CN118175907A - Preparation method of perovskite light absorption layer, solar cell and preparation method thereof - Google Patents
Preparation method of perovskite light absorption layer, solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN118175907A CN118175907A CN202410328579.8A CN202410328579A CN118175907A CN 118175907 A CN118175907 A CN 118175907A CN 202410328579 A CN202410328579 A CN 202410328579A CN 118175907 A CN118175907 A CN 118175907A
- Authority
- CN
- China
- Prior art keywords
- layer
- perovskite
- evaporation
- type
- type perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 230000031700 light absorption Effects 0.000 title claims abstract description 16
- 230000008020 evaporation Effects 0.000 claims abstract description 110
- 238000001704 evaporation Methods 0.000 claims abstract description 110
- 238000000034 method Methods 0.000 claims abstract description 85
- 150000003839 salts Chemical class 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 230000008569 process Effects 0.000 claims abstract description 41
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 25
- 238000000151 deposition Methods 0.000 claims description 20
- 230000005525 hole transport Effects 0.000 claims description 19
- 230000008021 deposition Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 125000000320 amidine group Chemical group 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 238000005215 recombination Methods 0.000 abstract description 9
- 230000006798 recombination Effects 0.000 abstract description 9
- 238000005137 deposition process Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 200
- 229910021417 amorphous silicon Inorganic materials 0.000 description 10
- -1 methyl amidino Chemical group 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 229910021426 porous silicon Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XNQULTQRGBXLIA-UHFFFAOYSA-O phosphonic anhydride Chemical compound O[P+](O)=O XNQULTQRGBXLIA-UHFFFAOYSA-O 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- XIOYECJFQJFYLM-UHFFFAOYSA-N 2-(3,6-dimethoxycarbazol-9-yl)ethylphosphonic acid Chemical compound COC=1C=CC=2N(C3=CC=C(C=C3C=2C=1)OC)CCP(O)(O)=O XIOYECJFQJFYLM-UHFFFAOYSA-N 0.000 description 1
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- KIMPAVBWSFLENS-UHFFFAOYSA-N 2-carbazol-9-ylethylphosphonic acid Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)CCP(O)(O)=O KIMPAVBWSFLENS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VMPLMOXGWULJTH-UHFFFAOYSA-N C1=CC(C)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 Chemical compound C1=CC(C)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 VMPLMOXGWULJTH-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- HUOSXUVFHUFNTL-UHFFFAOYSA-N [S-2].[S-2].[Mn+4] Chemical compound [S-2].[S-2].[Mn+4] HUOSXUVFHUFNTL-UHFFFAOYSA-N 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N anhydrous guanidine Natural products NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- UPGUYPUREGXCCQ-UHFFFAOYSA-N cerium(3+) indium(3+) oxygen(2-) Chemical compound [O--].[O--].[O--].[In+3].[Ce+3] UPGUYPUREGXCCQ-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光伏领域,特别是涉及一种钙钛矿光吸收层的制备方法、太阳能电池及其制备方法。The present invention relates to the photovoltaic field, and in particular to a method for preparing a perovskite light absorption layer, a solar cell and a method for preparing the same.
背景技术Background technique
钙钛矿太阳能电池作为第三代光伏电池,其理论光电转换效率高达31%,而目前所能达到光电转换效率约为26%。目前最高效的钙钛矿电池大部分均采用一步溶液旋涂法在小面积玻璃上制备,无法实现大面积均匀制备,阻碍其工业化进程。Walsh采用旋涂法分别制备了P型钙钛矿薄膜和N型钙钛矿薄膜,电池效率达到21%。然而,采用溶液法分别制备P型钙钛矿薄膜和N型钙钛矿薄膜之间存在较严重的界面复合以及大面积制备均匀性较差的问题,影响电池效率等性能。As the third generation of photovoltaic cells, perovskite solar cells have a theoretical photoelectric conversion efficiency of up to 31%, while the current photoelectric conversion efficiency is about 26%. Most of the most efficient perovskite cells are currently prepared on a small area of glass using a one-step solution spin coating method, which cannot achieve large-area uniform preparation, hindering their industrialization process. Walsh used spin coating to prepare P-type perovskite films and N-type perovskite films respectively, and the cell efficiency reached 21%. However, there are serious problems of interface recombination and poor uniformity of large-area preparation when using the solution method to prepare P-type perovskite films and N-type perovskite films respectively, which affects the performance of the cell such as efficiency.
发明内容Summary of the invention
基于此,有必要提供一种钙钛矿光吸收层的制备方法、太阳能电池及其制备方法,以解决P型钙钛矿薄膜和N型钙钛矿薄膜之间存在较严重的界面复合以及大面积制备均匀性较差的问题。Based on this, it is necessary to provide a method for preparing a perovskite light absorption layer, a solar cell and a method for preparing the same, so as to solve the problem of serious interface recombination between P-type perovskite film and N-type perovskite film and poor uniformity in large-area preparation.
本发明的第一方面为提供一种钙钛矿光吸收层的制备方法,方案如下:The first aspect of the present invention is to provide a method for preparing a perovskite light absorbing layer, the scheme is as follows:
一种钙钛矿光吸收层的制备方法,包括以下步骤:A method for preparing a perovskite light absorbing layer comprises the following steps:
采用蒸镀工艺在基底上沉积钙钛矿光吸收层,蒸镀源包括有机盐和无机盐,通过控制蒸镀源的蒸发速率,调节有机盐和无机盐蒸发的比例,从而调节沉积在所述基底上有机盐和无机盐的比例,形成包括层叠设置的P型钙钛矿层和N型钙钛矿层的所述钙钛矿光吸收层。A perovskite light absorbing layer is deposited on a substrate by an evaporation process, wherein the evaporation source includes an organic salt and an inorganic salt. The evaporation rate of the evaporation source is controlled to adjust the evaporation ratio of the organic salt and the inorganic salt, thereby adjusting the ratio of the organic salt and the inorganic salt deposited on the substrate to form the perovskite light absorbing layer including a stacked P-type perovskite layer and an N-type perovskite layer.
在其中一个实施例中,所述有机盐的分子式为RXn,其中,R选自甲脒基、甲胺基中的至少一种,X选自Cl、Br、I中的至少一种,n符合化学计量。In one embodiment, the molecular formula of the organic salt is RX n , wherein R is selected from at least one of methyl amidino and methylamino, X is selected from at least one of Cl, Br, and I, and n is in stoichiometric form.
在其中一个实施例中,所述无机盐的分子式为QX’n,其中Q选自Cs、Pb、Sn中的至少一种,X’选自Cl、Br、I、中的至少一种,n符合化学计量。In one embodiment, the inorganic salt has a molecular formula of QX' n , wherein Q is selected from at least one of Cs, Pb, and Sn, X' is selected from at least one of Cl, Br, and I, and n conforms to stoichiometry.
