天然存在的Cas9(例如来自其他物种的Cas9)或工程化Cas9分子。在某些实施方式中,所述dCas9分子包括化脓性链球菌(Streptococcuspyogenes)dCas9分子、金黄色葡萄球菌(Staphylococcus aureus)dCas9分子、空肠弯曲菌(Campylobacter jejuni)dCas9分子、白喉棒状杆菌(Corynebacterium diphtheria)dCas9分子、凸腹真杆菌(Eubacterium ventriosum)dCas9分子、巴氏链球菌(Streptococcuspasteurianus)dCas9分子、香肠乳杆菌(Lactobacillus farciminis)dCas9分子、螺旋体球菌(Sphaerochaeta globus)dCas9分子、固氮螺菌属(Azospirillum)(菌株B510)dCas9分子、嗜重氮葡糖醋杆菌(Gluconacetobacter diazotrophicus)dCas9分子、灰色奈瑟菌(Neisseria cinerea)dCas9分子、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9分子、食清洁剂细小棒菌(Parvibaculum lavamentivorans)dCas9分子、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(菌株DSM 16511)dCas9分子、海鸥弯曲菌(Campylobacterlari)(菌株CF89-12)dCas9分子、嗜热链球菌(Streptococcus thermophilus)(菌株LMD-9)dCas9分子或其片段。Similar mutations can also be applied to any other naturally occurring Cas9 (e.g., Cas9 from other species) or engineered Cas9 molecules. In certain embodiments, the dCas9 molecule includes a Streptococcus pyogenes dCas9 molecule, a Staphylococcus aureus dCas9 molecule, a Campylobacter jejuni dCas9 molecule, a Corynebacterium diphtheria dCas9 molecule, an Eubacterium ventriosum dCas9 molecule, a Streptococcus pasteurianus dCas9 molecule, a Lactobacillus farciminis dCas9 molecule, a Sphaerochaeta globus dCas9 molecule, an Azospirillum (strain B510) dCas9 molecule, a Gluconacetobacter diazotrophicus dCas9 molecule, a Neisseria griseus dCas9 molecule, a cinerea) dCas9 molecule, Roseburia intestinalis dCas9 molecule, Parvibaculum lavamentivorans dCas9 molecule, Nitratifractor salsuginis (strain DSM 16511) dCas9 molecule, Campylobacterlari (strain CF89-12) dCas9 molecule, Streptococcus thermophilus (strain LMD-9) dCas9 molecule or its fragments.

在某些实施方式中,本公开提供了一种载体,其包含编码化脓性链球菌(Streptococcus pyogenes)dCas9分子、金黄色葡萄球菌(Staphylococcus aureus)dCas9分子、空肠弯曲菌(Campylobacter jejuni)dCas9分子、白喉棒状杆菌(Corynebacteriumdiphtheria)dCas9分子、凸腹真杆菌(Eubacterium ventriosum)dCas9分子、巴氏链球菌(Streptococcus pasteurianus)dCas9分子、香肠乳杆菌(Lactobacillus farciminis)dCas9分子、螺旋体球菌(Sphaerochaeta globus)dCas9分子、固氮螺菌属(Azospirillum)(菌株B510)dCas9分子、嗜重氮葡糖醋杆菌(Gluconacetobacter diazotrophicus)dCas9分子、灰色奈瑟菌(Neisseria cinerea)dCas9分子、肠道罗斯拜瑞氏菌(Roseburiaintestinalis)dCas9分子、食清洁剂细小棒菌(Parvibaculum lavamentivorans)dCas9分子、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(菌株DSM 16511)dCas9分子、海鸥弯曲菌(Campylobacter lari)(菌株CF89-12)dCas9分子、嗜热链球菌(Streptococcusthermophilus)(菌株LMD-9)dCas9分子或其片段的核苷酸。In certain embodiments, the present disclosure provides a vector comprising a dCas9 molecule encoding Streptococcus pyogenes, Staphylococcus aureus, Campylobacter jejuni, Corynebacterium diphtheria, Eubacterium ventriosum, Streptococcus pasteurianus, Lactobacillus farciminis, Sphaerochaeta globus, Azospirillum (strain B510), Gluconacetobacter diazotrophicus, Neisseria griseus, and the like. cinerea) dCas9 molecule, Roseburia intestinalis dCas9 molecule, Parvibaculum lavamentivorans dCas9 molecule, Nitratifractor salsuginis (strain DSM 16511) dCas9 molecule, Campylobacter lari (strain CF89-12) dCas9 molecule, Streptococcus thermophilus (strain LMD-9) dCas9 molecule or nucleotides of their fragments.

示例性dCas9蛋白包括但不限于表1中列出的那些。Exemplary dCas9 proteins include, but are not limited to, those listed in Table 1.

表1.示例性dCas9蛋白Table 1. Exemplary dCas9 proteins

Cas9融合蛋白Cas9 fusion protein

基于CRISPR/Cas9的系统可以包括融合分子(例如DNMT3A-DNMT3L(3A3L)-dCas9-KRAB)。所述融合分子可以包含至少一种DNA结合蛋白(例如dCas9)和至少一种基因表达调节剂(例如KRAB、DNMT3A、DNMT3L、DNMT3A-DNMT3L融合肽)。在某些实施方式中,所述基因表达调节剂选自基因表达的阻遏物(例如KRAB)、基因表达激活因子或表观遗传学修饰调节剂(例如DNMT3A、DNMT3L、DNMT3A-DNMT3L融合肽)或其组合。基因表达的不同调节剂在本领域中是已知的,参见例如Thakore et al.,Nat Methods.2016;13:127-37,其整体通过引用并入本文。The CRISPR/Cas9-based system may include a fusion molecule (e.g., DNMT3A-DNMT3L (3A3L)-dCas9-KRAB). The fusion molecule may include at least one DNA binding protein (e.g., dCas9) and at least one gene expression regulator (e.g., KRAB, DNMT3A, DNMT3L, DNMT3A-DNMT3L fusion peptide). In certain embodiments, the gene expression regulator is selected from a repressor of gene expression (e.g., KRAB), a gene expression activator, or an epigenetic modification regulator (e.g., DNMT3A, DNMT3L, DNMT3A-DNMT3L fusion peptide) or a combination thereof. Different regulators of gene expression are known in the art, see, e.g., Thakore et al., Nat Methods. 2016; 13: 127-37, which is incorporated herein by reference in its entirety.

基因表达的阻遏物Repressors of gene expression

在某些实施方式中,所述基因表达调节剂包括基因表达的阻遏物。所述阻遏物可以是任何已知的基因表达阻遏物,例如选自Kruppel相关盒(KRAB)结构域、mSin3相互作用结构域(SID)、MAX相互作用蛋白1(MXI1)、染色体阴影结构域(chromo shadow domain)、EAR抑制结构域(SRDX)、真核释放因子1(ERFl)、真核释放因子3(ERF3)、四环素阻遏物、lad阻遏物、长春花G-box结合因子1和2、Drosophila Groucho,Tripartite motif-containing 28(TRTM28)、核受体辅阻遏物1、核受体辅阻遏物2的阻遏物或其片段或融合体。In certain embodiments, the gene expression regulator comprises a repressor of gene expression. The repressor may be any known gene expression repressor, for example, selected from Kruppel-associated box (KRAB) domain, mSin3 interaction domain (SID), MAX interacting protein 1 (MXI1), chromosome shadow domain, EAR repression domain (SRDX), eukaryotic release factor 1 (ERF1), eukaryotic release factor 3 (ERF3), tetracycline repressor, lad repressor, Catharanthus roseus G-box binding factor 1 and 2, Drosophila Groucho, Tripartite motif-containing 28 (TRTM28), nuclear receptor corepressor 1, nuclear receptor corepressor 2 repressor or a fragment or fusion thereof.

Kruppel相关盒(KRAB)Kruppel Related Box (KRAB)

KRAB结构域是一种转录阻遏结构域,存在于许多基于锌指蛋白的转录因子的N-端部分中。KRAB结构域在通过DNA结合结构域与靶DNA结合时起到转录阻遏物的作用。KRAB结构域富含带电荷氨基酸,并且可以被分为亚结构域A和B。KRAB A和B亚结构域可以被可变的间隔片段分开,并且许多KRAB蛋白仅含有A亚结构域。KRAB A亚结构域中的45个氨基酸的序列已被证明对转录阻遏很重要。B亚结构域本身不阻遏转录,但增强了KRAB A亚结构域的阻遏作用。KRAB结构域招募辅阻遏物KAP1(KRAB相关蛋白-1,也被称为转录中介因子1β、KRAB-A相互作用蛋白和三元基序蛋白28)和异染色质蛋白1(HP1)以及其他染色质调节蛋白,通过异染色质的形成引起转录阻遏。在一个实施方式中,本文公开的方法和组合物包括包含与KRAB结构域或其片段融合的dCas9分子的融合分子。在一个实施方式中,所述KRAB结构域或其片段与dCas9分子的N-端融合。在一个实施方式中,所述KRAB结构域或其片段与dCas9分子的C-端融合。在一个实施方式中,所述KRAB结构域或其片段与dCas9分子的N-端和C-端两者融合。在一个实施方式中,所述融合分子包含KRAB结构域,其包含SEQ ID NO:22的序列、与SEQ ID NO:22基本上相同(例如具有至少80%、85%、90%、92%、95%、97%、98%、99%或更高同一性)的序列或相对于SEQ ID NO:22具有1、2、3、4、5个或更多个变化(例如氨基酸取代、插入或缺失)的序列,或其任何片段。The KRAB domain is a transcriptional repressor domain present in the N-terminal portion of many zinc finger protein-based transcription factors. The KRAB domain functions as a transcriptional repressor when it binds to target DNA through the DNA binding domain. The KRAB domain is rich in charged amino acids and can be divided into subdomains A and B. The KRAB A and B subdomains can be separated by a variable spacer, and many KRAB proteins contain only the A subdomain. A 45-amino acid sequence in the KRAB A subdomain has been shown to be important for transcriptional repression. The B subdomain does not repress transcription itself, but enhances the repressive effect of the KRAB A subdomain. The KRAB domain recruits the corepressors KAP1 (KRAB-associated protein-1, also known as transcription mediator 1β, KRAB-A interacting protein, and ternary motif protein 28) and heterochromatin protein 1 (HP1), as well as other chromatin regulatory proteins, causing transcriptional repression through the formation of heterochromatin. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to a KRAB domain or a fragment thereof. In one embodiment, the KRAB domain or a fragment thereof is fused to the N-terminus of the dCas9 molecule. In one embodiment, the KRAB domain or a fragment thereof is fused to the C-terminus of the dCas9 molecule. In one embodiment, the KRAB domain or a fragment thereof is fused to both the N-terminus and the C-terminus of the dCas9 molecule. In one embodiment, the KRAB domain or a fragment thereof is fused to both the N-terminus and the C-terminus of the dCas9 molecule. In one embodiment, the fusion molecule comprises a KRAB domain comprising a sequence of SEQ ID NO: 22, a sequence substantially identical to SEQ ID NO: 22 (e.g., having at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or higher identity), or a sequence having 1, 2, 3, 4, 5 or more changes (e.g., amino acid substitutions, insertions or deletions) relative to SEQ ID NO: 22, or any fragment thereof.

示例性的KRAB结构域序列Exemplary KRAB domain sequences

mSin3相互作用结构域(SID)mSin3 interaction domain (SID)

mSin3相互作用结构域(SID)是一种存在于几种转录阻遏蛋白上的相互作用结构域。它与mSin3的成对两亲性α-螺旋2(PAH2)结构域相互作用,所述结构域是附着到转录阻遏蛋白例如mSin3 A辅阻遏物的转录阻遏结构域。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与mSin3相互作用结构域或其片段融合的dCas9分子。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与四个串联的mSin3相互作用结构域(SID4X)融合的dCas9分子。在一个实施方式中,所述四个串联的mSin3相互作用结构域(SID4X)被融合到dCas9分子的C-端。The mSin3 interaction domain (SID) is an interaction domain present on several transcriptional repressor proteins. It interacts with the paired amphipathic α-helix 2 (PAH2) domain of mSin3, which is a transcriptional repressor domain attached to a transcriptional repressor protein such as an mSin3 A co-repressor. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to an mSin3 interaction domain or a fragment thereof. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to four tandem mSin3 interaction domains (SID4X). In one embodiment, the four tandem mSin3 interaction domains (SID4X) are fused to the C-terminus of the dCas9 molecule.

MAX相互作用蛋白1(MXI1)MAX interacting protein 1 (MXI1)

Mxi1是一种MYC的阻遏。Mxi1可能通过竞争结合MYC相关因子X(MAX)来拮抗MYC转录活性,后者与MYC结合并且是MYC发挥作用所必需的。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与Mxi1或其片段融合的dCas9分子。在一个实施方式中,Mxi1被融合到dCas9分子的C-端。Mxi1 is a repressor of MYC. Mxi1 may antagonize MYC transcriptional activity by competing for binding to MYC-associated factor X (MAX), which binds to MYC and is necessary for MYC to function. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to Mxi1 or a fragment thereof. In one embodiment, Mxi1 is fused to the C-terminus of the dCas9 molecule.

基因表达激活因子Gene expression activator

在某些实施方式中,所述基因表达调节剂包括基因表达激活因子。所述激活因子可以是任何已知的基因表达激活因子,例如VP16激活结构域、VP64激活结构域、p65激活结构域、爱泼斯坦-巴尔病毒(Epstein-Barr病毒)R反式激活因子Rta分子或其片段。可以与dCas9分子一起使用的激活因子在本领域中是已知的。参见例如Chavez et al.,NatMethods.(2016)13:563-67,其整体通过引并入本文。In some embodiments, the gene expression regulator includes a gene expression activator. The activator can be any known gene expression activator, such as a VP16 activation domain, a VP64 activation domain, a p65 activation domain, an Epstein-Barr virus (Epstein-Barr virus) R transactivator Rta molecule or a fragment thereof. Activators that can be used with dCas9 molecules are known in the art. See, for example, Chavez et al., Nat Methods. (2016) 13: 563-67, which is incorporated herein by reference in its entirety.

VP16、VP64、VP160VP16, VP64, VP160

VP16是一种16个氨基酸的病毒蛋白序列,其将转录激活因子募集到启动子和增强子。VP64是一种包含四个拷贝的VP16的转录激活因子,例如包含通过Gly-Ser接头连接的四个串联拷贝VP16的分子。VP160是一种包含10个VP16拷贝的转录激活因子。在一个实施方式中,本文公开的方法和组合物包括包含与1、2、3、4、5、6、7、8、9、10个或更多个拷贝的VP16融合的dCas9分子的融合分子。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与VP64融合的dCas9分子。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与VP160融合的dCas9分子。在一个实施方式中,VP64被融合到dCas9分子的C-端、N-端或N-端和C-端两者。VP16 is a 16-amino acid viral protein sequence that recruits transcriptional activators to promoters and enhancers. VP64 is a transcriptional activator comprising four copies of VP16, for example, a molecule comprising four tandem copies of VP16 connected by a Gly-Ser linker. VP160 is a transcriptional activator comprising 10 copies of VP16. In one embodiment, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more copies of VP16. In one embodiment, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to VP64. In one embodiment, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to VP160. In one embodiment, VP64 is fused to the C-terminus, N-terminus, or both the N-terminus and the C-terminus of the dCas9 molecule.

p65激活结构域(p65AD)p65 activation domain (p65AD)

p65AD是F-κΒ转录因子的核形式的65kDa多肽的主要反式激活结构域。人类转录因子p65的示例性序列可以在Uniprot数据库中以登录号Q04206获得。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与p65或其片段例如p65AD融合的dCas9分子。p65AD is the major transactivation domain of the 65 kDa polypeptide of the nuclear form of the F-κΒ transcription factor. An exemplary sequence of the human transcription factor p65 can be obtained in the Uniprot database under accession number Q04206. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to p65 or a fragment thereof, such as p65AD.

爱泼斯坦-巴尔病毒(EBV)R反式激活因子(Rta)Epstein-Barr virus (EBV) R transactivator (Rta)

Rta这种EBV的即刻早期蛋白是一种转录激活因子,其诱导裂解基因表达并触发病毒再激活。在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与Rta或其片段融合的dCas9分子。Rta, the immediate early protein of EBV, is a transcriptional activator that induces lytic gene expression and triggers viral reactivation. In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to Rta or a fragment thereof.

VP64、p65、Rta融合体VP64, p65, Rta fusion

在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与VP64、p65、Rta或其任何组合融合的dCas9分子。三元激活因子VP64-p65-Rta(也被称为VPR),其中三个转录激活结构域使用短氨基酸接头融合,当与dCas9分子融合时,可以有效地上调靶基因表达。在一个实施方式中,本文公开的方法和组合物包括包含与VPR融合的dCas9分子。In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to VP64, p65, Rta, or any combination thereof. The ternary activator VP64-p65-Rta (also referred to as VPR), in which the three transcriptional activation domains are fused using a short amino acid linker, can effectively upregulate target gene expression when fused to a dCas9 molecule. In one embodiment, the methods and compositions disclosed herein include a dCas9 molecule fused to a VPR.

协同激活介导物(SAM)Synergistic activation mediator (SAM)

在一个实施方式中,本文公开的方法和组合物包括CRISPR-Cas系统,其包含三种组分:(1)dCas9-VP64融合体,(2)在四环和茎环处掺入两个MS2 RNA适体的gRNA,以及(3)MS2-P65-HSF1激活辅助蛋白。这种被命名为协同激活介导物(SAM)的系统汇集了三个激活结构域—VP64、P65和HSFl,并已在Konermann et al.,Nature.2015;517:583-8中进行了描述,其整体通过引用并入本文。In one embodiment, the methods and compositions disclosed herein include a CRISPR-Cas system comprising three components: (1) a dCas9-VP64 fusion, (2) a gRNA incorporating two MS2 RNA aptamers at the tetraloop and stem loop, and (3) an MS2-P65-HSF1 activation accessory protein. This system, named Synergistic Activation Mediator (SAM), brings together three activation domains—VP64, P65, and HSF1, and has been described in Konermann et al., Nature. 2015; 517: 583-8, which is incorporated herein by reference in its entirety.

Ldbl自缔合结构域Ldbl self-association domain

在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与Ldbl自缔合结构域融合的dCas9分子。Ldbl自缔合结构域募集增强子相关的内源性Ldbl。In one embodiment, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to a Ldbl self-association domain. The Ldbl self-association domain recruits endogenous Ldbl associated with an enhancer.

表观遗传学修饰调节剂Epigenetic Modifiers

在一个实施方式中,本文公开的方法和组合物包括融合分子,其包含与基因表达调节剂融合的dCas9分子。在某些实施方式中,所述基因表达调节剂包括表观遗传修饰的调节剂。在一个实施方式中,所述融合分子通过表观遗传学修饰,例如通过组蛋白乙酰化或甲基化或在靶基因的调控元件例如启动子、增强子或转录起始位点处的DNA甲基化,来调节靶基因表达。所述调节剂可以是任何已知的表观遗传学修饰调节剂,例如组蛋白乙酰转移酶(例如p300催化结构域)、组蛋白脱乙酰基酶、组蛋白甲基转移酶(如SUV39H1或G9a(EHMT2))、组蛋白去甲基化酶(例如LSD1)、DNA甲基转移酶(例如DNMT3a或DNMT3a-DNMT3L)、DNA去甲基化酶(例如TET1催化结构域或TDG)或其片段。In one embodiment, methods and compositions disclosed herein include fusion molecules, which include dCas9 molecules fused to gene expression regulators. In certain embodiments, the gene expression regulator includes an epigenetically modified regulator. In one embodiment, the fusion molecule is modified by epigenetics, such as by histone acetylation or methylation or DNA methylation at a regulatory element of a target gene such as a promoter, an enhancer, or a transcription start site, to regulate target gene expression. The regulator can be any known epigenetic modification regulator, such as histone acetyltransferase (such as p300 catalytic domain), histone deacetylase, histone methyltransferase (such as SUV39H1 or G9a (EHMT2)), histone demethylase (such as LSD1), DNA methyltransferase (such as DNMT3a or DNMT3a-DNMT3L), DNA demethylase (such as TET1 catalytic domain or TDG) or a fragment thereof.

组蛋白修饰活性Histone modification activity

在某些实施方式中,所述表观遗传学修饰调节剂可以具有组蛋白修饰活性。组蛋白修饰活性可以包括但不限于组蛋白脱乙酰酶、组蛋白乙酰转移酶、组蛋白去甲基化酶或组蛋白甲基转移酶活性。In certain embodiments, the epigenetic modification regulator may have histone modification activity. Histone modification activity may include but is not limited to histone deacetylase, histone acetyltransferase, histone demethylase or histone methyltransferase activity.

在某些实施方式中,所述表观遗传学修饰调节剂可以具有组蛋白乙酰转移酶活性。所述组蛋白乙酰转移酶可以是p300或CREB结合蛋白(CBP)蛋白或其片段。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与乙酰转移酶p300或其片段例如p300的催化核心融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与CREB结合蛋白(CBP)蛋白或其片段融合的dCas9分子。In some embodiments, the epigenetic modification regulator may have histone acetyltransferase activity. The histone acetyltransferase may be p300 or CREB binding protein (CBP) protein or its fragment. In some embodiments, the methods and compositions disclosed herein include fusion molecules, which include dCas9 molecules fused to the catalytic core of acetyltransferase p300 or its fragment such as p300. In some embodiments, the methods and compositions disclosed herein include fusion molecules, which include dCas9 molecules fused to CREB binding protein (CBP) protein or its fragment.

在某些实施方式中,所述表观遗传学修饰调节剂可以具有组蛋白去甲基化酶活性。例如,所述表观遗传学修饰调节剂可以包括从核酸或蛋白质(例如组蛋白)去除甲基(CH3-)基团的酶。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与Lys特异性组蛋白去甲基化酶1(LSD1)或其片段融合的dCas9分子。In some embodiments, the epigenetic modification regulator may have histone demethylase activity. For example, the epigenetic modification regulator may include an enzyme that removes a methyl (CH3-) group from a nucleic acid or protein (e.g., histone). In some embodiments, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to a Lys-specific histone demethylase 1 (LSD1) or a fragment thereof.

在某些实施方式中,所述表观遗传学修饰调节剂可以具有组蛋白甲基转移酶活性。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与SUV39H1或其片段融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与G9a(EHMT2)或其片段融合的dCas9分子。In certain embodiments, the epigenetic modification regulator may have histone methyltransferase activity. In certain embodiments, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to SUV39H1 or a fragment thereof. In certain embodiments, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to G9a (EHMT2) or a fragment thereof.

DNA去甲基化酶活性DNA demethylase activity

在某些实施方式中,所述表观遗传学修饰调节剂可以具有DNA去甲基化酶活性。例如,所述表观遗传学修饰调节剂可以将甲基转化为羟甲基胞嘧啶作为DNA去甲基化的机制。在某些实施方式中,本文所公开的方法和组合物包括融合分子,其包含与10-11易位甲基胞嘧啶双加氧酶1(TET1)或其片段融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与胸腺嘧啶DNA糖苷酶(TDG)或其片段融合的dCas9分子。In some embodiments, the epigenetic modification regulator may have DNA demethylase activity. For example, the epigenetic modification regulator may convert methyl to hydroxymethylcytosine as a mechanism for DNA demethylation. In some embodiments, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to 10-11 translocation methylcytosine dioxygenase 1 (TET1) or a fragment thereof. In some embodiments, the methods and compositions disclosed herein include a fusion molecule comprising a dCas9 molecule fused to thymine DNA glycosidase (TDG) or a fragment thereof.

DNA甲基化酶活性DNA methylase activity

在某些实施方式中,所述表观遗传学修饰调节剂可以具有DNA甲基化酶活性。例如,所述表观遗传学修饰调节剂可以具有甲基化酶活性,其涉及将甲基转移到DNA、RNA、蛋白质、小分子、胞嘧啶或腺嘌呤。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与DNMT3A或其片段融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与DNMT3L或其片段融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与DNMT3L和DNMT3L或其片段融合的dCas9分子。在某些实施方式中,本文公开的方法和组合物包括融合分子,其包含与DNMT3A-DNMT3L融合肽融合的dCas9分子。In certain embodiments, the epigenetic modification regulator may have DNA methylase activity. For example, the epigenetic modification regulator may have methylase activity, which involves transferring methyl to DNA, RNA, protein, small molecule, cytosine or adenine. In certain embodiments, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to DNMT3A or a fragment thereof. In certain embodiments, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to DNMT3L or a fragment thereof. In certain embodiments, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to DNMT3L and DNMT3L or a fragment thereof. In certain embodiments, the methods and compositions disclosed herein include fusion molecules comprising dCas9 molecules fused to DNMT3A-DNMT3L fusion peptides.

DNMT3ADNMT3A

DNMT3LDNMT3L

DNMT3A-DNMT3L融合肽DNMT3A-DNMT3L fusion peptide

在一个实施方式中,所述Cas9融合蛋白还包含核定位序列(NLS),例如融合到Cas9的N-端和/或C-端的LS。In one embodiment, the Cas9 fusion protein further comprises a nuclear localization sequence (NLS), such as a LS fused to the N-terminus and/or C-terminus of Cas9.

核定位序列在本领域中是已知的。在一个实施方式中,所述NLS包含SEQ ID NO:25或26的氨基酸序列,与SEQ ID NO:25或26基本上相同(例如至少80%、85%、90%、92%、95%、97%、98%、99%或更高同一性)的序列,或相对于SEQ ID NO:25或26具有1、2、3、4、5个或更多个变化(例如氨基酸取代、插入或缺失)的序列,或其任何片段。Nuclear localization sequences are known in the art. In one embodiment, the NLS comprises an amino acid sequence of SEQ ID NO: 25 or 26, a sequence substantially identical to SEQ ID NO: 25 or 26 (e.g., at least 80%, 85%, 90%, 92%, 95%, 97%, 98%, 99% or more identical), or a sequence having 1, 2, 3, 4, 5 or more changes (e.g., amino acid substitutions, insertions or deletions) relative to SEQ ID NO: 25 or 26, or any fragment thereof.

SEQ ID NO:25(示例性核定位序列)SEQ ID NO: 25 (Exemplary nuclear localization sequence)

APKKKRKVGIHGVPAAAPKKKRKVGIHGVPAA

SEQ ID NO:26(示例性核定位序列)SEQ ID NO: 26 (Exemplary nuclear localization sequence)

KRPAATKKAGQAKKKKKRPAATKKAGQAKKKK

在某些实施方式中,所述基于CRISPR/Cas9的系统可以包括dCas9分子和基因表达调节剂或者编码dCas9分子和基因表达调节剂的核酸。在一个实施方式中,所述dCas9分子和基因表达调节剂被共价连接。在一个实施方式中,所述基因表达调节剂被直接共价融合到dCas9分子。在一个实施方式中,所述基因表达调节剂被间接共价融合到dCas9分子,例如通过非调节剂或接头或通过第二调节剂。在一个实施方式中,所述基因表达调节剂位于所述dCas9分子的N-端和/或C-端处。在一个实施方式中,所述dCas9分子和基因表达调节剂被非共价连接。示例性序列包括但不限于在表2中列出的那些。在某些实施方式中,所述dCas9与至少一种基因表达调节剂之间的接头包含对应于表2中列出的接头的氨基酸序列。In some embodiments, the system based on CRISPR/Cas9 may include a dCas9 molecule and a gene expression regulator or a nucleic acid encoding a dCas9 molecule and a gene expression regulator. In one embodiment, the dCas9 molecule and the gene expression regulator are covalently linked. In one embodiment, the gene expression regulator is directly covalently fused to the dCas9 molecule. In one embodiment, the gene expression regulator is indirectly covalently fused to the dCas9 molecule, for example, by a non-regulator or a joint or by a second regulator. In one embodiment, the gene expression regulator is located at the N-terminus and/or C-terminus of the dCas9 molecule. In one embodiment, the dCas9 molecule and the gene expression regulator are non-covalently linked. Exemplary sequences include but are not limited to those listed in Table 2. In some embodiments, the joint between the dCas9 and at least one gene expression regulator comprises an amino acid sequence corresponding to the joint listed in Table 2.

表2.示例性接头序列Table 2. Exemplary linker sequences

在一个实施方式中,所述dCas9分子被融合到第一标签,例如第一肽标签。在一个实施方式中,所述基因表达调节剂被融合到第二标签,例如第二肽标签。在一个实施方式中,第一和第二标签例如第一肽标签和第二肽标签彼此非共价地相互作用,从而使dCas9分子和基因表达调节剂紧密接近。In one embodiment, the dCas9 molecule is fused to a first tag, such as a first peptide tag. In one embodiment, the gene expression regulator is fused to a second tag, such as a second peptide tag. In one embodiment, the first and second tags, such as a first peptide tag and a second peptide tag, interact with each other non-covalently, thereby bringing the dCas9 molecule and the gene expression regulator into close proximity.