在其中一个实施例中,各所述蒸镀源分别设置在不同的热源上,独立控制不同的所述热源的加热温度,以独立控制不同所述蒸镀源的蒸发速率。In one embodiment, each of the evaporation sources is disposed on a different heat source, and the heating temperature of each of the heat sources is independently controlled to independently control the evaporation rate of each of the evaporation sources.
在其中一个实施例中,在蒸镀工艺的第一阶段,在蒸镀源各自的第一蒸镀速率下沉积形成第一类型钙钛矿层;In one embodiment, in a first stage of the evaporation process, a first type of perovskite layer is deposited at a first evaporation rate of each evaporation source;
在蒸镀工艺的第二阶段,控制一个或多个蒸镀源的蒸镀速率渐变为各自的第二蒸镀速率,使钙钛矿层从第一类型钙钛矿层逐渐过渡至第二类型钙钛矿层;In the second stage of the evaporation process, the evaporation rates of one or more evaporation sources are controlled to gradually change to respective second evaporation rates, so that the perovskite layer gradually transitions from the first type perovskite layer to the second type perovskite layer;
所述第一类型钙钛矿层为P型钙钛矿层,所述第二类型钙钛矿层为N型钙钛矿层;或者,所述第一类型钙钛矿层为N型钙钛矿层,所述第二类型钙钛矿层为P型钙钛矿层。The first type perovskite layer is a P-type perovskite layer, and the second type perovskite layer is an N-type perovskite layer; or, the first type perovskite layer is an N-type perovskite layer, and the second type perovskite layer is a P-type perovskite layer.
在其中一个实施例中,所述第一类型钙钛矿层为P型钙钛矿层,所述第二类型钙钛矿层为N型钙钛矿层,控制所述第二阶段中所述基底的温度高于所述第一阶段中所述基底的温度;或者,In one embodiment, the first type perovskite layer is a P-type perovskite layer, the second type perovskite layer is an N-type perovskite layer, and the temperature of the substrate in the second stage is controlled to be higher than the temperature of the substrate in the first stage; or
所述第一类型钙钛矿层为N型钙钛矿层,所述第二类型钙钛矿层为P型钙钛矿层,控制所述第二阶段中所述基底的温度低于所述第一阶段中所述基底的温度。The first type perovskite layer is an N-type perovskite layer, the second type perovskite layer is a P-type perovskite layer, and the temperature of the substrate in the second stage is controlled to be lower than the temperature of the substrate in the first stage.
本发明的第二方面为提供一种太阳能电池的制备方法,方案如下:The second aspect of the present invention is to provide a method for preparing a solar cell, the scheme is as follows:
一种太阳能电池的制备方法,包括以下步骤:A method for preparing a solar cell comprises the following steps:
通过所述的钙钛矿光吸收层的制备方法在基底上沉积所述钙钛矿光吸收层;Depositing the perovskite light absorbing layer on a substrate by the preparation method of the perovskite light absorbing layer;
在所述钙钛矿光吸收层上形成电极层。An electrode layer is formed on the perovskite light absorbing layer.
在其中一个实施例中,所述太阳能电池的制备方法还包括以下步骤:In one embodiment, the method for preparing a solar cell further comprises the following steps:
采用蒸镀工艺沉积形成空穴传输层,所述空穴传输层位于所述电极层和所述P型钙钛矿层之间。A hole transport layer is formed by deposition using an evaporation process, and the hole transport layer is located between the electrode layer and the P-type perovskite layer.
在其中一个实施例中,所述太阳能电池的制备方法还包括以下步骤:In one embodiment, the method for preparing a solar cell further comprises the following steps:
采用蒸镀工艺沉积形成电子传输层,所述电子传输层位于所述基底和所述N型钙钛矿层之间。An electron transport layer is formed by deposition using an evaporation process, and the electron transport layer is located between the substrate and the N-type perovskite layer.
本发明的第三方面为提供一种太阳能电池,方案如下:The third aspect of the present invention is to provide a solar cell, the scheme is as follows:
一种太阳能电池,通过所述的种太阳能电池的制备方法制备得到。A solar cell is prepared by the method for preparing a solar cell.
与传统方案相比,上述钙钛矿光吸收层的制备方法、太阳能电池及其制备方法具有以下有益效果:Compared with the traditional solution, the above-mentioned method for preparing the perovskite light absorption layer, the solar cell and the preparation method thereof have the following beneficial effects:
上述钙钛矿光吸收层的制备方法采用蒸镀工艺形成P型钙钛矿层和N型钙钛矿层,相较于溶液法,能够提高膜层的均匀性,并且通过控制蒸发速率,调节有机盐和无机盐蒸发的比例,从而调节沉积在基底上有机盐和无机盐的比例,所形成的P型钙钛矿层和N型钙钛矿层为同质PN结,其产生的内建电场分离提取电子和空穴,可以不需要额外设置载流子传输层,连续沉积工艺均匀且联系紧密,可以将其视为一个整体,减少了不同膜层之间的界面复合而造成的性能损失。The above-mentioned method for preparing the perovskite light absorption layer adopts an evaporation process to form a P-type perovskite layer and an N-type perovskite layer. Compared with the solution method, the uniformity of the film layer can be improved, and the ratio of evaporation of organic salts and inorganic salts can be adjusted by controlling the evaporation rate, thereby adjusting the ratio of organic salts and inorganic salts deposited on the substrate. The formed P-type perovskite layer and N-type perovskite layer are homogeneous PN junctions, and the built-in electric field generated by them separates and extracts electrons and holes, and there is no need to set up an additional carrier transport layer. The continuous deposition process is uniform and closely connected, and it can be regarded as a whole, reducing the performance loss caused by interface recombination between different film layers.
上述太阳能电池的制备方法包含了上述钙钛矿光吸收层的制备方法,因而能够获得相应的有益效果。The method for preparing the solar cell includes the method for preparing the perovskite light absorption layer, thereby being able to obtain corresponding beneficial effects.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一实施例的太阳能电池的结构示意图;FIG1 is a schematic structural diagram of a solar cell according to an embodiment;
图2为另一实施例的太阳能电池的结构示意图。FIG. 2 is a schematic structural diagram of a solar cell according to another embodiment.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. In the following description, many specific details are set forth to facilitate a full understanding of the present invention. However, the present invention can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without violating the connotation of the present invention, so the present invention is not limited by the specific embodiments disclosed below.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art of the present invention. The terms used herein in the specification of the present invention are only for the purpose of describing specific embodiments and are not intended to limit the present invention. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", "clockwise", "counterclockwise", "axial", "radial", "circumferential" and the like indicate orientations or positional relationships based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as limiting the present invention.
此外,术语“第一”,“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”,“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, the terms "installed", "connected", "connected", "fixed" and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined. For ordinary technicians in this field, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
本发明一实施例的钙钛矿光吸收层的制备方法包括以下步骤:A method for preparing a perovskite light absorbing layer according to an embodiment of the present invention comprises the following steps:
采用蒸镀工艺在基底上沉积钙钛矿光吸收层,蒸镀源包括机盐和无机盐,通过控制蒸镀源的蒸发速率,调节有机盐和无机盐蒸发的比例,从而调节沉积在基底上有机盐和无机盐的比例,形成包括层叠设置的P型钙钛矿层和N型钙钛矿层的钙钛矿光吸收层。A perovskite light absorbing layer is deposited on a substrate by an evaporation process, wherein the evaporation source includes an organic salt and an inorganic salt. By controlling the evaporation rate of the evaporation source and adjusting the evaporation ratio of the organic salt and the inorganic salt, the ratio of the organic salt and the inorganic salt deposited on the substrate is adjusted to form a perovskite light absorbing layer including a stacked P-type perovskite layer and an N-type perovskite layer.
上述钙钛矿光吸收层的制备方法采用蒸镀工艺形成P型钙钛矿层和N型钙钛矿层,相较于溶液法,能够提高膜层的均匀性,并且通过控制蒸发速率,调节有机盐和无机盐蒸发的比例,从而调节沉积在基底上有机盐和无机盐的比例,所形成的P型钙钛矿层和N型钙钛矿层为同质PN结,其产生的内建电场分离提取电子和空穴,可以不需要额外设置载流子传输层,连续沉积工艺均匀且联系紧密,可以将其视为一个整体,减少了不同膜层之间的界面复合而造成的性能损失。The above-mentioned method for preparing the perovskite light absorption layer adopts an evaporation process to form a P-type perovskite layer and an N-type perovskite layer. Compared with the solution method, the uniformity of the film layer can be improved, and the ratio of evaporation of organic salts and inorganic salts can be adjusted by controlling the evaporation rate, thereby adjusting the ratio of organic salts and inorganic salts deposited on the substrate. The formed P-type perovskite layer and N-type perovskite layer are homogeneous PN junctions, and the built-in electric field generated by them separates and extracts electrons and holes, and there is no need to set up an additional carrier transport layer. The continuous deposition process is uniform and closely connected, and it can be regarded as a whole, reducing the performance loss caused by interface recombination between different film layers.
上述制备方法通过控制蒸发速率,调节有机盐和无机盐蒸发的比例,连续蒸镀P型钙钛矿层和N型钙钛矿层,缩短了电池制备的周期,便于工业生产。The preparation method controls the evaporation rate, adjusts the evaporation ratio of organic salt and inorganic salt, and continuously evaporates the P-type perovskite layer and the N-type perovskite layer, thereby shortening the battery preparation cycle and facilitating industrial production.
其中,有机盐的分子式为RXn。分子式中,R可以为但不限于FA(甲脒基,CH(NH2)2 +)、MA(甲胺基,CH3NH3 +)中的至少一种,X选自Cl、Br、I中的至少一种,n符合化学计量。The molecular formula of the organic salt is RX n , in which R can be but is not limited to at least one of FA (carbamimidoyl, CH(NH 2 ) 2 + ) and MA (methylamino, CH 3 NH 3 + ), X is selected from at least one of Cl, Br, and I, and n conforms to stoichiometry.
进一步地,有机盐选自FAI、FABr、MAI、MABr、MACl中的至少一种。Furthermore, the organic salt is selected from at least one of FAI, FABr, MAI, MABr and MACl.
其中,无机盐的分子式为QX’n。分子式中,Q选自Cs、Pb、Sn中的至少一种,X’选自Cl、Br、I中的至少一种,n符合化学计量。The inorganic salt has a molecular formula of QX' n , wherein Q is selected from at least one of Cs, Pb and Sn, X' is selected from at least one of Cl, Br and I, and n conforms to the stoichiometric ratio.
进一步地,无机盐选自CsI、PbI2、PbBr2、PbCl、CsBr、CsCl、SnCl4、SnI4、SnBr4中的至少一种。Furthermore, the inorganic salt is at least one selected from the group consisting of CsI, PbI 2 , PbBr 2 , PbCl, CsBr, CsCl, SnCl 4 , SnI 4 , and SnBr 4 .
在其中一个示例中,通过控制蒸镀工艺的温度,来控制有机盐和无机盐的蒸发速率,进而调节有机盐和无机盐蒸发的比例。例如,P型钙钛矿相较于N型钙钛矿,其主要A位前体材料沉积速率慢或主要X位前体材料沉积速率快。In one example, the evaporation rate of the organic salt and the inorganic salt is controlled by controlling the temperature of the evaporation process, thereby adjusting the evaporation ratio of the organic salt and the inorganic salt. For example, compared with N-type perovskite, the deposition rate of the main A-site precursor material of P-type perovskite is slow or the deposition rate of the main X-site precursor material is fast.
在其中一个示例中,各蒸镀源分别设置在不同的热源上,独立控制不同的热源的加热温度,以独立控制不同蒸镀源的蒸发速率。In one example, each evaporation source is disposed on a different heat source, and the heating temperature of the different heat sources is independently controlled to independently control the evaporation rate of the different evaporation sources.
例如,有机盐为MAI和MACl,无机盐为PbI2和PbCl2,MAI、MACl、PbI2和PbCl2分别设置在四个热源上,不同的热源的加热温度独立控制,从而不同蒸镀源可以进行独立调整。For example, the organic salts are MAI and MACl, the inorganic salts are PbI 2 and PbCl 2 , MAI, MACl, PbI 2 and PbCl 2 are respectively set on four heat sources, and the heating temperatures of different heat sources are independently controlled, so that different evaporation sources can be adjusted independently.
在其中一个示例中,在蒸镀工艺的第一阶段,在蒸镀源各自的第一蒸镀速率下沉积形成第一类型钙钛矿层;In one example, in a first stage of the evaporation process, a first type of perovskite layer is deposited at a first evaporation rate of each evaporation source;
在蒸镀工艺的第二阶段,控制一个或多个蒸镀源的蒸镀速率渐变为各自的第二蒸镀速率,使钙钛矿层从第一类型钙钛矿层逐渐过渡至第二类型钙钛矿层;In the second stage of the evaporation process, the evaporation rates of one or more evaporation sources are controlled to gradually change to respective second evaporation rates, so that the perovskite layer gradually transitions from the first type perovskite layer to the second type perovskite layer;
其中,第一类型钙钛矿层为P型钙钛矿层,第二类型钙钛矿层为N型钙钛矿层;或者,第一类型钙钛矿层为N型钙钛矿层,第二类型钙钛矿层为P型钙钛矿层。The first type perovskite layer is a P-type perovskite layer, and the second type perovskite layer is an N-type perovskite layer; or, the first type perovskite layer is an N-type perovskite layer, and the second type perovskite layer is a P-type perovskite layer.