在一个实施方式中,所述基于CRISPR/Cas9的系统包括融合分子或编码融合分子的核酸。在一个实施方式中,所述融合分子包括包含与基因表达调节剂融合的dCas9的序列。在一个实施方式中,所述dCas9分子包括化脓性链球菌(Streptococcus pyogenes)dCas9分子、金黄色葡萄球菌(Staphylococcus aureus)dCas9分子、空肠弯曲菌(Campylobacter jejuni)dCas9分子、白喉棒状杆菌(Corynebacterium diphtheria)dCas9分子、凸腹真杆菌(Eubacterium ventriosum)dCas9分子、巴氏链球菌(Streptococcuspasteurianus)dCas9分子、香肠乳杆菌(Lactobacillus farciminis)dCas9分子、螺旋体球菌(Sphaerochaeta globus)dCas9分子、固氮螺菌属(Azospirillum)(菌株B510)dCas9分子、嗜重氮葡糖醋杆菌(Gluconacetobacter diazotrophicus)dCas9分子、灰色奈瑟菌(Neisseria cinerea)dCas9分子、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9分子、Parvibaculum lavamentivorans dCas9分子、Nitratifractor salsuginis(菌株DSM16511)dCas9分子、海鸥弯曲菌(Campylobacter lari)(菌株CF89-12)dCas9分子、嗜热链球菌(Streptococcus thermophilus)(菌株LMD-9)dCas9分子或其片段。In one embodiment, the CRISPR/Cas9-based system comprises a fusion molecule or a nucleic acid encoding a fusion molecule. In one embodiment, the fusion molecule comprises a sequence comprising dCas9 fused to a gene expression regulator. In one embodiment, the dCas9 molecule includes a Streptococcus pyogenes dCas9 molecule, a Staphylococcus aureus dCas9 molecule, a Campylobacter jejuni dCas9 molecule, a Corynebacterium diphtheria dCas9 molecule, an Eubacterium ventriosum dCas9 molecule, a Streptococcus pasteurianus dCas9 molecule, a Lactobacillus farciminis dCas9 molecule, a Sphaerochaeta globus dCas9 molecule, an Azospirillum (strain B510) dCas9 molecule, a Gluconacetobacter diazotrophicus dCas9 molecule, a Neisseria griseus dCas9 molecule, and a Streptococcus pasteurianus dCas9 molecule. cinerea) dCas9 molecule, Roseburia intestinalis dCas9 molecule, Parvibaculum lavamentivorans dCas9 molecule, Nitratifractor salsuginis (strain DSM16511) dCas9 molecule, Campylobacter lari (strain CF89-12) dCas9 molecule, Streptococcus thermophilus (strain LMD-9) dCas9 molecule or its fragment.

在一个实施方式中,所述融合分子是DNMT3A-DNMT3L(3A3L)-dCas9-KRAB融合分子,其从N-端到C-端包含:直接或间接地(例如通过接头)融合的DNMT3A-DNMT3L融合肽(3A3L)、dCas9肽和KRAB肽结构域。In one embodiment, the fusion molecule is a DNMT3A-DNMT3L (3A3L)-dCas9-KRAB fusion molecule, which comprises from N-terminus to C-terminus: a DNMT3A-DNMT3L fusion peptide (3A3L), a dCas9 peptide, and a KRAB peptide domain fused directly or indirectly (e.g., via a linker).

在一个实施方式中,所述融合分子包含融合分子,其包含SEQ ID NO:97的氨基酸序列,与SEQ ID NO:97基本上相同(例如序列同一性为至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高)的序列,或相对于SEQ ID NO:97具有1、2、3、4、5个或更多个变化(例如取代、插入或缺失)的序列,或其任何片段。In one embodiment, the fusion molecule comprises a fusion molecule comprising the amino acid sequence of SEQ ID NO:97, a sequence substantially identical to SEQ ID NO:97 (e.g., a sequence identity of at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more), or a sequence having 1, 2, 3, 4, 5 or more changes (e.g., substitutions, insertions or deletions) relative to SEQ ID NO:97, or any fragment thereof.

DNMT3A-DNMT3L(3A3L)-dCas9-KRABDNMT3A-DNMT3L(3A3L)-dCas9-KRAB

gRNAgRNA

在CRISPR-Cas系统的情况下,本文所使用的术语“引导序列”包括与靶核酸序列具有足够互补性以与靶核酸序列杂交并指导核酸靶向复合物与靶核酸序列的序列特异性结合的任何多核苷酸序列。所述引导序列可以与靶序列形成双链体。所述双链体可以是DNA双链体、RNA双链体或RNA/DNA双链体。术语“引导分子”、“引导RNA”和“单一引导RNA”在本文中可互换使用,是指基于RNA的分子,其能够与CRISPR-Cas蛋白形成复合物,并包含与靶核酸序列具有足够互补性以与靶核酸序列杂交并指导复合物与靶核酸序列的序列特异性结合的引导序列。如本文所述,引导分子或引导RNA特别地涵盖具有一个或多个化学修饰(例如通过化学连接两个核糖核苷酸或通过用一个或多个脱氧核糖核苷酸代替一个或多个核糖核苷酸)的基于RNA的分子。In the case of the CRISPR-Cas system, the term "guide sequence" as used herein includes any polynucleotide sequence that has sufficient complementarity with the target nucleic acid sequence to hybridize with the target nucleic acid sequence and guide the sequence-specific binding of the nucleic acid targeting complex to the target nucleic acid sequence. The guide sequence can form a duplex with the target sequence. The duplex can be a DNA duplex, an RNA duplex or an RNA/DNA duplex. The terms "guide molecule", "guide RNA" and "single guide RNA" are used interchangeably herein and refer to RNA-based molecules that can form a complex with the CRISPR-Cas protein and include a guide sequence that has sufficient complementarity with the target nucleic acid sequence to hybridize with the target nucleic acid sequence and guide the sequence-specific binding of the complex to the target nucleic acid sequence. As described herein, guide molecules or guide RNAs particularly encompass RNA-based molecules with one or more chemical modifications (e.g., by chemically linking two ribonucleotides or by replacing one or more ribonucleotides with one or more deoxyribonucleotides).

CRISPR-Cas蛋白的引导分子或引导RNA可以包含tracr-mate序列(在内源CRISPR系统的情况下涵盖“正向重复序列”)和引导序列(在内源CRISPR系统的情况下也被称为“间隔区”)。在某些实施方式中,本文所述的CRISPR-Cas系统或复合物不包含tracr序列和/或不依赖于tracr序列的存在。在某些实施方式中,所述引导分子可以包含与引导序列或间隔序列融合或连接的正向重复序列、基本上由其组成或由其组成。The guide molecule or guide RNA of the CRISPR-Cas protein can include a tracr-mate sequence (covering a "direct repeat sequence" in the case of an endogenous CRISPR system) and a guide sequence (also referred to as a "spacer" in the case of an endogenous CRISPR system). In certain embodiments, the CRISPR-Cas system or complex described herein does not include a tracr sequence and/or does not rely on the presence of a tracr sequence. In certain embodiments, the guide molecule may include, consist essentially of, or consist of a direct repeat sequence fused or linked to a guide sequence or a spacer sequence.

一般而言,CRISPR-Cas系统的特征在于促进在靶序列位点处形成CRISPR复合物的元件。在CRISPR复合物形成的情况下,“靶序列”是指引导序列被设计成与其具有互补性的序列,其中靶DNA序列与引导序列之间的杂交促进CRISPR复合物的形成。In general, CRISPR-Cas systems are characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence. In the context of CRISPR complex formation, a "target sequence" refers to a sequence to which a guide sequence is designed to have complementarity, wherein hybridization between a target DNA sequence and a guide sequence promotes the formation of a CRISPR complex.

在某些实施方式中,所述引导分子的引导序列或间隔区长度为15至50个核苷酸。在某些实施方式中,所述引导RNA的间隔区长度为至少15个核苷酸的长度。在某些实施方式中,所述间隔区长度为15至17个核苷酸、17至20个核苷酸、20至24个核苷酸、23至25个核苷酸、24至27个核苷酸、27至30个核苷酸、30至35个核苷酸或大于35个核苷酸。In some embodiments, the guide sequence or spacer length of the guide molecule is 15 to 50 nucleotides. In some embodiments, the spacer length of the guide RNA is at least 15 nucleotides in length. In some embodiments, the spacer length is 15 to 17 nucleotides, 17 to 20 nucleotides, 20 to 24 nucleotides, 23 to 25 nucleotides, 24 to 27 nucleotides, 27 to 30 nucleotides, 30 to 35 nucleotides, or greater than 35 nucleotides.

在某些实施方式中,所述引导序列的长度为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100个核苷酸。In some embodiments, the length of the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 , 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides.

在某些实施方式中,选择引导分子的序列(正向重复序列和/或间隔区)以降低引导分子内的二级结构程度。在某些实施方式中,当最佳折叠时,所述靶向核酸的引导RNA的等于或少于约75%、50%、40%、30%、25%、20%、15%、10%、5%、1%或更少的核苷酸参与自互补碱基配对。最佳折叠可以通过任何适合的多核苷酸折叠算法来确定。一些程序是基于计算最小吉布斯自由能。一个此类算法的实例是mFold,如Zuker and Stiegler(NucleicAcids Res.9(1981),133-148)中所描述的。另一种示例性折叠算法是在线网络服务器RNAfold,其在维也纳大学理论化学研究所使用质心结构预测算法开发(参见例如A.R.Gruber et al.,2008,Cell 106(1):23-24和PA Carr and GM Church,2009,NatureBiotechnology 27(12):1151-62)。In some embodiments, the sequence of the guide molecule (direct repeat sequence and/or spacer) is selected to reduce the degree of secondary structure in the guide molecule. In some embodiments, when optimally folded, the guide RNA of the target nucleic acid is equal to or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1% or less nucleotides participate in self-complementary base pairing. Optimal folding can be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimum Gibbs free energy. An example of such an algorithm is mFold, as described in Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another exemplary folding algorithm is the online web server RNAfold, which was developed at the Institute of Theoretical Chemistry at the University of Vienna using the centroid structure prediction algorithm (see, e.g., A. R. Gruber et al., 2008, Cell 106(1):23-24 and PA Carr and GM Church, 2009, Nature Biotechnology 27(12):1151-62).

如上所述,所述CRISPR/Cas9系统利用提供对基于CRISPR/Cas9的系统的靶向的gRNA。所述gRNA是两个非编码RNA的融合体:crRNA和tracrRNA。所述sgRNA可以通过交换编码20bp的前间隔序列的序列来靶向任何所需的DNA序列,所述前间隔序列通过与所需DNA靶的互补碱基配对赋予靶向特异性。gRNA模拟参与II型效应系统的天然存在的crRNA:tracrRNA双链体。这种双链体可以包括例如42个核苷酸的crRNA和75个核苷酸的tracrRNA,充当Cas9切割靶核酸的引导物。As described above, the CRISPR/Cas9 system utilizes a gRNA that provides targeting of a CRISPR/Cas9-based system. The gRNA is a fusion of two non-coding RNAs: crRNA and tracrRNA. The sgRNA can target any desired DNA sequence by exchanging the sequence encoding the 20bp pre-spacer sequence, which confers targeting specificity by complementary base pairing with the desired DNA target. The gRNA simulates the naturally occurring crRNA:tracrRNA duplex involved in the type II effector system. This duplex can include, for example, a 42-nucleotide crRNA and a 75-nucleotide tracrRNA, acting as a guide for Cas9 to cut the target nucleic acid.

在本文中可互换使用的术语“靶区域”、“靶序列”或“前间隔序列”是指基于CRISPR/Cas9的系统靶向的靶基因区域。所述基于CRISPR/Cas9的系统可以包括至少一个gRNA,其中所述gRNA靶向不同的DNA序列。所述靶DNA序列可以是交叠的。靶序列或前间隔序列后面是在前间区序列的3'末端处的PAM序列。不同的II型系统具有不同的PAM要求。例如,化脓性链球菌(S.pyogenes)II型系统使用“NGG”序列,其中“N”可以是任何核苷酸。The terms "target region", "target sequence" or "protospacer sequence", used interchangeably herein, refer to the region of the target gene targeted by a CRISPR/Cas9-based system. The CRISPR/Cas9-based system may include at least one gRNA, wherein the gRNA targets different DNA sequences. The target DNA sequences may be overlapping. The target sequence or protospacer sequence is followed by a PAM sequence at the 3' end of the protospacer sequence. Different type II systems have different PAM requirements. For example, the S. pyogenes type II system uses an "NGG" sequence, where "N" can be any nucleotide.

在某些实施方式中,施用到细胞的gRNA的数量可以是至少1个gRNA、至少2个不同的gRNA、至少3个不同的gRNA、至少4个不同的gRNA、至少5个不同的gRNA、至少6个不同的gRNA、至少7个不同的gRNA、至少8个不同的gRNA、至少9个不同的gRNA、至少10个不同的gRNA、至少11个不同的gRNA、至少12个不同的gRNA、至少13个不同的gRNA、至少14个不同的gRNA、至少15个不同的gRNA、至少16个不同的gRNA、至少17个不同的gRNA、至少18个不同的gRNA、至少19个不同的gRNA、至少20个不同的gRNA、至少25个不同的gRNA、至少30个不同的gRNA、至少35个不同的gRNA、至少40个不同的gRNA、至少45个不同的gRNA或至少50个不同的gRNA。In certain embodiments, the number of gRNAs administered to the cells can be at least 1 gRNA, at least 2 different gRNAs, at least 3 different gRNAs, at least 4 different gRNAs, at least 5 different gRNAs, at least 6 different gRNAs, at least 7 different gRNAs, at least 8 different gRNAs, at least 9 different gRNAs, at least 10 different gRNAs, at least 11 different gRNAs, at least 12 different gRNAs, at least 13 different gRNAs, at least 14 different gRNAs, at least 15 different gRNAs, at least 16 different gRNAs, at least 17 different gRNAs, at least 18 different gRNAs, at least 19 different gRNAs, at least 20 different gRNAs, at least 25 different gRNAs, at least 30 different gRNAs, at least 35 different gRNAs, at least 40 different gRNAs, at least 45 different gRNAs, or at least 50 different gRNAs.

在某些实施方式中,施用到细胞的gRNA的数量可以在至少1个gRNA到至少50个不同的gRNA、至少1个gRNA到至少45个不同的gRNA、至少1个gRNA到至少40个不同的gRNA、至少1个gRNA到至少35个不同的gRNA、至少1个gRNA到至少30个不同的gRNA、至少1个gRNA到至少25个不同的gRNA、至少1个gRNA到至少20个不同的gRNA、至少1个gRNA到至少16个不同的gRNA、至少1个gRNA到至少12个不同的gRNA、至少1个gRNA到至少8个不同的gRNA、至少1个gRNA到至少4个不同的gRNA、至少4gRNAs到至少50个不同的gRNA、至少4个不同的gRNA到至少45个不同的gRNA、至少4个不同的gRNA到至少40个不同的gRNA、至少4个不同的gRNA到至少35个不同的gRNA、至少4个不同的gRNA到至少30个不同的gRNA、至少4个不同的gRNA到至少25个不同的gRNA、至少4个不同的gRNA到至少20个不同的gRNA、至少4个不同的gRNA到至少16个不同的gRNA、至少4个不同的gRNA到至少12个不同的gRNA、至少4个不同的gRNA到至少8个不同的gRNA、至少8个不同的gRNA到至少50个不同的gRNA、至少8个不同的gRNA到至少45个不同的gRNA、至少8个不同的gRNA到至少40个不同的gRNA、至少8个不同的gRNA到至少35个不同的gRNA、8个不同的gRNA到至少30个不同的gRNA、至少8个不同的gRNA到至少25个不同的gRNA、8个不同的gRNA到至少20个不同的gRNA、至少8个不同的gRNA到至少16个不同的gRNA或8个不同的gRNA到至少12个不同的gRNA之间。In certain embodiments, the number of gRNAs administered to a cell can be from at least 1 gRNA to at least 50 different gRNAs, at least 1 gRNA to at least 45 different gRNAs, at least 1 gRNA to at least 40 different gRNAs, at least 1 gRNA to at least 35 different gRNAs, at least 1 gRNA to at least 30 different gRNAs, at least 1 gRNA to at least 25 different gRNAs, at least 1 gRNA to at least 20 different gRNAs, at least 1 gRNA to at least 16 different gRNAs, at least 1 gRNA to at least 12 different gRNAs, at least 1 gRNA to at least 8 different gRNAs, at least 1 gRNA to at least 4 different gRNAs, at least 4 gRNAs to at least 50 different gRNAs, at least 4 different gRNAs to at least 45 different gRNAs, at least 4 different gRNAs to at least 40 different gRNAs, at least 4 different gRNAs to at least 3 ...5 different gRNAs, at least 4 different gRNAs to at least 40 different gRNAs, at least 4 different gRNAs to at least 35 different gRNAs, at least 4 different gRNAs to at least 30 different gRNAs, at least 1 gRNA to at least 25 different gRNAs, at least 1 gRNA to at least 20 different gRNAs, at least 1 gRNA to at least 16 different gRNAs, at least 1 gRNA to at least 12 different gRNAs, at least 1 gRNA to at least 8 different gRNAs, at least 1 gRNA to at least 4 different gRNAs different gRNAs to at least 30 different gRNAs, at least 4 different gRNAs to at least 25 different gRNAs, at least 4 different gRNAs to at least 20 different gRNAs, at least 4 different gRNAs to at least 16 different gRNAs, at least 4 different gRNAs to at least 12 different gRNAs, at least 4 different gRNAs to at least 8 different gRNAs, at least 8 different gRNAs to at least 50 different gRNAs, at least 8 different gRNAs to at least 45 different gRNAs, at least 8 different gRNAs to at least 40 different gRNAs, at least 8 different gRNAs to at least 35 different gRNAs, 8 different gRNAs to at least 30 different gRNAs, at least 8 different gRNAs to at least 25 different gRNAs, 8 different gRNAs to at least 20 different gRNAs, at least 8 different gRNAs to at least 16 different gRNAs, or 8 different gRNAs to at least 12 different gRNAs.

在某些实施方式中,对gRNA进行选择以增加或减少靶基因的转录。在某些实施方式中,所述gRNA靶向靶基因(例如PCSK9)的转录起始位点(TSS)上游的区域,例如靶基因的转录起始位点上游0-1000bp之间的区域。在某些实施方式中,所述gRNA靶向靶基因的转录起始位点上游0-50bp、0-100bp、0-150bp、0-200bp、0-250bp、0-300bp、0-350bp、0-400bp、0-450bp、0-500bp、0-550bp、0-600bp、0-650bp、0-700bp、0-750bp、0-800bp、0-850bp、0-900bp、0-950bp或0-1000bp之间的区域。在某些实施方式中,所述gRNA靶向靶基因的转录起始位点上游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内的区域。在一个实施方式中,所述gRNA靶向靶基因的TSS上游0-300bp的区域。In some embodiments, gRNA is selected to increase or decrease the transcription of target gene. In some embodiments, the region of the transcription start site (TSS) upstream of the gRNA targeting target gene (such as PCSK9), such as the region between 0-1000bp upstream of the transcription start site of the target gene. In some embodiments, the region between 0-50bp, 0-100bp, 0-150bp, 0-200bp, 0-250bp, 0-300bp, 0-350bp, 0-400bp, 0-450bp, 0-500bp, 0-550bp, 0-600bp, 0-650bp, 0-700bp, 0-750bp, 0-800bp, 0-850bp, 0-900bp, 0-950bp or 0-1000bp upstream of the transcription start site of the gRNA targeting target gene. In certain embodiments, the gRNA targets the region within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp upstream of the transcription start site of the target gene. In one embodiment, the gRNA targets the region 0-300bp upstream of the TSS of the target gene.

在某些实施方式中,所述gRNA靶向靶基因的转录起始位点下游的区域,例如靶基因的转录起始位点下游0-1000bp之间的区域。在某些实施方式中,所述gRNA靶向靶基因的转录起始位点下游0-50bp、0-100bp、0-150bp、0-200bp、0-250bp、0-300bp、0-350bp、0-400bp、0-450bp、0-500bp、0-550bp、0-600bp、0-650bp、0-700bp、0-750bp、0-800bp、0-850bp、0-900bp、0-950bp或0-1000bp之间的区域。在某些实施方式中,所述gRNA靶向所述靶基因的转录起始位点下游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内的区域。在一个实施方式中,所述gRNA靶向靶基因的TSS下游0-300bp的区域。In some embodiments, the region downstream of the transcription start site of the gRNA targeting target gene, such as the region between 0-1000bp downstream of the transcription start site of the target gene. In some embodiments, the region between 0-50bp, 0-100bp, 0-150bp, 0-200bp, 0-250bp, 0-300bp, 0-350bp, 0-400bp, 0-450bp, 0-500bp, 0-550bp, 0-600bp, 0-650bp, 0-700bp, 0-750bp, 0-800bp, 0-850bp, 0-900bp, 0-950bp or 0-1000bp downstream of the transcription start site of the gRNA targeting target gene. In certain embodiments, the gRNA targets a region within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp downstream of the transcription start site of the target gene. In one embodiment, the gRNA targets a region 0-300bp downstream of the TSS of the target gene.

前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)也可以被称为枯草杆菌蛋白酶/Kexin样蛋白酶PC9。人PCSK9具有1p32.3的细胞遗传学位置,并且基因组坐标在1号染色体正向链上的55,039,548-55,064,852位置处。BSND是正向链上PCSK9上游的基因。人PCSK9的NCBI基因ID为255738,Ref Seq登录号为NM_174936.4,Ref Seq登录号为NP_777596.2,并且Ensembl基因ID为ENSG00000169174。Proprotein convertase subtilisin/Kexin type 9 (PCSK9) may also be referred to as subtilisin/Kexin-like protease PC9. Human PCSK9 has a cytogenetic location of 1p32.3, and genomic coordinates are at positions 55,039,548-55,064,852 on the forward strand of chromosome 1. BSND is a gene upstream of PCSK9 on the forward strand. The NCBI gene ID of human PCSK9 is 255738, the Ref Seq accession number is NM_174936.4, the Ref Seq accession number is NP_777596.2, and the Ensembl gene ID is ENSG00000169174.

小鼠PCSK9的基因组位置为4,4C7,并且具有NC_000070.07位置处的4号染色体的基因组序列。BSND是正向链上小鼠PCSK9上游的基因。小鼠PCSK9的NCBI基因ID为100102,Ref Seq登录号为NM_153565.2,Ref Seq登录号为NP_705793.1,并且Ensembl基因ID为ENSMUSG00000044254。The genomic location of mouse PCSK9 is 4,4C7, and has a genomic sequence of chromosome 4 at position NC_000070.07. BSND is a gene upstream of mouse PCSK9 on the forward strand. The NCBI gene ID of mouse PCSK9 is 100102, the Ref Seq accession number is NM_153565.2, the Ref Seq accession number is NP_705793.1, and the Ensembl gene ID is ENSMUSG00000044254.

恒河猴(Macaca mulatta)PCSK9的基因组位置为NC_041754.1。ENSMMUG0000005740是正向链上猴PCSK9上游的基因。猴PCSK9的Ref Seq登录号为NM_001112660.1,Ref Seq登录号为NP_001106130.1,并且Ensembl基因ID为ENSMMUG00000005736。The genomic location of rhesus monkey (Macaca mulatta) PCSK9 is NC_041754.1. ENSMMUG0000005740 is the gene upstream of monkey PCSK9 on the forward strand. The Ref Seq accession number of monkey PCSK9 is NM_001112660.1, the Ref Seq accession number is NP_001106130.1, and the Ensembl gene ID is ENSMMUG00000005736.

本公开提供了靶向小鼠PCSK9靶基因的sgRNA序列。示例性的sgRNA包括但不限于表3中列出的那些。本公开还提供了靶向人PCSK9的sgRNA序列。示例性的sgRNA包括但不限于表4中列出的那些。本公开还提供了靶向猴PCSK9的sgRNA序列。示例性的sgRNA包括但不限于表5中列出的那些。The present disclosure provides sgRNA sequences targeting mouse PCSK9 target genes. Exemplary sgRNAs include, but are not limited to, those listed in Table 3. The present disclosure also provides sgRNA sequences targeting human PCSK9. Exemplary sgRNAs include, but are not limited to, those listed in Table 4. The present disclosure also provides sgRNA sequences targeting monkey PCSK9. Exemplary sgRNAs include, but are not limited to, those listed in Table 5.

表3.示例性的小鼠PCSK9 sgRNA序列Table 3. Exemplary mouse PCSK9 sgRNA sequences

描述describe 序列sequence SEQ ID NO:SEQ ID NO: 小鼠PCSK9 sgRNA1Mouse PCSK9 sgRNA1 TGGACGCGCAGGCTGCCGGTTGGACGCGCAGGCTGCCGGT SEQ ID NO:27SEQ ID NO: 27 小鼠PCSK9 sgRNA2Mouse PCSK9 sgRNA2 CCACCTTCACGTGGACGCGCCCACCTTCACGTGGACGCGC SEQ ID NO:28SEQ ID NO: 28 小鼠PCSK9 sgRNA3Mouse PCSK9 sgRNA3 GTGGACGCGCAGGCTGCCGGGTGGACGCGCAGGCTGCCGG SEQ ID NO:29SEQ ID NO: 29 小鼠PCSK9 sgRNA4Mouse PCSK9 sgRNA4 CTCTCTCTTTCTGAGGCTAGCTCTCTCTTTCTGAGGCTAG SEQ ID NO:30SEQ ID NO: 30 小鼠PCSK9 sgRNA5Mouse PCSK9 sgRNA5 CACGTGGACGCGCAGGCTGCCACGTGGACGCGCAGGCTGC SEQ ID NO:31SEQ ID NO: 31 小鼠PCSK9 sgRNA6Mouse PCSK9 sgRNA6 TTAAGAGGGGGGAATGTAACTTAAGAGGGGGGAATGTAAC SEQ ID NO:32SEQ ID NO: 32 小鼠PCSK9 sgRNA7Mouse PCSK9 sgRNA7 AACCTGATCCTTTAGTACCGAACCTGATCCTTTAGTACCG SEQ ID NO:33SEQ ID NO: 33 小鼠PCSK9 sgRNA8Mouse PCSK9 sgRNA8 TCAGAGAGGATCTTCCGATGTCAGAGAGGATCTTCCGATG SEQ ID NO:34SEQ ID NO: 34 小鼠PCSK9 sgRNA9Mouse PCSK9 sgRNA9 GGATCTTCCGATGGGGCTCGGGATCTTCCGATGGGGCTCG SEQ ID NO:35SEQ ID NO: 35 小鼠PCSK9 sgRNA10Mouse PCSK9 sgRNA10 GCGTCATTTGACGCTGTCTGGCGTCATTTGACGCTGTCTG SEQ ID NO:36SEQ ID NO: 36 小鼠PCSK9 sgRNA11Mouse PCSK9 sgRNA11 TCATTTGACGCTGTCTGGGGTCATTTGACGCTGTCTGGGG SEQ ID NO:37SEQ ID NO: 37 小鼠PCSK9 sgRNA12Mouse PCSK9 sgRNA12 GATCCTTTAGTACCGGGGCCGATCCTTTAGTACCGGGGCC SEQ ID NO:38SEQ ID NO: 38 小鼠PCSK9 sgRNA13Mouse PCSK9 sgRNA13 TGCAGCCCAATTAGGATTTGTGCAGCCCAATTAGGATTTG SEQ ID NO:39SEQ ID NO: 39

表4.示例性的人PCSK9 sgRNA序列Table 4. Exemplary human PCSK9 sgRNA sequences

表5.示例性的猴PCSK9 sgRNA序列Table 5. Exemplary monkey PCSK9 sgRNA sequences

在一个实施方式中,所述gRNA靶向靶基因的启动子区。在一个实施方式中,所述gRNA靶向靶基因的增强子区。gRNA可以被分为靶结合区、Cas9结合区和转录终止区。所述靶结合区与靶基因中的靶区域杂交。设计此类靶结合区的方法在本领域中是已知的,参见例如Doench et al.,Nat Biotechnol.(2014)32:1262-7和Doench et al.,Nat Biotechnol.(2016)34:184-91,其整体通过引用并入本文。设计工具可在例如Feng Zhang实验室的target Finder、Michael Boutros实验室的Target Finder(E-CRISP)、RGEN Tools(Cas-OFFinder)、CasFinder和CRISPR Optimal Target Finder处获得。在某些实施方式中,所述靶结合区的长度可以在约15至约50个核苷酸之间(约15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或约50个核苷酸的长度)。在某些实施方式中,所述靶结合区的长度可以在约19至约21个核苷酸之间。在一个实施方式中,所述靶结合区的长度为15、16、17、18、19、20、21、22、23、24或25个核苷酸。In one embodiment, the gRNA targets the promoter region of the target gene. In one embodiment, the gRNA targets the enhancer region of the target gene. gRNA can be divided into a target binding region, a Cas9 binding region, and a transcription termination region. The target binding region hybridizes with the target region in the target gene. The method for designing such a target binding region is known in the art, see, for example, Doench et al., Nat Biotechnol. (2014) 32: 1262-7 and Doench et al., Nat Biotechnol. (2016) 34: 184-91, which are incorporated herein by reference in their entirety. Design tools can be obtained at, for example, the target Finder of Feng Zhang Laboratory, the Target Finder (E-CRISP) of Michael Boutros Laboratory, RGEN Tools (Cas-OFFinder), CasFinder, and CRISPR Optimal Target Finder. In certain embodiments, the target binding region can be between about 15 and about 50 nucleotides in length (about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or about 50 nucleotides in length). In certain embodiments, the target binding region can be between about 19 and about 21 nucleotides in length. In one embodiment, the target binding region is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.