蒸镀工艺的第一阶段和第二阶段为连续性进行。蒸镀源的蒸镀速率为连续性变化。如此,PN结处元素浓度为梯度变化,避免PN结处在后续成膜过程中发生严重的相分离。The first and second stages of the evaporation process are performed continuously. The evaporation rate of the evaporation source changes continuously. In this way, the element concentration at the PN junction changes in a gradient, avoiding serious phase separation at the PN junction during the subsequent film formation process.
在其中一个示例中,第一类型钙钛矿层为P型钙钛矿层,第二类型钙钛矿层为N型钙钛矿层,控制第二阶段中基底的温度高于第一阶段中基底的温度。通过在第二阶段中升高基底的温度,能够使N型钙钛矿层的N型程度更好。In one example, the first type perovskite layer is a P-type perovskite layer, the second type perovskite layer is an N-type perovskite layer, and the temperature of the substrate in the second stage is controlled to be higher than the temperature of the substrate in the first stage. By increasing the temperature of the substrate in the second stage, the N-type degree of the N-type perovskite layer can be made better.
在其中一个示例中,第一类型钙钛矿层为N型钙钛矿层,第二类型钙钛矿层为P型钙钛矿层,控制第二阶段中基底的温度低于第一阶段中基底的温度。通过在第二阶段中降低基底的温度,能够使P型钙钛矿层的P型程度更好。In one example, the first type perovskite layer is an N-type perovskite layer, the second type perovskite layer is a P-type perovskite layer, and the temperature of the substrate in the second stage is controlled to be lower than the temperature of the substrate in the first stage. By lowering the temperature of the substrate in the second stage, the P-type degree of the P-type perovskite layer can be made better.
P型钙钛矿层和N型钙钛矿层构成同质PN结,钙钛矿材料的原子或基团组成一致,而原子或基团比例不同。钙钛矿材料的分子式为ABX3。其中,A为一价阳离子,包括但不限于铯离子、铷离子、钾离子、甲胺离子、甲脒离子、亚甲二胺离子、苄脒阳离子以及胍阳离子中的至少一种。B为二价阳离子,包括但不限于铅离子、铜离子、锌离子、镓离子、锡离子以及钙离子中的至少一种。X为一价阴离子,包括但不限于氟离子、氯离子、溴离子、碘离子、硫氰酸根离子、四氟硼酸根离子、六氟磷酸根离子、甲酸根离子及乙酸根离子中的至少一种。The P-type perovskite layer and the N-type perovskite layer form a homogeneous PN junction, and the atomic or group composition of the perovskite material is consistent, but the atomic or group ratio is different. The molecular formula of the perovskite material is ABX 3. Wherein, A is a monovalent cation, including but not limited to at least one of cesium ion, rubidium ion, potassium ion, methylamine ion, formamidine ion, methylenediamine ion, benzamidine cation and guanidine cation. B is a divalent cation, including but not limited to at least one of lead ion, copper ion, zinc ion, gallium ion, tin ion and calcium ion. X is a monovalent anion, including but not limited to at least one of fluoride ion, chloride ion, bromide ion, iodide ion, thiocyanate ion, tetrafluoroborate ion, hexafluorophosphate ion, formate ion and acetate ion.
在其中一个示例中,P型钙钛矿层的带隙为1.40eV~2.3eV。In one example, the band gap of the P-type perovskite layer is 1.40eV~2.3eV.
在其中一个示例中,N型钙钛矿层的带隙为1.40eV~2.3eV。In one example, the band gap of the N-type perovskite layer was 1.40eV~2.3eV.
在其中一个示例中,P型钙钛矿层的厚度为300nm~600nm。In one example, the thickness of the P-type perovskite layer is 300nm~600nm.
在其中一个示例中,N型钙钛矿层的厚度为300nm~600nm。In one example, the thickness of the N-type perovskite layer is 300nm~600nm.
进一步地,本发明还提供一种太阳能电池的制备方法,包括以下步骤:Furthermore, the present invention also provides a method for preparing a solar cell, comprising the following steps:
通过上述任一示例的钙钛矿光吸收层的制备方法在基底上沉积钙钛矿光吸收层;Depositing a perovskite light absorbing layer on a substrate by any of the above-mentioned methods for preparing a perovskite light absorbing layer;
在钙钛矿光吸收层上形成电极层。An electrode layer is formed on the perovskite light absorbing layer.
上述备方法采用蒸镀工艺形成P型钙钛矿层和N型钙钛矿层,能够提高膜层的均匀性,并且通过控制蒸发速率,调节有机盐和无机盐蒸发的比例,从而调节沉积在基底上有机盐和无机盐的比例,所形成的P型钙钛矿层和N型钙钛矿层为同质PN结,产生的内建电场分离提取电子和空穴,可以不需要额外的载流子传输层,连续沉积工艺均匀且联系紧密,可以将其视为一个整体,减少了不同膜层之间的界面复合而造成的性能损失。The above preparation method uses an evaporation process to form a P-type perovskite layer and an N-type perovskite layer, which can improve the uniformity of the film layer, and by controlling the evaporation rate, adjust the ratio of the evaporation of organic salts and inorganic salts, thereby adjusting the ratio of organic salts and inorganic salts deposited on the substrate. The formed P-type perovskite layer and N-type perovskite layer are homogeneous PN junctions, and the built-in electric field generated separates and extracts electrons and holes, and no additional carrier transport layer is required. The continuous deposition process is uniform and closely connected, and can be regarded as a whole, reducing the performance loss caused by interface recombination between different film layers.
上述制备方法通过控制蒸发速率,调节有机盐和无机盐蒸发的比例,连续蒸镀P型钙钛矿层和N型钙钛矿层,缩短了电池制备的周期,便于工业生产。The preparation method controls the evaporation rate, adjusts the evaporation ratio of organic salt and inorganic salt, and continuously evaporates the P-type perovskite layer and the N-type perovskite layer, thereby shortening the battery preparation cycle and facilitating industrial production.
上述太阳能电池可以为钙钛矿单层电池,也可以为叠层电池。The solar cell can be a single-layer perovskite cell or a stacked-layer cell.
例如,图1示出的太阳能电池100为钙钛矿单层电池,其包括层叠设置的基底110、钙钛矿光吸收层120以及电极层130。其中,钙钛矿光吸收层120包括P型钙钛矿层121和N型钙钛矿层122。For example, the solar cell 100 shown in FIG1 is a single-layer perovskite cell, which includes a stacked substrate 110, a perovskite light absorbing layer 120, and an electrode layer 130. The perovskite light absorbing layer 120 includes a P-type perovskite layer 121 and an N-type perovskite layer 122.
太阳能电池为钙钛矿单层电池时,基底110的材料可以为但不限于氧化铟锡(ITO)、掺铝氧化锌(AZO)、掺铟氧化锌(IZO)、掺氟氧化锡(FTO)、氧化铟钨(IWO)、氧化铟铈(ICO)等氧化物中的一种或者多种。When the solar cell is a perovskite single-layer cell, the material of the substrate 110 can be, but is not limited to, one or more of oxides such as indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), fluorine-doped tin oxide (FTO), indium tungsten oxide (IWO), and indium cerium oxide (ICO).
其中,叠层电池例如为钙钛矿/晶硅叠层电池、全钙钛矿叠层电池、钙钛矿/有机叠层电池、钙钛矿/CIGS叠层电池、钙钛矿/CdTe叠层电池、钙钛矿/GaAs叠层电池等。Among them, the tandem cells are, for example, perovskite/crystalline silicon tandem cells, all-perovskite tandem cells, perovskite/organic tandem cells, perovskite/CIGS tandem cells, perovskite/CdTe tandem cells, perovskite/GaAs tandem cells, etc.
例如,图2示出的太阳能电池200为钙钛矿/晶硅叠层电池,其包括依次层叠设置的减反层270、第二透明导电层260、缓冲层250、空穴传输层240、P型钙钛矿层232、N型钙钛矿层231、电子传输层220、复合层219、第一掺杂层214、第一非晶硅层212、单晶硅衬底211、第二非晶硅层213、第二掺杂层216、透明电极层217。减反层270上设置有第一栅线218,透明电极层217上设置有第二栅线280。P型钙钛矿层232、N型钙钛矿层231构成钙钛矿光吸收层230。For example, the solar cell 200 shown in FIG2 is a perovskite/crystalline silicon stacked cell, which includes an anti-reflection layer 270, a second transparent conductive layer 260, a buffer layer 250, a hole transport layer 240, a P-type perovskite layer 232, an N-type perovskite layer 231, an electron transport layer 220, a composite layer 219, a first doping layer 214, a first amorphous silicon layer 212, a single crystal silicon substrate 211, a second amorphous silicon layer 213, a second doping layer 216, and a transparent electrode layer 217. A first grid line 218 is arranged on the anti-reflection layer 270, and a second grid line 280 is arranged on the transparent electrode layer 217. The P-type perovskite layer 232 and the N-type perovskite layer 231 constitute a perovskite light absorption layer 230.
通过蒸镀工艺制备的钙钛矿同质PN结即能够实现载流子的传输,可以不额外设置载流子传输层。The perovskite homogeneous PN junction prepared by the evaporation process can realize the transmission of carriers, and there is no need to set up an additional carrier transport layer.
为了进一步提高空穴传输效果,在其中一个示例中,太阳能电池的制备方法还包括以下步骤:In order to further improve the hole transport effect, in one example, the method for preparing a solar cell further includes the following steps:
形成空穴传输层,空穴传输层位于电极层和P型钙钛矿层之间。A hole transport layer is formed, and the hole transport layer is located between the electrode layer and the P-type perovskite layer.
可选地,空穴传输层的材料可以为但不限于NiOx(镍氧化物)、CuSCN(硫氰酸亚铜)、MoOx(钼氧化物)、CuI(碘化亚铜)、CuOx(铜氧化物)、V2O5(五氧化二钒)、MoS2(二硫化钼)、MnS2(二硫化锰)、PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])、PEDOT:PSS((聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸))、Spiro-OMeTAD(2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)、Spiro-TTB(2,2',7,7'-四(二-对甲苯基氨基)螺-9,9'-二芴)、(MeO-)2PACz([2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸)、(MeO-)4PACz([4-(3,6-二甲氧基-9H-咔唑-9- 基)丁基]膦酸)、F4-TCNQ(2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌)、P3HT(聚3-己基噻吩)中的一种或者多种。Optionally, the material of the hole transport layer can be, but is not limited to, NiO x (nickel oxide), CuSCN (cuprous thiocyanate), MoO x (molybdenum oxide), CuI (cuprous iodide), CuO x (copper oxide), V 2 O 5 (vanadium pentoxide), MoS 2 (molybdenum disulfide), MnS 2 (manganese disulfide), PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]), PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid)), Spiro-OMeTAD (2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene), Spiro-TTB (2,2',7,7'-tetrakis(di-p-tolylamino)spiro-9,9'-bifluorene), (MeO-)2PACz ([2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl]phosphonic acid), (MeO-)4PACz ([4-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl]phosphonic acid), One or more of: [(1,2-butyl)phosphonic acid), F4-TCNQ (2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone), and P3HT (poly 3-hexylthiophene).
在其中一个示例中,空穴传输层的厚度为1nm~200nm。进一步地,在其中一个示例中,空穴传输层的厚度为10nm~100nm。在一些具体示例中,空穴传输层的厚度为5nm、20nm、40nm、60nm、80nm、100nm、120nm、140nm、160nm、180nm、200nm等。In one example, the thickness of the hole transport layer is 1 nm to 200 nm. Further, in one example, the thickness of the hole transport layer is 10 nm to 100 nm. In some specific examples, the thickness of the hole transport layer is 5 nm, 20 nm, 40 nm, 60 nm, 80 nm, 100 nm, 120 nm, 140 nm, 160 nm, 180 nm, 200 nm, etc.
可选地,空穴传输层的制备工艺可以为但不限于蒸镀法、磁控溅射法、原子层沉积法、电化学沉积法、分子束蒸镀法、浸涂法、旋涂法、刮涂法、狭缝涂布法、棒涂法以及喷墨打印等。Optionally, the preparation process of the hole transport layer can be but is not limited to evaporation, magnetron sputtering, atomic layer deposition, electrochemical deposition, molecular beam evaporation, dip coating, spin coating, blade coating, slit coating, rod coating and inkjet printing.
在其中一个示例中,空穴传输层采用蒸镀工艺进行制备。由于湿法制备的空穴传输层与干法制备的钙钛矿光吸收层会出现因制备方法不同而造成界面不兼容,导致额外缺陷从而引发性能上的损失。在本示例中,采用蒸镀工艺制备空穴传输层,能够减少空穴传输层与钙钛矿光吸收层之间的界面复合,降低电池性能的损失。In one example, the hole transport layer is prepared by evaporation. Due to the different preparation methods, the hole transport layer prepared by the wet method and the perovskite light absorption layer prepared by the dry method will have interface incompatibility, resulting in additional defects and thus performance loss. In this example, the hole transport layer is prepared by evaporation, which can reduce the interface recombination between the hole transport layer and the perovskite light absorption layer and reduce the loss of battery performance.
为了进一步提高电子传输效果,在其中一个示例中,太阳能电池的制备方法还包括以下步骤:In order to further improve the electron transmission effect, in one example, the method for preparing a solar cell further includes the following steps:
形成电子传输层,电子传输层位于基底和N型钙钛矿层之间。An electron transport layer is formed, and the electron transport layer is located between the substrate and the N-type perovskite layer.