在一个实施方式中,所述靶结合区与靶基因中的靶区域互补,例如完全互补。在一个实施方式中,所述靶结合区与靶基因中的靶区域基本互补。在一个实施方式中,所述靶结合区包含不超过1、2、3、4、5、6、7、8、9或10个与靶基因中的靶区域不互补的核苷酸。In one embodiment, the target binding region is complementary to the target region in the target gene, such as fully complementary. In one embodiment, the target binding region is substantially complementary to the target region in the target gene. In one embodiment, the target binding region comprises no more than 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides that are not complementary to the target region in the target gene.

在一个实施方式中,所述靶结合区被工程化改造以提高稳定性或延长半衰期,例如通过在靶结合区中掺入非天然核苷酸或修饰的核苷酸,通过去除或修饰RNA失稳序列元件,通过添加RNA稳定序列元件,或通过增加Cas9/gRNA复合物的稳定性。在一个实施方式中,所述靶结合区被工程化改造以增强其转录。在一个实施方式中,所述靶结合区被工程化改造,以减少二级结构的形成。在一个实施方式中,gRNA的Cas9结合区被修饰,以增强gRNA的转录。在一个实施方式中,gRNA的Cas9结合区被修饰,以改进Cas9/gRNA复合物的稳定性或组装。In one embodiment, the target binding region is engineered to improve stability or extend half-life, for example, by incorporating non-natural nucleotides or modified nucleotides into the target binding region, by removing or modifying RNA destabilizing sequence elements, by adding RNA stabilizing sequence elements, or by increasing the stability of the Cas9/gRNA complex. In one embodiment, the target binding region is engineered to enhance its transcription. In one embodiment, the target binding region is engineered to reduce the formation of secondary structure. In one embodiment, the Cas9 binding region of the gRNA is modified to enhance the transcription of the gRNA. In one embodiment, the Cas9 binding region of the gRNA is modified to improve the stability or assembly of the Cas9/gRNA complex.

递送系统Delivery System

本公开还提供了用于将本文的系统和组合物的组分引入细胞、组织、器官或生物体的递送系统。递送系统可以包括一个或多个递送媒介物和/或运载物。The present disclosure also provides delivery systems for introducing components of the systems and compositions herein into cells, tissues, organs or organisms.The delivery system can include one or more delivery vehicles and/or carriers.

运载物Cargo

所述递送系统可以包括一个或多个运载物。所述运载物可以包括本文的系统和组合物的一个或多个组分。运载物可以包含下述一者或多者:i)编码一种或几种Cas蛋白的质粒;ii)编码一种或多种引导RNA的质粒,iii)一种或多种Cas蛋白的mRNA;iv)一种或多种引导RNA;v)一种或多种Cas蛋白;vi)其任何组合。在某些实例中,运载物可以包含编码一种或多种Cas蛋白和一种或多种(例如多种)引导RNA的质粒。在某些实施方式中,运载物可以包括编码一种或多种Cas蛋白的mRNA和一种或多种引导RNA。The delivery system may include one or more carriers. The carrier may include one or more components of the systems and compositions herein. The carrier may include one or more of the following: i) a plasmid encoding one or more Cas proteins; ii) a plasmid encoding one or more guide RNAs, iii) mRNAs of one or more Cas proteins; iv) one or more guide RNAs; v) one or more Cas proteins; vi) any combination thereof. In some instances, the carrier may include a plasmid encoding one or more Cas proteins and one or more (e.g., multiple) guide RNAs. In some embodiments, the carrier may include mRNAs encoding one or more Cas proteins and one or more guide RNAs.

在某些实例中,运载物可以包括一种或多种Cas蛋白和一种或多种引导RNA,例如采取核糖核蛋白复合物(RNP)的形式。所述核糖核蛋白复合物可以通过本文的方法和系统递送。在某些情况下,所述核糖核蛋白可以利用基于多肽的穿梭剂来递送。在一个实例中,所述核糖核蛋白可使用合成肽递送,所述合成肽包含可操作地连接到细胞穿透结构域(CPD)、富含组氨酸结构域和CPD的内体渗漏结构域(ELD),例如在WO2016161516中所述。In some instances, the carrier may include one or more Cas proteins and one or more guide RNAs, for example, in the form of a ribonucleoprotein complex (RNP). The ribonucleoprotein complex may be delivered by the methods and systems herein. In some cases, the ribonucleoprotein may be delivered using a shuttle agent based on a polypeptide. In one example, the ribonucleoprotein may be delivered using a synthetic peptide comprising an endosome leakage domain (ELD) operably connected to a cell penetration domain (CPD), a histidine-rich domain and a CPD, such as described in WO2016161516.

物理递送Physical delivery

在某些实施方式中,所述运载物可以通过物理递送方法引入细胞。物理方法的实例包括显微注射、电穿孔和流体动力学递送。In certain embodiments, the cargo can be introduced into the cell by a physical delivery method. Examples of physical methods include microinjection, electroporation, and hydrodynamic delivery.

显微注射Microinjection

将运载物直接显微注射到细胞中可以实现高效率,例如高于90%或约100%。在某些实施方式中,显微注射可以使用显微镜和针头(例如直径为0.5-5.0μm)进行,以刺穿细胞膜并将运载物直接递送到细胞内的靶位点。显微注射可用于体外和离体递送。Microinjection of cargo directly into cells can achieve high efficiencies, e.g., greater than 90% or about 100%. In certain embodiments, microinjection can be performed using a microscope and a needle (e.g., 0.5-5.0 μm in diameter) to pierce the cell membrane and deliver the cargo directly to a target site within the cell. Microinjection can be used for in vitro and ex vivo delivery.

可以显微注射包含编码Cas蛋白和/或引导RNA、mRNA和/或引导RNA的序列的质粒。在某些情况下,显微注射可用于i)将DNA直接递送到细胞核,和/或ii)将mRNA(例如体外转录的)递送到细胞核或细胞质。在某些实例中,显微注射可用于将sgRNA直接递送到细胞核,并将编码Cas的mRNA递送到细胞质,例如促进Cas的翻译和向细胞核的穿梭。Plasmids containing sequences encoding Cas proteins and/or guide RNAs, mRNAs and/or guide RNAs can be microinjected. In some cases, microinjection can be used to i) deliver DNA directly to the nucleus, and/or ii) deliver mRNA (e.g., in vitro transcribed) to the nucleus or cytoplasm. In some instances, microinjection can be used to deliver sgRNA directly to the nucleus, and deliver mRNA encoding Cas to the cytoplasm, such as to promote translation of Cas and shuttling to the nucleus.

显微注射可用于产生基因修饰的动物。例如,可以将基因编辑运载物注射到合子中以允许有效的种系修饰。此类方法可以产生带有所需修饰的正常胚胎和足月小鼠幼崽。显微注射也可用于提供细胞基因组内特定基因的瞬时上调或下调,例如使用CRISPRa和CRISPRi。Microinjection can be used to generate genetically modified animals. For example, gene editing vectors can be injected into zygotes to allow efficient germline modification. Such methods can produce normal embryos and full-term mouse pups with the desired modifications. Microinjection can also be used to provide transient upregulation or downregulation of specific genes within the genome of a cell, such as using CRISPRa and CRISPRi.

电穿孔Electroporation

在某些实施方式中,所述运载物和/或递送媒介物可以通过电穿孔递送。电穿孔可以使用脉冲高压电流在悬浮于缓冲液中的细胞的细胞膜内瞬时打开纳米尺寸的孔,允许流体动力学直径为几十纳米的组分流入细胞。在某些情况下,电穿孔可以用于各种细胞类型,并将运载物高效转移到细胞中。电穿孔可用于体外和离体递送。In some embodiments, the carrier and/or delivery vehicle can be delivered by electroporation. Electroporation can use pulsed high voltage current to instantaneously open nanometer-sized holes in the cell membrane of cells suspended in a buffer, allowing components with a hydrodynamic diameter of tens of nanometers to flow into the cell. In some cases, electroporation can be used for various cell types and the carrier is efficiently transferred into the cell. Electroporation can be used for in vitro and ex vivo delivery.

电穿孔也可用于通过施加特定电压和试剂,例如通过核转染,将运载物递送到哺乳动物细胞的细胞核中。此类方法包括在下述文献中描述的那些:Wu Y,et al.(2015).Cell Res 25:67-79;Ye L,et al.(2014).Proc Natl Acad Sci USA 111:9591-6;ChoiPS,Meyerson M.(2014).Nat Commun 5:3728;Wang J,Quake SR.(2014).Proc Natl AcadSci 111:13157-62。电穿孔也可以用于体内递送运载物,例如使用Zuckermann M,et al.(2015).Nat Commun 6:7391中描述的方法。Electroporation can also be used to deliver cargo to the nucleus of mammalian cells by applying specific voltages and reagents, such as by nuclear transfection. Such methods include those described in the following documents: Wu Y, et al. (2015). Cell Res 25: 67-79; Ye L, et al. (2014). Proc Natl Acad Sci USA 111: 9591-6; Choi PS, Meyerson M. (2014). Nat Commun 5: 3728; Wang J, Quake SR. (2014). Proc Natl Acad Sci 111: 13157-62. Electroporation can also be used to deliver cargo in vivo, for example using the method described in Zuckermann M, et al. (2015). Nat Commun 6: 7391.

流体动力学递送Hydrodynamic delivery

流体动力学递送也可用于递送运载物,例如用于体内递送。在某些实例中,流体动力学递送可以通过将含有基因编辑运载物的大体积(8-10%体重)溶液快速推入受试者(例如动物或人类)的血流中来进行,例如对于小鼠而言通过尾静脉。由于血液是不可压缩的,因此大量液体可能导致流体动力学压力的增加,从而暂时增强对内皮细胞和实质细胞的渗透性,允许正常情况下无法穿过细胞膜的运载物进入细胞。这种方法可以用于递送裸露的DNA质粒和蛋白质。所递送的运载物可能富集在肝、肾、肺、肌肉和/或心脏中。Hydrodynamic delivery can also be used to deliver carriers, such as for in vivo delivery. In some instances, hydrodynamic delivery can be performed by rapidly pushing a large volume (8-10% body weight) solution containing a gene editing carrier into the bloodstream of a subject (e.g., an animal or human), such as through the tail vein for mice. Since blood is incompressible, a large amount of liquid may cause an increase in hydrodynamic pressure, thereby temporarily enhancing the permeability to endothelial cells and parenchymal cells, allowing carriers that normally cannot pass through the cell membrane to enter the cell. This method can be used to deliver naked DNA plasmids and proteins. The delivered carrier may be enriched in the liver, kidneys, lungs, muscles, and/or heart.

转染Transfection

运载物例如核酸,可以通过将核酸引入细胞的转染方法引入细胞。转染方法的实例包括磷酸钙介导的转染、阳离子转染、脂质体转染、树枝状聚合物转染、热激转染、磁转染、脂质体转染、穿刺转染(impalefection)、光转染、专有试剂增强核酸摄取。The cargo, such as nucleic acid, can be introduced into the cell by a transfection method for introducing nucleic acid into the cell. Examples of transfection methods include calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, magnetofection, liposome transfection, impalefection, photofection, proprietary reagents to enhance nucleic acid uptake.

递送媒介物Delivery vehicle

所述递送系统可以包括一种或多种递送媒介物。所述递送媒介物可以将运载物递送到细胞、组织、器官或生物体(例如动物或植物)中。所述运载物可以被包装、携带或以其他方式与递送媒介物缔合。所述递送媒介物可以根据待递送运载物的类型和/或递送是体外和/或体内来选择。递送媒介物的实例包括本文描述的载体、病毒、非病毒媒介物和其它递送试剂。The delivery system may include one or more delivery vehicles. The delivery vehicle may deliver the vehicle to a cell, tissue, organ or organism (e.g., animal or plant). The vehicle may be packaged, carried or otherwise associated with a delivery vehicle. The delivery vehicle may be selected according to the type of vehicle to be delivered and/or whether the delivery is in vitro and/or in vivo. Examples of delivery vehicles include vectors, viruses, non-viral vehicles and other delivery agents described herein.

根据本公开的递送媒介物可以具有小于100微米(μm)的最大维度(例如直径)。在某些实施方式中,所述递送媒介物的最大维度小于10μm。在某些实施方式中,所述递送媒介物可以具有小于2000纳米(nm)的最大维度。在某些实施方式中,所述递送媒介物可以具有小于1000纳米(nm)的最大维度。在某些实施方式中,所述递送媒介物可以具有小于900nm、小于800nm、小于700nm、小于600nm、小于500nm、小于400nm、小于300nm、小于200nm、小于150nm或小于100nm、小于50nm的最大维度(例如直径)。在某些实施方式中,所述递送媒介物可以具有25nm至200nm之间范围内的最大维度。According to the delivery vehicle of the present disclosure, the maximum dimension (e.g., diameter) of less than 100 microns (μm) can be provided. In certain embodiments, the maximum dimension of the delivery vehicle is less than 10 μm. In certain embodiments, the delivery vehicle can have a maximum dimension less than 2000 nanometers (nm). In certain embodiments, the delivery vehicle can have a maximum dimension less than 1000 nanometers (nm). In certain embodiments, the delivery vehicle can have a maximum dimension less than 900nm, less than 800nm, less than 700nm, less than 600nm, less than 500nm, less than 400nm, less than 300nm, less than 200nm, less than 150nm or less than 100nm, less than 50nm. In certain embodiments, the delivery vehicle can have a maximum dimension in the range between 25nm and 200nm.

在某些实施方式中,所述递送媒介物可以是或包含颗粒。例如,所述递送媒介物可以是或包含纳米颗粒(例如最大维度(例如直径)不超过1000nm的颗粒)。所述颗粒可以以不同形式提供,例如作为固体颗粒(例如金属如银、金、铁、钛、非金属、基于脂质的固体、聚合物)、颗粒的悬液或其组合。可以制备金属、电介质和半导体颗粒以及混合结构(例如核壳颗粒)。In certain embodiments, the delivery vehicle can be or include particles. For example, the delivery vehicle can be or include nanoparticles (e.g., particles having a maximum dimension (e.g., diameter) of no more than 1000 nm). The particles can be provided in different forms, such as solid particles (e.g., metals such as silver, gold, iron, titanium, non-metals, lipid-based solids, polymers), suspensions of particles, or combinations thereof. Metals, dielectrics, and semiconductor particles and hybrid structures (e.g., core-shell particles) can be prepared.

载体Carrier

所述系统、组合物和/或递送系统可以包含一种或多种载体。本公开还包括载体系统。载体系统可以包含一种或多种载体。在某些实施方式中,载体是指能够运输与其连接的另一个核酸的核酸分子。载体包括单链、双链或部分双链的核酸分子,包含一个或多个游离末端、无游离末端(例如环状)的核酸分子,包含DNA、RNA或两者的核酸分子,以及本领域中已知的其他各种多核苷酸。载体可以是质粒,例如可以例如通过标准的分子克隆技术插入额外DNA区段的环状双链DNA环。某些载体可能能够在其被引入的宿主细胞中自主复制(例如具有细菌复制原点的细菌载体和附加型哺乳动物载体)。某些载体(例如非附加型哺乳动物载体)在引入宿主细胞后被整合到宿主细胞的基因组中,从而与宿主基因组一起复制。在某些实例中,载体可以是表达载体,例如能够指导与它们可操作地连接的基因的表达。在某些情况下表达载体可用于在真核细胞中表达。在重组DNA技术中有用的常见表达载体通常采取质粒的形式。The system, composition and/or delivery system may include one or more vectors. The present disclosure also includes a vector system. The vector system may include one or more vectors. In some embodiments, a vector refers to a nucleic acid molecule capable of transporting another nucleic acid connected thereto. The vector includes a single-stranded, double-stranded or partially double-stranded nucleic acid molecule, a nucleic acid molecule comprising one or more free ends, no free ends (e.g., circular), a nucleic acid molecule comprising DNA, RNA or both, and other various polynucleotides known in the art. The vector may be a plasmid, such as a circular double-stranded DNA loop that can be inserted into an additional DNA segment, such as by standard molecular cloning techniques. Some vectors may be able to replicate autonomously in the host cell into which they are introduced (e.g., a bacterial vector and an additional mammalian vector with a bacterial replication origin). Some vectors (e.g., a non-additional mammalian vector) are integrated into the genome of the host cell after being introduced into the host cell, thereby replicating together with the host genome. In some instances, the vector may be an expression vector, such as being able to direct the expression of a gene operably connected thereto. In some cases, an expression vector may be used for expression in a eukaryotic cell. Common expression vectors useful in recombinant DNA technology generally take the form of a plasmid.

载体的实例包括pGEX、pMAL、pRIT5、大肠杆菌表达载体(例如pTrc、pETlld)、酵母表达载体(例如pYepSecl、pMFa、pJRY88、pYES2和picZ)、杆状病毒载体(例如用于在昆虫细胞如SF9细胞中表达)(例如pAc系列和pVL系列)、哺乳动物表达载体(例如pCDM8和pMT2PC)。Examples of vectors include pGEX, pMAL, pRIT5, E. coli expression vectors (e.g., pTrc, pETlld), yeast expression vectors (e.g., pYepSecl, pMFa, pJRY88, pYES2, and picZ), baculovirus vectors (e.g., for expression in insect cells such as SF9 cells) (e.g., pAc series and pVL series), mammalian expression vectors (e.g., pCDM8 and pMT2PC).

载体可以包含i)Cas编码序列,和/或ii)单个或至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少12个、至少14个、至少16个、至少32个、至少48个、至少50个引导RNA编码序列。在单个载体中,每个RNA编码序列都可以有启动子。可选地或此外,在单个载体中,可以存在控制(例如驱动转录和/或表达)多个RNA编码序列的启动子。The vector may comprise i) a Cas coding sequence, and/or ii) a single or at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 12, at least 14, at least 16, at least 32, at least 48, at least 50 guide RNA coding sequences. In a single vector, each RNA coding sequence may have a promoter. Alternatively or in addition, in a single vector, there may be promoters that control (e.g., drive transcription and/or expression) multiple RNA coding sequences.

调控元件Regulatory elements

载体可以包含一种或多种调控元件。所述调控元件可以可操作地连接到Cas蛋白、辅助蛋白、引导RNA(例如单一引导RNA、crRNA和/或tracrRNA)或其组合的编码序列。术语“可操作连接”意指以允许核苷酸序列表达的方式(例如在体外转录/翻译系统中或当载体被引入宿主细胞时在宿主细胞中)将感兴趣的核苷酸序列连接到调控元件。在某些实例中,载体可以包含:可操作连接到编码Cas蛋白的核苷酸序列的第一调控元件,以及可操作连接到编码引导RNA的核苷酸序列的第二调控元件。The vector may include one or more regulatory elements. The regulatory element may be operably connected to the coding sequence of the Cas protein, auxiliary protein, guide RNA (e.g., single guide RNA, crRNA and/or tracrRNA) or a combination thereof. The term "operably connected" means that the nucleotide sequence of interest is connected to the regulatory element in a manner that allows the expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into a host cell). In some instances, the vector may include: a first regulatory element operably connected to a nucleotide sequence encoding a Cas protein, and a second regulatory element operably connected to a nucleotide sequence encoding a guide RNA.

调控元件的实例包括启动子、增强子、内部核糖体进入位点(IRES)和其他表达控制元件(例如转录终止信号,例如多腺苷酸化信号和多聚U序列)。此类调控元件被描述在例如Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,AcademicPress,San Diego,Calif(1990)中。调控元件包括那些在许多类型的宿主细胞中指导核苷酸序列的组成型表达的元件,以及那些仅在某些宿主细胞中指导核苷酸序列表达的元件(例如组织特异性调控序列)。组织特异性启动子可以主要在所需的感兴趣组织例如肌肉、神经元、骨骼、皮肤、血液、特定器官(例如肝脏、胰腺)或特定细胞类型(例如淋巴细胞)中指导表达。调控元件也可以以时间依赖性方式,例如以细胞周期依赖性或发育阶段依赖性方式指导表达,其可以是也可以不是组织或细胞类型特异性的。Examples of regulatory elements include promoters, enhancers, internal ribosome entry sites (IRES), and other expression control elements (e.g., transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990). Regulatory elements include those that direct the constitutive expression of nucleotide sequences in many types of host cells, and those that direct the expression of nucleotide sequences only in certain host cells (e.g., tissue-specific regulatory sequences). Tissue-specific promoters can be mainly directed to expression in desired tissues of interest such as muscle, neuron, bone, skin, blood, specific organs (e.g., liver, pancreas), or specific cell types (e.g., lymphocytes). Regulatory elements can also direct expression in a time-dependent manner, such as in a cell cycle-dependent or developmental stage-dependent manner, which may or may not be tissue or cell type specific.

启动子的实例包括一种或多种pol III启动子(例如1、2、3、4、5种或更多种polIII启动子)、一种或多种pol II启动子(例如1、2、3、4、5种或更多种pol II启动子)、一种或多种pol I启动子(例如1、2、3、4、5种或更多种pol I启动子)或其组合。pol III启动子的实例包括但不限于U6和HI启动子。pol II启动子的实例包括但不限于逆转录病毒劳斯肉瘤病毒(RSV)LTR启动子(任选地具有RSV增强子)、巨细胞病毒(CMV)启动子(任选地具有CMV增强子)、SV40启动子、二氢叶酸还原酶启动子、肌动蛋白启动子、磷酸甘油激酶(PGK)启动子和EF1a启动子。Examples of promoters include one or more pol III promoters (e.g., 1, 2, 3, 4, 5 or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5 or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5 or more pol I promoters), or a combination thereof. Examples of pol III promoters include, but are not limited to, U6 and HI promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with CMV enhancer), the SV40 promoter, the dihydrofolate reductase promoter, the actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1a promoter.

病毒载体Viral vectors

所述运载物可以通过病毒递送。在某些实施方式中,使用病毒载体。病毒载体可以包括用于包装到病毒中的病毒衍生的DNA或RNA序列(例如逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒)。病毒载体还包含由病毒携带的用于转染到宿主细胞中的多核苷酸。病毒和病毒载体可用于体外、离体和/或体内递送。The carrier can be delivered by virus. In some embodiments, a viral vector is used. The viral vector may include a virally derived DNA or RNA sequence (e.g., a retrovirus, a replication-defective retrovirus, an adenovirus, a replication-defective adenovirus, and an adeno-associated virus) for packaging into the virus. The viral vector also includes a polynucleotide carried by the virus for transfection into a host cell. Viruses and viral vectors can be used for in vitro, ex vivo, and/or in vivo delivery.

腺相关病毒(AAV)Adeno-associated virus (AAV)

本文的系统和组合物可以通过腺相关病毒(AAV)递送。AAV载体可用于此类递送。AAV属于依赖病毒属细小病毒科,是一种单链DNA病毒。在某些实施方式中,AAV可以提供所提供的DNA的持久来源,因为AAV递送的基因组材料可以无限期存在于细胞中,例如作为外源DNA或具有一些修饰,被直接整合到宿主DNA中。在某些实施方式中,AAV在人类中不引起任何疾病或与任何疾病相关。病毒本身能够高效地感染细胞,同时几乎不会唤起先天性或适应性免疫应答或相关毒性。The systems and compositions herein can be delivered by adeno-associated virus (AAV). AAV vectors can be used for such delivery. AAV belongs to the Parvoviridae family of the Dependovirus genus and is a single-stranded DNA virus. In some embodiments, AAV can provide a lasting source of the DNA provided, because the genomic material delivered by AAV can exist indefinitely in cells, for example, as exogenous DNA or with some modifications, and is directly integrated into the host DNA. In some embodiments, AAV does not cause any disease or is associated with any disease in humans. The virus itself can infect cells efficiently without eliciting innate or adaptive immune responses or related toxicity.

可用于本文的AAV的实例包括AAV-1、AAV-2、AAV-3、AAV-4、AAV-5、AAV-6、AAV-8和AAV-9。AAV的类型可以根据待靶向的细胞来选择;例如,可以选择AAV血清型1、2、5或杂合衣壳AAV1、AAV2、AAV5或其任何组合用于靶向脑或神经元细胞;并且可以选择AAV4用于靶向心脏组织。AAV8可用于递送到肝脏。基于AAV-2的载体最初被提议用于CFTR递送到CF气道,其他血清型如AAV-1、AAV-5、AAV-6和AAV-9在各种肺上皮模型中表现出改进的基因转移效率。被AAV靶向的细胞类型的实例被描述在Grimm,D.et al,J.Virol.82:5887-5911(2008)和WO2021/183807A1中,其整体通过引用并入本文。Examples of AAVs that can be used herein include AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-8, and AAV-9. The type of AAV can be selected according to the cells to be targeted; for example, AAV serotypes 1, 2, 5 or hybrid capsids AAV1, AAV2, AAV5, or any combination thereof can be selected for targeting brain or neuronal cells; and AAV4 can be selected for targeting cardiac tissue. AAV8 can be used for delivery to the liver. AAV-2-based vectors were initially proposed for CFTR delivery to CF airways, and other serotypes such as AAV-1, AAV-5, AAV-6, and AAV-9 showed improved gene transfer efficiency in various lung epithelial models. Examples of cell types targeted by AAV are described in Grimm, D. et al, J. Virol. 82: 5887-5911 (2008) and WO2021/183807A1, which are incorporated herein by reference in their entirety.

CRISPR-Cas AAV颗粒可以在HEK 293T细胞中产生。一旦产生了具有特定趋向性(tropism)的颗粒,它们就可以与天然病毒颗粒基本上相同的方式用于感染靶细胞系。这可能允许CRISPR-Cas组分在被感染的细胞类型中持续存在,也是这种递送版本特别适合于需要长期表达的情况的原因。可以使用的AAV的剂量和制剂的实例包括在美国专利号8,454,972和8,404,658中描述的那些。CRISPR-Cas AAV particles can be produced in HEK 293T cells. Once particles with specific tropism are produced, they can be used to infect target cell lines in essentially the same way as natural viral particles. This may allow CRISPR-Cas components to persist in infected cell types, which is also the reason why this delivery version is particularly suitable for situations where long-term expression is required. Examples of doses and formulations of AAV that can be used include those described in U.S. Patent Nos. 8,454,972 and 8,404,658.

多种策略可用于使用AAV递送本文的系统和组合物。在某些实例中,可以将Cas和gRNA的编码序列直接包装到一个DNA质粒载体上,并通过一个AAV颗粒递送。在某些实例中,AAV可用于将gRNA递送到先前已被工程化改造以表达Cas的细胞中。在某些实例中,Cas和gRNA的编码序列可以被制造成两个单独的AAV颗粒,用于靶细胞的共转染。在某些实例中,标志物、标签和其他序列可以包装在同一的AAV颗粒中,作为Cas和/或gRNA的编码序列。A variety of strategies can be used to deliver the systems and compositions herein using AAV. In some instances, the coding sequences of Cas and gRNA can be packaged directly into a DNA plasmid vector and delivered via an AAV particle. In some instances, AAV can be used to deliver gRNA to cells that have been previously engineered to express Cas. In some instances, the coding sequences of Cas and gRNA can be manufactured into two separate AAV particles for co-transfection of target cells. In some instances, markers, tags, and other sequences can be packaged in the same AAV particles as the coding sequences of Cas and/or gRNA.

慢病毒Lentivirus

本文的系统和组合物可以通过慢病毒递送。慢病毒载体可以用于此类递送。慢病毒是复杂的逆转录病毒,具有在有丝分裂和有丝分裂后的细胞中感染和表达其基因的能力。The systems and compositions herein can be delivered via lentivirus. Lentiviral vectors can be used for such delivery. Lentiviruses are complex retroviruses that have the ability to infect and express their genes in mitotic and post-mitotic cells.

慢病毒的实例包括人免疫缺陷病毒(HIV),其可以利用其他病毒的包膜糖蛋白靶向广泛的细胞类型;基于马传染性贫血病毒(EIAV)的最小非灵长类慢病毒载体,其可用于眼部治疗。在某些实施方式中,具有靶向HIV tat/rev共享的共同外显子的siRNA、定位于核仁的TAR诱饵和抗CCR5特异性锤头状核酶的自失活慢病毒载体(参见例如DiGiusto et al.(2010)Sci Transl Med 2:36ra43)可用于和/或适用于本文的核酸靶向系统。Examples of lentiviruses include human immunodeficiency virus (HIV), which can target a wide range of cell types using envelope glycoproteins of other viruses; minimal non-primate lentiviral vectors based on equine infectious anemia virus (EIAV), which can be used for ocular therapy. In certain embodiments, a self-inactivating lentiviral vector with siRNA targeting common exons shared by HIV tat/rev, a TAR decoy localized to the nucleolus, and an anti-CCR5 specific hammerhead ribozyme (see, e.g., DiGiusto et al. (2010) Sci Transl Med 2:36ra43) can be used and/or adapted for use in the nucleic acid targeting system herein.