可选地,电子传输层的材料可以为但不限于ZnO(氧化锌)、SnO2(氧化锡)、TiO2(二氧化钛)、SrTiO3(钛酸锶)、Zn2SnO4(锡酸锌)、ZrO2(二氧化锆)、Al2O3(氧化铝)、WO3(三氧化钨)、CeOx(铯氧化物)、CdS(硫化镉)、CdSe(硒化镉)、BaSnO3(锡酸钡)、Nb2O5(五氧化二铌)、C60(富勒烯)、PCBM(富勒烯衍生物)中的一种或者多种。Optionally, the material of the electron transport layer may be one or more of but not limited to ZnO (zinc oxide), SnO 2 (tin oxide), TiO 2 (titanium dioxide), SrTiO 3 (strontium titanate), Zn 2 SnO 4 (zinc stannate), ZrO 2 (zirconium dioxide), Al 2 O 3 (aluminum oxide), WO 3 (tungsten trioxide), CeO x (cesium oxide), CdS (cadmium sulfide), CdSe (cadmium selenide), BaSnO 3 (barium stannate), Nb 2 O 5 (niobium pentoxide), C 60 (fullerene), and PCBM (fullerene derivative).
在其中一个示例中,电子传输层的厚度为1nm~30nm。进一步地,在其中一个示例中,电子传输层的厚度为5nm~20nm。在一些具体示例中,电子传输层的厚度为2nm、5nm、8nm、12nm、15nm、18nm、20nm、22nm、25nm、27nm、29nm、30nm等。In one example, the thickness of the electron transport layer is 1 nm to 30 nm. Further, in one example, the thickness of the electron transport layer is 5 nm to 20 nm. In some specific examples, the thickness of the electron transport layer is 2 nm, 5 nm, 8 nm, 12 nm, 15 nm, 18 nm, 20 nm, 22 nm, 25 nm, 27 nm, 29 nm, 30 nm, etc.
可选地,电子传输层的制备工艺可以为但不限于蒸镀法、磁控溅射法、原子层沉积法、电化学沉积法、分子束蒸镀法、浸涂法、旋涂法、刮涂法、狭缝涂布法、棒涂法以及喷墨打印等。Optionally, the preparation process of the electron transport layer can be but is not limited to evaporation, magnetron sputtering, atomic layer deposition, electrochemical deposition, molecular beam evaporation, dip coating, spin coating, blade coating, slit coating, rod coating and inkjet printing.
在其中一个示例中,电子传输层采用蒸镀工艺进行制备。由于湿法制备的电子传输层与干法制备的钙钛矿光吸收层会出现因制备方法不同而造成界面不兼容,导致额外缺陷从而引发性能上的损失。在本示例中,采用蒸镀工艺制备电子传输层,能够减少电子传输层与钙钛矿光吸收层之间的界面复合,减少电池性能的损失。In one example, the electron transport layer is prepared by evaporation. Due to the different preparation methods, the electron transport layer prepared by the wet method and the perovskite light absorption layer prepared by the dry method will be incompatible at the interface, resulting in additional defects and thus causing performance loss. In this example, the electron transport layer is prepared by evaporation, which can reduce the interface recombination between the electron transport layer and the perovskite light absorption layer and reduce the loss of battery performance.
可选地,电极层的材料可以为但不限于Au、Ag、Cu等金属中的一种或者多种。Optionally, the material of the electrode layer may be, but is not limited to, one or more of metals such as Au, Ag, and Cu.
进一步地,本发明还提供一种太阳能电池,其是通过上述任一示例的制备方法制备得到。Furthermore, the present invention also provides a solar cell, which is prepared by any of the preparation methods in the above examples.
以下结合具体实施例对本发明作进一步说明,但本发明并不局限于下述具体实施例。The present invention is further described below in conjunction with specific embodiments, but the present invention is not limited to the following specific embodiments.
实施例1Example 1
如图1所示,本实施例提供一种太阳能电池100的制备方法,包括以下步骤:As shown in FIG. 1 , this embodiment provides a method for preparing a solar cell 100, comprising the following steps:
步骤1,采用ITO导电玻璃作为基底110,其方阻为1Ω/sq,厚度为20nm。Step 1: Use ITO conductive glass as the substrate 110, whose sheet resistance is 1Ω/sq and thickness is 20nm.
步骤2,采用蒸镀工艺在基底110上沉积形成钙钛矿光吸收层120。蒸镀源包括有机盐和无机盐,有机盐为MAI和MACl,无机盐为PbI2和PbCl2,不同蒸镀源分别装在不同的热源上。Step 2: Using an evaporation process to deposit a perovskite light absorbing layer 120 on the substrate 110. The evaporation source includes organic salt and inorganic salt, the organic salt is MAI and MACl, and the inorganic salt is PbI 2 and PbCl 2 , and different evaporation sources are respectively installed on different heat sources.
在第一阶段,控制待基底的温度为0℃,并控制各热源的温度,使MAI、MACl和PbI2的蒸发速率为1.5Å/s,PbCl2蒸发速率为0,在基底上沉积形成P型钙钛矿层121,成分为MAPbI3,厚度为300nm。In the first stage, the temperature of the substrate is controlled to be 0°C, and the temperature of each heat source is controlled to make the evaporation rate of MAI, MACl and PbI 2 1.5Å/s, and the evaporation rate of PbCl 2 0, and a P-type perovskite layer 121 is deposited on the substrate, with a composition of MAPbI 3 and a thickness of 300nm.
在第二阶段,将基底加热至50℃,并调节热源的温度,使MAI和MACl的蒸发速率保持为1.5Å/s,PbI2的蒸发速率为由1.5Å/s降低至0.9A/s,PbCl2的蒸发速率由0上升到0.6A/s,在上述P型钙钛矿层121上沉积形成N型钙钛矿层122,成分为MAPbIxCl1-x,厚度为300nm。In the second stage, the substrate is heated to 50°C and the temperature of the heat source is adjusted to keep the evaporation rate of MAI and MACl at 1.5Å/s, the evaporation rate of PbI2 is reduced from 1.5Å/s to 0.9A/s, and the evaporation rate of PbCl2 is increased from 0 to 0.6A/s. An N-type perovskite layer 122 is deposited on the above-mentioned P-type perovskite layer 121, with a composition of MAPbIxCl1 -x and a thickness of 300nm.
步骤3,采用蒸镀工艺在上述N型钙钛矿层122沉积银,形成电极层130,厚度为70nm。Step 3: Deposit silver on the N-type perovskite layer 122 using an evaporation process to form an electrode layer 130 with a thickness of 70 nm.
步骤4,将步骤3得到的钙钛矿电池在100℃退火15min。Step 4, annealing the perovskite cell obtained in step 3 at 100° C. for 15 minutes.
实施例2Example 2
如图2所示,本实施例提供一种太阳能电池的制备方法,包括以下步骤:As shown in FIG. 2 , this embodiment provides a method for preparing a solar cell, comprising the following steps:
步骤1,选用N型单晶硅,进行RCA清洗处理,然后采用金属辅助化学刻蚀法在N型单晶硅的表面制备多孔结构,得到多孔硅。刻蚀采用HF、AgNO3以及H2O2组成的混合溶液,刻蚀后再用HNO3进行清洗。Step 1: Select N-type single crystal silicon, perform RCA cleaning, and then use metal-assisted chemical etching to prepare a porous structure on the surface of the N-type single crystal silicon to obtain porous silicon. The etching uses a mixed solution composed of HF, AgNO 3 and H 2 O 2 , and then uses HNO 3 for cleaning after etching.
步骤2,将上述多孔硅浸入10℃的酸溶液中,酸溶液包括体积比为1∶3的HF和HNO3。将表面多孔硅去除后,置于70℃-90℃的NaOH溶液中,进行制绒,得到顶面金字塔结构和底面倒金字塔结构,顶面金字塔结构与硅表面的夹角为60°,深度为1μm,底面倒金字塔结构与硅表面的夹角为25°,深度为1μm,即得到单晶硅衬底211。Step 2, immerse the porous silicon in an acid solution at 10°C, the acid solution comprising HF and HNO3 in a volume ratio of 1: 3 . After removing the porous silicon on the surface, place it in a NaOH solution at 70°C-90°C for texturing to obtain a top pyramid structure and a bottom inverted pyramid structure, wherein the angle between the top pyramid structure and the silicon surface is 60°, the depth is 1μm, and the angle between the bottom inverted pyramid structure and the silicon surface is 25°, the depth is 1μm, and the single crystal silicon substrate 211 is obtained.
步骤3,采用PECVD(等离子体增强化学气相沉积)工艺在单晶硅衬底211的正面和背面分别沉积a-Si:H(氢化非晶硅),得到第一非晶硅层212和第二非晶硅层213,沉积温度为200℃,沉积厚为5nm。Step 3, using PECVD (plasma enhanced chemical vapor deposition) process to deposit a-Si:H (hydrogenated amorphous silicon) on the front and back sides of the single crystal silicon substrate 211, respectively, to obtain a first amorphous silicon layer 212 and a second amorphous silicon layer 213, the deposition temperature is 200°C, and the deposition thickness is 5nm.
步骤4,采用PECVD工艺在第一非晶硅层212上沉积硼掺杂的a-Si:H,形成第一掺杂层214,沉积温度为200℃,沉积厚度为12nm。Step 4: deposit boron-doped a-Si:H on the first amorphous silicon layer 212 using a PECVD process to form a first doped layer 214, with a deposition temperature of 200° C. and a deposition thickness of 12 nm.
步骤5,采用PECVD工艺在第二非晶硅层213上沉积磷掺杂的a-Si:H,形成第二掺杂层216,沉积温度为200℃,沉积厚度为6nm。Step 5: Deposit phosphorus-doped a-Si:H on the second amorphous silicon layer 213 using a PECVD process to form a second doped layer 216. The deposition temperature is 200° C. and the deposition thickness is 6 nm.
步骤6,采用磁控溅射工艺在第二掺杂层216上沉积ITO,形成第一透明导电层4,沉积厚度为110nm,方阻为120Ω/sq。Step 6: Deposit ITO on the second doping layer 216 by magnetron sputtering process to form a first transparent conductive layer 4 with a deposition thickness of 110 nm and a sheet resistance of 120Ω/sq.
步骤7,采用蒸镀工艺在第一透明导电层4上低温沉积银,形成第一栅线218。Step 7: deposit silver on the first transparent conductive layer 4 at low temperature by using an evaporation process to form a first gate line 218 .
步骤8,采用磁控溅射工艺在第一掺杂层214上沉积IZO,形成复合层219,沉积厚度为15nm。Step 8: Deposit IZO on the first doping layer 214 by magnetron sputtering to form a composite layer 219 with a deposition thickness of 15 nm.
步骤9,采用蒸镀工艺在复合层219上沉积C60-COOH-SAM,形成电子传输层220,厚度为15nm。Step 9: C60-COOH-SAM is deposited on the composite layer 219 by an evaporation process to form an electron transport layer 220 with a thickness of 15 nm.
步骤10,采用蒸镀工艺在电子传输层220上沉积形成钙钛矿光吸收层230。蒸镀源包括有机盐和无机盐,有机盐为FAI、FABr、MACl和FACl,无机盐为PbBr2、PbI2和CsI。Step 10: using an evaporation process to deposit a perovskite light absorbing layer 230 on the electron transport layer 220. The evaporation source includes organic salts and inorganic salts, the organic salts are FAI, FABr, MACl and FACl, and the inorganic salts are PbBr2 , PbI2 and CsI.
在第一阶段,控制基底的温度为100℃,并控制各热源的温度,使有机盐FAI、FABr、MACl、FACl的蒸镀速率之比为3∶2∶1.5∶3,无机盐PbBr2、PbI2和CsI的蒸镀速率之比为1∶19∶1,在电子传输层220上沉积形成N型钙钛矿层231,成分为FA0.8MA0.15Cs0.05Pb(I0.75Br0.1Cl0.15)3,厚度为500nm。In the first stage, the temperature of the substrate is controlled to be 100°C, and the temperatures of the heat sources are controlled to make the evaporation rate ratio of the organic salts FAI, FABr, MACl, and FACl be 3:2:1.5:3, and the evaporation rate ratio of the inorganic salts PbBr2 , PbI2 , and CsI be 1:19:1, and an N-type perovskite layer 231 is deposited on the electron transport layer 220, with a composition of FA0.8MA0.15Cs0.05Pb(I0.75Br0.1Cl0.15 ) 3 and a thickness of 500nm.