慢病毒可以用其他病毒蛋白例如水泡性口炎病毒的G蛋白制成假型。在这样做的过程中,慢病毒的细胞嗜性可以根据需要进行改变,使其范围或宽或窄。在某些情况下,为了提高安全性,第二代和第三代慢病毒系统可能将必需基因分开到三个质粒中,这可能会降低活病毒颗粒在细胞内意外重建的可能性。Lentiviruses can be pseudotyped with other viral proteins, such as the G protein of vesicular stomatitis virus. In doing so, the cellular tropism of the lentivirus can be altered to be as broad or narrow as desired. In some cases, to increase safety, second- and third-generation lentiviral systems may separate essential genes into three plasmids, which may reduce the likelihood of accidental reconstitution of live viral particles within cells.

在某些实例中,利用整合能力,慢病毒可用于创建包含各种基因修饰的细胞的文库,例如用于筛选和/或研究基因和信号传导通路。In certain examples, using the ability to integrate, lentiviruses can be used to create libraries containing various genetically modified cells, for example, for screening and/or studying genes and signaling pathways.

腺病毒Adenovirus

本文的系统和组合物可以通过腺病毒递送。腺病毒载体可以用于此类递送。腺病毒包括具有含有双链DNA基因组的二十面体核衣壳的非包膜病毒。腺病毒可以感染分裂细胞和非分裂细胞。在某些实施方式中,腺病毒不整合到宿主细胞的基因组中,这可用于在基因编辑应用中限制CRISPR-Cas系统的脱靶效应。The systems and compositions herein can be delivered by adenovirus. Adenoviral vectors can be used for such delivery. Adenoviruses include non-enveloped viruses with icosahedral nucleocapsids containing double-stranded DNA genomes. Adenoviruses can infect dividing cells and non-dividing cells. In certain embodiments, adenoviruses are not integrated into the genome of host cells, which can be used to limit the off-target effects of CRISPR-Cas systems in gene editing applications.

非病毒媒介物Non-viral vectors

所述递送媒介物可以包括非病毒媒介物。通常,能够递送核酸和/或蛋白质的方法和媒介物可用于递送本文的系统和组合物。非病毒媒介物的实例包括脂质纳米颗粒、细胞穿透肽(CPP)、DNA纳米线团、金纳米颗粒、链球菌溶血素0、多功能包膜型纳米器件(MEND)、脂质包被的介孔二氧化硅颗粒和其他无机纳米颗粒。The delivery vehicle may include a non-viral vehicle. Generally, methods and vehicles capable of delivering nucleic acids and/or proteins can be used to deliver the systems and compositions herein. Examples of non-viral vehicles include lipid nanoparticles, cell penetrating peptides (CPPs), DNA nanowires, gold nanoparticles, streptolysin O, multifunctional coated nanodevices (MENDs), lipid-coated mesoporous silica particles, and other inorganic nanoparticles.

脂质颗粒Lipid particles

所述递送媒介物可以包括脂质颗粒,例如脂质纳米颗粒(LNP)和脂质体。The delivery vehicle may include lipid particles, such as lipid nanoparticles (LNPs) and liposomes.

脂质纳米颗粒(LNP)Lipid Nanoparticles (LNP)

LNP可以将核酸包封在阳离子脂质颗粒(例如脂质体)内,并且可以相对容易地递送到细胞。在某些实例中,脂质纳米颗粒不含任何病毒组分,这有助于将安全性和免疫原性降至最低。脂质颗粒可用于体外、离体和体内递送。脂质颗粒可用于各种规模的细胞群体。LNP can be encapsulated in cationic lipid particles (e.g., liposomes) by nucleic acid, and can be delivered to cells relatively easily. In some instances, lipid nanoparticles do not contain any viral components, which helps to minimize safety and immunogenicity. Lipid particles can be used for external, in vitro and in vivo delivery. Lipid particles can be used for cell colonies of various sizes.

在某些实例中,LNP可用于递送DNA分子(例如包含Cas和/或gRNA的编码序列的那些)和/或RNA分子(例如Cas的mRNA、gRNA)。在某些情况下,LNP可用于递送Cas/gRNA的RNP复合物。In some instances, LNP can be used to deliver DNA molecules (e.g., those comprising coding sequences of Cas and/or gRNA) and/or RNA molecules (e.g., mRNA, gRNA of Cas). In some cases, LNP can be used to deliver the RNP complex of Cas/gRNA.

在某些实施方式中,LNP用于递送mRNA和gRNA,例如包含DNMT3A-DNMT3L(3A-3L)-dCas9-KRAB和至少一种靶向PCSK9的sgRNA的mRNA融合分子。In certain embodiments, LNPs are used to deliver mRNA and gRNA, such as an mRNA fusion molecule comprising DNMT3A-DNMT3L (3A-3L)-dCas9-KRAB and at least one sgRNA targeting PCSK9.

LNP的组分可以包括阳离子脂质1,2-dilineoyl-3-dimethylammonium-propane(DLinDAP)、1,2-dilinoleyloxy-3-N,N-dimethylaminopropane(DLinDMA)、1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane(DLinK-DMA)、l,2-dilinoleyl-4-(2-dimethylaminoethyl)-[l,3]-dioxolane(DLinKC2-DMA)、(3-o-[2-(methoxypolyethyleneglycol 2000)succinoyl]-1,2-dimyristoyl-sn-glycol(PEG-S-DMG)、R-3-[(ro-methoxy-poly(ethylene glycol)2000)carbamoyl]-1,2-dimyristyloxlpropyl-3-amine(PEG-C-DOMG)及其任何组合。LNP的制备和包封可改编自Conway et al,Molecular Therapy,vol.27,no.4,pages 866-877,Apr.2019和Rosin etal,Molecular Therapy,vol.19,no.12,pages 1286-2200,Dec.201。The components of LNPs may include cationic lipids 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane (DLinK-DMA), 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA), (3-o-[2-(methoxypolyethyleneglycol 2000)succinoyl]-1,2-dimyristoyl-sn-glycol (PEG-S-DMG), R-3-[(ro-methoxy-poly(ethylene glycol)2000)carbamoyl]-1,2-dimyristyloxlpropyl-3-amine (PEG-C-DOMG), and any combination thereof. The preparation and encapsulation of LNPs may be adapted from Conway et al. al, Molecular Therapy, vol.27, no.4, pages 866-877, Apr.2019 and Rosin et al, Molecular Therapy, vol.19, no.12, pages 1286-2200, Dec.201.

在某些实施方式中,LNP可以包含可电离脂质。在某些实施方式中,可电离脂质包括但不限于pH响应性可电离脂质、热响应性可电离脂质和光响应性可电离脂质。在某些实施方式中,可电离脂质包括在某些条件例如但不限于pH、温度或光下电离的阳离子脂质和阴离子脂质。在某些实施方式中,所述LNP的可电离脂质的摩尔比为20%至约70%(例如约20%至约70%、约20%至约65%、约20%至约60%、约20%至约55%、约20%至约50%、约20%至约45%、约20%至约40%、约20%至约35%、约20%至约30%、约20%至约25%、约30%至约70%、约30%至约65%、约30%至约60%、约30%至约55%、约30%至约50%、约30%至约45%、约30%至约40%、约30%至约35%、约40%至约70%、约40%至约65%、约40%至约60%、约40%至约55%、约40%至约50%、约40%至约45%、约50%至约70%、约50%至约65%、约50%至约60%、约50%至约55%、约60%至约70%或约60%至约65%)。在某些实施方式中,所述LNP的可电离脂质的摩尔比为约45%至约50%。In certain embodiments, LNP may include ionizable lipids. In certain embodiments, ionizable lipids include but are not limited to pH responsive ionizable lipids, thermal responsive ionizable lipids and light responsive ionizable lipids. In certain embodiments, ionizable lipids include cationic lipids and anionic lipids ionized under certain conditions such as but not limited to pH, temperature or light. In certain embodiments, the molar ratio of the ionizable lipids of the LNP is 20% to about 70% (e.g., about 20% to about 70%, about 20% to about 65%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, about 20% to about 35%, about 20% to about 30%, about 20% to about 25%, about 30% to about 70%, about 30% to about 65%, about 30% to about 60%, about 3 In some embodiments, the molar ratio of ionizable lipids of the LNPs is about 45% to about 50%. In some embodiments, the molar ratio of ionizable lipids of the LNPs is about 45% to about 50%. In some embodiments, the molar ratio of ionizable lipids of the LNPs is about 45% to about 50%.

在某些实施方式中,LNP可以包含PEG化脂质。在某些实施方式中,所述LNP的PEG化脂质的摩尔比为0%至约30%(例如约0%至约30%、约0%至约25%、约0%至约20%、约0%至约15%、约0%至约10%、约10%至约30%、约10%至约25%、约10%至约20%、约10%至约15%、约20%至约30%或约20%至约25%)。在某些实施方式中,所述LNP的PEG化脂质的摩尔比为约1%。In some embodiments, LNP can comprise PEGylated lipid.In some embodiments, the mol ratio of the PEGylated lipid of described LNP is 0% to about 30% (for example, about 0% to about 30%, about 0% to about 25%, about 0% to about 20%, about 0% to about 15%, about 0% to about 10%, about 10% to about 30%, about 10% to about 25%, about 10% to about 20%, about 10% to about 15%, about 20% to about 30% or about 20% to about 25%).In some embodiments, the mol ratio of the PEGylated lipid of described LNP is about 1%.

在某些实施方式中,LNP可以包含支持性脂质。在某些实施方式中,所述LNP的支持性脂质的摩尔比为5%至约50%(例如约5%至约50%、约5%至约45%、约5%至约40%、约5%至约35%、约5%至约30%、约5%至约25%、约5%至约20%、约5%至约15%、约5%至约10%、约10%至约50%、约10%至约45%、约10%至约40%、约10%至约35%、约10%至约30%、约10%至约25%、约10%至约20%、约10%至约15%、约20%至约50%、约20%至约45%、约20%至约40%、约20%至约35%、约20%至约30%、约20%至约25%、约30%至约50%、约30%至约45%、约30%至约40%、约30%至约35%、约40%至约50%、约40%至约45%、约30%至约50%、约30%至约45%、约30%至约40%、约30%至约35%、约40%至约50%或约40%至约45%)。在某些实施方式中,所述LNP的支持性脂质的摩尔比为约9%。In some embodiments, the LNP may include a supporting lipid. In some embodiments, the molar ratio of the supporting lipid of the LNP is 5% to about 50% (e.g., about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 5% to about 30%, about 5% to about 25%, about 5% to about 20%, about 5% to about 15%, about 5% to about 10%, about 10% to about 50%, about 10% to about 45%, about 10% to about 40%, about 10% to about 35%, about 10% to about 30%, about 10% to about 25%, about 10% to about 20%, about 15% to about 10%, about 10% to about 50%, about 10% to about 45%, about 10% to about 40%, about 10% to about 35%, about 10% to about 30%, about 10% to about 25%, about 10% to about 20%, about 1 In some embodiments, the molar ratio of the supporting lipid of the LNP is about 9%.

在某些实施方式中,LNP可以包含胆固醇。在某些实施方式中,所述LNP的胆固醇的摩尔比为10%至约50%(例如约10%至约50%、约10%至约45%、约10%至约40%、约10%至约35%、约10%至约30%、约10%至约25%、约10%至约20%、约10%至约15%、约20%至约50%、约20%至约45%、约20%至约40%、约20%至约35%、约20%至约30%、约20%至约25%、约30%至约50%、约30%至约45%、约30%至约40%、约30%至约35%、约40%至约50%或约40%至约45%)。在某些实施方式中,所述LNP的胆固醇的摩尔比为约40%至约45%。In some embodiments, LNP can include cholesterol.In some embodiments, the mol ratio of the cholesterol of the LNP is 10% to about 50% (for example, about 10% to about 50%, about 10% to about 45%, about 10% to about 40%, about 10% to about 35%, about 10% to about 30%, about 10% to about 25%, about 10% to about 20%, about 10% to about 15%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, about 20% to about 35%, about 20% to about 30%, about 20% to about 25%, about 30% to about 50%, about 30% to about 45%, about 30% to about 40%, about 30% to about 35%, about 40% to about 50% or about 40% to about 45%). In some embodiments, the mol ratio of the cholesterol of the LNP is about 40% to about 45%.

在某些实施方式中,LNP可以包含可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(30%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)的混合物。在某些实施方式中,所述LNP可以包含可电离脂质(45-50%,摩尔比)、PEG化脂质(1%,摩尔比)、支持性脂质(9%,摩尔比)和胆固醇(40-50%,摩尔比)的混合物。In some embodiments, LNP can comprise a mixture of ionizable lipid (20%-70%, mol ratio), PEGylated lipid (0%-30%, mol ratio), supporting lipid (30%-50%, mol ratio) and cholesterol (10%-50%, mol ratio). In some embodiments, the LNP can comprise a mixture of ionizable lipid (45-50%, mol ratio), PEGylated lipid (1%, mol ratio), supporting lipid (9%, mol ratio) and cholesterol (40-50%, mol ratio).

脂质体Liposomes

在某些实施方式中,脂质颗粒可以是脂质体。脂质体是由围绕内部水性区室的单层或多层脂质双层以及相对不可渗透的外部亲脂性磷脂双层组成的球形囊泡结构。在某些实施方式中,脂质体是生物相容、无毒的,可以递送亲水性和亲脂性药物分子两者,保护它们的运载物不被细胞质酶降解,并将它们的负载运输穿过生物膜和血脑屏障(BBB)。In some embodiments, lipid granule can be liposome.Liposome is the spherical vesicle structure that is composed of single layer or multilayer lipid bilayer around internal aqueous compartment and relatively impermeable external lipophilic phospholipid bilayer.In some embodiments, liposome is biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their carrier from being degraded by cytoplasmic enzymes, and their load is transported through biomembrane and blood-brain barrier (BBB).

脂质体可以由几种不同类型的脂质制成,例如磷脂。脂质体可以包含天然磷脂和脂质,例如1,2-二硬脂酰-sn-甘油-3-磷脂酰胆碱(DSPC)、鞘磷脂、卵磷脂酰胆碱、单唾液酸神经节苷脂或其任何组合。Liposomes can be made from several different types of lipids, such as phospholipids. Liposomes can include natural phospholipids and lipids such as 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), sphingomyelin, egg phosphatidylcholine, monosialoganglioside, or any combination thereof.

可以向脂质体添加几种其他添加剂,以便修改它们的结构和性质。例如,脂质体可以进一步包含胆固醇、鞘磷脂和/或1,2-二油酰-sn-甘油-3-磷酰乙醇胺(DOPE),以例如提高稳定性和/或防止脂质体内部运载物的泄漏。Several other additives can be added to the liposomes in order to modify their structure and properties. For example, the liposomes can further comprise cholesterol, sphingomyelin and/or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), for example to improve stability and/or prevent leakage of cargo inside the liposomes.

稳定的核酸脂质颗粒(SNALP)Stable Nucleic Acid Lipid Particles (SNALP)

在某些实施方式中,所述脂质颗粒可以是稳定的核酸脂质颗粒(SNALP)。SNALP可以包含可电离脂质(DLinDMA)(例如在低pH下为阳离子)、中性辅助脂质、胆固醇、可扩散聚乙二醇(PEG)脂质或其任何组合。在某些实例中,SNALP可以包含合成胆固醇、二棕榈酰磷脂酰胆碱、3-N-[(w-甲氧基聚乙二醇)2000]氨甲酰基]-1,2-二肉豆蔻氧基丙胺和阳离子1,2-二亚油基氧基-3-N,N-二甲基氨基丙烷。在某些实例中,SNALP可以包含合成胆固醇、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱、PEG-cDMA和1,2-二亚油基氧基-3-(N,N-二甲基)氨基丙烷(DLinDMA)。In some embodiments, the lipid granule can be a stable nucleic acid lipid granule (SNALP). SNALP can include ionizable lipids (DLinDMA) (e.g., cations at low pH), neutral auxiliary lipids, cholesterol, diffusible polyethylene glycol (PEG) lipids or any combination thereof. In some instances, SNALP can include synthetic cholesterol, dipalmitoylphosphatidylcholine, 3-N-[(w-methoxypolyethylene glycol) 2000] carbamoyl]-1,2-dimyristyloxypropylamine and cation 1,2-dilinoleyloxy-3-N, N-dimethylaminopropane. In some instances, SNALP can include synthetic cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine, PEG-cDMA and 1,2-dilinoleyloxy-3-(N, N-dimethyl) aminopropane (DLinDMA).

其他脂质Other lipids

所述脂质颗粒还可以包含一种或多种其他类型的脂质,例如阳离子脂质如氨基脂质2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环(DLin-KC2-DMA)、DLin-KC2-DMA4、Cl2-200和辅助脂质二硬脂酰基磷脂酰胆碱、胆固醇和PEG-DMG。The lipid particles may also include one or more other types of lipids, for example, cationic lipids such as amino lipids 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), DLin-KC2-DMA4, Cl2-200 and auxiliary lipids distearoylphosphatidylcholine, cholesterol and PEG-DMG.

脂质复合物和/或聚合复合物Lipoplexes and/or polyplexes

在某些实施方式中,所述递送媒介物包含脂质复合物和/或聚合复合物。脂质复合物可以与带负电荷的细胞膜结合,并诱导细胞内吞。阳离子脂质复合物的实例可以是包含脂质和非脂质组分的复合物。脂质复合物和聚合复合物的实例包括FuGENE-6试剂、含有脂质和其他组分的非脂质体溶液、两性离子氨基脂质(ZAL)、Ca2p(例如形成DNA/Ca2+微复合物)、聚乙烯亚胺(PEI)(例如支链PEI)和聚(L-赖氨酸)(PLL)。In certain embodiments, the delivery vehicle comprises a lipid complex and/or a polymer complex. The lipid complex can bind to a negatively charged cell membrane and induce endocytosis. Examples of cationic lipid complexes can be complexes comprising lipids and non-lipid components. Examples of lipid complexes and polymer complexes include FuGENE-6 reagents, non-lipid solutions containing lipids and other components, zwitterionic amino lipids (ZAL), Ca2p (e.g., forming DNA/Ca2 + microcomplexes), polyethyleneimine (PEI) (e.g., branched PEI) and poly (L-lysine) (PLL).

细胞穿透肽Cell Penetrating Peptides

在某些实施方式中,所述递送媒介物包括细胞穿透肽(CPP)。CPP是促进细胞摄取各种分子运载物(例如从纳米颗粒到小化学分子和DNA大片段)的短肽。In certain embodiments, the delivery vehicle comprises a cell penetrating peptide (CPP). CPPs are short peptides that facilitate cellular uptake of a variety of molecular cargoes, such as from nanoparticles to small chemical molecules and large DNA fragments.

CPP可以具有不同的大小、氨基酸序列和电荷。在某些实例中,CPP可以易位质膜,并促进各种分子运载物向细胞质或细胞器的递送。CPP可以通过不同机制引入到细胞中,例如直接穿透到膜中、内吞介导的进入和通过形成临时结构的易位。CPPs can have different sizes, amino acid sequences and charges. In some instances, CPPs can translocate the plasma membrane and facilitate the delivery of various molecular cargoes to the cytoplasm or organelles. CPPs can be introduced into cells by different mechanisms, such as direct penetration into the membrane, endocytosis-mediated entry, and translocation by forming temporary structures.

CPP可以具有包含相对丰度高的带正电荷氨基酸例如赖氨酸或精氨酸的氨基酸组成,或者具有包含极性/带电荷氨基酸和非极性疏水氨基酸的交替模式的序列。这两种类型的结构分别被称为聚阳离子型或两亲型。第三类CPP是疏水肽,仅含有具有低净电荷的非极性残基或具有对细胞摄取至关重要的疏水性氨基酸基团。另一种类型的CPP是来自人免疫缺陷病毒I(HIV-I)的反式激活转录激活因子(Tat)。CPP的实例包括穿透蛋白(Penetratin)、Tat(48-60)、穿膜肽(Transportan)和(R-AhX-R4)(AhX是指氨基己酰基)。CPP和相关应用的实例还包括在美国专利8,372,951中描述的那些。CPP can have the amino acid composition of positively charged amino acid such as lysine or arginine containing high relative abundance, or have the sequence of alternating pattern containing polar/charged amino acid and non-polar hydrophobic amino acid.These two types of structures are respectively referred to as polycationic or amphipathic.The third type of CPP is hydrophobic peptide, containing only non-polar residues with low net charge or having hydrophobic amino acid groups that are crucial for cellular uptake.Another type of CPP is the trans-activating transcription activator (Tat) from human immunodeficiency virus I (HIV-I).Examples of CPP include penetratin, Tat (48-60), transmembrane peptide (Transportan) and (R-AhX-R4) (AhX refers to aminocaproyl).Examples of CPP and related applications also include those described in U.S. Patent No. 8,372,951.

CPP可以相当容易地用于体外和离体工作,并且通常需要对每种运载物和细胞类型进行广泛优化。在某些实例中,CPP可以直接共价连接到Cas蛋白,然后与gRNA复合并递送到细胞。在某些实例中,可以将CPP-Cas和CPP-gRNA分开递送到多个细胞。CPP也可用于递送RNP。CPPs can be used fairly easily for in vitro and ex vivo work, and often require extensive optimization for each cargo and cell type. In some instances, CPPs can be covalently linked directly to Cas proteins, then complexed with gRNA and delivered to cells. In some instances, CPP-Cas and CPP-gRNA can be delivered separately to multiple cells. CPPs can also be used to deliver RNPs.

DNA纳米线团DNA nanowires

在某些实施方式中,所述递送媒介物包括DNA纳米线团。DNA纳米线团是指DNA的球状结构(例如具有纱球的形状)。所述纳米线团可以使用有助于结构的自组装的回文序列通过滚环扩增来合成。然后可以用有效载荷装载所述球。DNA纳米线团的实例被描述在Sun Wet al,J Am Chem Soc.2014Oct 22;136(42):14722-5;和Sun Wet al,Angew Chem Int EdEngl.2015Oct 5;54(41):12029-33中。DNA纳米线团可能具有与Cas:gRNA核糖核蛋白复合物内的gRNA部分互补的回文序列。DNA纳米线团可以被包被,例如用PEI包被,以诱导内体逃逸。In certain embodiments, the delivery vehicle comprises a DNA nanocluster. A DNA nanocluster refers to a spherical structure of DNA (e.g., having the shape of a yarn ball). The nanocluster can be synthesized by rolling circle amplification using a palindromic sequence that facilitates self-assembly of the structure. The ball can then be loaded with a payload. Examples of DNA nanocluster are described in Sun Wet al, J Am Chem Soc. 2014 Oct 22; 136(42): 14722-5; and Sun Wet al, Angew Chem Int Ed Engl. 2015 Oct 5; 54(41): 12029-33. The DNA nanocluster may have a palindromic sequence that is complementary to a portion of the gRNA within the Cas:gRNA ribonucleoprotein complex. The DNA nanocluster can be coated, for example, with PEI, to induce endosomal escape.

金纳米颗粒Gold Nanoparticles

在某些实施方式中,所述递送媒介物包括金纳米颗粒(也被称为AuNP或胶体金)。金纳米颗粒可以与运载物例如Cas:gRNA RNP形成复合物。金纳米颗粒可以被包被,例如被包被在硅酸盐和内体破坏性聚合物PAsp(DET)中。金纳米颗粒的实例包括AuraSenseTherapeutics的球形核酸(SNATM)构建体,以及在Mout R,et al.(2017).ACS Nano 11:2452-8;Lee K,et al.(2017).Nat Biomed Eng 1:889-901中描述的那些。In certain embodiments, the delivery vehicle includes gold nanoparticles (also referred to as AuNP or colloidal gold). Gold nanoparticles can form complexes with carriers such as Cas:gRNA RNP. Gold nanoparticles can be coated, for example, coated in silicates and endosomal disruptive polymers PAsp (DET). Examples of gold nanoparticles include spherical nucleic acids (SNA ) constructs of AuraSenseTherapeutics, and those described in Mout R, et al. (2017). ACS Nano 11: 2452-8; Lee K, et al. (2017). Nat Biomed Eng 1: 889-901.

iTOPiTOP

在某些实施方式中,所述递送媒介物包括iTOP。iTOP是指不依赖于任何转导肽驱动天然蛋白质的高效细胞内递送的小分子的组合。iTOP可用于由细胞渗透作用和丙烷甜菜碱诱导的转导,使用NaCl介导的高渗性与转导化合物(丙烷甜菜碱)一起触发细胞外大分子的大吞胞饮摄取(macropinocytotic uptake)到细胞中。iTOP方法和试剂的实例包括在D'Astolfo DS,Pagliero RJ,Pras A,et al.(2015).Cell 161:674-690中描述的那些。In certain embodiments, the delivery vehicle includes iTOP. iTOP refers to a combination of small molecules that drive efficient intracellular delivery of natural proteins independently of any transduction peptide. iTOP can be used for transduction induced by cell osmosis and propane betaine, using NaCl-mediated hyperosmoticity together with transduction compounds (propane betaine) to trigger macropinocytotic uptake of extracellular macromolecules into cells. Examples of iTOP methods and reagents include those described in D'Astolfo DS, Pagliero RJ, Pras A, et al. (2015). Cell 161: 674-690.

基于聚合物的颗粒Polymer-based particles

在某些实施方式中,所述递送媒介物可以包括基于聚合物的颗粒(例如纳米颗粒)。在某些实施方式中,所述基于聚合物的颗粒可以模拟病毒的膜融合机制。所述基于聚合物的颗粒可以是流感病毒机制的合成拷贝,并与通过内吞途径(一种涉及酸性区室形成的过程)被细胞摄取的各种类型的核酸(siRNA、miRNA、质粒DNA或shRNA、mRNA)形成转染复合物。晚期内体中的低pH起到化学开关的作用,使颗粒的表面疏水,并促进穿膜。一旦进入胞质溶胶,颗粒就会释放其有效载荷用于细胞作用。这种主动内体逃逸(Active EndosomeEscape)技术是安全的,并最大限度地提高转染效率,因为它使用的是天然摄取途径。在某些实施方式中,所述基于聚合物的颗粒可以包含烷基化和羧基烷基化的支链聚乙烯亚胺。在某些实例中,所述基于聚合物的颗粒是VIROMER,例如VIROMER RNAi、VIROMER RED、VIROMER mRNA、VIROMER CRISPR。递送本文中的系统和组合物的方法的实例包括在下述文献中描述的那些:Bawage SS et al.,Synthetic mRNA expressed Casl3amitigates RNAvirus infections,www.biorxiv.org/content/l0.l l01/370460v1.full doi:doi.org/10.1101/370460,RED,a powerful tool for transfection ofkeratinocytes.doi:10.13140/RG.2.2.16993.61281,Transfection-Factbook2018:technology,product overview,users'data.,doi:10.13140/RG.2.2.23912.16642。In some embodiments, the delivery vehicle may include polymer-based particles (e.g., nanoparticles). In some embodiments, the polymer-based particles may simulate the membrane fusion mechanism of the virus. The polymer-based particles may be synthetic copies of the influenza virus mechanism and may form transfection complexes with various types of nucleic acids (siRNA, miRNA, plasmid DNA or shRNA, mRNA) that are taken up by cells through the endocytic pathway (a process involving the formation of acidic compartments). The low pH in the late endosome acts as a chemical switch, making the surface of the particles hydrophobic and facilitating membrane penetration. Once entering the cytosol, the particles release their payload for cellular action. This active endosome escape (Active EndosomeEscape) technology is safe and maximizes transfection efficiency because it uses a natural uptake pathway. In some embodiments, the polymer-based particles may include alkylated and carboxyalkylated branched polyethyleneimine. In some instances, the polymer-based particles are VIROMER, such as VIROMER RNAi, VIROMER RED, VIROMER mRNA, VIROMER CRISPR. Examples of methods of delivering the systems and compositions herein include those described in: Bawage SS et al., Synthetic mRNA expressed Cas13amitigates RNAvirus infections, www.biorxiv.org/content/10.1 101/370460v1.full doi:doi.org/10.1101/370460, RED, a powerful tool for transfection of keratinocytes.doi:10.13140/RG.2.2.16993.61281, Transfection-Factbook2018:technology,product overview,users'data.,doi:10.13140/RG.2.2.23912.16642.

链球菌溶血素O(SLO)Streptolysin O (SLO)

所述递送媒介物可以是链球菌溶血素O(SLO)。SLO是一种由A组链球菌产生的毒素,其通过在哺乳动物细胞膜中产生孔来发挥作用。SLO可以以可逆的方式起作用,这允许将蛋白质(例如高达100kDa)递送到细胞的胞质溶胶,而不损害整体生存能力。SLO的实例包括在下述文献中描述的那些:Sierig G,et al.(2003).Infect Immun 71:446-55;WalevI,et al.(2001).Proc Natl Acad Sci US A 98:3185-90;Teng KW,et al.(2017).Elife6:e25460。多功能包膜型纳米器件(MEND)The delivery vehicle can be streptolysin O (SLO). SLO is a toxin produced by group A streptococci that acts by creating pores in mammalian cell membranes. SLO can act in a reversible manner, which allows proteins (e.g., up to 100 kDa) to be delivered to the cytosol of cells without compromising overall viability. Examples of SLO include those described in the following literature: Sierig G, et al. (2003). Infect Immun 71: 446-55; Walev I, et al. (2001). Proc Natl Acad Sci USA 98: 3185-90; Teng KW, et al. (2017). Elife 6: e25460. Multifunctional Encapsulated Nanodevice (MEND)

所述递送媒介物可以包括多功能包膜型纳米器件(MEND)。MEND可以包括凝缩的质粒DNA、PLL核和脂质膜壳。MEND可以进一步包含细胞穿透肽(例如硬脂酰八精氨酸)。所述细胞穿透肽可以在脂质壳中。所述脂质包膜可以用一种或多种功能性组分修饰,例如下述一者或多者:聚乙二醇(例如以增加血管循环时间)、用于靶向特定组织/细胞的配体、其他细胞穿透肽(例如用于更大的细胞递送)、增强内体逃逸的脂质和核递送标签。在某些实例中,所述MEND可以是四层MEND(T-MEND),其可以靶向细胞核和线粒体。MEND的实例包括在下述文献中描述的那些:Kogure K,et al.(2004).J Control Release 98:317-23;NakamuraT,et al.(2012).Ace Chem Res45:1113-21。The delivery vehicle may include a multifunctional membrane-encapsulated nanodevice (MEND). MEND may include condensed plasmid DNA, a PLL core, and a lipid membrane shell. MEND may further include a cell penetrating peptide (e.g., stearoyl octaarginine). The cell penetrating peptide may be in a lipid shell. The lipid envelope may be modified with one or more functional components, such as one or more of the following: polyethylene glycol (e.g., to increase vascular circulation time), ligands for targeting specific tissues/cells, other cell penetrating peptides (e.g., for larger cell delivery), lipids that enhance endosomal escape, and nuclear delivery tags. In some instances, the MEND may be a four-layer MEND (T-MEND), which may target the nucleus and mitochondria. Examples of MEND include those described in the following documents: Kogure K, et al. (2004). J Control Release 98: 317-23; Nakamura T, et al. (2012). Ace Chem Res 45: 1113-21.

脂质包被的介孔二氧化硅颗粒Lipid-coated mesoporous silica particles

所述递送媒介物可以包括脂质包被的介孔二氧化硅颗粒。脂质包被的介孔二氧化硅颗粒可以包含介孔二氧化硅纳米颗粒核和脂质膜壳。所述二氧化硅核可以具有大的内部表面积,导致高的运载物装载能力。在某些实施方式中,可以修改孔径、孔化学性质和总颗粒尺寸,以装载不同类型的运载物。所述颗粒的脂质包层也可以被修饰,以最大限度地提高运载物载量,增加循环时间,并提供精确的靶向和运载物释放。脂质包被的介孔二氧化硅颗粒的实例包括在下述文献中描述的那些:Du X,et al.(2014).Biomaterials 35:5580-90;Durfee PN,et al.(2016).ACS Nano 10:8325-45。The delivery vehicle may include lipid-coated mesoporous silica particles. The lipid-coated mesoporous silica particles may include a mesoporous silica nanoparticle core and a lipid membrane shell. The silica core may have a large internal surface area, resulting in a high cargo loading capacity. In certain embodiments, the pore size, pore chemistry, and total particle size may be modified to load different types of cargoes. The lipid envelope of the particles may also be modified to maximize cargo loading, increase circulation time, and provide precise targeting and cargo release. Examples of lipid-coated mesoporous silica particles include those described in the following literature: Du X, et al. (2014). Biomaterials 35: 5580-90; Durfee PN, et al. (2016). ACS Nano 10: 8325-45.

无机纳米颗粒Inorganic Nanoparticles

所述递送媒介物可以包括无机纳米颗粒。无机纳米颗粒的实例包括碳纳米管(CNT)(例如在Bates Kand Kostarelos K.(2013).Adv Drug Deliv Rev65:2023-33中所描述的)、裸介孔二氧化硅纳米颗粒(MSNP)(例如在Luo GF,et al.(2014).Sci Rep 4:6064中所描述的)和致密二氧化硅纳米颗粒(SiNP)(例如在Luo D and Saltzman WM.(2000).NatBiotechnol 18:893-5中所描述的)。The delivery vehicle may include inorganic nanoparticles. Examples of inorganic nanoparticles include carbon nanotubes (CNTs) (e.g., described in Bates K and Kostarelos K. (2013). Adv Drug Deliv Rev 65: 2023-33), bare mesoporous silica nanoparticles (MSNPs) (e.g., described in Luo GF, et al. (2014). Sci Rep 4: 6064), and dense silica nanoparticles (SiNPs) (e.g., described in Luo D and Saltzman WM. (2000). Nat Biotechnol 18: 893-5).

使用方法Instructions

本文的组合物和系统可用于各种应用,包括修饰非动物生物体例如植物和真菌和修饰动物,治疗和诊断植物、动物和人的疾病。通常,所述组合物和系统可以被引入到细胞、组织、器官或生物体中,在那里它们修饰一个或多个基因(例如PCSK9)的表达和/或活性。The compositions and systems herein can be used for various applications, including modification of non-animal organisms such as plants and fungi and modification of animals, treatment and diagnosis of diseases in plants, animals and humans. Generally, the compositions and systems can be introduced into cells, tissues, organs or organisms, where they modify the expression and/or activity of one or more genes (e.g., PCSK9).

在某些实施方式中,在引入有本文描述的组合物和系统的细胞中PCSK9基因产物的表达减少。在某些实施方式中,所述PCSK9基因产物表达的减少是暂时的。在某些实施方式中,PCSK9基因产物的表达减少是稳定的。在某些实施方式中,PCSK9基因产物表达的减少是可遗传的。In certain embodiments, the expression of the PCSK9 gene product is reduced in cells into which the compositions and systems described herein are introduced. In certain embodiments, the reduction in the expression of the PCSK9 gene product is temporary. In certain embodiments, the reduction in the expression of the PCSK9 gene product is stable. In certain embodiments, the reduction in the expression of the PCSK9 gene product is heritable.

在某些实施方式中,被本文的组合物和系统修饰的多个细胞包含相对于未引入有本文描述的组合物和系统的细胞降低至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%的PCSK9基因产物的表达。In certain embodiments, multiple cells modified by the compositions and systems described herein comprise expression of a PCSK9 gene product that is reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% relative to cells to which the compositions and systems described herein have not been introduced.

在某些实施方式中,从被本文描述的组合物和系统修饰的多个细胞扩增或衍生的细胞也包含相对于从未引入有本文描述的组合物和系统的细胞扩增或衍生的细胞降低至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%的PCSK9基因产物的表达。In certain embodiments, cells expanded or derived from a plurality of cells modified by the compositions and systems described herein also comprise expression of a PCSK9 gene product that is reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% relative to cells expanded or derived from cells that have not been introduced with the compositions and systems described herein.

细胞和生物体Cells and Organisms

本公开提供了包含所述工程化Cas蛋白、CRISPR-Cas系统、编码CRISPR-Cas系统的一个或多个组分的多核苷酸和/或包含所述多核苷酸的载体的细胞、组织、生物体。本公开还在本文所述的任何方法或组合物中提供了编码效应蛋白的核苷酸序列,所述核苷酸序列被密码子优化以在真核生物或真核细胞中表达。在本公开的一个实施方式中,所述密码子优化的效应蛋白是本文讨论的任何Cas蛋白,并且针对在真核细胞或生物体中的可操作性而被密码子优化,例如本文中别处提到的此类细胞或生物体,例如但不限于酵母细胞或哺乳动物细胞或生物体,包括小鼠细胞、大鼠细胞和人类细胞或非人真核生物体例如植物。The present disclosure provides cells, tissues, and organisms comprising the engineered Cas protein, CRISPR-Cas system, polynucleotides encoding one or more components of the CRISPR-Cas system, and/or vectors comprising the polynucleotides. The present disclosure also provides nucleotide sequences encoding effector proteins in any method or composition described herein, and the nucleotide sequences are codon-optimized for expression in eukaryotic organisms or eukaryotic cells. In one embodiment of the present disclosure, the codon-optimized effector protein is any Cas protein discussed herein, and is codon-optimized for operability in eukaryotic cells or organisms, such as such cells or organisms mentioned elsewhere herein, such as, but not limited to, yeast cells or mammalian cells or organisms, including mouse cells, rat cells, and human cells or non-human eukaryotic organisms such as plants.

在某些实施方式中,所述感兴趣的靶基因座的修饰可能产生:至少一种基因产物的表达被改变的真核细胞;至少一种基因产物的表达被改变的真核细胞,其中所述至少一种基因产物的表达提高;至少一种基因产物的表达被改变的真核细胞,其中所述至少一种基因产物的表达降低;或包含编辑的基因组的真核细胞。In certain embodiments, modification of the target locus of interest may result in: a eukaryotic cell in which the expression of at least one gene product is altered; a eukaryotic cell in which the expression of at least one gene product is altered, wherein the expression of the at least one gene product is increased; a eukaryotic cell in which the expression of at least one gene product is altered, wherein the expression of the at least one gene product is decreased; or a eukaryotic cell comprising an edited genome.

在某些实施方式中,所述真核细胞可以是哺乳动物细胞或人类细胞。In certain embodiments, the eukaryotic cell can be a mammalian cell or a human cell.

在其他实施方式中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于:位点特异性基因敲除;位点特异性基因组编辑;RNA序列特异性干扰;或多重基因组工程。In other embodiments, the non-naturally occurring or engineered compositions, vector systems, or delivery systems described in this specification can be used for: site-specific gene knockout; site-specific genome editing; RNA sequence-specific interference; or multiplex genome engineering.

本文还提供了一种来自本文所描述的细胞、细胞系或生物体的基因产物。在某些实施方式中,表达的基因产物的量可以大于或小于来自不具有改变的表达或编辑的基因组的细胞的基因产物的量。在某些实施方式中,所述基因产物与来自不具有改变的表达或编辑的基因组的细胞的基因产物相比可以被改变。Also provided herein is a gene product from a cell, cell line or organism described herein. In some embodiments, the amount of the gene product expressed can be greater than or less than the amount of the gene product from a cell without the expression or editing of the genome that has not been changed. In some embodiments, the gene product can be changed compared to the gene product from a cell without the expression or editing of the genome that has not been changed.

示例性疗法Exemplary Therapies

本公开提供了所述CRISPR-Cas系统在治疗各种疾病和紊乱中的用途。在某些实施方式中,本文所述的公开涉及一种治疗方法,其中将细胞通过CRISPR或碱基编辑器进行编辑以调节至少一个基因,随后将编辑的细胞施用到有需要的患者。在某些实施方式中,所述编辑涉及敲入、敲除或敲低细胞中至少一个靶基因的表达。在特定实施方式中,所述编辑将可能包括一个或多个外显子的外源基因、小基因或序列以反式或天然或合成的反式方式插入到靶基因的基因座、热点基因座、基因的基因组位置的安全港基因座(其中可以引入新的基因或基因元件而不破坏相邻基因的表达或调控)中,或者通过插入或缺失编码靶基因的调控元件的DNA序列中的一个或多个突变进行校正。在某些实施方式中,所述编辑包括在靶细胞中的核酸(例如基因组DNA)中引入一个或多个点突变。The present disclosure provides the use of the CRISPR-Cas system in treating various diseases and disorders. In certain embodiments, the disclosure described herein relates to a method of treatment, wherein cells are edited by CRISPR or a base editor to regulate at least one gene, and the edited cells are subsequently administered to patients in need. In certain embodiments, the editing involves knocking in, knocking out or knocking down the expression of at least one target gene in the cell. In a specific embodiment, the editing may include an exogenous gene, a small gene or a sequence of one or more exons in a trans or natural or synthetic trans manner to insert into the locus of the target gene, the hotspot locus, the safe harbor locus of the genomic position of the gene (wherein new genes or gene elements can be introduced without destroying the expression or regulation of adjacent genes), or by inserting or deleting one or more mutations in the DNA sequence encoding the regulatory element of the target gene for correction. In certain embodiments, the editing includes introducing one or more point mutations in a nucleic acid (e.g., genomic DNA) in a target cell.

在某些实施方式中,所述治疗针对器官的疾病/紊乱,包括肝脏疾病、眼部疾病、肌肉疾病、心脏疾病、血液疾病、脑部疾病、肾脏疾病,或者可以包括针对自身免疫性疾病、中枢神经系统疾病、癌症和其他增殖性疾病、神经变性疾病、炎性疾病、代谢紊乱、肌肉骨骼紊乱等的治疗。In certain embodiments, the treatment is directed to a disease/disorder of an organ, including liver disease, eye disease, muscle disease, heart disease, blood disease, brain disease, kidney disease, or may include treatment for autoimmune diseases, central nervous system diseases, cancer and other proliferative diseases, neurodegenerative diseases, inflammatory diseases, metabolic disorders, musculoskeletal disorders, etc.

在某些实施方式中,所述疾病与高胆固醇有关,并提供了胆固醇(例如LDL)的调节。在某些实施方式中,调节受到靶基因PCSK9中的修饰的影响。PCSK9与例如但不限于下述的疾病和紊乱相关联:无β脂蛋白血症、腺瘤、动脉硬化、动脉粥样硬化、心血管疾病、胆结石、冠状动脉硬化、冠心病、非胰岛素依赖性糖尿病、高胆固醇血症、家族性高胆固醇血症、高胰岛素血症、高脂血症、家族性合并性高脂血症、低β脂蛋白血症、慢性肾衰竭、肝病、肝肿瘤、黑色素瘤、心肌梗塞、嗜睡症、肿瘤转移、肾母细胞瘤、肥胖症、腹膜炎、弹性假黄瘤、脑血管意外、血管疾病、黄瘤病、外周血管疾病、心肌缺血、血脂异常、糖耐量受损、黄瘤病、多源性高胆固醇血症、继发性肝脏恶性肿瘤、痴呆症、超重、慢性丙型肝炎、颈动脉粥样硬化、Ha型高脂蛋白血症、颅内动脉粥样硬化、缺血性中风、急性冠脉综合征、主动脉钙化、心血管发病、lib型高脂蛋白血症、外周动脉疾病、II型家族性醛甾酮增多症、家族性低β脂蛋白血症、常染色体隐性高胆固醇血症、常染色体显性高胆固醇血症3、冠状动脉疾病、肝癌、缺血性脑血管意外和动脉硬化性心血管疾病NOS。使用本文描述的任何方法对PCSK9基因进行表观遗传学修饰可用于治疗、预防和/或减轻本文描述的疾病和紊乱的症状。In some embodiments, the disease is associated with high cholesterol and provides for the regulation of cholesterol (e.g., LDL). In some embodiments, the regulation is affected by modifications in the target gene PCSK9. PCSK9 is associated with diseases and disorders such as, but not limited to, abetalipoproteinemia, adenoma, atherosclerosis, atherosclerosis, cardiovascular disease, gallstones, coronary atherosclerosis, coronary heart disease, non-insulin-dependent diabetes mellitus, hypercholesterolemia, familial hypercholesterolemia, hyperinsulinemia, hyperlipidemia, familial combined hyperlipidemia, hypobetalipoproteinemia, chronic renal failure, liver disease, liver tumors, melanoma, myocardial infarction, narcolepsy, tumor metastasis, Wilms tumor, obesity, peritonitis, pseudoxanthoma elasticum, cerebrovascular accident, vascular disease, xanthomatosis, peripheral vascular disease, myocardial ischemia , dyslipidemia, impaired glucose tolerance, xanthomatosis, multigenic hypercholesterolemia, secondary liver malignancies, dementia, overweight, chronic hepatitis C, carotid atherosclerosis, type HA hyperlipoproteinemia, intracranial atherosclerosis, ischemic stroke, acute coronary syndrome, aortic calcification, cardiovascular morbidity, type Lib hyperlipoproteinemia, peripheral arterial disease, type II familial aldosteronism, familial hypobetalipoproteinemia, autosomal recessive hypercholesterolemia, autosomal dominant hypercholesterolemia 3, coronary artery disease, liver cancer, ischemic cerebrovascular accident, and atherosclerotic cardiovascular disease NOS. Epigenetic modification of the PCSK9 gene using any of the methods described herein can be used to treat, prevent, and/or alleviate the symptoms of the diseases and disorders described herein.

血脂异常是一种遗传疾病,其特征在于血液中脂质水平升高,导致动脉堵塞(动脉粥样硬化)的发生。这些脂质包括血浆胆固醇、甘油三酯、高密度脂蛋白或低密度脂蛋白。血脂异常增加心脏病发作、中风或其他循环系统问题的风险。目前的治疗包括生活方式改变例如锻炼和饮食调整,以及使用诸如他汀类药物的降脂药物。非他汀类降脂药物包括胆汁酸螯合剂、胆固醇吸收抑制剂、纯合家族性高胆固醇血症药物、贝特类药物、烟酸、ω-3脂肪酸和/或组合产品。治疗方案通常取决于具体的脂质异常,尽管不同的脂质异常往往共存。儿童的治疗更具挑战性,因为饮食改变可能很难实施,而且降脂疗法尚未被证明有效。使用本文描述的任何方法对PCSK9基因进行表观遗传学修饰可用于治疗、预防和/或减轻血脂异常(例如LDL失调)的症状。Dyslipidemia is a genetic disease characterized by elevated lipid levels in the blood, leading to the occurrence of arterial blockage (atherosclerosis). These lipids include plasma cholesterol, triglycerides, high-density lipoproteins or low-density lipoproteins. Dyslipidemia increases the risk of heart attack, stroke or other circulatory system problems. Current treatments include lifestyle changes such as exercise and dietary adjustments, and the use of lipid-lowering drugs such as statins. Non-statin lipid-lowering drugs include bile acid sequestrants, cholesterol absorption inhibitors, homozygous familial hypercholesterolemia drugs, fibrates, niacin, ω-3 fatty acids and/or combination products. Treatment options usually depend on specific lipid abnormalities, although different lipid abnormalities often coexist. Treatment of children is more challenging because dietary changes may be difficult to implement, and lipid-lowering therapies have not yet been proven to be effective. Using any method described herein to carry out epigenetic modification of the PCSK9 gene can be used to treat, prevent and/or alleviate the symptoms of dyslipidemia (e.g., LDL imbalance).

PCSK9的活性主要局限于肝脏,并且PCSK9与血脂异常、PCSK9相关的家族性高胆固醇血症、高胆固醇血症(家族性)、胃乳头状腺癌、纯合家族性高胆固醇血症和鼻咽炎有关。PCSK9相关的家族性高胆固醇血症是一种(常染色体显性)遗传疾病,其中身体由于缺乏低密度脂蛋白胆固醇受体而出现危险的血液胆固醇水平。PCSK9相关的家族性高胆固醇血症影响全世界人口中杂合子的500分之一至纯合子的1,000,000分之一之间,并且在南非白人、法裔加拿大人、黎巴嫩基督徒和芬兰人中更为常见。PCSK9相关家族性高胆固醇血症的常见症状包括单独的低密度脂蛋白中或者也包括极低密度脂蛋白质中所含的循环胆固醇升高。目前PCSK9相关家族性高胆固醇血症的治疗方法包括施用他汀类药物以抑制肝脏中的羟甲基戊二酰辅酶A还原酶(HMG-CoA还原酶)。治疗PCSK9相关家族性高胆固醇血症的另一个选择是依折麦布,以抑制肠道中胆固醇的吸收。The activity of PCSK9 is mainly confined to the liver, and PCSK9 is associated with dyslipidemia, PCSK9-related familial hypercholesterolemia, hypercholesterolemia (familial), gastric papillary adenocarcinoma, homozygous familial hypercholesterolemia, and nasopharyngitis. PCSK9-related familial hypercholesterolemia is an (autosomal dominant) genetic disease in which the body presents dangerous blood cholesterol levels due to the lack of low-density lipoprotein cholesterol receptors. PCSK9-related familial hypercholesterolemia affects between 1 in 500 heterozygotes and 1 in 1,000,000 homozygotes in the world's population, and is more common in white South Africans, French Canadians, Lebanese Christians, and Finns. Common symptoms of PCSK9-related familial hypercholesterolemia include elevated circulating cholesterol contained in either single low-density lipoproteins or also very low-density lipoproteins. Current treatments for PCSK9-related familial hypercholesterolemia include the administration of statins to inhibit hydroxymethylglutaryl coenzyme A reductase (HMG-CoA reductase) in the liver. Another option for treating PCSK9-related familial hypercholesterolemia is ezetimibe, which inhibits the absorption of cholesterol in the intestine.

在某些实施方式中,本文描述的任何方法的PCSK9基因的表观遗传学修饰可以靶向肝脏,即PCSK9活性的主要位置。In certain embodiments, epigenetic modification of the PCSK9 gene by any of the methods described herein can be targeted to the liver, the primary site of PCSK9 activity.

实施例Example

实施例1:融合分子质粒构建和敲低效率Example 1: Fusion molecule plasmid construction and knockdown efficiency

构建了两个质粒以形成“EPICAS”系统(可以与“CRISPRoff”系统互换使用)(图1A)。“融合分子”或“催化蛋白”质粒编码dCas9、DNMT3A、DNMT3L和KRAB肽。融合的DNMT3A和DNMT3L(3A3L)肽位于dCas9的N-端,KRAB位于dCas9的C-端。因此,所述融合分子从N-端到C-端具有3A3L-dCas9-KRAB。“sgRNA”质粒编码靶向PCSK9基因的sgRNA序列。设计了多个sgRNA以靶向小鼠PCSK9基因的转录起始位点(TSS)上游和下游250bp以内的区域。Two plasmids were constructed to form the "EPICAS" system (which can be used interchangeably with the "CRISPRoff" system) (Figure 1A). The "fusion molecule" or "catalytic protein" plasmid encodes dCas9, DNMT3A, DNMT3L, and KRAB peptides. The fused DNMT3A and DNMT3L (3A3L) peptides are located at the N-terminus of dCas9, and KRAB is located at the C-terminus of dCas9. Therefore, the fusion molecule has 3A3L-dCas9-KRAB from the N-terminus to the C-terminus. The "sgRNA" plasmid encodes the sgRNA sequence targeting the PCSK9 gene. Multiple sgRNAs were designed to target the region within 250bp upstream and downstream of the transcription start site (TSS) of the mouse PCSK9 gene.

将各个sgRNA质粒与催化蛋白质粒共转染到小鼠AML12细胞系中。72小时后,通过FACS对前10%的GFP+和mCherry+细胞进行分选。进行RT-QPCR实验以评估Pcsk9的mRNA表达水平。所测试的13种sgRNA中有12种在AML12细胞中显示出Pcsk9的表达显著下调。用sgRNA9转染的细胞显示出高达约82%的有效敲低(图1B)。Each sgRNA plasmid was co-transfected with a catalytic protein plasmid into a mouse AML12 cell line. After 72 hours, the top 10% of GFP+ and mCherry+ cells were sorted by FACS. RT-QPCR experiments were performed to assess the mRNA expression level of Pcsk9. Twelve of the 13 sgRNAs tested showed significant downregulation of Pcsk9 expression in AML12 cells. Cells transfected with sgRNA9 showed an effective knockdown of up to about 82% (Figure 1B).

接下来,测试了sgRNA9与其他各个sgRNA的组合,以确定超过一种sgRNA的组合是否可以进一步降低AML12细胞中Pcsk9的基因表达水平(图1C)。在所测试的组合中,sgRNA7和sgRNA9一起显示出最高的抑制水平。还测试了sgRNA的各个组合,以确定超过一种sgRNA的组合是否可以降低Ai9原代肝细胞中Pcsk9的基因表达水平(图1D)。所有组合均显著敲低Pcsk9的表达水平。在用sgRNA7、sgRNA8和sgRNA9共转染的细胞中观察到最低的降低。Pcsk9沉默在原代肝细胞中持续至少两周以上,并且sgRNA7和sgRNA9的组合显示出对PCSK9基因表达的最高抑制效率(高达81%)。总之,这表明EPICAS系统可用于在小鼠肝细胞中诱导Pcsk9基因的高效且持久的沉默。Next, the combination of sgRNA9 and other individual sgRNAs was tested to determine whether the combination of more than one sgRNA could further reduce the gene expression level of Pcsk9 in AML12 cells (Figure 1C). Among the combinations tested, sgRNA7 and sgRNA9 showed the highest inhibition level together. Each combination of sgRNAs was also tested to determine whether the combination of more than one sgRNA could reduce the gene expression level of Pcsk9 in Ai9 primary hepatocytes (Figure 1D). All combinations significantly knocked down the expression level of Pcsk9. The lowest reduction was observed in cells co-transfected with sgRNA7, sgRNA8, and sgRNA9. Pcsk9 silencing lasted for at least two weeks in primary hepatocytes, and the combination of sgRNA7 and sgRNA9 showed the highest inhibition efficiency (up to 81%) for PCSK9 gene expression. In summary, this shows that the EPICAS system can be used to induce efficient and lasting silencing of the Pcsk9 gene in mouse hepatocytes.

实施例2:编码融合分子的mRNA的体外转录Example 2: In vitro transcription of mRNA encoding fusion molecules

使用体外转录和纯化来产生对应于EPICAS系统的融合分子或催化蛋白的mRNA。首先,构建了含有包括5’UTR-DNMT3A-DNMT3L-dCas9-KRAB-3’UTR-polyA表达盒在内的所有融合分子元件的质粒。通过XbaI和BpiI限制性内切酶消化将质粒序列线性化(图2A)。进行含有线性化DNA模板、T7 RNA聚合酶、NTP和帽类似物的体外转录反应,以产生含有N1-甲基假尿苷的mRNA。在用DNaseI消化DNA模板后,对mRNA产物进行纯化和缓冲液交换,并用毛细管凝胶电泳评估最终mRNA产物的纯度(图2B)。由商业供应商在固相合成条件下以最小的末端修饰化学合成了100-mer sgRNA。为了测试体外转录的mRNA的功能,在HEK293T细胞中构建了Snrpn-GFP报告系统(图2C)。该报告系统使用合成的甲基化感应启动子(来自印记基因Snrpn的启动子的保守序列元件)控制GFP的表达。该报告构建体在基因组基因座中的插入显示了邻近序列的甲基化状态。将上述体外转录的mRNA与靶向Snrpn基因的sgRNA共转染到报告细胞中。转染后8天,报告细胞中25.3%的细胞为GFP阴性,显著高于用非靶向sgRNA转染的对照组(图2D)。将GFP阴性细胞通过FACS进行分选并培养30天。在转染后30天,报告系统中93.2%的细胞为GFP阴性,而对照组中几乎没有发现GFP阴性细胞(图2D、2E)。在转染后70天和90天,报告系统中分别有86.1%和87.3%的细胞为GFP阴性(图2I)。在转染后150天和400天(即多达~400次细胞分裂),报告系统中分别有92.7%和88.1%的细胞为GFP阴性。这表明使用CRISPRoff系统进行的表观基因组编辑的持久性(图2D)。此外,通过亚硫酸氢盐PCR测定法分析了Snrpn基因座上的DNA甲基化水平。报告细胞(GFP-OFF组)的甲基化水平显著高于对照细胞(GFP-ON组)(图2F)。这一结果伴随着在Snrpn基因座上观察到的高CpG甲基化(图2F、2G、2I)。总之,这些结果表明,EPICAS系统的瞬时表达和mRNA扫描在长时间段内使靶基因的表达沉默。In vitro transcription and purification were used to generate mRNA corresponding to the fusion molecule or catalytic protein of the EPICAS system. First, a plasmid containing all fusion molecule elements including the 5'UTR-DNMT3A-DNMT3L-dCas9-KRAB-3'UTR-polyA expression cassette was constructed. The plasmid sequence was linearized by digestion with XbaI and BpiI restriction endonucleases (Figure 2A). An in vitro transcription reaction containing a linearized DNA template, T7 RNA polymerase, NTP, and cap analogs was performed to produce mRNA containing N1-methyl pseudouridine. After digestion of the DNA template with DNaseI, the mRNA product was purified and buffer exchanged, and the purity of the final mRNA product was assessed by capillary gel electrophoresis (Figure 2B). 100-mer sgRNA was chemically synthesized by a commercial supplier under solid phase synthesis conditions with minimal end modification. In order to test the function of the in vitro transcribed mRNA, the Snrpn-GFP reporter system was constructed in HEK293T cells (Figure 2C). The reporter system uses a synthetic methylation-sensing promoter (conserved sequence elements from the promoter of the imprinted gene Snrpn) to control the expression of GFP. The insertion of the reporter construct in the genomic locus shows the methylation status of the adjacent sequence. The above-mentioned in vitro transcribed mRNA is co-transfected into the reporter cells with the sgRNA targeting the Snrpn gene. 8 days after transfection, 25.3% of the cells in the reporter cells were GFP negative, which was significantly higher than the control group transfected with non-targeted sgRNA (Figure 2D). GFP-negative cells were sorted by FACS and cultured for 30 days. 30 days after transfection, 93.2% of the cells in the reporter system were GFP-negative, while almost no GFP-negative cells were found in the control group (Figures 2D, 2E). 70 days and 90 days after transfection, 86.1% and 87.3% of the cells in the reporter system were GFP-negative, respectively (Figure 2I). At 150 and 400 days after transfection (i.e., up to ~400 cell divisions), 92.7% and 88.1% of the cells in the reporter system were GFP negative, respectively. This indicates the persistence of epigenomic editing using the CRISPRoff system (Figure 2D). In addition, the DNA methylation level at the Snrpn locus was analyzed by bisulfite PCR assay. The methylation level of the reporter cells (GFP-OFF group) was significantly higher than that of the control cells (GFP-ON group) (Figure 2F). This result was accompanied by high CpG methylation observed at the Snrpn locus (Figures 2F, 2G, 2I). In summary, these results indicate that transient expression and mRNA scanning of the EPICAS system silences the expression of target genes over a long period of time.

实施例3:编码融合分子的mRNA和sgRNA的脂质纳米颗粒包封LNP制剂和特征Example 3: Lipid Nanoparticle Encapsulation of mRNA and sgRNA Encoding Fusion Molecules LNP Formulation and Characteristics

使用本领域已知的标准方法配制LNP,用于将融合分子mRNA和sgRNA递送至人肝细胞。对于小鼠研究而言,LNP如前所述配制,并进行了一些修改(1)。简而言之,使用(在线)混合器将1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱、胆固醇、PEG脂质和可电离阳离子脂质的乙醇溶液与含有mRNA和sgRNA(1:1重量比)的水性溶液(pH 4)以1:3的流量比(乙醇:水相)快速混合。在整个研究过程中,将可电离脂质与核酸之间的N:P比例维持在4-6。LNPs were formulated using standard methods known in the art for delivery of fusion molecule mRNA and sgRNA to human hepatocytes. For mouse studies, LNPs were formulated as described previously with some modifications (1). Briefly, an ethanolic solution of 1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol, PEG lipids, and ionizable cationic lipids was rapidly mixed with an aqueous solution (pH 4) containing mRNA and sgRNA (1:1 weight ratio) using an (in-line) mixer at a flow ratio (ethanol:aqueous phase) of 1:3. The N:P ratio between ionizable lipid and nucleic acid was maintained at 4-6 throughout the study.

将得到的LNP制剂对1×PBS透析过夜,0.2μm除菌过滤并在4℃下储存直至使用。通过动态光散射(Malvern NanoZS Zetasizer)测定,颗粒尺寸在70-90nm(Z-Ave,流体动力学直径)的范围内,并且多分散指数<0.2。通过Quant-iT Ribogreen Assay(LifeTechnologies)测量RNA在LNP中的包封效率。The resulting LNP formulation was dialyzed against 1×PBS overnight, 0.2 μm sterile filtered and stored at 4°C until use. Particle size was in the range of 70-90 nm (Z-Ave, hydrodynamic diameter) and polydispersity index <0.2 as determined by dynamic light scattering (Malvern NanoZS Zetasizer). RNA encapsulation efficiency in LNP was measured by Quant-iT Ribogreen Assay (Life Technologies).

Cryo-TEM样品制备和成像Cryo-TEM sample preparation and imaging

在95%相对湿度下,将LNP样品(3-5μl)分配到FEI Vitrobot室中的等离子体清洁的网(Quantifoil,R1.2/1.3 300或400铜网)上,并静置30-60s。然后,将网用滤纸吸干3s,并浸入由液氮冷却的液态乙烷中。在FEI Talos F200C上进行Cryo-EM成像,在200kV加速电压下运行。At 95% relative humidity, LNP samples (3-5 μl) were dispensed onto plasma-cleaned meshes (Quantifoil, R1.2/1.3 300 or 400 copper meshes) in a FEI Vitrobot chamber and left to stand for 30-60 s. The meshes were then blotted for 3 s with filter paper and immersed in liquid ethane cooled by liquid nitrogen. Cryo-EM imaging was performed on a FEI Talos F200C, operating at 200 kV accelerating voltage.

LNP含有重量比为1:1的融合分子mRNA和靶向Pcsk9基因的sgRNA(图3A)。使用精心设计的撞击流反应器或微流体装置,使用可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(30%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)的混合物配制脂质纳米颗粒(LNP)。通过改变可电离脂质的比例,可以改变sgRNA和mRNA的释放动力学。使用较高比例的可电离脂质(摩尔比高于55%)时,sgRNA的释放比mRNA快得多。透射电子显微镜(TEM)图像显示LNP是球形和纳米尺寸的颗粒(图3B)。使用动态光散射(NanoSZ,Malvern),LNP具有均匀的尺寸(78.2±5.2nm,PDI<0.10)(图3C)。LNP contains a fusion molecule mRNA and sgRNA targeting the Pcsk9 gene in a weight ratio of 1:1 (Figure 3A). Lipid nanoparticles (LNP) are prepared using a mixture of ionizable lipids (20%-70%, molar ratio), PEGylated lipids (0%-30%, molar ratio), supporting lipids (30%-50%, molar ratio) and cholesterol (10%-50%, molar ratio) using a carefully designed impinging stream reactor or microfluidic device. By changing the ratio of ionizable lipids, the release kinetics of sgRNA and mRNA can be changed. When a higher ratio of ionizable lipids (molar ratio above 55%) is used, sgRNA is released much faster than mRNA. Transmission electron microscopy (TEM) images show that LNPs are spherical and nanosized particles (Figure 3B). Using dynamic light scattering (NanoSZ, Malvern), LNPs have uniform size (78.2±5.2nm, PDI<0.10) (Figure 3C).

实施例4:在小鼠中使用LNP递送编码融合分子的mRNA和sgRNA进行PCSK9基因沉默Example 4: PCSK9 gene silencing in mice using LNPs to deliver mRNA and sgRNA encoding fusion molecules

接下来,测试了使用EPICAS系统(也被称为“CRISPRoff”系统)在体内沉默Pcsk9表达。将LNP通过尾侧静脉注射施用到C57CB/6J小鼠(图3E)。注射后五天,对小鼠实施安乐死,获得肝脏样品并进行处理,以纯化mRNA。进行RT-QPCR实验以评估小鼠中Pcsk9基因的敲低效率。LNP注射的小鼠中Pcsk9的表达水平显著低于对照组(图3F),表明EPICAS系统在体内沉默Pcsk9基因表达方面的功效。Next, the use of the EPICAS system (also known as the "CRISPRoff" system) to silence Pcsk9 expression in vivo was tested. LNP was administered to C57CB/6J mice by tail vein injection (Figure 3E). Five days after injection, the mice were euthanized, and liver samples were obtained and processed to purify mRNA. RT-QPCR experiments were performed to evaluate the knockdown efficiency of the Pcsk9 gene in mice. The expression level of Pcsk9 in LNP-injected mice was significantly lower than that in the control group (Figure 3F), indicating the efficacy of the EPICAS system in silencing Pcsk9 gene expression in vivo.

为了测试LNP是否可以在体内成功地将mRNA递送到小鼠肝细胞,产生了含有荧光素酶mRNA的LNP,并通过肌肉内注射将其注射到野生型小鼠中。To test whether LNPs could successfully deliver mRNA to mouse hepatocytes in vivo, LNPs containing luciferase mRNA were produced and injected into wild-type mice via intramuscular injection.

体内Luc mRNA递送In vivo Luc mRNA delivery

为了检测Luc mRNA-LNP的体内分布,对6-8周龄的雌性Balb/c小鼠(n=5)体内注射5μg Luc mRNA。在规定的检测时间点,对小鼠注射0.2ml D-荧光素(15mg/ml,在DPBS中),并使用IVIS Lumina系统(Perkin Elmer)成像。To detect the in vivo distribution of Luc mRNA-LNP, 5 μg Luc mRNA was injected into female Balb/c mice (n=5) aged 6-8 weeks. At the specified detection time point, 0.2 ml D-luciferin (15 mg/ml in DPBS) was injected into the mice and imaged using the IVIS Lumina system (Perkin Elmer).

对于体外成像而言,对6-8周龄的雌性BALB/c小鼠(n=2)注射5μgLuc mRNA。12小时后,对动物腹膜内(i.p.)注射0.2mL D-荧光素(15mg/ml,在DPBS中),然后反应5分钟。立即收集包括心、肝、脾、肺和肾在内的组织,并通过IVIS Lumina系统监测各组织的荧光信号。For in vitro imaging, 6-8 week old female BALB/c mice (n=2) were injected with 5 μg Luc mRNA. 12 hours later, animals were injected intraperitoneally (i.p.) with 0.2 mL D-luciferin (15 mg/ml in DPBS) and then reacted for 5 minutes. Tissues including heart, liver, spleen, lung and kidney were immediately collected and the fluorescence signal of each tissue was monitored by the IVIS Lumina system.

通过体内荧光成像,显示LNP高效地将萤光素酶mRNA递送到小鼠肝细胞中(图3D)。结果表明,LNP还可以通过尾静脉注射将相对较大尺寸的mRNA高效地递送到小鼠肝脏中,如图所示,几乎所有肝细胞均表现出tdTomato荧光(图6A)。此外,LNP递送的荧光素酶mRNA在注射后6hr在小鼠肝脏中积累(图6B),在注射后12hr和24hr在小鼠肝脏中逐渐减少,并在注射后48hr在肝脏中不存在(图6C)。By in vivo fluorescence imaging, it is shown that LNP efficiently delivers luciferase mRNA to mouse liver cells (Fig. 3D). The results show that LNP can also efficiently deliver relatively large-sized mRNA to mouse liver by tail vein injection, as shown in the figure, almost all hepatocytes show tdTomato fluorescence (Fig. 6A). In addition, the luciferase mRNA delivered by LNP accumulates in mouse liver 6hr after injection (Fig. 6B), gradually decreases in mouse liver 12hr and 24hr after injection, and does not exist in liver 48hr after injection (Fig. 6C).

小鼠的LNP治疗LNP treatment of mice

小鼠研究由北京维通利华实验动物技术有限公司和SLAC实验室批准并用于实验。将Ai9(C57BL/6J遗传背景)和C57BL/6J野生型小鼠在无特定病原体的饲养条件和12h光照/12h黑暗的循环中饲养。动物的使用和护理符合中国科学院上海生命科学研究院生命科学伦理委员会的指导方针。雄性C57BL/6J小鼠在8-10周龄时用于实验,将小鼠随机分配到各个实验组,并以盲法方式进行数据收集和分析。将LNP在200μl PBS中通过尾侧静脉注射施用到小鼠。在指定时间点处死小鼠,在尸检中获得肝脏样品和血清,用于RNA提取或血清生物化学分析。Mouse studies were approved and used for experiments by Beijing Weitonglihua Laboratory Animal Technology Co., Ltd. and SLAC Laboratories. Ai9 (C57BL/6J genetic background) and C57BL/6J wild-type mice were housed in specific pathogen-free housing conditions and a 12h light/12h dark cycle. The use and care of animals complied with the guidelines of the Life Science Ethics Committee of the Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. Male C57BL/6J mice were used for experiments at 8-10 weeks of age, mice were randomly assigned to various experimental groups, and data collection and analysis were performed in a blinded manner. LNPs were administered to mice in 200 μl PBS by tail vein injection. Mice were killed at designated time points, and liver samples and serum were obtained at autopsy for RNA extraction or serum biochemical analysis.

对于C57CB/6J成年野生型小鼠中的CRISPRoff递送而言,通过LNP的静脉内注射递送重量比为1:1的CRISPRoff mRNA和sgRNA(sgRNA 7(SEQ ID NO:33)和sgRNA 9(SEQ IDNO:35))(图9A、9B)。在注射后7天收集肝组织用于qPCR分析。与注射PBS的对照小鼠相比,Pcsk9的表达显著降低(图6D)。进一步的研究显示,剂量为1.5、3.0、6.0和10mg/kg的含有CRISPRoff的LNP导致对Pcsk9表达的76%、93%、97%和98%的抑制,在3.0mg/kg时出现近平台效应(图6D)。在CRISPRoff治疗的小鼠中,血液中的Pcsk9蛋白水平也显著降低,其剂量依赖性类似于肝组织中的Pcsk9表达(图6E)。在3.0和6.0mg/kg下观察到在Pcsk9基因启动子处高水平的DNA甲基化,而血液化学(AST、ALT、ALP和ALB)未见异常(图9C、9D)。For CRISPRoff delivery in C57CB/6J adult wild-type mice, CRISPRoff mRNA and sgRNA (sgRNA 7 (SEQ ID NO: 33) and sgRNA 9 (SEQ ID NO: 35)) were delivered at a weight ratio of 1:1 by intravenous injection of LNPs (Figures 9A, 9B). Liver tissue was collected 7 days after injection for qPCR analysis. The expression of Pcsk9 was significantly reduced compared with control mice injected with PBS (Figure 6D). Further studies showed that doses of 1.5, 3.0, 6.0 and 10 mg/kg of LNPs containing CRISPRoff resulted in 76%, 93%, 97% and 98% inhibition of Pcsk9 expression, with a near-plateau effect at 3.0 mg/kg (Figure 6D). In CRISPRoff-treated mice, Pcsk9 protein levels in the blood were also significantly reduced, and its dose dependence was similar to that of Pcsk9 expression in liver tissue (Figure 6E). High levels of DNA methylation at the Pcsk9 gene promoter were observed at 3.0 and 6.0 mg/kg, while no abnormalities were found in blood chemistry (AST, ALT, ALP, and ALB) ( Figures 9C , 9D ).

肝脏切除和再生后稳定的PCSK9甲基化和降低的表达Stable PCSK9 methylation and decreased expression after liver resection and regeneration

部分肝切除术(PHx)诱导的肝再生小鼠模型Mouse model of liver regeneration induced by partial hepatectomy (PHx)

小鼠部分肝切除术(PHx)如前所述进行(2)。简而言之,我们使用了全身麻醉,上中线小切口,丝线缝合来绑住待切除的肝叶,温热垫和灯,以及皮下盐水注射以确保将发病率降至最低。Partial hepatectomy (PHx) in mice was performed as described previously (2). In brief, we used general anesthesia, a small upper midline incision, silk sutures to tie off the liver lobe to be removed, a warming pad and lamp, and subcutaneous saline injection to ensure minimal morbidity.

高脂肪饮食诱导的高胆固醇血症鼠类模型High-fat diet-induced hypercholesterolemia mouse model

高脂肪饮食小鼠从江苏集萃药康生物科技股份有限公司(南京,中国)获得。将小鼠在无特定病原体饲养条件和12h光照/12h黑暗的周期下饲养,并用高脂肪饮食,即从Research Diets,Inc.(New Brunswick,NJ)获得的60kcal%饱和(猪油)脂肪饮食(HFD)喂养24周。选择血液LDL-c水平大于25mg/dL的小鼠进行实验。High-fat diet mice were obtained from Jiangsu Jicui Pharmaceutical Biotechnology Co., Ltd. (Nanjing, China). The mice were housed under specific pathogen-free housing conditions and a 12 h light/12 h dark cycle and fed with a high-fat diet, a 60 kcal% saturated (lard) fat diet (HFD) obtained from Research Diets, Inc. (New Brunswick, NJ) for 24 weeks. Mice with blood LDL-c levels greater than 25 mg/dL were selected for the experiment.

接下来,评估在6mg/kg剂量下CRISPRoff诱导的Pcsk9降低的持久性。在CRISPRoff治疗的小鼠的血液中,在LNP注射后2、4、6和8周,Pcsk9的蛋白质表达水平分别降低88%、81%、82%和77%,表明CRISProfff在体内对靶基因的持续沉默(图6F)。为了进一步证明CRISPRoff介导的表观基因组编辑的可遗传性,进行了肝切除实验以测量肝再生后的基因沉默效应。具体而言,在第0天向小鼠施用含有CRISPRoff的LNP,并在第7天进行部分肝切除术(PHx)(14)或假手术(图6G)。在第14天收集PHx实验后的肝组织样品,此时肝再生几乎完成(图6G)。PHx后肝脏中Pcsk9mRNA的表达显示出与假手术组中相似的降低水平(93+/-11%和92%+/-9%,P<0.0001,t-检验)(图6H)。此外,在PHx后,Pcsk9启动子处的CpG甲基化维持高水平(图6I)。在PHx后期由于大量肝细胞通过细胞分裂再生,这些结果表明CRISPRoff介导的表观基因组编辑在体内细胞分裂过程中是可遗传的,这有利于治疗设计。Next, the persistence of CRISPRoff-induced Pcsk9 reduction at a dose of 6 mg/kg was evaluated. In the blood of CRISPRoff-treated mice, the protein expression levels of Pcsk9 decreased by 88%, 81%, 82% and 77% at 2, 4, 6 and 8 weeks after LNP injection, respectively, indicating that CRISPRofff persisted in silencing the target gene in vivo (Figure 6F). To further demonstrate the heritability of CRISPRoff-mediated epigenome editing, a liver resection experiment was performed to measure the gene silencing effect after liver regeneration. Specifically, mice were administered LNPs containing CRISPRoff on day 0 and underwent partial hepatectomy (PHx) (14) or sham surgery on day 7 (Figure 6G). Liver tissue samples after the PHx experiment were collected on day 14, when liver regeneration was almost complete (Figure 6G). The expression of Pcsk9 mRNA in the liver after PHx showed a similar reduction level as that in the sham group (93 +/- 11% and 92% +/- 9%, P < 0.0001, t-test) (Figure 6H). In addition, after PHx, CpG methylation at the Pcsk9 promoter was maintained at a high level (Figure 6I). In the late stage of PHx, since a large number of hepatocytes regenerate through cell division, these results indicate that CRISPRoff-mediated epigenome editing is heritable during cell division in vivo, which is beneficial for therapeutic design.

高脂肪饮食喂养的小鼠中血液LDL的持续降低Sustained reduction of blood LDL in mice fed a high-fat diet

已显示血清LDL-C水平随着高脂肪饮食(HFD)的增加而增加(15)。评估了在喂食HFD的小鼠中表观基因组编辑对降低Pcsk9水平的影响。具体而言,将6周龄雄性C57BI/6J小鼠用HFD喂养6个月,然后通过尾静脉注射用包封有CRISPRoff mRNA以及Pcsk9靶向sgRNA的LNP或PBS处理(图7A)。在注射后7天和14天,与PBS组相比,在4mg/kg和6mg/kg的剂量下血液中的Pcsk9水平显著降低(图7B、7C)。此外,在4mg/kg和6mg/kg下,血清LDL-C水平在注射后14天分别降低约44%和约58%,并在注射后21天分别降低约43%和约51%(图7D)。这些结果表明,通过表观基因组编辑降低Pcsk9可以高效且持久地降低HFD小鼠中的血清LDL-C水平,这在治疗设计中是有利的。Serum LDL-C levels have been shown to increase with a high-fat diet (HFD) (15). The effects of epigenome editing on reducing Pcsk9 levels in mice fed an HFD were evaluated. Specifically, 6-week-old male C57BI/6J mice were fed an HFD for 6 months and then treated with LNPs or PBS encapsulated with CRISPRoff mRNA and Pcsk9-targeting sgRNA via tail vein injection (Figure 7A). At 7 and 14 days after injection, Pcsk9 levels in the blood were significantly reduced at doses of 4 mg/kg and 6 mg/kg compared to the PBS group (Figures 7B, 7C). In addition, at 4 mg/kg and 6 mg/kg, serum LDL-C levels decreased by approximately 44% and approximately 58%, respectively, 14 days after injection, and by approximately 43% and approximately 51%, respectively, 21 days after injection (Figure 7D). These results suggest that reduction of Pcsk9 by epigenome editing can efficiently and durably reduce serum LDL-C levels in HFD mice, which is advantageous in therapeutic design.

无脱靶效应的EPICAS系统对PCSK9的精准沉默Precise silencing of PCSK9 by the EPICAS system without off-target effects

为了研究表观基因组编辑的潜在脱靶效应,评估了CRISPRoff编辑在转录组和基因组两种水平上的特异性。在LNP递送CRISPRoff mRNA和Pcsk9靶向sgRNA后7天,对小鼠肝组织进行RNA-seq。在CRISPRoff处理的小鼠中全转录组基因表达水平,除了靶基因Pcsk9的表达水平被沉默以外,与PBS处理的小鼠没有显著差异(图8A和图10A)。距Pcsk9 1-Mb窗口内的邻近基因的表达水平在两组小鼠之间也没有表现出显著差异(图8B)。在CRISPRoff处理组中观察到几个具有超过2倍变化(FDR<0.05)的非靶转录物(图10B),但在CRISP-off和PBS处理的小鼠之间,这些非靶转录物上的DNA甲基化水平没有显示出显著差异(图10B)。此外,进行了高通量全基因组亚硫酸氢盐测序(WGBS),以检查肝组织上CpG的脱靶甲基化。除了Pcsk9之外,在所有CpG位点处的甲基化水平在两组小鼠之间没有显著差异,这表明在CRISPRoff处理的小鼠中Pcsk9启动子处的DNA甲基化的显性增加(图8C)。详细的检查揭示,DNA甲基化仅在被sgRNA靶向的启动子区上调,而没有扩散到Pcsk9基因体或邻近基因(图8D和图10C)。对非靶差异甲基化区域处或附近的基因的检查没有揭示出转录差异(图10D),这表明非特异性甲基化差异对基因表达几乎没有影响。我们还比较了潜在sgRNA依赖性脱靶位点(与在靶基因座具有高序列相似性)的甲基化和基因表达水平,并发现在CRISPRoff和PBS处理的小鼠之间没有显著差异(图8E)。这些结果共同证明,表观遗传学介导的基因沉默在体内诱导很少的sgRNA非依赖性和sgRNA依赖性脱靶效应。To investigate the potential off-target effects of epigenome editing, the specificity of CRISPRoff editing at both the transcriptome and genome levels was assessed. Seven days after LNP delivery of CRISPRoff mRNA and Pcsk9 targeting sgRNA, RNA-seq was performed on mouse liver tissue. In CRISPRoff treated mice, the expression levels of whole transcriptome genes were not significantly different from those of PBS treated mice, except that the expression level of the target gene Pcsk9 was silenced (Figures 8A and 10A). The expression levels of neighboring genes within the 1-Mb window from Pcsk9 did not show significant differences between the two groups of mice (Figure 8B). Several non-target transcripts with more than 2-fold changes (FDR<0.05) were observed in the CRISPRoff treated group (Figure 10B), but the DNA methylation levels on these non-target transcripts did not show significant differences between CRISP-off and PBS treated mice (Figure 10B). In addition, high-throughput whole genome bisulfite sequencing (WGBS) was performed to examine the off-target methylation of CpG on liver tissue. Except for Pcsk9, there was no significant difference in methylation levels at all CpG sites between the two groups of mice, indicating a dominant increase in DNA methylation at the Pcsk9 promoter in CRISPRoff-treated mice (Figure 8C). Detailed examination revealed that DNA methylation was upregulated only in the promoter region targeted by sgRNA, without spreading to the Pcsk9 gene body or neighboring genes (Figures 8D and 10C). Examination of genes at or near non-target differentially methylated regions did not reveal transcriptional differences (Figure 10D), indicating that nonspecific methylation differences had little effect on gene expression. We also compared methylation and gene expression levels at potential sgRNA-dependent off-target sites (with high sequence similarity to the target locus) and found no significant differences between CRISPRoff and PBS-treated mice (Figure 8E). Together, these results demonstrate that epigenetically mediated gene silencing induces few sgRNA-independent and sgRNA-dependent off-target effects in vivo.

总之,结果证明,EPICAS(CRISPRoff)系统可以高效抑制靶基因Pcsk9在小鼠肝脏中的表达高达98%,其功效高于现有药物(他汀类药物、抗体和siRNA)和当前使用CRISPR/Cas9或碱基编辑器的基因编辑技术(8-12)。使用EPICAS(CRISPRoff)系统的无切割表观基因组编辑降低了在靶基因座处进行不必要的DNA修复介导编辑的潜在风险,这对人类治疗设计是有益的。它也没有诱导可检测的脱靶DNA甲基化和基因表达的改变。这种CRISPRoff诱导的甲基化可以通过CRISPR介导的去甲基化工具逆转(4)。值得注意的是,使用CRISProff mRNA的瞬时递送,靶基因的CRISPRoff依赖性下调在多轮细胞分裂后持续存在。使用LNP的基因编辑工具的体内递送可能比AAV更好,因为由AAV递送导致的编辑工具的长期表达既不必要也不可取。瞬时LNP介导的mRNA递送避免了由编辑器的长时间存在引起的脱靶效应以及AAV的其他副作用,例如免疫应答和编辑工具的基因组整合(16)。最后,表观基因组编辑诱导的Pcsk9沉默和血液LDL-C降低是稳健且持久的,为FH的治疗提供了潜在的治疗策略。此类方法也可应用于其他慢性疾病的治疗。In summary, the results demonstrated that the EPICAS (CRISPRoff) system can efficiently inhibit the expression of the target gene Pcsk9 in mouse liver by up to 98%, with an efficacy higher than that of existing drugs (statins, antibodies, and siRNA) and current gene editing technologies using CRISPR/Cas9 or base editors (8-12). Cutting-free epigenome editing using the EPICAS (CRISPRoff) system reduces the potential risk of unnecessary DNA repair-mediated editing at the target locus, which is beneficial for human therapeutic design. It also does not induce detectable off-target DNA methylation and changes in gene expression. This CRISPRoff-induced methylation can be reversed by CRISPR-mediated demethylation tools (4). Notably, using transient delivery of CRISProff mRNA, CRISPRoff-dependent downregulation of the target gene persists after multiple rounds of cell division. In vivo delivery of gene editing tools using LNPs may be better than AAV because long-term expression of editing tools caused by AAV delivery is neither necessary nor desirable. Transient LNP-mediated mRNA delivery avoids off-target effects caused by the prolonged presence of the editor and other side effects of AAV, such as immune responses and genomic integration of the editing tool (16). Finally, epigenome editing-induced Pcsk9 silencing and blood LDL-C reduction were robust and durable, providing a potential therapeutic strategy for the treatment of FH. Such approaches may also be applied to the treatment of other chronic diseases.

实施例5:猴细胞中的猴PCSK9基因沉默Example 5: Monkey PCSK9 gene silencing in monkey cells

设计了多种sgRNA以靶向猴Pcsk9基因的转录起始位点(TSS)上游和下游250bp内的区域(图4A)。Various sgRNAs were designed to target the regions within 250 bp upstream and downstream of the transcription start site (TSS) of the monkey Pcsk9 gene ( FIG. 4A ).

将各个sgRNA质粒与催化蛋白(DNMT3A-DNMT3L-dCas9-KRAB)质粒共转染到猴细胞中。进行RT-QPCR实验以评估猴Pcsk9的mRNA表达水平。所测试的5种sgRNA中有3种在猴细胞中显示出Pcsk9的表达显著下调(图4B)。用S2、S8或S9 sgRNA转染的细胞导致猴Pcks9下调约90%。Each sgRNA plasmid was co-transfected with a catalytic protein (DNMT3A-DNMT3L-dCas9-KRAB) plasmid into monkey cells. RT-QPCR experiments were performed to evaluate the mRNA expression level of monkey Pcsk9. Three of the five sgRNAs tested showed significant downregulation of Pcsk9 expression in monkey cells (Figure 4B). Cells transfected with S2, S8 or S9 sgRNAs resulted in approximately 90% downregulation of monkey Pcks9.

实施例6:人类细胞系中的人PCSK9基因沉默Example 6: Human PCSK9 gene silencing in human cell lines

构建了报告细胞系以测试在人类细胞系中PCKS9基因沉默的效率。构建具有CMV启动子驱动盒的质粒,其中所述盒在5’至3’方向上具有下述元件:5’-pCMV--300bp-TSS-+300bp-PCSK9外显子1-2A-GFP-3’。在该报告系统中,CMV启动子驱动PCSK9和GFP荧光的表达。若PCSK9被沉默,则GFP的转录被终止。将该报告质粒与PiggyBac转座酶(PBase)质粒一起转染到HEK293T细胞中。根据GFP荧光的表达,通过FACS对成功整合有报告基因盒的细胞进行分选(图5A)。A reporter cell line was constructed to test the efficiency of PCKS9 gene silencing in human cell lines. A plasmid with a CMV promoter-driven cassette was constructed, wherein the cassette had the following elements in the 5' to 3' direction: 5'-pCMV--300bp-TSS-+300bp-PCSK9 exon 1-2A-GFP-3'. In this reporter system, the CMV promoter drives the expression of PCSK9 and GFP fluorescence. If PCSK9 is silenced, the transcription of GFP is terminated. The reporter plasmid was transfected into HEK293T cells together with the PiggyBac transposase (PBase) plasmid. According to the expression of GFP fluorescence, cells with successfully integrated reporter gene cassettes were sorted by FACS (Fig. 5A).

设计了109种sgRNA用于靶向PCSK9 TSS上游300bp和下游300bp的区域。构建了质粒以编码每种sgRNA。将各个sgRNA质粒与编码融合分子的质粒共转染到人类报告细胞系中。分析了转染后72h和120h平均GFP强度率的降低。GFP强度率的总体降低指示了报告系统的灵敏度(图5B)。在转染后降低的GFP强度率维持了120h。与转染后72h相比,许多sgRNA在120h显示出低得多的GFP强度率。这些结果表明EPICAS系统在人类细胞系中的功效和持久性。109 sgRNAs were designed to target the regions 300bp upstream and 300bp downstream of the PCSK9 TSS. Plasmids were constructed to encode each sgRNA. Each sgRNA plasmid was co-transfected with a plasmid encoding a fusion molecule into a human reporter cell line. The reduction in the average GFP intensity rate at 72h and 120h after transfection was analyzed. The overall reduction in the GFP intensity rate indicates the sensitivity of the reporter system (Figure 5B). The reduced GFP intensity rate after transfection was maintained for 120h. Compared with 72h after transfection, many sgRNAs showed much lower GFP intensity rates at 120h. These results show the efficacy and persistence of the EPICAS system in human cell lines.

接下来,使用每种sgRNA重复实验,并在转染后72h测量平均GFP强度率以进行比较(图5C)。超过一半的所设计的sgRNA显示出平均荧光强度率的显著降低,表明EPICAS系统可以诱导人类细胞中PCSK9表达的靶向敲低。Next, the experiment was repeated using each sgRNA, and the mean GFP intensity ratio was measured 72 h after transfection for comparison (Figure 5C). More than half of the designed sgRNAs showed a significant decrease in the mean fluorescence intensity ratio, indicating that the EPICAS system can induce targeted knockdown of PCSK9 expression in human cells.

接下来,在人Hep3B细胞系中测试了EPICAS系统在沉默内源性PCSK9表达中的用途。将编码融合分子的质粒与各种sgRNA质粒共转染到Hep3B细胞中。转染后48h,通过RT-PCR测量人PCSK9的mRNA表达水平。六种sgRNA导致PCSK9表达水平的最高下降(约>65%)。这些sgRNA还导致报告人类细胞系中荧光强度率降低约>50%(图5D)。这些结果表明,EPICAS系统可以在人类细胞中高效、长效地沉默内源性PCSK9的表达。Next, the use of the EPICAS system in silencing endogenous PCSK9 expression was tested in the human Hep3B cell line. The plasmid encoding the fusion molecule was co-transfected with various sgRNA plasmids into Hep3B cells. 48h after transfection, the mRNA expression level of human PCSK9 was measured by RT-PCR. The six sgRNAs resulted in the highest decrease in PCSK9 expression levels (approximately >65%). These sgRNAs also resulted in a decrease in the fluorescence intensity rate in the reporter human cell line by approximately >50% (Figure 5D). These results show that the EPICAS system can silence the expression of endogenous PCSK9 in human cells efficiently and for a long time.

总之,这些结果表明,EPICAS系统在小鼠细胞和人类细胞均成功沉默了PCSK9的表达,并且高效且持久性地支持通过表观遗传学编辑来沉默PCSK9基因表达。LNP已被成功地用于体内递送EPICAS系统。因此,EPICAS系统的LNP制剂可以通过降低PCSK9的表达从而降低低密度脂蛋白胆固醇(LDL),用于治疗PCSK9相关疾病例如动脉粥样硬化性心血管疾病。In summary, these results show that the EPICAS system successfully silenced PCSK9 expression in both mouse and human cells, and efficiently and persistently supported silencing PCSK9 gene expression through epigenetic editing. LNP has been successfully used to deliver the EPICAS system in vivo. Therefore, the LNP formulation of the EPICAS system can be used to treat PCSK9-related diseases such as atherosclerotic cardiovascular disease by reducing low-density lipoprotein cholesterol (LDL) by reducing PCSK9 expression.

本公开的其他实施方式包括以下内容:Other embodiments of the present disclosure include the following:

实施方式1.一种用于在细胞中减少或消除前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)基因产物的表达的方法,所述方法包括向所述细胞中引入下述物质的步骤:Embodiment 1. A method for reducing or eliminating the expression of a proprotein convertase subtilisin/Kexin type 9 (PCSK9) gene product in a cell, the method comprising the step of introducing the following substances into the cell:

包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule,

其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element,

从而减少或消除所述细胞中所述PCSK9基因产物的表达。Thereby reducing or eliminating the expression of the PCSK9 gene product in the cell.

实施方式2.一种减少或消除受试者中PCSK9基因产物的表达的体内方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:Embodiment 2. An in vivo method for reducing or eliminating the expression of a PCSK9 gene product in a subject, the method comprising the step of introducing into cells of the subject:

包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule,

其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element,

从而减少或消除所述受试者中所述PCSK9基因产物的表达。Thereby reducing or eliminating the expression of the PCSK9 gene product in the subject.

实施方式3.一种减少受试者中低密度脂蛋白(LDL)胆固醇的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:Embodiment 3. A method for reducing low-density lipoprotein (LDL) cholesterol in a subject, the method comprising the step of introducing into cells of the subject:

包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule,

其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element,

从而减少所述受试者中的LDL胆固醇。Thereby reducing LDL cholesterol in said subject.

实施方式4.一种治疗或缓解受试者中PCSK9相关疾病的症状的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:Embodiment 4. A method for treating or alleviating the symptoms of a PCSK9-related disease in a subject, the method comprising the step of introducing the following substances into the cells of the subject:

包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule,

其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element,

从而治疗或缓解所述受试者中PCSK9相关疾病的症状。Thereby treating or alleviating the symptoms of the PCSK9-related disease in the subject.

实施方式5.一种扩增PCSK9基因产物的表达减少的细胞群体的方法,所述方法包括下述步骤:Embodiment 5. A method for expanding a cell population with reduced expression of a PCSK9 gene product, the method comprising the following steps:

i)将包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子或编码所述融合分子的核酸序列引入到多个细胞中,i) introducing a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator or a nucleic acid sequence encoding the fusion molecule into a plurality of cells,

其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰;wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element;

ii)扩增所述多个细胞以产生具有PCSK9基因产物的表达减少的多个修饰细胞,ii) expanding the plurality of cells to produce a plurality of modified cells having reduced expression of a PCSK9 gene product,

其中相对于未引入所述所述融合分子或所述核酸序列的细胞,所述多个修饰细胞的PCSK9基因产物表达减少至少50%、至少60%、至少70%、至少80%或至少90%,并且wherein the expression of the PCSK9 gene product of the plurality of modified cells is reduced by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% relative to cells into which the fusion molecule or the nucleic acid sequence has not been introduced, and

其中所述细胞是肝细胞。Wherein the cell is a hepatocyte.

实施方式6.根据实施方式5所述的方法,其中所述PCSK9基因产物的表达减少是瞬时减少。Embodiment 6. The method according to embodiment 5, wherein the reduced expression of the PCSK9 gene product is a transient reduction.

实施方式7.根据实施方式5所述的方法,其中所述PCSK9基因产物的表达减少是稳定减少。Embodiment 7. The method according to embodiment 5, wherein the reduced expression of the PCSK9 gene product is a stable reduction.

实施方式8.根据实施方式1-7中任一项所述的方法,其中所述PCSK9调控元件是核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。Embodiment 8. A method according to any one of embodiments 1-7, wherein the PCSK9 regulatory element is a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element or a locus control region.

实施方式9.根据实施方式1-8中任一项所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。Embodiment 9. A method according to any one of embodiments 1-8, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp upstream of the transcription start site of the PCSK9 gene.

实施方式10.根据实施方式9所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内。Embodiment 10. A method according to embodiment 9, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000 bp upstream of the transcription start site of the PCSK9 gene.

实施方式11.根据实施方式9所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游300bp以内。Embodiment 11. A method according to embodiment 9, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 300 bp upstream of the transcription start site of the PCSK9 gene.

实施方式12.根据实施方式1-11中任一项所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。Embodiment 12. A method according to any one of embodiments 1-11, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp downstream of the transcription start site of the PCSK9 gene.

实施方式13.根据实施方式12所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约300bp以内。Embodiment 13. A method according to embodiment 12, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 300 bp downstream of the transcription start site of the PCSK9 gene.

实施方式14.根据实施方式1-8中任一项所述的方法,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内和所述转录起始位点下游300bp以内。Embodiment 14. A method according to any one of embodiments 1-8, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000 bp upstream of the transcription start site of the PCSK9 gene and within 300 bp downstream of the transcription start site.

实施方式15.根据实施方式1-14中任一项所述的方法,其中所述至少一个核苷酸的修饰是DNA甲基化。Embodiment 15. A method according to any one of embodiments 1-14, wherein the modification of at least one nucleotide is DNA methylation.

实施方式16.根据实施方式1-15中任一项所述的方法,其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分。Embodiment 16. A method according to any one of embodiments 1-15, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase or a portion thereof.

实施方式17.根据实施方式16所述的方法,其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)或其部分。Embodiment 17. The method of embodiment 16, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT) or a portion thereof.

实施方式18.根据实施方式17所述的方法,其中所述DNA甲基转移酶是DNMT3A、DNMT3B、DNMT3L、DNMT1或DNMT2。Embodiment 18. A method according to embodiment 17, wherein the DNA methyltransferase is DNMT3A, DNMT3B, DNMT3L, DNMT1 or DNMT2.

实施方式19.根据实施方式18所述的方法,其中所述DNMT3A包含SEQ ID NO:23的氨基酸序列。Embodiment 19. A method according to embodiment 18, wherein the DNMT3A comprises the amino acid sequence of SEQ ID NO: 23.

实施方式20.根据实施方式18所述的方法,其中所述DNMT3L包含SEQ ID NO:24的氨基酸序列。Embodiment 20. The method according to embodiment 18, wherein the DNMT3L comprises the amino acid sequence of SEQ ID NO: 24.

实施方式21.根据实施方式1-20中任一项所述的方法,其中所述至少一种基因表达调节剂包含基于锌指蛋白的转录因子或其部分。Embodiment 21. A method according to any one of embodiments 1-20, wherein the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof.

实施方式22.根据实施方式21所述的方法,其中所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。Embodiment 22. A method according to embodiment 21, wherein the zinc finger protein-based transcription factor is a Kruppel-associated repression box (KRAB).

实施方式23.根据实施方式22所述的方法,其中所述KRAB包含SEQ ID NO:22的氨基酸序列。Embodiment 23. A method according to embodiment 22, wherein the KRAB comprises the amino acid sequence of SEQ ID NO:22.

实施方式24.根据实施方式1-23中任一项所述的方法,其中所述至少一种基因表达调节剂包含DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。Embodiment 24. A method according to any one of embodiments 1-23, wherein the at least one gene expression regulator comprises a DNA methyltransferase or a portion thereof and a zinc finger protein-based transcription factor or a portion thereof.

实施方式25.根据实施方式24所述的方法,其中所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。Embodiment 25. A method according to embodiment 24, wherein the DNA methyltransferase is selected from DNMT3A and DNMT3L and a combination thereof, and the zinc finger protein-based transcription factor is KRAB.

实施方式26.根据实施方式1-25中任一项所述的方法,其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。Embodiment 26. A method according to any one of embodiments 1-25, wherein at least one of the DNA binding proteins is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease.

实施方式27.根据实施方式26所述的方法,其中所述至少一种DNA结合蛋白是dCas9。Embodiment 27. A method according to embodiment 26, wherein at least one DNA binding protein is dCas9.

实施方式28.根据实施方式27所述的方法,其中所述dCas9包括金黄色葡萄球菌(Staphylococcus aureus)dCas9、化脓性链球菌(Streptococcus pyogenes)dCas9、空肠弯曲菌(Campylobacter jejuni)dCas9、白喉棒状杆菌(Corynebacterium diphtheria)dCas9、凸腹真杆菌(Eubacterium ventriosum)dCas9、巴氏链球菌(Streptococcuspasteurianus)dCas9、香肠乳杆菌(Lactobacillus farciminis)dCas9、螺旋体球菌(Sphaerochaeta globus)dCas9、固氮螺菌属(Azospirillum)(例如菌株B510)dCas9、Gluconacetobacter diazotrophicus dCas9、灰色奈瑟菌(Neisseria cinerea)dCas9、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9、食清洁剂细小棒菌(Parvibaculumlavamentivorans)dCas9、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(例如菌株DSM16511)dCas9、海鸥弯曲菌(Campylobacter lari)(例如菌株CF89-12)dCas9、嗜热链球菌(Streptococcus thermophilus)(例如菌株LMD-9)dCas9。Embodiment 28. The method of embodiment 27, wherein the dCas9 comprises Staphylococcus aureus dCas9, Streptococcus pyogenes dCas9, Campylobacter jejuni dCas9, Corynebacterium diphtheria dCas9, Eubacterium ventriosum dCas9, Streptococcus pasteurianus dCas9, Lactobacillus farciminis dCas9, Sphaerochaeta globus dCas9, Azospirillum (e.g., strain B510) dCas9, Gluconacetobacter diazotrophicus dCas9, Neisseria cinerea dCas9, Roseburia enterica dCas9, or any combination thereof. intestinalis) dCas9, Parvibaculum lavamentivorans dCas9, Nitratifractor salsuginis (e.g., strain DSM16511) dCas9, Campylobacter lari (e.g., strain CF89-12) dCas9, Streptococcus thermophilus (e.g., strain LMD-9) dCas9.

实施方式29.根据实施方式27所述的方法,其中所述dCas9包含SEQ ID NO:1的氨基酸序列。Embodiment 29. A method according to embodiment 27, wherein the dCas9 comprises the amino acid sequence of SEQ ID NO: 1.

实施方式30.根据实施方式1-29中任一项所述的方法,其中所述融合分子包含与所述至少一种DNA结合蛋白的C-端、N-端或两者融合的至少一种基因表达调节剂。Embodiment 30. A method according to any one of embodiments 1-29, wherein the fusion molecule comprises at least one gene expression regulator fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein.

实施方式31.根据实施方式30所述的方法,其中所述至少一种基因表达调节剂与所述至少一种DNA结合蛋白直接融合。Embodiment 31. A method according to embodiment 30, wherein the at least one gene expression regulator is directly fused to the at least one DNA binding protein.

实施方式32.根据实施方式30所述的方法,其中所述至少一种基因表达调节剂通过非调节剂、第二调节剂或接头与所述至少一种DNA结合蛋白间接融合。Embodiment 32. A method according to embodiment 30, wherein the at least one gene expression regulator is indirectly fused to the at least one DNA binding protein via a non-regulatory agent, a second regulator, or a linker.

实施方式33.根据实施方式30-32中任一项所述的方法,其中所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。Embodiment 33. A method according to any one of embodiments 30-32, wherein the fusion molecule comprises dCas9 fused to KRAB at the C-terminal end and to DNMT3A and DNMT3L at the N-terminal end.

实施方式34.根据实施方式33所述的方法,其中所述融合分子包含SEQ ID NO:97的氨基酸序列。Embodiment 34. A method according to embodiment 33, wherein the fusion molecule comprises the amino acid sequence of SEQ ID NO:97.

实施方式35.根据实施方式1-34中任一项所述的方法,其中所述融合分子还包含至少一个核定位序列。Embodiment 35. A method according to any one of embodiments 1-34, wherein the fusion molecule further comprises at least one nuclear localization sequence.

实施方式36.根据实施方式35所述的方法,其中所述至少一个核定位序列与所述至少一种DNA结合蛋白的C-端、N-端或两者直接融合。Embodiment 36. A method according to embodiment 35, wherein the at least one nuclear localization sequence is directly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein.

实施方式37.根据实施方式35所述的方法,其中所述至少一个核定位序列通过接头与所述至少一种DNA结合蛋白的C-端、N-端或两者间接融合。Embodiment 37. A method according to embodiment 35, wherein the at least one nuclear localization sequence is indirectly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein via a linker.

实施方式38.根据实施方式1-37中任一项所述的方法,其中所述编码融合分子的核酸序列是脱氧核糖核酸(DNA)。Embodiment 38. A method according to any one of embodiments 1-37, wherein the nucleic acid sequence encoding the fusion molecule is deoxyribonucleic acid (DNA).

实施方式39.根据实施方式1-37中任一项所述的方法,其中所述编码融合分子的核酸序列是信使核糖核酸(mRNA)。Embodiment 39. A method according to any one of embodiments 1-37, wherein the nucleic acid sequence encoding the fusion molecule is messenger ribonucleic acid (mRNA).

实施方式40.根据实施方式1-39中任一项所述的方法,其进一步包括引入至少一个单一引导RNA(sgRNA)或编码所述sgRNA的DNA的步骤,所述sgRNA与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补,从而将所述融合分子靶向所述PCSK9基因或PCSK9调控元件。Embodiment 40. A method according to any one of embodiments 1-39, further comprising the step of introducing at least one single guide RNA (sgRNA) or a DNA encoding the sgRNA, wherein the sgRNA is complementary to a DNA sequence near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby targeting the fusion molecule to the PCSK9 gene or the PCSK9 regulatory element.

实施方式41.根据实施方式40所述的方法,其中所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。Embodiment 41. A method according to embodiment 40, wherein the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108.

实施方式42.根据实施方式1-41中任一项所述的方法,其中所述融合分子被配制在脂质体或脂质纳米颗粒中。Embodiment 42. A method according to any one of embodiments 1-41, wherein the fusion molecule is formulated in a liposome or lipid nanoparticle.

实施方式43.根据实施方式40-41中任一项所述的方法,其中所述融合分子和所述sgRNA被配制在脂质体或脂质纳米颗粒中。Embodiment 43. A method according to any one of embodiments 40-41, wherein the fusion molecule and the sgRNA are formulated in liposomes or lipid nanoparticles.

实施方式44.根据实施方式43所述的方法,其中所述融合分子和所述sgRNA被配制在同一脂质体或脂质纳米颗粒中。Embodiment 44. A method according to embodiment 43, wherein the fusion molecule and the sgRNA are formulated in the same liposome or lipid nanoparticle.

实施方式45.根据实施方式43所述的方法,其中所述融合分子和所述sgRNA被配制在不同脂质体或脂质纳米颗粒中。Embodiment 45. A method according to embodiment 43, wherein the fusion molecule and the sgRNA are formulated in different liposomes or lipid nanoparticles.

实施方式46.根据实施方式42-45中任一项所述的方法,其中所述脂质体或脂质纳米颗粒包含可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(5%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)。Embodiment 46. A method according to any one of embodiments 42-45, wherein the liposomes or lipid nanoparticles contain ionizable lipids (20%-70%, molar ratio), PEGylated lipids (0%-30%, molar ratio), supporting lipids (5%-50%, molar ratio) and cholesterol (10%-50%, molar ratio).

实施方式47.根据实施方式46所述的方法,其中所述可电离脂质选自pH响应性可电离脂质、热响应性可电离脂质和光响应性可电离脂质。Embodiment 47. A method according to embodiment 46, wherein the ionizable lipid is selected from pH-responsive ionizable lipids, heat-responsive ionizable lipids and light-responsive ionizable lipids.

实施方式48.根据实施方式1-41中任一项所述的方法,其中所述融合分子被配制在AAV载体中。Embodiment 48. A method according to any one of embodiments 1-41, wherein the fusion molecule is formulated in an AAV vector.

实施方式49.根据实施方式40-41中任一项所述的方法,其中所述融合分子和所述sgRNA被配制在AAV载体中。Embodiment 49. A method according to any one of embodiments 40-41, wherein the fusion molecule and the sgRNA are formulated in an AAV vector.

实施方式50.根据实施方式49所述的方法,其中所述融合分子和所述sgRNA被配制在同一AAV载体中。Embodiment 50. A method according to embodiment 49, wherein the fusion molecule and the sgRNA are formulated in the same AAV vector.

实施方式51.根据实施方式49所述的方法,其中所述融合分子和所述sgRNA被配制在不同AAV载体中。Embodiment 51. A method according to embodiment 49, wherein the fusion molecule and the sgRNA are formulated in different AAV vectors.

实施方式52.根据实施方式1-51中任一项所述的方法,其中所述融合分子通过局部注射、系统性输注或其组合递送到所述细胞。Embodiment 52. A method according to any one of embodiments 1-51, wherein the fusion molecule is delivered to the cell by local injection, systemic infusion, or a combination thereof.

实施方式53.根据实施方式2-4和8-52中任一项所述的方法,其中所述受试者是人。Embodiment 53. A method according to any one of embodiments 2-4 and 8-52, wherein the subject is human.

实施方式54.根据实施方式4和8-53中任一项所述的方法,其中所述PCSK9相关疾病是高动脉粥样硬化性心血管疾病。Embodiment 54. A method according to any one of embodiments 4 and 8-53, wherein the PCSK9-related disease is atherosclerotic cardiovascular disease.

实施方式55.根据实施方式4和8-53中任一项所述的方法,其中所述PCSK9相关疾病是高胆固醇血症。Embodiment 55. A method according to any one of embodiments 4 and 8-53, wherein the PCSK9-related disease is hypercholesterolemia.

实施方式56.根据实施方式1-55中任一项所述的方法,其中所述细胞是肝细胞。Embodiment 56. A method according to any one of embodiments 1-55, wherein the cell is a hepatocyte.

实施方式57.一种sgRNA,其包含SEQ ID NO:27-95或98-108中任一者的核酸序列。Embodiment 57. An sgRNA comprising the nucleic acid sequence of any one of SEQ ID NOs: 27-95 or 98-108.

实施方式58.一种DNA序列,其编码根据实施方式54所述的sgRNA。Embodiment 58. A DNA sequence encoding the sgRNA according to embodiment 54.

实施方式59.一种药物组合物,其包含:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,Embodiment 59. A pharmaceutical composition comprising: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule,

其中所述融合分子靶向PCSK9基因附近和/或PCSK9调控元件内的基因组区域,wherein the fusion molecule targets a genomic region near the PCSK9 gene and/or within a PCSK9 regulatory element,

其中所述至少一种基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the at least one gene expression regulator provides for modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element,

其中所述至少一种基因表达调节剂包括DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分、或基于锌指蛋白的转录因子或其部分,或其组合,并且wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase or a portion thereof, or a zinc finger protein-based transcription factor or a portion thereof, or a combination thereof, and

其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease.

实施方式60.根据实施方式59所述的药物组合物,其中所述PCSK9调控元件是转录起始位点、核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。Embodiment 60. A pharmaceutical composition according to embodiment 59, wherein the PCSK9 regulatory element is a transcription start site, a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element or a locus control region.

实施方式61.根据实施方式59-60中任一项所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。Embodiment 61. A pharmaceutical composition according to any one of embodiments 59-60, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp upstream of the transcription start site of the PCSK9 gene.

实施方式62.根据实施方式61所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内。Embodiment 62. A pharmaceutical composition according to embodiment 61, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000 bp upstream of the transcription start site of the PCSK9 gene.

实施方式63.根据实施方式61所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游300bp以内。Embodiment 63. A pharmaceutical composition according to embodiment 61, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 300 bp upstream of the transcription start site of the PCSK9 gene.

实施方式64.根据实施方式59-63中任一项所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约100bp、约200bp、约300bp、约400bp、约500bp、约600bp、约700bp、约800bp、约900bp、约1000bp、约1100bp、约1200bp、约1300bp、约1400bp或约1500bp以内。Embodiment 64. A pharmaceutical composition according to any one of embodiments 59-63, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 100bp, about 200bp, about 300bp, about 400bp, about 500bp, about 600bp, about 700bp, about 800bp, about 900bp, about 1000bp, about 1100bp, about 1200bp, about 1300bp, about 1400bp or about 1500bp downstream of the transcription start site of the PCSK9 gene.

实施方式65.根据实施方式64所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点下游约300bp以内。Embodiment 65. A pharmaceutical composition according to embodiment 64, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within about 300 bp downstream of the transcription start site of the PCSK9 gene.

实施方式66.根据实施方式59-65中任一项所述的药物组合物,其中所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰位于所述PCSK9基因的转录起始位点上游1000bp以内和所述转录起始位点下游300bp以内。Embodiment 66. A pharmaceutical composition according to any one of embodiments 59-65, wherein the modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element is located within 1000 bp upstream of the transcription start site of the PCSK9 gene and within 300 bp downstream of the transcription start site.

实施方式67.根据实施方式59-66中任一项所述的药物组合物,其中所述至少一个核苷酸的修饰是DNA甲基化。Embodiment 67. A pharmaceutical composition according to any one of embodiments 59-66, wherein the modification of at least one nucleotide is DNA methylation.

实施方式68.根据实施方式59-67所述的药物组合物,其中所述至少一种基因表达调节剂包括DNA甲基转移酶(DNMT)或其部分。Embodiment 68. A pharmaceutical composition according to embodiments 59-67, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT) or a portion thereof.

实施方式69.根据实施方式68所述的药物组合物,其中所述DNA甲基转移酶是DNMT3A、DNMT3B、DNMT3L、DNMT1或DNMT2。Embodiment 69. A pharmaceutical composition according to embodiment 68, wherein the DNA methyltransferase is DNMT3A, DNMT3B, DNMT3L, DNMT1 or DNMT2.

实施方式70.根据实施方式69所述的药物组合物,其中所述DNMT3A包含SEQ IDNO:23的氨基酸序列。Embodiment 70. A pharmaceutical composition according to embodiment 69, wherein the DNMT3A comprises the amino acid sequence of SEQ ID NO: 23.

实施方式71.根据实施方式69所述的药物组合物,其中所述DNMT3L包含SEQ IDNO:24的氨基酸序列。Embodiment 71. A pharmaceutical composition according to embodiment 69, wherein the DNMT3L comprises the amino acid sequence of SEQ ID NO: 24.

实施方式72.根据实施方式59-71中任一项所述的药物组合物,其中所述至少一种基因表达调节剂包括基于锌指蛋白的转录因子或其部分。Embodiment 72. A pharmaceutical composition according to any one of embodiments 59-71, wherein the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof.

实施方式73.根据实施方式72所述的药物组合物,其中所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。Embodiment 73. A pharmaceutical composition according to embodiment 72, wherein the zinc finger protein-based transcription factor is Kruppel-associated repression box (KRAB).

实施方式74.根据实施方式73所述的药物组合物,其中所述KRAB包含SEQ ID NO:22的氨基酸序列。Embodiment 74. The pharmaceutical composition of embodiment 73, wherein the KRAB comprises the amino acid sequence of SEQ ID NO: 22.

实施方式75.根据实施方式59-74中任一项所述的药物组合物,其中所述至少一种基因表达调节剂包括DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。Embodiment 75. A pharmaceutical composition according to any one of embodiments 59-74, wherein the at least one gene expression regulator comprises a DNA methyltransferase or a portion thereof and a zinc finger protein-based transcription factor or a portion thereof.

实施方式76.根据实施方式75所述的药物组合物,其中所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。Embodiment 76. A pharmaceutical composition according to embodiment 75, wherein the DNA methyltransferase is selected from DNMT3A and DNMT3L and a combination thereof, and the zinc finger protein-based transcription factor is KRAB.

实施方式77.根据实施方式中59-76任一项所述的药物组合物,其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。Embodiment 77. A pharmaceutical composition according to any one of embodiments 59-76, wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease.

实施方式78.根据实施方式77所述的药物组合物,其中所述至少一种DNA结合蛋白是dCas9。Embodiment 78. A pharmaceutical composition according to embodiment 77, wherein the at least one DNA binding protein is dCas9.

实施方式79.根据实施方式78所述的药物组合物,其中所述dCas9包括金黄色葡萄球菌(Staphylococcus aureus)dCas9、化脓性链球菌(Streptococcus pyogenes)dCas9、空肠弯曲菌(Campylobacter jejuni)dCas9、白喉棒状杆菌(Corynebacterium diphtheria)dCas9、凸腹真杆菌(Eubacterium ventriosum)dCas9、巴氏链球菌(Streptococcuspasteurianus)dCas9、香肠乳杆菌(Lactobacillus farciminis)dCas9、螺旋体球菌(Sphaerochaeta globus)dCas9、固氮螺菌属(Azospirillum)(例如菌株B510)dCas9、Gluconacetobacter diazotrophicus dCas9、灰色奈瑟菌(Neisseria cinerea)dCas9、肠道罗斯拜瑞氏菌(Roseburia intestinalis)dCas9、食清洁剂细小棒菌(Parvibaculumlavamentivorans)dCas9、卤水硝酸盐裂解菌(Nitratifractor salsuginis)(例如菌株DSM16511)dCas9、海鸥弯曲菌(Campylobacter lari)(例如菌株CF89-12)dCas9、嗜热链球菌(Streptococcus thermophilus)(例如菌株LMD-9)dCas9。Embodiment 79. A pharmaceutical composition according to embodiment 78, wherein the dCas9 comprises Staphylococcus aureus dCas9, Streptococcus pyogenes dCas9, Campylobacter jejuni dCas9, Corynebacterium diphtheria dCas9, Eubacterium ventriosum dCas9, Streptococcus pasteurianus dCas9, Lactobacillus farciminis dCas9, Sphaerochaeta globus dCas9, Azospirillum (e.g., strain B510) dCas9, Gluconacetobacter diazotrophicus dCas9, Neisseria cinerea dCas9, Roseburia enterica dCas9, or any combination thereof. intestinalis) dCas9, Parvibaculum lavamentivorans dCas9, Nitratifractor salsuginis (e.g., strain DSM16511) dCas9, Campylobacter lari (e.g., strain CF89-12) dCas9, Streptococcus thermophilus (e.g., strain LMD-9) dCas9.

实施方式80.根据实施方式78所述的药物组合物,其中所述dCas9包含SEQ ID NO:1的氨基酸序列。Embodiment 80. A pharmaceutical composition according to embodiment 78, wherein the dCas9 comprises the amino acid sequence of SEQ ID NO: 1.

实施方式81.根据实施方式59-80中任一项所述的药物组合物,其中所述融合分子包含与所述至少一种DNA结合蛋白的C-端、N-端或两者融合的所述至少一种基因表达调节剂。Embodiment 81. A pharmaceutical composition according to any one of embodiments 59-80, wherein the fusion molecule comprises the at least one gene expression regulator fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein.

实施方式82.根据实施方式81所述的药物组合物,其中所述至少一种基因表达调节剂与所述至少一种DNA结合蛋白直接融合。Embodiment 82. A pharmaceutical composition according to embodiment 81, wherein the at least one gene expression regulator is directly fused to the at least one DNA binding protein.

实施方式83.根据实施方式81所述的药物组合物,其中所述至少一种基因表达调节剂通过非调节剂、第二调节剂或接头与所述至少一种DNA结合蛋白间接融合。Embodiment 83. A pharmaceutical composition according to embodiment 81, wherein the at least one gene expression regulator is indirectly fused to the at least one DNA binding protein through a non-regulatory agent, a second regulator or a linker.

实施方式84.根据实施方式81-83中任一项所述的药物组合物,其中所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。Embodiment 84. A pharmaceutical composition according to any one of embodiments 81-83, wherein the fusion molecule comprises dCas9 fused to KRAB at the C-terminal end and to DNMT3A and DNMT3L at the N-terminal end.

实施方式85.根据实施方式84所述的药物组合物,其中所述融合分子包含SEQ IDNO:97的氨基酸序列。Embodiment 85. A pharmaceutical composition according to embodiment 84, wherein the fusion molecule comprises the amino acid sequence of SEQ IDNO:97.

实施方式86.根据实施方式59-85中任一项所述的药物组合物,其中所述融合分子还包含至少一个核定位序列。Embodiment 86. A pharmaceutical composition according to any one of embodiments 59-85, wherein the fusion molecule further comprises at least one nuclear localization sequence.

实施方式87.根据实施方式86所述的药物组合物,其中所述至少一个核定位序列与所述至少一种DNA结合蛋白的C-端、N-端或两者直接融合。Embodiment 87. A pharmaceutical composition according to embodiment 86, wherein the at least one nuclear localization sequence is directly fused to the C-terminus, N-terminus, or both, of the at least one DNA binding protein.

实施方式88.根据实施方式86所述的药物组合物,其中所述至少一个核定位序列通过接头与所述至少一种DNA结合蛋白的C-端、N-端或两者间接融合。Embodiment 88. A pharmaceutical composition according to embodiment 86, wherein the at least one nuclear localization sequence is indirectly fused to the C-terminus, N-terminus, or both of the at least one DNA binding protein via a linker.

实施方式89.根据实施方式59-88中任一项所述的药物组合物,其中所述编码融合分子的核酸序列是脱氧核糖核酸(DNA)。Embodiment 89. A pharmaceutical composition according to any one of embodiments 59-88, wherein the nucleic acid sequence encoding the fusion molecule is deoxyribonucleic acid (DNA).

实施方式90.根据实施方式59-88中任一项所述的药物组合物,其中所述编码融合分子的核酸序列是信使核糖核酸(mRNA)。Embodiment 90. A pharmaceutical composition according to any one of embodiments 59-88, wherein the nucleic acid sequence encoding the fusion molecule is messenger ribonucleic acid (mRNA).

实施方式91.根据实施方式中59-90任一项所述的药物组合物,其进一步包含与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补的至少一个单一引导RNA(sgRNA)。Embodiment 91. A pharmaceutical composition according to any one of embodiments 59-90, further comprising at least one single guide RNA (sgRNA) complementary to a DNA sequence near the PCSK9 gene and/or within the PCSK9 regulatory element.

实施方式92.根据实施方式91所述的药物组合物,其中所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。Embodiment 92. A pharmaceutical composition according to embodiment 91, wherein the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108.

实施方式93.根据实施方式59-92中任一项所述的药物组合物,其中所述融合分子被包装在脂质体或脂质纳米颗粒中。Embodiment 93. A pharmaceutical composition according to any one of embodiments 59-92, wherein the fusion molecule is packaged in a liposome or a lipid nanoparticle.

实施方式94.根据实施方式91-92中任一项所述的药物组合物,其中所述融合分子和所述sgRNA被包装在脂质体或脂质纳米颗粒中。Embodiment 94. A pharmaceutical composition according to any one of embodiments 91-92, wherein the fusion molecule and the sgRNA are packaged in liposomes or lipid nanoparticles.

实施方式95.根据实施方式94所述的药物组合物,其中所述融合分子和所述sgRNA被包装在同一脂质体或脂质纳米颗粒中。Embodiment 95. A pharmaceutical composition according to embodiment 94, wherein the fusion molecule and the sgRNA are packaged in the same liposome or lipid nanoparticle.

实施方式95.根据实施方式94所述的药物组合物,其中所述融合分子和所述sgRNA被包装在不同脂质体或脂质纳米颗粒中。Embodiment 95. A pharmaceutical composition according to embodiment 94, wherein the fusion molecule and the sgRNA are packaged in different liposomes or lipid nanoparticles.

实施方式97.根据实施方式93-96中任一项所述的药物组合物,其中所述脂质体或脂质纳米颗粒包含可电离脂质(20%-70%,摩尔比)、PEG化脂质(0%-30%,摩尔比)、支持性脂质(5%-50%,摩尔比)和胆固醇(10%-50%,摩尔比)。Embodiment 97. A pharmaceutical composition according to any one of embodiments 93-96, wherein the liposomes or lipid nanoparticles contain ionizable lipids (20%-70%, molar ratio), PEGylated lipids (0%-30%, molar ratio), supporting lipids (5%-50%, molar ratio) and cholesterol (10%-50%, molar ratio).

实施方式98.根据实施方式93-97中任一项所述的药物组合物,其中所述可电离脂质选自pH响应性可电离脂质、热响应性可电离脂质和光响应性可电离脂质。Embodiment 98. A pharmaceutical composition according to any one of embodiments 93-97, wherein the ionizable lipid is selected from pH-responsive ionizable lipids, thermo-responsive ionizable lipids and light-responsive ionizable lipids.

实施方式99.根据实施方式59-92中任一项所述的药物组合物,其中所述融合分子被包装在AAV载体中。Embodiment 99. A pharmaceutical composition according to any one of embodiments 59-92, wherein the fusion molecule is packaged in an AAV vector.

实施方式100.根据实施方式91-92中任一项所述的药物组合物,其中所述融合分子和所述sgRNA被包装在AAV载体中。Embodiment 100. A pharmaceutical composition according to any one of embodiments 91-92, wherein the fusion molecule and the sgRNA are packaged in an AAV vector.

实施方式101.根据实施方式100所述的药物组合物,其中所述融合分子和所述sgRNA被包装在同一AAV载体中。Embodiment 101. A pharmaceutical composition according to embodiment 100, wherein the fusion molecule and the sgRNA are packaged in the same AAV vector.

实施方式102.根据实施方式100所述的药物组合物,其中所述融合分子和所述sgRNA被包装在不同AAV载体中。Embodiment 102. A pharmaceutical composition according to embodiment 100, wherein the fusion molecule and the sgRNA are packaged in different AAV vectors.

Claims (42)

1.一种用于在细胞中减少或消除前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)基因产物的表达的方法,所述方法包括向所述细胞中引入下述物质的步骤:1. A method for reducing or eliminating the expression of a proprotein convertase subtilisin/kexin type 9 (PCSK9) gene product in a cell, the method comprising the step of introducing into the cell: 包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, 其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, 从而减少或消除所述细胞中PCSK9基因产物的表达。Thereby reducing or eliminating the expression of the PCSK9 gene product in the cell. 2.一种减少或消除受试者中PCSK9基因产物的表达的体内方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:2. An in vivo method for reducing or eliminating the expression of a PCSK9 gene product in a subject, the method comprising the step of introducing into the cells of the subject: 包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, 其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, 从而减少或消除所述受试者中PCSK9基因产物的表达。Thereby reducing or eliminating the expression of the PCSK9 gene product in the subject. 3.一种减少受试者中低密度脂蛋白(LDL)胆固醇的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:3. A method for reducing low-density lipoprotein (LDL) cholesterol in a subject, the method comprising the step of introducing into cells of the subject: 包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, 其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, 从而减少所述受试者中的LDL胆固醇。Thereby reducing LDL cholesterol in said subject. 4.一种治疗或缓解受试者中PCSK9相关疾病的症状的方法,所述方法包括向所述受试者的细胞引入下述物质的步骤:4. A method for treating or alleviating the symptoms of a PCSK9-related disease in a subject, the method comprising the step of introducing into the subject's cells: 包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,A fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, 其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, 从而治疗或缓解所述受试者中PCSK9相关疾病的症状。Thereby treating or alleviating the symptoms of the PCSK9-related disease in the subject. 5.一种扩增PCSK9基因产物的表达减少的细胞群体的方法,所述方法包括下述步骤:5. A method for amplifying a cell population with reduced expression of a PCSK9 gene product, the method comprising the steps of: i)将包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子或编码所述融合分子的核酸序列引入到多个细胞中,i) introducing a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator or a nucleic acid sequence encoding the fusion molecule into a plurality of cells, 其中所述基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰;wherein the gene expression regulator provides modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element; ii)扩增所述多个细胞以产生具有PCSK9基因产物的表达减少的多个修饰细胞,ii) expanding the plurality of cells to produce a plurality of modified cells having reduced expression of a PCSK9 gene product, 其中相对于未引入所述融合分子或所述核酸序列的细胞,所述多个修饰细胞的PCSK9基因产物表达减少至少50%、至少60%、至少70%、至少80%或至少90%,并且wherein the expression of the PCSK9 gene product of the plurality of modified cells is reduced by at least 50%, at least 60%, at least 70%, at least 80% or at least 90% relative to cells into which the fusion molecule or the nucleic acid sequence has not been introduced, and 其中所述细胞是肝细胞。Wherein the cell is a hepatocyte. 6.根据权利要求1-5中任一项所述的方法,其中所述PCSK9调控元件是核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。6. The method of any one of claims 1-5, wherein the PCSK9 regulatory element is a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element, or a locus control region. 7.根据权利要求1-6中任一项所述的方法,其中所述至少一个核苷酸的修饰是DNA甲基化。7. The method according to any one of claims 1 to 6, wherein the modification of the at least one nucleotide is DNA methylation. 8.根据权利要求1-7中任一项所述的方法,其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分。8. The method of any one of claims 1-7, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase, or a portion thereof. 9.根据权利要求8所述的方法,其中所述DNMT是DNMT3A,其包含SEQ ID NO:23的氨基酸序列。9. The method of claim 8, wherein the DNMT is DNMT3A, which comprises the amino acid sequence of SEQ ID NO: 23. 10.根据权利要求8所述的方法,其中所述DNMT是DNMT3L,其包含SEQ ID NO:24的氨基酸序列。10. The method of claim 8, wherein the DNMT is DNMT3L comprising the amino acid sequence of SEQ ID NO: 24. 11.根据权利要求1-10中任一项所述的方法,其中所述至少一种基因表达调节剂包含基于锌指蛋白的转录因子或其部分。11. The method of any one of claims 1-10, wherein the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof. 12.根据权利要求11所述的方法,其中所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。12. The method of claim 11, wherein the zinc finger protein-based transcription factor is a Kruppel-associated repression cassette (KRAB). 13.根据权利要求12所述的方法,其中所述KRAB包含SEQ ID NO:22的氨基酸序列。13. The method of claim 12, wherein the KRAB comprises the amino acid sequence of SEQ ID NO: 22. 14.根据权利要求1-13中任一项所述的方法,其中所述至少一种基因表达调节剂包含DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。14. The method of any one of claims 1-13, wherein the at least one gene expression regulator comprises a DNA methyltransferase or a portion thereof and a zinc finger protein-based transcription factor or a portion thereof. 15.根据权利要求14所述的方法,其中所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。15. The method of claim 14, wherein the DNA methyltransferase is selected from DNMT3A and DNMT3L and combinations thereof, and the zinc finger protein-based transcription factor is KRAB. 16.根据权利要求1-15中任一项所述的方法,其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。16. The method of any one of claims 1-15, wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease, or MegaTal nuclease. 17.根据权利要求16所述的方法,其中所述至少一种DNA结合蛋白是dCas9。17. The method of claim 16, wherein the at least one DNA binding protein is dCas9. 18.根据权利要求17所述的方法,其中所述dCas9包含SEQ ID NO:1的氨基酸序列。18. The method of claim 17, wherein the dCas9 comprises the amino acid sequence of SEQ ID NO: 1. 19.根据权利要求1-18中任一项所述的方法,其中所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。19. The method of any one of claims 1-18, wherein the fusion molecule comprises dCas9 fused to KRAB on the C-terminal end and to DNMT3A and DNMT3L on the N-terminal end. 20.根据权利要求1-19中任一项所述的方法,其中所述融合分子包含SEQ ID NO:97的氨基酸序列。20. The method of any one of claims 1-19, wherein the fusion molecule comprises the amino acid sequence of SEQ ID NO: 97. 21.根据权利要求1-20中任一项所述的方法,其进一步包括引入至少一个单一引导RNA(sgRNA)或编码所述sgRNA的DNA的步骤,所述sgRNA与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补,从而将所述融合分子靶向所述PCSK9基因或PCSK9调控元件。21. The method according to any one of claims 1-20, further comprising the step of introducing at least one single guide RNA (sgRNA) or a DNA encoding the sgRNA, wherein the sgRNA is complementary to a DNA sequence near the PCSK9 gene and/or within the PCSK9 regulatory element, thereby targeting the fusion molecule to the PCSK9 gene or PCSK9 regulatory element. 22.根据权利要求21所述的方法,其中所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。22. The method of claim 21, wherein the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108. 23.一种sgRNA,其包含SEQ ID NO:27-95或98-108中任一者的核酸序列。23. An sgRNA comprising the nucleic acid sequence of any one of SEQ ID NOs: 27-95 or 98-108. 24.一种DNA序列,其编码根据权利要求23所述的sgRNA。24. A DNA sequence encoding the sgRNA according to claim 23. 25.一种药物组合物,其包含:包含至少一种DNA结合蛋白和至少一种基因表达调节剂的融合分子,或编码所述融合分子的核酸序列,25. A pharmaceutical composition comprising: a fusion molecule comprising at least one DNA binding protein and at least one gene expression regulator, or a nucleic acid sequence encoding the fusion molecule, 其中所述融合分子靶向PCSK9基因附近和/或PCSK9调控元件内的基因组区域,wherein the fusion molecule targets a genomic region near the PCSK9 gene and/or within a PCSK9 regulatory element, 其中所述至少一种基因表达调节剂提供所述PCSK9基因附近和/或PCSK9调控元件内的至少一个核苷酸的修饰,wherein the at least one gene expression regulator provides for modification of at least one nucleotide near the PCSK9 gene and/or within the PCSK9 regulatory element, 其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)、DNA去甲基化酶、组蛋白甲基转移酶、组蛋白去甲基化酶或其部分、或基于锌指蛋白的转录因子或其部分,或其组合,并且wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT), a DNA demethylase, a histone methyltransferase, a histone demethylase or a portion thereof, or a zinc finger protein-based transcription factor or a portion thereof, or a combination thereof, and 其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease. 26.根据权利要求25所述的药物组合物,其中所述PCSK9调控元件是转录起始位点、核心启动子、近端启动子、远端增强子、沉默子、绝缘子元件、边界元件或基因座控制区。26. The pharmaceutical composition of claim 25, wherein the PCSK9 regulatory element is a transcription start site, a core promoter, a proximal promoter, a distal enhancer, a silencer, an insulator element, a boundary element, or a locus control region. 27.根据权利要求25-26中任一项所述的药物组合物,其中所述至少一个核苷酸的修饰是DNA甲基化。27. A pharmaceutical composition according to any one of claims 25-26, wherein the modification of at least one nucleotide is DNA methylation. 28.根据权利要求25-27所述的药物组合物,其中所述至少一种基因表达调节剂包含DNA甲基转移酶(DNMT)或其部分。28. The pharmaceutical composition of claims 25-27, wherein the at least one gene expression regulator comprises a DNA methyltransferase (DNMT) or a portion thereof. 29.根据权利要求28所述的药物组合物,其中所述DNMT是DNMT3A,其包含SEQ ID NO:23的氨基酸序列。29. The pharmaceutical composition according to claim 28, wherein the DNMT is DNMT3A, which comprises the amino acid sequence of SEQ ID NO: 23. 30.根据权利要求28所述的药物组合物,其中所述DNMT是DNMT3L,其包含SEQ ID NO:24的氨基酸序列。30. The pharmaceutical composition of claim 28, wherein the DNMT is DNMT3L, which comprises the amino acid sequence of SEQ ID NO: 24. 31.根据权利要求25-30中任一项所述的药物组合物,其中所述至少一种基因表达调节剂包含基于锌指蛋白的转录因子或其部分。31. The pharmaceutical composition of any one of claims 25-30, wherein the at least one gene expression regulator comprises a zinc finger protein-based transcription factor or a portion thereof. 32.根据权利要求31所述的药物组合物,其中所述基于锌指蛋白的转录因子是Kruppel相关抑制盒(KRAB)。32. The pharmaceutical composition of claim 31, wherein the zinc finger protein-based transcription factor is a Kruppel-associated repression cassette (KRAB). 33.根据权利要求32所述的药物组合物,其中所述KRAB包含SEQ ID NO:22的氨基酸序列。33. The pharmaceutical composition of claim 32, wherein the KRAB comprises the amino acid sequence of SEQ ID NO: 22. 34.根据权利要求25-33中任一项所述的药物组合物,其中所述至少一种基因表达调节剂包含DNA甲基转移酶或其部分以及基于锌指蛋白的转录因子或其部分。34. The pharmaceutical composition of any one of claims 25-33, wherein the at least one gene expression regulator comprises a DNA methyltransferase or a portion thereof and a zinc finger protein-based transcription factor or a portion thereof. 35.根据权利要求34所述的药物组合物,其中所述DNA甲基转移酶选自DNMT3A和DNMT3L及其组合,并且所述基于锌指蛋白的转录因子是KRAB。35. The pharmaceutical composition of claim 34, wherein the DNA methyltransferase is selected from DNMT3A and DNMT3L and combinations thereof, and the zinc finger protein-based transcription factor is KRAB. 36.根据权利要求中25-35任一项所述的药物组合物,其中所述至少一种DNA结合蛋白是Cas9、dCas9、Cpf1、锌指核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶、dCas9-FokI核酸酶或MegaTal核酸酶。36. A pharmaceutical composition according to any one of claims 25-35, wherein the at least one DNA binding protein is Cas9, dCas9, Cpf1, zinc finger nuclease (ZNF), transcription activator-like effector nuclease (TALEN), homing endonuclease, dCas9-FokI nuclease or MegaTal nuclease. 37.根据权利要求36所述的药物组合物,其中所述至少一种DNA结合蛋白是dCas9。37. The pharmaceutical composition of claim 36, wherein the at least one DNA binding protein is dCas9. 38.根据权利要求37所述的药物组合物,其中所述dCas9包含SEQ ID NO:1的氨基酸序列。38. The pharmaceutical composition of claim 37, wherein the dCas9 comprises the amino acid sequence of SEQ ID NO: 1. 39.根据权利要求25-38所述的药物组合物,其中所述融合分子包含在C-端末端上融合有KRAB并在N-端末端上融合有DNMT3A和DNMT3L的dCas9。39. The pharmaceutical composition of claims 25-38, wherein the fusion molecule comprises dCas9 fused to KRAB on the C-terminal end and to DNMT3A and DNMT3L on the N-terminal end. 40.根据权利要求39所述的药物组合物,其中所述融合分子包含SEQ ID NO:97的氨基酸序列。40. The pharmaceutical composition of claim 39, wherein the fusion molecule comprises the amino acid sequence of SEQ ID NO: 97. 41.根据权利要求中25-40中任一项所述的药物组合物,其进一步包含与所述PCSK9基因附近和/或PCSK9调控元件内的DNA序列互补的至少一个单一引导RNA(sgRNA)。41. The pharmaceutical composition according to any one of claims 25-40, further comprising at least one single guide RNA (sgRNA) complementary to a DNA sequence near the PCSK9 gene and/or within a PCSK9 regulatory element. 42.根据权利要求41所述的药物组合物,其中所述sgRNA包含SEQ ID NO:27-95或98-108的核酸序列。42. The pharmaceutical composition according to claim 41, wherein the sgRNA comprises a nucleic acid sequence of SEQ ID NO: 27-95 or 98-108.
CN202280078159.8A 2021-11-26 2022-11-25 Methods of regulating PCSK9 and uses thereof Pending CN118401658A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/133681 2021-11-26
CN2021133681 2021-11-26
PCT/CN2022/134447 WO2023093862A1 (en) 2021-11-26 2022-11-25 Method of modulating pcsk9 and uses thereof

Publications (1)

Publication Number Publication Date
CN118401658A true CN118401658A (en) 2024-07-26

Family

ID=84689145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280078159.8A Pending CN118401658A (en) 2021-11-26 2022-11-25 Methods of regulating PCSK9 and uses thereof

Country Status (5)

Country Link
US (1) US20240408236A1 (en)
EP (1) EP4437092A1 (en)
CN (1) CN118401658A (en)
TW (1) TW202333747A (en)
WO (1) WO2023093862A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250060954A (en) * 2022-05-01 2025-05-07 엔크로마 바이오, 인크. Compositions and methods for epigenetic regulation of PCSK9 expression
KR20250044484A (en) 2022-06-24 2025-03-31 튠 쎄라퓨틱스, 인코포레이티드 Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene inhibition
WO2024229020A2 (en) * 2023-05-01 2024-11-07 Chroma Medicine, Inc. Compositions and methods for epigenetic regulation of pcsk9 expression
CN118291539B (en) * 2024-04-17 2024-12-20 中国水产科学研究院黄海水产研究所 CRISPR/dCas9-based DNA methylation editing system for Cynoglossus semilaevis and its application

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9710809D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
DE69942334D1 (en) 1998-03-02 2010-06-17 Massachusetts Inst Technology POLY ZINC FINGER PROTEINS WITH IMPROVED LINKERS
US7013219B2 (en) 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7030215B2 (en) 1999-03-24 2006-04-18 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
US20030104526A1 (en) 1999-03-24 2003-06-05 Qiang Liu Position dependent recognition of GNN nucleotide triplets by zinc fingers
US6794136B1 (en) 2000-11-20 2004-09-21 Sangamo Biosciences, Inc. Iterative optimization in the design of binding proteins
ATE527281T1 (en) 2004-07-16 2011-10-15 Us Gov Health & Human Serv VACCINES AGAINST AIDS COMPRISING CMV/R NUCLEIC ACID CONSTRUCTS
ES2440801T3 (en) 2005-10-18 2014-01-30 Precision Biosciences Rationally designed meganucleases with sequence specificity and altered DNA binding affinity
CN101970051A (en) 2007-12-31 2011-02-09 纳诺科尔治疗公司 Rna interference for the treatment of heart failure
EP3456826B1 (en) 2009-12-10 2023-06-28 Regents of the University of Minnesota Tal effector-mediated dna modification
US8372951B2 (en) 2010-05-14 2013-02-12 National Tsing Hua University Cell penetrating peptides for intracellular delivery
CN116622704A (en) 2012-07-25 2023-08-22 布罗德研究所有限公司 Inducible DNA-binding proteins and genome interference tools and their applications
US20140179770A1 (en) 2012-12-12 2014-06-26 Massachusetts Institute Of Technology Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
EP2931892B1 (en) 2012-12-12 2018-09-12 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
CN110982844B (en) 2012-12-12 2024-08-13 布罗德研究所有限公司 CRISPR-CAS component systems, methods, and compositions for sequence manipulation
DK2931898T3 (en) 2012-12-12 2016-06-20 Massachusetts Inst Technology CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
CN119752887A (en) 2012-12-12 2025-04-04 布罗德研究所有限公司 Systems, methods and engineering of optimized guidance compositions for sequence manipulation
ES2576126T3 (en) 2012-12-12 2016-07-05 The Broad Institute, Inc. Modification by genetic technology and optimization of improved enzyme systems, methods and compositions for sequence manipulation
EP3705490B1 (en) 2012-12-12 2024-03-06 The Broad Institute, Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
EP3011035B1 (en) 2013-06-17 2020-05-13 The Broad Institute, Inc. Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences
DK3011032T3 (en) 2013-06-17 2020-01-20 Broad Inst Inc MANUFACTURING, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR TARGETING AGAINST AND MODELING DISEASES AND DISORDERS IN POSTMITOTIC CELLS
EP3011030B1 (en) 2013-06-17 2023-11-08 The Broad Institute, Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
KR20160030187A (en) 2013-06-17 2016-03-16 더 브로드 인스티튜트, 인코퍼레이티드 Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy
KR20160044457A (en) 2013-06-17 2016-04-25 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
BR122021009076B1 (en) 2013-06-17 2024-02-15 The Broad Institute Inc. VIRAL VECTOR CONTAINING HETEROLOGOUS NUCLEIC ACID MOLECULE(S), COMPOSITION, USE AND METHODS THEREOF
AU2016245347B2 (en) 2015-04-10 2021-01-28 Feldan Bio Inc. Polypeptide-based shuttle agents for improving the transduction efficiency of polypeptide cargos to the cytosol of target eukaryotic cells, uses thereof, methods and kits relating to same
CA2999649A1 (en) * 2015-11-06 2017-05-11 Crispr Therapeutics Ag Materials and methods for treatment of glycogen storage disease type 1a
EP3443081A4 (en) * 2016-04-13 2019-10-30 Duke University CRISPR / CAS9-BASED REPRESSORS TO INACTIVATE IN VIVO GENE TARGETS AND METHODS OF USE
AU2018224380A1 (en) * 2017-02-22 2019-08-29 Crispr Therapeutics Ag Compositions and methods for treatment of proprotein convertase subtilisin/kexin type 9 (PCSK9)-related disorders
SG11202009783WA (en) * 2018-04-19 2020-11-27 Univ California Compositions and methods for gene editing
EP4118203A4 (en) 2020-03-11 2024-03-27 The Broad Institute, Inc. NEW ENZYMES CASES AND METHODS FOR SPECIFICITY AND ACTIVITY PROFILING

Also Published As

Publication number Publication date
WO2023093862A1 (en) 2023-06-01
TW202333747A (en) 2023-09-01
EP4437092A1 (en) 2024-10-02
US20240408236A1 (en) 2024-12-12

Similar Documents

Publication Publication Date Title
AU2014361834B2 (en) CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes
JP6712948B2 (en) Compositions and methods of using the CRISPR-cas system in nucleotide repeat disorders
AU2023200490A1 (en) Use of exonucleases to improve CRISPR/Cas-mediated genome editing
WO2023093862A1 (en) Method of modulating pcsk9 and uses thereof
CN114746125A (en) CRISPR and AAV strategies for X-linked juvenile retinoschisis therapy
WO2023134658A1 (en) Method of modulating vegf and uses thereof
TW202503061A (en) Epigenetic editing tools targeting hepatitis b virus genes
WO2023165597A1 (en) Compositions and methods of genome editing
US20250002876A1 (en) Mobile elements and chimeric constructs thereof
CN118660959A (en) Mobile elements and chimeric constructs thereof
WO2024032680A1 (en) Method and use of epigenetic editing target
WO2024032677A1 (en) Method for epigenetically editing target site and use thereof
WO2024032679A1 (en) Method and use for apparent editing target
WO2024168253A1 (en) Delivery of an rna guided recombination system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40113388

Country of ref document: HK

TA01 Transfer of patent application right

Effective date of registration: 20250701

Address after: Singapore 068908, Robinson Plaza 12-01, 144 Robinson Road # 12-01

Applicant after: Yijie Lico Singapore Ltd.

Country or region after: Singapore

Address before: 200030 Shanghai City Xuhui District Wanping South Road 98.NO

Applicant before: Yijielike (Shanghai) Biotechnology Co.,Ltd.

Country or region before: China