在第二阶段,将基底的温度调节至80℃,并控制各热源的温度,使各蒸镀源蒸发速率渐变调整,至有机盐FAI、FABr、MACl、FACl的蒸镀速率之比调节为1∶1∶4.5∶3,无机盐PbBr2、PbI2和CsI的蒸镀速率之比调节为12∶1∶0.5,在上述N型钙钛矿层231上沉积形成P型钙钛矿层232,成分为FA0.5MA0.45Cs0.05Pb(I0.85Br0.1Cl0.05)3,厚度为500nm。步骤11,采用蒸镀工艺共蒸Spiro-TTB和F6-TCNNQ,在P型钙钛矿层232上沉积形成空穴传输层240,厚度为25nm。In the second stage, the temperature of the substrate is adjusted to 80°C, and the temperature of each heat source is controlled to gradually adjust the evaporation rate of each evaporation source until the evaporation rate ratio of the organic salts FAI, FABr, MACl, and FACl is adjusted to 1:1:4.5:3, and the evaporation rate ratio of the inorganic salts PbBr2 , PbI2 , and CsI is adjusted to 12:1:0.5, and a P-type perovskite layer 232 is deposited on the above-mentioned N-type perovskite layer 231, with a composition of FA 0.5 MA 0.45 Cs 0.05 Pb(I 0.85 Br 0.1 Cl 0.05 ) 3 and a thickness of 500nm. Step 11, Spiro-TTB and F6-TCNNQ are co-evaporated by an evaporation process, and a hole transport layer 240 is deposited on the P-type perovskite layer 232 with a thickness of 25nm.
步骤12,采用蒸镀工艺在空穴传输层240上沉积SnO2,形成缓冲层250,沉积厚度约为20nm。Step 12: Deposit SnO 2 on the hole transport layer 240 by evaporation process to form a buffer layer 250 , with a deposition thickness of about 20 nm.
步骤13,采用磁控溅射工艺在缓冲层250上沉积IZO,形成第二透明导电层260,沉积厚度约为100nm。Step 13: Deposit IZO on the buffer layer 250 by magnetron sputtering process to form a second transparent conductive layer 260, with a deposition thickness of about 100 nm.
步骤14,采用蒸镀工艺透过掩膜版在第二透明导电层260上沉积银,形成第二栅线280,厚度约为400nm。Step 14: Deposit silver on the second transparent conductive layer 260 through a mask using an evaporation process to form a second gate line 280 with a thickness of about 400 nm.
步骤14,采用蒸镀工艺整面沉积MgFx,形成减反层270,沉积厚度约为120nm。Step 14: MgF x is deposited on the entire surface by using an evaporation process to form an anti-reflection layer 270 , with a deposition thickness of about 120 nm.
对比例1Comparative Example 1
本对比例与实施例1的区别在于,在步骤2中,P型钙钛矿层和N型钙钛矿层均采用传统旋涂工艺制备得到。The difference between this comparative example and Example 1 is that in step 2, both the P-type perovskite layer and the N-type perovskite layer are prepared by a conventional spin coating process.
对比例2Comparative Example 2
本对比例与实施例2的区别在于,在步骤10中,P型钙钛矿层和N型钙钛矿层均采用传统旋涂工艺制备得到。The difference between this comparative example and Example 2 is that in step 10, both the P-type perovskite layer and the N-type perovskite layer are prepared by a conventional spin coating process.
对实施例1~2和对比例1~2制备得到的太阳能电池进行性能测试,结果如表1所示。The performance of the solar cells prepared in Examples 1-2 and Comparative Examples 1-2 was tested, and the results are shown in Table 1.
表1 实施例1~2和对比例1~2的太阳能电池的性能测试结果Table 1 Performance test results of solar cells of Examples 1-2 and Comparative Examples 1-2
由表1结果可见,实施例1~2通过蒸镀工艺蒸镀形成钙钛矿膜层,并通过改变蒸镀温度调节有机盐和无机盐蒸发的比例,连续沉积形成P型钙钛矿层和N型钙钛矿层,相较于对比例1~2采用传统旋涂工艺,减少载流子的体内复合,开路电压有明显提升,并且填充因子和转换效率也均有所提高。It can be seen from the results in Table 1 that Examples 1-2 form the perovskite film layer by evaporation process, and adjust the ratio of evaporation of organic salt and inorganic salt by changing the evaporation temperature, and continuously deposit to form the P-type perovskite layer and the N-type perovskite layer. Compared with Comparative Examples 1-2 using the traditional spin coating process, the in vivo recombination of carriers is reduced, the open circuit voltage is significantly improved, and the fill factor and conversion efficiency are also improved.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准,说明书可以用于解释权利要求的内容。The above-mentioned embodiments only express several implementation methods of the present invention, and the description is relatively specific and detailed, but it cannot be understood as limiting the scope of the invention patent. It should be pointed out that for ordinary technicians in this field, several modifications and improvements can be made without departing from the concept of the present invention, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be based on the attached claims, and the description can be used to interpret the content of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410328579.8A CN118175907A (en) | 2024-03-21 | 2024-03-21 | Preparation method of perovskite light absorption layer, solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410328579.8A CN118175907A (en) | 2024-03-21 | 2024-03-21 | Preparation method of perovskite light absorption layer, solar cell and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118175907A true CN118175907A (en) | 2024-06-11 |
Family
ID=91356102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410328579.8A Pending CN118175907A (en) | 2024-03-21 | 2024-03-21 | Preparation method of perovskite light absorption layer, solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118175907A (en) |
-
2024
- 2024-03-21 CN CN202410328579.8A patent/CN118175907A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107924933B (en) | Multi-junction photovoltaic device | |
US20230200096A1 (en) | Tandem cell | |
CN105591030B (en) | A kind of translucent perovskite solar cell and preparation method thereof | |
CN105140319B (en) | A kind of thin-film solar cells and preparation method thereof | |
CN110970562A (en) | Perovskite/crystalline silicon laminated solar cell and preparation method thereof | |
CN114792704B (en) | Perovskite/silicon heterojunction laminated solar cell and preparation method thereof | |
CN114447126B (en) | A solar cell and a method for preparing the same | |
CN115172602B (en) | Doped metal oxide composite layer structure | |
JP2024544962A (en) | Perovskite-silicon based stacked solar cell and method for producing same | |
CN115440891A (en) | A perovskite-based solar cell | |
CN110350087A (en) | Perovskite/silicon heterogenous solar battery preparation method and lamination solar cell | |
CN117178649A (en) | Perovskite solar cell and tandem solar cell comprising same | |
WO2021196606A1 (en) | Laminated photovoltaic device, and production method | |
CN209016100U (en) | A kind of perovskite/silicon based hetero-junction lamination solar cell | |
CN114551729A (en) | A kind of preparation method of silicon-based heterojunction perovskite tandem solar cell | |
CN114335348B (en) | PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof | |
CN112086534B (en) | Laminated battery and method of making the same | |
KR101906712B1 (en) | Composition for light absorbing layer, solar cell comprising the same and its manufacturing method | |
WO2025025494A1 (en) | Tandem solar cell and manufacturing method therefor | |
WO2023143207A1 (en) | Solar cell and preparation method therefor | |
CN118175907A (en) | Preparation method of perovskite light absorption layer, solar cell and preparation method thereof | |
CN118524723B (en) | Laminated solar cell and preparation method thereof | |
CN222090033U (en) | Stacked solar cell and electricity utilization device | |
KR102761911B1 (en) | Method of manufacturing tandem solar cell | |
CN119816075A (en) | Trans perovskite solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |