CN112086534B - Laminated battery and method of making the same - Google Patents
Laminated battery and method of making the same Download PDFInfo
- Publication number
- CN112086534B CN112086534B CN202010850989.0A CN202010850989A CN112086534B CN 112086534 B CN112086534 B CN 112086534B CN 202010850989 A CN202010850989 A CN 202010850989A CN 112086534 B CN112086534 B CN 112086534B
- Authority
- CN
- China
- Prior art keywords
- layer
- perovskite
- hole transport
- lead
- transport layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及太阳能电池技术领域,尤其涉及一种叠层电池及其制作方法。The present invention relates to the technical field of solar cells, in particular to a laminated cell and a manufacturing method thereof.
背景技术Background technique
晶体硅-钙钛矿叠层电池是一种晶体硅电池和钙钛矿电池组合而成的叠层电池。这种叠层电池以晶体硅电池作为底电池,用以吸收700nm-1200nm的太阳光能量,以钙钛矿电池作为顶电池,用以吸收300nm-800nm太阳光能量,并且晶体硅电池和钙钛矿电池之间通过复合层连接,将晶体硅电池和钙钛矿电池串联在一起。The crystalline silicon-perovskite tandem battery is a tandem battery composed of a crystalline silicon battery and a perovskite battery. This tandem cell uses a crystalline silicon cell as the bottom cell to absorb the solar energy of 700nm-1200nm, and a perovskite cell as the top cell to absorb the solar energy of 300nm-800nm, and the crystalline silicon cell and perovskite The ore cells are connected through a composite layer, connecting the crystalline silicon cells and the perovskite cells in series.
在制作晶体硅-钙钛矿叠层电池时,可以采用溶液旋涂法在晶体硅电池经过抛光的表面形成钙钛矿电池,以获得晶体硅-钙钛矿叠层电池。但是,由于晶体硅电池的表面需要经过抛光工艺处理,不仅增加了晶体硅-钙钛矿叠层电池的制作成本,还抑制了晶体硅-钙钛矿叠层电池的光吸收率和光利用率,难以体现出叠层电池效率增益的优势。When making a crystalline silicon-perovskite tandem battery, a solution spin coating method can be used to form a perovskite battery on the polished surface of the crystalline silicon battery to obtain a crystalline silicon-perovskite tandem battery. However, since the surface of the crystalline silicon cell needs to be polished, it not only increases the fabrication cost of the crystalline silicon-perovskite tandem cell, but also inhibits the light absorption rate and light utilization rate of the crystalline silicon-perovskite tandem cell. It is difficult to reflect the advantage of the efficiency gain of tandem cells.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种叠层电池及其制作方法,用于在保留底电池具有的绒面结构的基础上,提高叠层电池转换效率,降低制作成本。The purpose of the present invention is to provide a laminated battery and a manufacturing method thereof, which are used to improve the conversion efficiency of the laminated battery and reduce the manufacturing cost on the basis of retaining the textured structure of the bottom battery.
第一方面,本发明提供一种叠层电池。该叠层电池包括:具有绒面的底电池、真空沉积在绒面上方的空穴传输层以及形成在空穴传输层上的钙钛矿吸收层。钙钛矿吸收层为含有铅离子的钙钛矿吸收层。空穴传输层通过共沉积金属硫化物空穴传输材料和无机铅化合物形成。其中,金属硫化物的带隙不小于1.6eV。无机铅化物为氯化铅、溴化铅、碘化铅、氧化铅、硫氰化铅、醋酸铅中的一种或多种。In a first aspect, the present invention provides a stacked battery. The tandem cell includes a bottom cell having a textured surface, a hole transport layer vacuum deposited over the textured surface, and a perovskite absorber layer formed on the hole transport layer. The perovskite absorber layer is a perovskite absorber layer containing lead ions. The hole transport layer is formed by co-depositing a metal sulfide hole transport material and an inorganic lead compound. Among them, the band gap of the metal sulfide is not less than 1.6 eV. The inorganic lead compound is one or more of lead chloride, lead bromide, lead iodide, lead oxide, lead thiocyanate, and lead acetate.
本发明提供的叠层电池中,空穴传输层通过真空共沉积金属硫化物空穴传输材料和无机铅化合物形成,采用真空共沉积的方式在底电池绒面上形成空穴传输层时,可以在不使用有机溶剂的情况下,将气相的金属硫化物和无机铅化合物均匀沉积在底电池具有的绒面上。此时,保证底电池的绒面具有良好的陷光效果,可以增加叠层电池的光线利用率。In the laminated battery provided by the present invention, the hole transport layer is formed by vacuum co-deposition of a metal sulfide hole transport material and an inorganic lead compound. Metal sulfides and inorganic lead compounds in the gas phase are uniformly deposited on the textured surface of the bottom cell without using an organic solvent. At this time, it is ensured that the suede surface of the bottom cell has a good light trapping effect, which can increase the light utilization rate of the stacked cell.
在此基础上,本发明提供的叠层电池中,钙钛矿吸收层为具有铅离子的钙钛矿吸收层,由于钙钛矿吸收层和空穴传输层均含有铅离子,使得在空穴传输层上形成钙钛矿吸收层时,可以以空穴传输层为诱导层,诱导钙钛矿吸收层材料结晶生长,以形成有序度较高、结晶度好的钙钛矿吸收层,进而提高光电转换效率。与此同时,空穴传输层的半导体材料含有的软碱离子,可以与钙钛矿吸收层材料的软酸离子进行软酸软碱配位,从而可以钝化钙钛矿吸收层的界面缺陷,减少叠层电池的载流子复合,提高光电转换效率。此外,由于软碱离子与钙钛矿吸收层中的软酸离子之间的软酸软碱配位作用力,使得空穴传输层与钙钛矿吸收层之间的接触界面具有较高相容性,从而可以提高空穴传输层的空穴抽取性能。On this basis, in the laminated battery provided by the present invention, the perovskite absorbing layer is a perovskite absorbing layer with lead ions. Since both the perovskite absorbing layer and the hole transport layer contain lead ions, the holes in the When the perovskite absorption layer is formed on the transport layer, the hole transport layer can be used as the induction layer to induce the crystalline growth of the perovskite absorption layer material, so as to form a perovskite absorption layer with a high degree of order and good crystallinity, and then Improve photoelectric conversion efficiency. At the same time, the soft alkali ions contained in the semiconductor material of the hole transport layer can coordinate with the soft acid ions of the perovskite absorber layer material, so that the interface defects of the perovskite absorber layer can be passivated and reduced. The carrier recombination of the tandem cell improves the photoelectric conversion efficiency. In addition, due to the soft-acid-soft-base coordination force between the soft-base ions and the soft-acid ions in the perovskite absorber layer, the contact interface between the hole transport layer and the perovskite absorber layer has high compatibility, thereby The hole extraction performance of the hole transport layer can be improved.
本发明提供的叠层电池通过在空穴传输层上诱导形成均匀的钙钛矿吸收层,使得形成的钙钛矿吸收层可以均匀的形成在底电池绒面上,从而实现在底电池绒面上形成均匀、致密的钙钛矿吸收层,保留了底电池绒面结构,提高叠层电池对太阳光的吸收率和利用率,进而提升叠层电池转换效率。The laminated battery provided by the present invention induces the formation of a uniform perovskite absorbing layer on the hole transport layer, so that the formed perovskite absorbing layer can be uniformly formed on the suede surface of the bottom battery, so as to realize the formation of the suede surface of the bottom battery. A uniform and dense perovskite absorption layer is formed on the top, which retains the textured structure of the bottom cell, improves the solar light absorption rate and utilization rate of the tandem cell, and further improves the conversion efficiency of the tandem cell.
在一种可能的实现方式中,上述金属硫化物和无机铅化合物的物质的量比为1:(0.01~0.5),例如可以为1:0.01、1:0.25、1:0.45、1:0.5等。在混合型空穴传输层中,金属硫化物作为空穴传输功能主体材料占比在50%以上,无机铅化合物作为空穴传输层上锚定层生长的诱导材料,其含量在1%-50%之间。In a possible implementation manner, the material ratio of the metal sulfide and the inorganic lead compound is 1:(0.01-0.5), for example, it can be 1:0.01, 1:0.25, 1:0.45, 1:0.5, etc. . In the hybrid hole transport layer, metal sulfides account for more than 50% of the hole transport functional host material, and inorganic lead compounds are used as inducing materials for the growth of the anchor layer on the hole transport layer, and their content ranges from 1% to 50%. %between.
在一种可能的实现方式中,上述金属硫化物包括硫化锰、硫化锌、硫化镍、二硫化钛、二硫化钼、硫化镁、硫化铜、三硫化二镓、一硫化镓、硫化锗、一硫化锗、三硫化二砷、二硫化锡、二硫化钨、硫化铅的一种或多种。这些半导体材质的带隙大,在电池吸收波段基本没有对入射光的吸收,且可以通过真空热蒸发的方式进行制作,制作方法简单,价格低廉。In a possible implementation manner, the above-mentioned metal sulfides include manganese sulfide, zinc sulfide, nickel sulfide, titanium disulfide, molybdenum disulfide, magnesium sulfide, copper sulfide, digallium trisulfide, gallium monosulfide, germanium sulfide, One or more of germanium sulfide, arsenic trisulfide, tin disulfide, tungsten disulfide and lead sulfide. These semiconductor materials have large band gaps, basically do not absorb incident light in the absorption band of the battery, and can be fabricated by vacuum thermal evaporation. The fabrication method is simple and the price is low.
在一种可能的实现方式中,上述钙钛矿吸收层的化学通式为ABX3;其中,A为烷基胺阳离子、甲二胺阳离子、铯阳离子中的一种或多种,B为所述碱金属阳离子、Pb2+、Sn2+中的一种或多种,X为I-、Cl-、Br-中的一种或多种。In a possible implementation, the general chemical formula of the perovskite absorbing layer is ABX 3 ; wherein, A is one or more of alkylamine cations, methyldiamine cations, and cesium cations, and B is all One or more of the alkali metal cations, Pb 2+ and Sn 2+ , X is one or more of I - , Cl - and Br - .
在一种可能的实现方式中,上述钙钛矿吸收层的厚度为100nm-1000nm。In a possible implementation manner, the thickness of the above-mentioned perovskite absorption layer is 100 nm-1000 nm.
在一种可能的实现方式中,上述空穴传输层的厚度为5nm-100nm。In a possible implementation manner, the thickness of the above hole transport layer is 5 nm-100 nm.
在一种可能的实现方式中,上述叠层电池还包括形成在绒面上方的隧穿复合层,上述空穴传输层形成在隧穿复合层上。In a possible implementation manner, the stacked battery further includes a tunneling composite layer formed above the textured surface, and the hole transport layer is formed on the tunneling composite layer.
第二方面,本发明还提供一种叠层电池的制作方法。该叠层电池的制作方法包括:In a second aspect, the present invention also provides a method for manufacturing a laminated battery. The manufacturing method of the laminated battery includes:
提供一底电池,底电池具有绒面。A bottom battery is provided, the bottom battery having a suede finish.
采用真空共沉积工艺在绒面的上方共沉积金属硫化物空穴传输材料和无机铅化合物形成空穴传输层。金属硫化物的带隙不小于1.6eV。无机铅化物为氯化铅、溴化铅、碘化铅、氧化铅、硫氰化铅、醋酸铅中的一种或多种。A hole transport layer is formed by co-depositing a metal sulfide hole transport material and an inorganic lead compound on the textured surface by a vacuum co-deposition process. The band gap of metal sulfides is not less than 1.6 eV. The inorganic lead compound is one or more of lead chloride, lead bromide, lead iodide, lead oxide, lead thiocyanate, and lead acetate.
在空穴传输层上真空沉积形成锚定层,锚定层含有的材料为金属卤化物,金属卤化物至少包括卤化铅。An anchor layer is formed by vacuum deposition on the hole transport layer, the anchor layer contains a metal halide, and the metal halide at least includes lead halide.
采用溶液法在锚定层涂布阳离子盐,锚定层含有的金属卤化物与阳离子盐反应形成钙钛矿吸收层。A solution method is used to coat the cationic salt on the anchoring layer, and the metal halide contained in the anchoring layer reacts with the cationic salt to form a perovskite absorption layer.
在钙钛矿吸收层上制作电子传输层,在电子传输层上制作上电极。An electron transport layer is fabricated on the perovskite absorber layer, and an upper electrode is fabricated on the electron transport layer.
由于金属硫化物易于沉积在各类底电池上,所以底电池可以为N型多晶硅电池和单晶硅电池等。该叠层电池的制作方法也可应用于铜铟镓硒-钙钛矿叠层电池、钙钛矿-钙钛矿叠层电池、砷化镓-钙钛矿叠层电池、有机光伏-钙钛矿叠层电池等叠层电池的制作中。Since metal sulfides are easily deposited on various types of bottom cells, the bottom cells can be N-type polycrystalline silicon cells, single crystal silicon cells, and the like. The fabrication method of the stacked battery can also be applied to copper indium gallium selenide-perovskite stacked battery, perovskite-perovskite stacked battery, gallium arsenide-perovskite stacked battery, organic photovoltaic-perovskite stacked battery In the production of tandem batteries such as mine tandem batteries.
在一种可能的实现方式中,上述金属卤化物还包括卤化锡、碱金属卤化物中的一种或两种。In a possible implementation manner, the above-mentioned metal halide further includes one or both of tin halide and alkali metal halide.
在一种可能的实现方式中,上述采用真空共沉积工艺在绒面的上方共沉积金属硫化物空穴传输材料和无机铅化合物构成空穴传输层包括:在绒面上方采用真空热蒸发的工艺共沉积金属硫化物和铅化合物,得到空穴传输层。金属硫化物的和无机铅化合物的真空热蒸发速率为 In a possible implementation manner, the above-mentioned co-depositing metal sulfide hole transport material and inorganic lead compound on the textured surface using a vacuum co-deposition process to form a hole transport layer includes: using a vacuum thermal evaporation process on the textured surface. A hole transport layer is obtained by co-depositing a metal sulfide and a lead compound. The vacuum thermal evaporation rates of metal sulfides and inorganic lead compounds are
在一种可能的实现方式中,上述在空穴传输层上方形成锚定层包括:在空穴传输层上采用真空蒸镀的方式共沉积金属卤化物,得到锚定层;碱金属卤化物的真空蒸镀速率为卤化铅和卤化锡的真空蒸镀速率为 由于金属卤化物和卤化铅、卤化锡的物性有一定的差异,所以在真空蒸镀成膜的过程中需要控制碱金属卤化物的真空蒸镀速率在上述范围内。In a possible implementation manner, forming the anchor layer above the hole transport layer includes: co-depositing a metal halide on the hole transport layer by vacuum evaporation to obtain an anchor layer; The vacuum evaporation rate is The vacuum evaporation rate of lead halide and tin halide is Since the physical properties of metal halides, lead halides and tin halides are different to a certain extent, it is necessary to control the vacuum evaporation rate of alkali metal halides within the above range during the process of vacuum evaporation and film formation.
在一种可能的实现方式中,上述采用溶液法在锚定层涂布阳离子盐包括:采用溶液法在锚定层上涂布阳离子盐溶液,使得锚定层含有的金属卤化物与阳离子盐反应形成钙钛矿吸收层。In a possible implementation manner, the above-mentioned applying a solution method to the cationic salt on the anchor layer includes: applying a solution method to a cationic salt solution on the anchoring layer, so that the metal halide contained in the anchoring layer reacts with the cationic salt A perovskite absorber layer is formed.
在一种可能的实现方式中,上述采用溶液法在锚定层形成阳离子盐后,在钙钛矿吸收层上制作电子传输层前,叠层电池的制作方法还包括:对钙钛矿吸收层进行退火处理。退火处理的温度为50℃-200℃,退火处理的时间为5分钟-60分钟。通过退火处理,将形成更加致密、规整度较好,较均匀的钙钛矿吸收层,从而可以提高叠层电池效率。In a possible implementation manner, after the above-mentioned solution method is used to form the cation salt on the anchor layer, and before the electron transport layer is formed on the perovskite absorber layer, the method for fabricating the stacked battery further includes: adjusting the perovskite absorber layer. Perform annealing treatment. The temperature of the annealing treatment is 50°C-200°C, and the time of the annealing treatment is 5 minutes-60 minutes. Through the annealing treatment, a denser, more regular and more uniform perovskite absorber layer will be formed, which can improve the efficiency of the tandem cell.
在一种可能的实现方式中,上述在钙钛矿吸收层上制作电子传输层前,叠层电池的制作方法还包括:在钙钛矿吸收层上形成电子传输界面层,用于传输载流子。电子传输界面层包括LiF层和C60层。LiF层形成在钙钛矿吸收层上,C60层形成在LiF层上。其中,LiF层的厚度为0.1nm-10nm,C60层的厚度为1nm-20nm。In a possible implementation manner, before fabricating the electron transport layer on the perovskite absorber layer, the method for fabricating the tandem battery further includes: forming an electron transport interface layer on the perovskite absorber layer for transporting current carriers son. The electron transport interface layer includes the LiF layer and the C60 layer. The LiF layer is formed on the perovskite absorber layer and the C60 layer is formed on the LiF layer. Among them, the thickness of the LiF layer is 0.1 nm-10 nm, and the thickness of the C 60 layer is 1 nm-20 nm.
在一种可能的实现方式中,上述在绒面的上方随形形成空穴传输层前,叠层电池的制作方法还包括:在绒面的上方形成隧穿复合层。In a possible implementation manner, before the above-mentioned conformal formation of the hole transport layer on the textured surface, the manufacturing method of the stacked battery further includes: forming a tunneling composite layer on the textured surface.
第二方面提供的叠层电池的制作方法的有益效果与第一方面提供的叠层电池的有益效果相同,在此不再赘述。The beneficial effects of the method for fabricating the laminated battery provided in the second aspect are the same as those of the laminated battery provided in the first aspect, and details are not described herein again.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described herein are used to provide further understanding of the present invention and constitute a part of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1为现有技术中晶体硅-钙钛矿叠层电池结构示意图;1 is a schematic structural diagram of a crystalline silicon-perovskite tandem battery in the prior art;
图2为本发明实施例中叠层电池结构示意图;FIG. 2 is a schematic structural diagram of a laminated battery in an embodiment of the present invention;
图3A至图3H为本发明实施例提供的一种叠层电池的制作方法的各个阶段状态示意图;3A to 3H are schematic diagrams of states of various stages of a method for fabricating a laminated battery provided by an embodiment of the present invention;
图4为本发明实施例一中制作的叠层电池的绒面截面SEM图像;4 is a SEM image of the textured cross-section of the laminated battery produced in Example 1 of the present invention;
图5为本发明实施例一中制得的叠层电池的绒面SEM图像;5 is a SEM image of the textured surface of the laminated battery prepared in Example 1 of the present invention;
图6为本发明实施例一、对比例一及对比例二所制备的叠层电池的I-V曲线。FIG. 6 is the I-V curves of the stacked batteries prepared in Example 1, Comparative Example 1 and Comparative Example 2 of the present invention.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined. "Several" means one or more than one, unless expressly specifically defined otherwise.
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "front", "rear", "left", "right", etc. are based on those shown in the accompanying drawings The orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; may be mechanical connection or electrical connection; may be direct connection or indirect connection through an intermediate medium, may be internal communication between two elements or an interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
有机-无机杂化钙钛矿太阳能电池作为新型高效率、低成本太阳能电池在全世界范围内被广泛关注。短短几年时间里,钙钛矿电池的光电转换效率从2009年的3.8%迅速攀升到25%以上,已接近商业化硅基太阳能电池的效率。作为一种多元组份电池,可以通过组份配方在1.5eV-1.8eV范围内调控钙钛矿电池的吸收光谱带隙。晶体硅电池是一种高效率晶硅光伏电池技术,其电池效率(26.7%)已经接近其理论极限效率(29.4%),而叠层电池技术是突破传统晶硅光伏电池效率的有效途径。钙钛矿是理想的叠层顶电池材料。图1示出了现有技术中晶体硅-钙钛矿叠层电池结构示意图,如图1所示,该晶体硅-钙钛矿叠层电池由下至上依次包括银电极1-1、背部透明导电膜1-2、P型非晶硅层1-3、本征非晶硅层1-4、底电池光吸收层1-5、N型非晶硅层1-6、N型重掺杂隧穿结层1-7、P型重掺杂隧穿结层1-8、空穴传输层1-9、钙钛矿吸收层1-10、电子传输界面层1-11、SnO2电子传输层1-12、透明前电极1-13、银电极栅线1-14。该晶体硅-钙钛矿叠层电池以晶体硅电池作为底电池吸收700nm-1200nm的太阳光能量,以钙钛矿电池作为顶电池吸收300nm-800nm的太阳光能量,中间通过复合层连接形成两端串联电池。叠层电池的整体开路电压为顶电池和底电池的电压叠加,而叠层电池的电流则需要上下电池之间良好的电流匹配。晶体硅-钙钛矿叠层电池有望实现30%以上的光电转换效率。Organic-inorganic hybrid perovskite solar cells have attracted worldwide attention as new high-efficiency and low-cost solar cells. In just a few years, the photoelectric conversion efficiency of perovskite cells has rapidly climbed from 3.8% in 2009 to more than 25%, which is close to the efficiency of commercial silicon-based solar cells. As a multi-component battery, the absorption spectral band gap of perovskite battery can be regulated in the range of 1.5eV-1.8eV through the component formulation. Crystalline silicon cell is a high-efficiency crystalline silicon photovoltaic cell technology, and its cell efficiency (26.7%) is close to its theoretical limit efficiency (29.4%), and tandem cell technology is an effective way to break through the efficiency of traditional crystalline silicon photovoltaic cells. Perovskites are ideal tandem top cell materials. Figure 1 shows a schematic structural diagram of a crystalline silicon-perovskite tandem battery in the prior art. As shown in Figure 1, the crystalline silicon-perovskite tandem battery sequentially includes silver electrodes 1-1 and transparent backs from bottom to top. Conductive film 1-2, P-type amorphous silicon layer 1-3, intrinsic amorphous silicon layer 1-4, bottom cell light absorption layer 1-5, N-type amorphous silicon layer 1-6, N-type heavily doped Tunneling junction layer 1-7, P-type heavily doped tunneling junction layer 1-8, hole transport layer 1-9, perovskite absorption layer 1-10, electron transport interface layer 1-11, SnO 2 electron transport Layers 1-12, transparent front electrodes 1-13, silver electrode gridlines 1-14. The crystalline silicon-perovskite tandem cell uses the crystalline silicon cell as the bottom cell to absorb the solar energy of 700nm-1200nm, uses the perovskite cell as the top cell to absorb the sunlight energy of 300nm-800nm, and is connected by a composite layer in the middle to form two Connect the battery in series. The overall open circuit voltage of the tandem cell is the superposition of the voltages of the top cell and the bottom cell, while the current of the tandem cell requires good current matching between the upper and lower cells. Crystalline silicon-perovskite tandem cells are expected to achieve photoelectric conversion efficiencies above 30%.
目前,已有若干文献报道实现晶体硅-钙钛矿叠层电池转换效率达25%以上。典型的钙钛矿电池通过溶液旋涂方法制作器件中的各功能层。高效率的晶体硅电池一般采用双面绒面陷光结构来提高太阳光的吸收和利用率,进而提升电池转换效率。晶体硅电池中的微米级金字塔型绒面陷光结构对溶液法制作钙钛矿顶电池是一个巨大的挑战。其难点在于,钙钛矿电池各功能层的厚度一般在几百纳米,难以通过溶液旋涂法均匀沉积在微米级的金字塔型绒面表面上。目前的解决方案是对晶体硅底电池进行抛光加工,降低绒面的粗糙度以使得溶液制作钙钛矿顶电池变得可能。这种方法虽然可以在绒面上加工制作钙钛矿顶电池及叠层电池,却牺牲损失了绒面结构及其陷光效应所带来的电池效率增益。同时抛光加工过程大大增加了整个电池的制作成本,难以体现出叠层电池效率增益的优势。保留底电池绒面结构,直接在底电池绒面上制作钙钛矿电池,是实现叠层电池高效率的关键。但是直接在底电池绒面上制作钙钛矿电池关键是如何在绒面上均匀沉积钙钛矿顶电池各功能层,这里的钙钛矿顶电池各功能层包括空穴传输层,钙钛矿层,电子传输层,空穴阻挡层,电极缓冲层,电极等。与溶液加工方法相比,真空蒸镀沉积工艺能够均匀地在各种基底上沉积各种可蒸镀功能材料,是克服在底电池绒面上制作钙钛矿顶电池难点的有效解决方案。真空蒸镀电子传输层,空穴阻挡层,电极缓冲层以及溅射电极都具有成熟的功能材料和沉积工艺。在底电池绒面上真空蒸镀随形沉积空穴传输层和钙钛矿层,是制作高效率晶体硅-钙钛矿叠层电池的难点和关键。At present, several literatures have reported that the conversion efficiency of crystalline silicon-perovskite tandem cells can reach more than 25%. In a typical perovskite cell, each functional layer in the device is fabricated by a solution spin-coating method. High-efficiency crystalline silicon cells generally use a double-sided suede light trapping structure to improve the absorption and utilization of sunlight, thereby improving cell conversion efficiency. The micron-scale pyramid-shaped textured light-trapping structure in crystalline silicon cells is a great challenge for solution-based fabrication of perovskite top cells. The difficulty is that the thickness of each functional layer of the perovskite battery is generally several hundred nanometers, and it is difficult to uniformly deposit on the micron-scale pyramid-shaped textured surface by the solution spin coating method. The current solution is to polish the crystalline silicon bottom cell to reduce the roughness of the textured surface to make solution-based perovskite top cells possible. Although this method can process perovskite top cells and tandem cells on the textured surface, it sacrifices the cell efficiency gain brought by the textured structure and its light trapping effect. At the same time, the polishing process greatly increases the production cost of the entire battery, and it is difficult to reflect the advantage of the efficiency gain of the stacked battery. Retaining the suede structure of the bottom cell and fabricating perovskite cells directly on the suede surface of the bottom cell is the key to achieving high efficiency of the tandem cell. However, the key to making a perovskite battery directly on the suede surface of the bottom battery is how to uniformly deposit the functional layers of the perovskite top battery on the suede surface. The functional layers of the perovskite top battery here include a hole transport layer and a perovskite layer. , electron transport layer, hole blocking layer, electrode buffer layer, electrode, etc. Compared with solution processing methods, the vacuum evaporation deposition process can uniformly deposit various vapor-depositable functional materials on various substrates, which is an effective solution to overcome the difficulty of fabricating perovskite top cells on the textured surface of bottom cells. Vacuum evaporation electron transport layer, hole blocking layer, electrode buffer layer and sputtering electrode all have mature functional materials and deposition processes. The conformal deposition of hole transport layer and perovskite layer by vacuum evaporation on the textured surface of the bottom cell is the difficulty and key to the fabrication of high-efficiency crystalline silicon-perovskite tandem cells.
为了解决上述技术问题,本发明实施例提供一种叠层电池。该叠层电池不仅适用于以晶体硅电池为底电池的叠层电池,也适用于以多晶硅电池、铜铟镓硒电池、钙钛矿电池、砷化镓电池、有机光伏电池中的任一种为底电池的叠层电池,且不仅限于此。In order to solve the above technical problems, embodiments of the present invention provide a stacked battery. The stacked battery is not only suitable for the stacked battery with crystalline silicon battery as the bottom battery, but also suitable for any one of polycrystalline silicon battery, copper indium gallium selenide battery, perovskite battery, gallium arsenide battery, organic photovoltaic battery A tandem battery that is a bottom battery, and is not limited to this.
图2示出本发明实施例提供的一种叠层电池的结构示意图。如图2所示,本发明实施例提供的叠层电池包括:底电池1、空穴传输层2以及钙钛矿吸收层3。FIG. 2 shows a schematic structural diagram of a laminated battery provided by an embodiment of the present invention. As shown in FIG. 2 , the stacked battery provided by the embodiment of the present invention includes: a
如图2所示,上述底电池1具有绒面。该底电池1可以为上述底电池1中的任一种,且不仅限于此。该绒面可以是金字塔形貌的绒面,也可以是倒金字塔形貌的绒面等。As shown in FIG. 2 , the
如图2所示,上述空穴传输层2形成在所述绒面上方,该空穴传输层2通过真空共沉积金属硫化物空穴传输材料和无机铅化合物形成,其可以采用真空共沉积的方式沉积在绒面上方。As shown in FIG. 2 , the
如图2所示,如果叠层电池还包括隧穿复合层4,该隧穿复合层4形成在底电池1上。隧穿复合层4可以为与底电池1的pn结反向的重掺硅制作的隧穿结复合层4。例如,主要由n型掺杂微晶硅层与p型掺杂微晶硅层组成的隧穿结复合层4。具体的,n型掺杂微晶硅层可以为掺杂有磷、砷、锑、铋等第ⅤA族原子的微晶硅层,p型掺杂微晶硅层可以为掺杂有硼、铝、镓、铟、铊等第ⅢA族原子的微晶硅层。As shown in FIG. 2 , if the stacked cell further includes a
当然,隧穿复合层4还可以为其他材料制成的隧穿复合层4,例如,掺锡氧化铟(ITO)、掺锌氧化铟(IZO)、掺钨氧化铟(IWO)、掺钛氧化铟(ITIO)、掺氟氧化锡(FTO)、掺铝氧化锌(AZO)等透明金属氧化物制成的复合层。Of course, the tunneling
如图2所示,上述空穴传输层2形成在隧穿复合层4上,空穴传输层2通过真空共沉积金属硫化物和无机铅化合物形成。金属硫化物和无机铅化合物的物质的量比为1:(0.01~0.5),例如可以为1:0.01、1:0.25、1:0.45、1:0.5等。通过上述配比形成的空穴传输层2中,金属硫化物的占比多,使得该空穴传输层2的空穴传输性能不受影响。同时,在空穴传输层2中加入铅离子,使得空穴传输层2与钙钛矿吸收层2之间的接触界面具有较高相容性,且空穴传输层2可以诱导钙钛矿吸收层2材料结晶生长,以形成有序度较高、结晶度好的钙钛矿吸收层2,进而提高光电转换效率。As shown in FIG. 2 , the above-mentioned
如图2所示,上述无机铅化物为氯化铅、溴化铅、碘化铅、氧化铅、硫氰化铅、醋酸铅中的一种或多种。空穴传输层2的厚度可以根据实际情况设置,例如空穴传输层2的厚度为5nm-100nm。空穴传输层2形成在隧穿复合层4上。通过隧穿复合层4连接底电池1和钙钛矿顶电池,形成两端串联电池。这里的形成方式可以是随形形成。As shown in Figure 2, the above-mentioned inorganic lead compound is one or more of lead chloride, lead bromide, lead iodide, lead oxide, lead thiocyanate, and lead acetate. The thickness of the
如图2所示,使用真空共沉积工艺能够将该金属硫化物和无机铅化合物均匀的沉积在底电池1绒面上,使得底电池1绒面的陷光效应得以保留,保证底电池1对入射光的良好吸收。同时,由于通过上述工艺制得的空穴传输层2与其他功能层的制作具有良好的兼容性和适配性,所以,本发明的实施例的叠层电池中的底电池1可以根据实际需要进行选择。又由于该金属硫化物和无机铅化合物的价格相对便宜,所以使用该金属硫化物和无机铅化合物作空穴传输层的材料可以降低叠层电池的成本,使其应用范围更加广泛。As shown in Figure 2, the metal sulfide and the inorganic lead compound can be uniformly deposited on the suede surface of the
如图2所示,上述钙钛矿吸收层3形成在空穴传输层2上,钙钛矿吸收层3为具有铅离子的钙钛矿吸收层3。钙钛矿吸收层3厚度可以根据实际情况设置,例如,该钙钛矿吸收层3的厚度为100nm-1000nm。As shown in FIG. 2 , the above-mentioned
一方面,如图2所示,根据软硬酸碱理论中的软酸软碱容易稳定结合的原理,空穴传输层2所含有的硫离子为软碱离子,其与钙钛矿吸收层3含有的软酸离子(铅离子)之间存在较强的相互作用力。又由于钙钛矿吸收层3和空穴传输层2均含有铅离子,使得在空穴传输层2上形成钙钛矿吸收层3时,可以以空穴传输层2为诱导层,诱导钙钛矿吸收层3材料结晶生长,以形成有序度较高、结晶度好的钙钛矿吸收层3,进而提高光电转换效率。与此同时,空穴传输层2的半导体材料含有的软碱离子,可以与钙钛矿吸收层3材料的软酸离子进行软酸软碱配位,从而可以钝化钙钛矿吸收层3的界面缺陷,减少叠层电池的载流子复合,提高光电转换效率。此外,由于软碱离子与钙钛矿吸收层3中的软酸离子之间的软酸软碱配位作用力,使得空穴传输层2与钙钛矿吸收层3之间的接触界面具有较高的兼容性,从而可以提高空穴传输层2的空穴抽取性能。On the one hand, as shown in FIG. 2 , according to the principle of easy and stable combination of soft acid and soft base in the theory of soft and hard acid-base, the sulfide ions contained in the
另一方面,如图2所示,本发明提供的叠层电池通过在空穴传输层2上诱导形成均匀的钙钛矿吸收层3,使得形成的钙钛矿吸收层3可以均匀的形成在底电池1绒面上,从而实现在底电池1绒面上形成均匀、致密的钙钛矿吸收层3,保留了底电池1绒面结构,提高叠层电池对太阳光的吸收率和利用率,进而提升叠层电池转换效率。On the other hand, as shown in FIG. 2 , the laminated battery provided by the present invention induces the formation of a uniform
在一些实施例中,如图2所示,上述钙钛矿吸收层3的化学通式为ABX3;其中,A为烷基胺阳离子、甲二胺阳离子、铯阳离子中的一种或多种,B为所述碱金属阳离子、Pb2+、Sn2+中的一种或多种,X为I-、Cl-、Br-中的一种或多种。其中,烷基胺阳离子包括CH3NH3阳离子、C4H9NH3阳离子中的一种或两种的组合。In some embodiments, as shown in FIG. 2 , the general chemical formula of the
如图2所示,上述金属硫化物的带隙不小于1.6eV,选用宽带隙的金属硫化物,使得形成的空穴传输层的在叠层电池的吸收波段内几乎不会吸收入射光,使得形成的空穴传输层的光损耗较小。As shown in Figure 2, the band gap of the above metal sulfide is not less than 1.6eV, and the metal sulfide with a wide band gap is selected, so that the formed hole transport layer hardly absorbs incident light in the absorption band of the tandem cell, so that the The light loss of the formed hole transport layer is small.
如图2所示,该金属硫化物可以包括硫化锰、硫化锌、硫化镍、二硫化钛、二硫化钼、硫化镁、硫化铜、三硫化二镓、一硫化镓、硫化锗、一硫化锗、三硫化二砷、二硫化锡、二硫化钨、硫化铅的一种或多种,但不仅限于此。As shown in FIG. 2, the metal sulfide may include manganese sulfide, zinc sulfide, nickel sulfide, titanium disulfide, molybdenum disulfide, magnesium sulfide, copper sulfide, digallium trisulfide, gallium monosulfide, germanium sulfide, germanium monosulfide , one or more of arsenic trisulfide, tin disulfide, tungsten disulfide, lead sulfide, but not limited thereto.
在一种示例中,金属硫化物为硫化锰时,由于硫化锰是一种高迁移率P型半导体,光学带隙为3.25eV,所以在叠层电池的吸收波段内不会吸收入射光。且硫化锰的价带能级为-5.24eV,十分接近钙钛矿的最高占据分子轨道(Highest Occupied MolecularOrbital,缩写为HOMO)能级(-5.30eV左右),有利于空穴电荷的收集。硫化锰的导带能级为-1.61eV,和钙钛矿最低未占分子轨道(Lowest Unoccupied Molecular Orbital,缩写为LUMO)能级(-3.90eV左右)相差较远,可以有效阻挡电子向电极的扩散。且在硫化锰制得的空穴传输层2上形成锚定层时,硫化锰中的硫离子(软碱)会和锚定层中的铅离子(软酸)形成较强的键合作用,便于后续在底电池绒面上形成均匀的钙钛矿吸收层3。In one example, when the metal sulfide is manganese sulfide, since manganese sulfide is a high-mobility P-type semiconductor with an optical band gap of 3.25 eV, it does not absorb incident light in the absorption band of the tandem cell. And the valence band energy level of manganese sulfide is -5.24eV, which is very close to the highest occupied molecular orbital (Highest Occupied Molecular Orbital, abbreviated as HOMO) energy level of perovskite (about -5.30eV), which is conducive to the collection of hole charges. The conduction band energy level of manganese sulfide is -1.61eV, which is far from the lowest unoccupied molecular orbital (Lowest Unoccupied Molecular Orbital, abbreviated as LUMO) energy level of perovskite (about -3.90eV), which can effectively block electrons to the electrode. diffusion. And when the anchor layer is formed on the
图3A-3H示出了本发明实施例提供的一种叠层电池的制作方法的各个阶段状态示意图。本发明实施例提供的一种叠层电池的制作方法包括:3A-3H are schematic diagrams showing states of various stages of a method for fabricating a laminated battery provided by an embodiment of the present invention. A method for fabricating a laminated battery provided by an embodiment of the present invention includes:
如图3A所示,提供一底电池1,底电池1具有绒面。以N型硅片为硅基底为例,底电池1的制作方法包括:As shown in FIG. 3A, a
选用商业级M2的N型硅片依次经历抛光、制绒及清洗处理,形成单晶硅基底。该N型硅片的电阻率为1Ω·cm-10Ω·cm,厚度为50μm-200μm。Commercial grade M2 N-type silicon wafers are selected to undergo polishing, texturing and cleaning in sequence to form a monocrystalline silicon substrate. The resistivity of the N-type silicon wafer is 1Ω·cm-10Ω·cm, and the thickness is 50 μm-200 μm.
采用等离子体增强化学的气相沉积法(Plasma Enhanced Chemical VaporDeposition,缩写PECVD)在单晶硅基底两侧分别沉积本征非晶硅钝化层形成正面钝化层薄膜和背面钝化层薄膜,正面钝化层薄膜和背面钝化层薄膜的厚度为1nm-20nm。Plasma Enhanced Chemical VaporDeposition (PECVD for short) is used to deposit intrinsic amorphous silicon passivation layers on both sides of the monocrystalline silicon substrate to form a front passivation layer film and a back passivation layer film. The thickness of the passivation layer film and the backside passivation layer film is 1 nm-20 nm.
采用PECVD在硅片正面沉积磷掺杂的N型非晶/微晶硅层,厚度为1nm-30nm,形成前场结构。A phosphorus-doped N-type amorphous/microcrystalline silicon layer with a thickness of 1nm-30nm is deposited on the front side of the silicon wafer by PECVD to form a front field structure.
采用PECVD在硅片背面沉积硼掺杂的P型非晶/微晶硅层,厚度1nm-30nm,形成发射极结构。A boron-doped P-type amorphous/microcrystalline silicon layer with a thickness of 1nm-30nm is deposited on the backside of the silicon wafer by PECVD to form an emitter structure.
采用磁控溅射法制作厚度为30nm-120nm的透明导电材料层。在实际应用中,透明导电材料层可以为ITO透明导电材料层、IZO透明导电材料层、IWO透明导电材料层、ITiO透明导电材料层等。A transparent conductive material layer with a thickness of 30nm-120nm is fabricated by a magnetron sputtering method. In practical applications, the transparent conductive material layer may be an ITO transparent conductive material layer, an IZO transparent conductive material layer, an IWO transparent conductive material layer, an ITiO transparent conductive material layer, and the like.
如图3B所示,在绒面的上方形成隧穿复合层4。具体的,在底电池1绒面上分别制作厚度为1nm-30nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层4,实现光生载流子的隧穿复合收集。As shown in FIG. 3B, a
如图3C所示,采用真空共沉积工艺在绒面上共沉积金属硫化物空穴传输材料和无机铅化合物形成空穴传输层2。其中,金属硫化物的带隙不小于1.6eV,金属硫化物和无机铅化合物的物质的量比为1:(0.01~0.5)。具体的,采用真空热蒸发的工艺在底电池1绒面上方共沉积金属硫化物和铅化合物制作空穴传输层2。无机铅化物为氯化铅、溴化铅、碘化铅、氧化铅、硫氰化铅、醋酸铅中的一种或多种。金属硫化物为硫化锰、硫化锌、硫化镍、二硫化钛、二硫化钼、硫化镁、硫化铜、三硫化二镓、一硫化镓、硫化锗、一硫化锗、三硫化二砷、二硫化锡、二硫化钨、硫化铅的一种或多种。金属硫化物和无机铅化合物的真空热蒸发速率为空穴传输层2厚度为5nm-100nm。As shown in FIG. 3C , the
如图3D所示,在空穴传输层2上真空沉积形成锚定层5。锚定层5含有的材料为金属卤化物,金属卤化物至少包括卤化铅。具体的,在空穴传输层2上采用真空蒸镀的方式共沉积金属卤化物,得到锚定层5。其中,金属卤化物还包括卤化锡、碱金属卤化物中的一种或两种。碱金属卤化物的真空蒸镀速率为 卤化铅和卤化锡的真空蒸镀速率为锚定层5的厚度为250nm-1000nm。As shown in FIG. 3D , the
如图3E所示,采用溶液法在锚定层5涂布阳离子盐。具体的,采用溶液法在锚定层5上涂布阳离子盐溶液,使得锚定层5含有的材料与阳离子盐反应形成钙钛矿吸收层3。钙钛矿吸收层3为具有铅离子的钙钛矿吸收层3。As shown in FIG. 3E , the cationic salt is coated on the
如图3E所示,对钙钛矿吸收层3进行退火处理。具体的,退火处理的温度为50℃-200℃,退火处理的时间为5分钟-60分钟,形成的致密均匀的钙钛矿吸收层3厚度为100nm-1000nm。As shown in FIG. 3E, the
如图3F所示,在钙钛矿吸收层3上形成电子传输界面层。在实际应用中,电子传输界面层可以为LiF电子传输界面层6和C60电子传输界面层7。LiF电子传输界面层6形成在钙钛矿吸收层3上,LiF电子传输界面层6的厚度为0.1nm-10nm。C60电子传输界面层7形成在LiF电子传输界面层6上,C60电子传输界面层7的厚度为1nm-20nm。在实际应用中LiF电子传输界面层6和C60电子传输界面层7,可以省略其中一个,也可以全部省略。As shown in FIG. 3F , an electron transport interface layer is formed on the
如图3G所示,在钙钛矿吸收层3上制作电子传输层8。在实际应用中,电子传输层的材料可以为SnO2,层厚可以为1nm-30nm,制作工艺可以为原子层沉积工艺(ALD)、化学气相沉积工艺、物理气相沉积工艺、溶液涂布工艺中的任一种。As shown in FIG. 3G , an
如图3H所示,在电子传输层8上制作电极9。在实际应用中,可以采用磁控溅射法制作透明导电薄膜,透明导电薄膜厚度为30nm-200nm。可以使用蒸镀、丝网印刷等方式在透明导电薄膜上制作银电极栅线9,银电极栅线9的厚度可以为100nm-500nm,银电极栅线的材料可以为银、铜、铝等导电性能较好的金属。As shown in FIG. 3H , electrodes 9 are formed on the
与现有技术相比,本发明实施例提供的叠层电池的制作方法的有益效果与上述叠层电池的有益效果相同,在此不做赘述。Compared with the prior art, the beneficial effects of the method for fabricating a laminated battery provided by the embodiment of the present invention are the same as those of the above-mentioned laminated battery, which will not be repeated here.
为了验证本发明实施例提供的叠层电池的制作方法制作的叠层电池的性能,下面以实施例和对比例相互比较的方式进行说明。In order to verify the performance of the laminated battery manufactured by the manufacturing method of the laminated battery provided in the embodiment of the present invention, the following description is made by comparing the embodiment and the comparative example with each other.
实施例一Example 1
本发明实施例提供的n型硅异质结-钙钛矿叠层电池的制作方法,具体如下所述:The manufacturing method of the n-type silicon heterojunction-perovskite tandem battery provided by the embodiment of the present invention is as follows:
第一步:提供一电阻率为2Ω·cm-4Ω·cm,厚度为180μm的N型M2硅片。对该硅片进行抛光、制绒及清洗处理,形成具有绒面的n型单晶硅基底。The first step: providing an N-type M2 silicon wafer with a resistivity of 2Ω·cm-4Ω·cm and a thickness of 180 μm. The silicon wafer is polished, textured and cleaned to form an n-type single crystal silicon substrate with textured surfaces.
第二步:采用等离子体增强化学的气相沉积法(Plasma Enhanced ChemicalVapor Deposition,缩写PECVD)在n型单晶硅基底两侧分别沉积本征非晶硅钝化层,形成正面钝化层薄膜和背面钝化层薄膜。正面钝化层薄膜和背面钝化层薄膜的厚度为5nm。Step 2: Use plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) to deposit intrinsic amorphous silicon passivation layers on both sides of the n-type single crystal silicon substrate respectively to form the front passivation layer film and the back side Passivation film. The thickness of the front passivation layer film and the back passivation layer film is 5 nm.
第三步:采用PECVD的方法在硅片正面沉积磷掺杂(掺杂浓度1020cm-3)的N型非晶硅层,N型非晶硅层的厚度为10nm,形成正面发射极。The third step: depositing an N-type amorphous silicon layer doped with phosphorus (
第四步:采用PECVD的方法在硅片背面沉积硼掺杂(掺杂浓度1019cm-3)的P型非晶硅层,P型非晶硅层的厚度10nm,形成背场结构。The fourth step: depositing a P-type amorphous silicon layer doped with boron (
第五步:采用磁控溅射工艺在P型非晶硅层上制备厚度为100nm的ITO材质的透明导电层。The fifth step: using a magnetron sputtering process to prepare a transparent conductive layer of ITO material with a thickness of 100 nm on the P-type amorphous silicon layer.
第六步:在底电池绒面上分别制作厚度为8nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层。The sixth step: respectively fabricating phosphorus- and boron-doped microcrystalline silicon films with a thickness of 8 nm on the textured surface of the bottom cell to form a tunneling composite layer.
第七步:采用真空热蒸发的工艺在底电池绒面上方共沉积硫化锰和氧化铅制作空穴传输层。硫化锰和氧化铅的物质的量比为1:0.25。通过控制电流,使硫化锰和氧化铅的真空热蒸发速率均为空穴传输层厚度为15nm。Step 7: Co-deposit manganese sulfide and lead oxide on the bottom battery suede surface by vacuum thermal evaporation to form a hole transport layer. The substance ratio of manganese sulfide and lead oxide is 1:0.25. By controlling the current, the vacuum thermal evaporation rates of manganese sulfide and lead oxide are both The hole transport layer thickness was 15 nm.
第八步:采用真空蒸镀的方式在空穴传输层上共沉积碘化铅和溴化铯,得到锚定层。其中,碘化铅的真空蒸镀速率为溴化铯的真空蒸镀速率为 锚定层的厚度为350nm。The eighth step: co-depositing lead iodide and cesium bromide on the hole transport layer by vacuum evaporation to obtain an anchor layer. Among them, the vacuum evaporation rate of lead iodide is The vacuum evaporation rate of cesium bromide is The thickness of the anchor layer was 350 nm.
第九步:配置甲脒氢碘酸盐(Formamidinium Iodide,缩写为FAI)及甲脒氢溴酸盐(Formamidinium Bromide,缩写为FABr)混合溶液,摩尔浓度比为3:1,溶剂为乙醇。取100μL的FAI及FABr混合溶液旋涂在锚定层上并发生反应,形成钙钛矿吸收材料薄膜。The ninth step: configure a mixed solution of Formamidinium Iodide (Formamidinium Iodide, abbreviated as FAI) and Formamidinium Bromide (abbreviated as FABr), the molar concentration ratio is 3:1, and the solvent is ethanol. 100 μL of the mixed solution of FAI and FABr was spin-coated on the anchor layer and reacted to form a perovskite absorbing material film.
第十步:对钙钛矿吸收材料薄膜进行退火处理形成厚度为500nm的致密均匀的钙钛矿吸收层。退火处理的温度为150℃,退火处理的时间为30min,钙钛矿吸收层材料组分为CsxFA1-xPb(BryI1-y)3。The tenth step: annealing the perovskite absorbing material film to form a dense and uniform perovskite absorbing layer with a thickness of 500 nm. The temperature of the annealing treatment is 150° C., the time of the annealing treatment is 30 min, and the material composition of the perovskite absorbing layer is Cs x FA 1-x Pb(Br y I 1-y ) 3 .
第十一步:在钙钛矿吸收层上蒸镀LiF形成厚度为1nm的LiF电子传输界面层。然后,在LiF电子传输界面层上蒸镀厚度为10nm的C60形成C60电子传输界面层。Step 11: Evaporate LiF on the perovskite absorber layer to form a LiF electron transport interface layer with a thickness of 1 nm. Then, C 60 with a thickness of 10 nm was evaporated on the LiF electron transport interface layer to form the C 60 electron transport interface layer.
第十二步:采用原子层沉积法(Atomic layer deposition,缩写为ALD)制作厚度为10nm的SnO2电子传输层。The twelfth step: using atomic layer deposition (Atomic layer deposition, abbreviated as ALD) to fabricate a SnO 2 electron transport layer with a thickness of 10 nm.
第十三步:采用磁控溅射法制作厚度为100nm的ITO透明导电薄膜。再使用蒸镀法在ITO透明导电薄膜上制作银电极栅线制得叠层电池,银电极栅线的厚度为100nm。The thirteenth step: using a magnetron sputtering method to fabricate an ITO transparent conductive film with a thickness of 100 nm. Then, a silver electrode grid line was fabricated on the ITO transparent conductive film by evaporation method to obtain a stacked battery, and the thickness of the silver electrode grid line was 100 nm.
实施例二
本发明实施例提供的n型硅异质结-钙钛矿叠层电池的制作方法,具体如下所述:The manufacturing method of the n-type silicon heterojunction-perovskite tandem battery provided by the embodiment of the present invention is as follows:
第一步:提供一电阻率为5Ω·cm-10Ω·cm,厚度为50μm的N型M2硅片。对该硅片进行抛光、制绒及清洗处理,形成具有绒面的n型单晶硅基底。The first step: providing an N-type M2 silicon wafer with a resistivity of 5Ω·cm-10Ω·cm and a thickness of 50 μm. The silicon wafer is polished, textured and cleaned to form an n-type single crystal silicon substrate with textured surfaces.
第二步:采用等离子体增强化学的气相沉积法(PlasmaEnhancedChemicalVaporDeposition,缩写PECVD)在n型单晶硅基底两侧分别沉积本征非晶硅钝化层,形成正面钝化层薄膜和背面钝化层薄膜。正面钝化层薄膜和背面钝化层薄膜的厚度为1nm。The second step: using plasma enhanced chemical vapor deposition (PlasmaEnhancedChemicalVaporDeposition, abbreviated PECVD) to deposit intrinsic amorphous silicon passivation layers on both sides of the n-type single crystal silicon substrate respectively to form a front passivation layer film and a back passivation layer film. The thickness of the front passivation layer film and the back passivation layer film is 1 nm.
第三步:采用PECVD的方法在硅片正面沉积磷掺杂(掺杂浓度1020cm-3)的N型非晶硅层,N型非晶硅层的厚度为1nm,形成正面发射极。The third step: using the PECVD method to deposit an N-type amorphous silicon layer doped with phosphorus (
第四步:采用PECVD的方法在硅片背面沉积硼掺杂(掺杂浓度1019cm-3)的P型非晶硅层,P型非晶硅层的厚度1nm,形成背场结构。The fourth step: depositing a boron-doped (doping concentration of 10 19 cm -3 ) P-type amorphous silicon layer on the back of the silicon wafer by PECVD, and the thickness of the P-type amorphous silicon layer is 1 nm to form a back field structure.
第五步:采用磁控溅射工艺在P型非晶硅层上制备厚度为30nm的IZO材质的透明导电层。The fifth step: using a magnetron sputtering process to prepare a transparent conductive layer of IZO material with a thickness of 30 nm on the P-type amorphous silicon layer.
第六步:在底电池绒面上分别制作厚度为7nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层。The sixth step: respectively fabricating phosphorus and boron doped microcrystalline silicon films with a thickness of 7 nm on the textured surface of the bottom cell to form a tunneling composite layer.
第七步:采用真空热蒸发的工艺在底电池绒面上方共沉积硫化锌和氯化铅制作空穴传输层。硫化锌和氯化铅的物质的量比为1:0.01。通过控制电流,使硫化锌和氯化铅的真空热蒸发速率均为空穴传输层厚度为5nm。The seventh step: using the vacuum thermal evaporation process to co-deposit zinc sulfide and lead chloride on the suede surface of the bottom battery to form a hole transport layer. The substance ratio of zinc sulfide and lead chloride is 1:0.01. By controlling the current, the vacuum thermal evaporation rates of zinc sulfide and lead chloride are both The hole transport layer thickness was 5 nm.
第八步:采用真空蒸镀的方式在空穴传输层上共沉积碘化铅和溴化铯,得到锚定层。其中,碘化铅的真空蒸镀速率为溴化铯的真空蒸镀速率为锚定层的厚度为250nm。The eighth step: co-depositing lead iodide and cesium bromide on the hole transport layer by vacuum evaporation to obtain an anchor layer. Among them, the vacuum evaporation rate of lead iodide is The vacuum evaporation rate of cesium bromide is The thickness of the anchor layer was 250 nm.
第九步:配置甲脒氢碘酸盐(Formamidinium Iodide,缩写为FAI)及甲脒氢溴酸盐(Formamidinium Bromide,缩写为FABr)混合溶液,摩尔浓度比为3:1,溶剂为乙醇。取100μL的FAI及FABr混合溶液旋涂在锚定层上并发生反应,形成钙钛矿吸收材料薄膜。The ninth step: configure a mixed solution of Formamidinium Iodide (Formamidinium Iodide, abbreviated as FAI) and Formamidinium Bromide (abbreviated as FABr), the molar concentration ratio is 3:1, and the solvent is ethanol. 100 μL of the mixed solution of FAI and FABr was spin-coated on the anchor layer and reacted to form a perovskite absorbing material film.
第十步:对钙钛矿吸收材料薄膜进行退火处理形成厚度为200nm的致密均匀的钙钛矿吸收层。退火处理的温度为50℃,退火处理的时间为5min。The tenth step: annealing the perovskite absorbing material film to form a dense and uniform perovskite absorbing layer with a thickness of 200 nm. The temperature of the annealing treatment was 50° C., and the time of the annealing treatment was 5 min.
第十一步:在钙钛矿吸收层上蒸镀LiF形成厚度为0.1nm的LiF电子传输界面层。然后,在LiF电子传输界面层上蒸镀厚度为1nm的C60形成C60电子传输界面层。Step 11: Evaporate LiF on the perovskite absorber layer to form a LiF electron transport interface layer with a thickness of 0.1 nm. Then, C 60 with a thickness of 1 nm was evaporated on the LiF electron transport interface layer to form the C 60 electron transport interface layer.
第十二步:采用原子层沉积法(Atomiclayerdeposition,缩写为ALD)制作厚度为30nm的SnO2电子传输层。The twelfth step: using atomic layer deposition (Atomic layer deposition, abbreviated as ALD) to fabricate a SnO 2 electron transport layer with a thickness of 30 nm.
第十三步:采用磁控溅射法制作厚度为100nm的IZO透明导电薄膜。再使用蒸镀法在IZO透明导电薄膜上制作银电极栅线制得叠层电池,银电极栅线的厚度为200nm。The thirteenth step: using a magnetron sputtering method to fabricate an IZO transparent conductive film with a thickness of 100 nm. Then, a silver electrode grid line was fabricated on the IZO transparent conductive film by evaporation method to obtain a stacked battery, and the thickness of the silver electrode grid line was 200 nm.
实施例三
本发明实施例提供的n型硅异质结-钙钛矿叠层电池的制作方法,具体如下所述:The manufacturing method of the n-type silicon heterojunction-perovskite tandem battery provided by the embodiment of the present invention is as follows:
第一步:提供一电阻率为1Ω·cm-5Ω·cm,厚度为200μm的N型M2硅片。对该硅片进行抛光、制绒及清洗处理,形成具有绒面的n型单晶硅基底。The first step: providing an N-type M2 silicon wafer with a resistivity of 1Ω·cm-5Ω·cm and a thickness of 200 μm. The silicon wafer is polished, textured and cleaned to form an n-type single crystal silicon substrate with textured surfaces.
第二步:采用等离子体增强化学的气相沉积法(Plasma Enhanced ChemicalVapor Deposition,缩写PECVD)在n型单晶硅基底两侧分别沉积本征非晶硅钝化层,形成正面钝化层薄膜和背面钝化层薄膜。正面钝化层薄膜和背面钝化层薄膜的厚度为20nm。Step 2: Use plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) to deposit intrinsic amorphous silicon passivation layers on both sides of the n-type single crystal silicon substrate respectively to form the front passivation layer film and the back side Passivation film. The thickness of the front passivation layer film and the back passivation layer film is 20 nm.
第三步:采用PECVD的方法在硅片正面沉积磷掺杂(掺杂浓度1020cm-3)的N型非晶硅层,N型非晶硅层的厚度为30nm,形成正面发射极。The third step: using the PECVD method to deposit an N-type amorphous silicon layer doped with phosphorus (
第四步:采用PECVD的方法在硅片背面沉积硼掺杂(掺杂浓度1019cm-3)的P型非晶硅层,N型非晶硅层的厚度30nm,形成背场结构。The fourth step: depositing a boron-doped (
第五步:采用磁控溅射工艺在P型非晶硅层上制备厚度为120nm的IWO材质的透明导电层。The fifth step: using a magnetron sputtering process to prepare a transparent conductive layer of IWO material with a thickness of 120 nm on the P-type amorphous silicon layer.
第六步:在底电池绒面上分别制作厚度为30nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层。The sixth step: respectively fabricating phosphorus- and boron-doped microcrystalline silicon films with a thickness of 30 nm on the textured surface of the bottom cell to form a tunneling composite layer.
第七步:采用真空热蒸发的工艺在底电池绒面上方共沉积硫化镍和二硫化钛的混合物与碘化铅制作空穴传输层。硫化镍和二硫化钛的混合物与碘化铅的物质的量比为1:0.5。通过控制电流,使硫化镍和二硫化钛的混合物与碘化铅的真空热蒸发速率均为空穴传输层厚度为100nm。The seventh step: using a vacuum thermal evaporation process to co-deposit a mixture of nickel sulfide and titanium disulfide and lead iodide on the suede surface of the bottom battery to form a hole transport layer. The mass ratio of the mixture of nickel sulfide and titanium disulfide to lead iodide is 1:0.5. By controlling the current, the vacuum thermal evaporation rates of the mixture of nickel sulfide and titanium disulfide and lead iodide are both The hole transport layer thickness was 100 nm.
第八步:采用真空蒸镀的方式在空穴传输层上共沉积溴化铅和碘化铯,其中,溴化铅的真空蒸镀速率为碘化铯的真空蒸镀速率为锚定层的厚度为1000nm。Step 8: Co-deposit lead bromide and cesium iodide on the hole transport layer by vacuum evaporation, wherein the vacuum evaporation rate of lead bromide is The vacuum evaporation rate of cesium iodide is The thickness of the anchor layer was 1000 nm.
第九步:配置甲脒氢碘酸盐(Formamidinium Iodide,缩写为FAI)及甲脒氢溴酸盐(Formamidinium Bromide,缩写为FABr)混合溶液,摩尔浓度比为3:1,溶剂为乙醇。取100μL的FAI及FABr混合溶液旋涂在锚定层上并发生反应,形成钙钛矿吸收材料薄膜。The ninth step: configure a mixed solution of Formamidinium Iodide (Formamidinium Iodide, abbreviated as FAI) and Formamidinium Bromide (abbreviated as FABr), the molar concentration ratio is 3:1, and the solvent is ethanol. 100 μL of the mixed solution of FAI and FABr was spin-coated on the anchor layer and reacted to form a perovskite absorbing material film.
第十步:对钙钛矿吸收材料薄膜进行退火处理形成厚度为1000nm的致密均匀的钙钛矿吸收层。退火处理的温度为200℃,退火处理的时间为30min。The tenth step: annealing the perovskite absorbing material film to form a dense and uniform perovskite absorbing layer with a thickness of 1000 nm. The temperature of the annealing treatment was 200° C., and the time of the annealing treatment was 30 min.
第十一步:在钙钛矿吸收层上蒸镀LiF形成厚度为10nm的LiF电子传输界面层。然后,在LiF电子传输界面层上蒸镀厚度为20nm的C60形成C60电子传输界面层。Step 11: Evaporate LiF on the perovskite absorber layer to form a LiF electron transport interface layer with a thickness of 10 nm. Then, C 60 with a thickness of 20 nm was evaporated on the LiF electron transport interface layer to form the C 60 electron transport interface layer.
第十二步:采用原子层沉积法(Atomic layer deposition,缩写为ALD)制作厚度为1nm的SnO2电子传输层。The twelfth step: using atomic layer deposition (Atomic layer deposition, abbreviated as ALD) to fabricate a SnO 2 electron transport layer with a thickness of 1 nm.
第十三步:采用磁控溅射法制作厚度为30nm的IWO透明导电薄膜。再使用蒸镀法在IWO透明导电薄膜上制作银电极栅线制得叠层电池,银电极栅线的厚度为500nm。The thirteenth step: using a magnetron sputtering method to fabricate an IWO transparent conductive film with a thickness of 30 nm. Then use the evaporation method to make silver electrode gridlines on the IWO transparent conductive film to obtain a stacked battery, and the thickness of the silver electrode gridlines is 500 nm.
实施例四
本发明实施例提供的n型硅异质结-钙钛矿叠层电池的制作方法,具体如下所述:The manufacturing method of the n-type silicon heterojunction-perovskite tandem battery provided by the embodiment of the present invention is as follows:
第一步:提供一电阻率为1Ω·cm-4Ω·cm,厚度为150μm的N型M2硅片。对该硅片进行抛光、制绒及清洗处理,形成具有绒面的n型单晶硅基底。The first step: providing an N-type M2 silicon wafer with a resistivity of 1Ω·cm-4Ω·cm and a thickness of 150 μm. The silicon wafer is polished, textured and cleaned to form an n-type single crystal silicon substrate with textured surfaces.
第二步:采用等离子体增强化学的气相沉积法(Plasma Enhanced ChemicalVapor Deposition,缩写PECVD)在n型单晶硅基底两侧分别沉积本征非晶硅钝化层,形成正面钝化层薄膜和背面钝化层薄膜。正面钝化层薄膜和背面钝化层薄膜的厚度为15nm。Step 2: Use plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) to deposit intrinsic amorphous silicon passivation layers on both sides of the n-type single crystal silicon substrate respectively to form the front passivation layer film and the back side Passivation film. The thickness of the front passivation layer film and the back passivation layer film was 15 nm.
第三步:采用PECVD的方法在硅片正面沉积磷掺杂(掺杂浓度1020cm-3)的N型非晶硅层,N型非晶硅层的厚度为15nm,形成正面发射极。The third step: depositing a phosphorus-doped (
第四步:采用PECVD的方法在硅片背面沉积硼掺杂(掺杂浓度1019cm-3)的P型非晶硅层,P型非晶硅层的厚度15nm,形成背场结构。The fourth step: depositing a boron-doped (
第五步:采用磁控溅射工艺在P型非晶硅层上制备厚度为70nm的ITiO材质的透明导电层。The fifth step: using a magnetron sputtering process to prepare a transparent conductive layer made of ITiO with a thickness of 70 nm on the P-type amorphous silicon layer.
第六步:在底电池绒面上分别制作厚度为15nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层。The sixth step: respectively fabricating phosphorus and boron doped microcrystalline silicon films with a thickness of 15 nm on the textured surface of the bottom battery to form a tunneling composite layer.
第七步:采用真空热蒸发的工艺在底电池绒面上方共沉积二硫化钼和溴化铅制作空穴传输层。二硫化钼和溴化铅的物质的量比为1:0.45。通过控制电流,使二硫化钼和溴化铅的真空热蒸发速率均为空穴传输层厚度为55nm。Step 7: Co-deposit molybdenum disulfide and lead bromide on the bottom battery suede surface by vacuum thermal evaporation to form a hole transport layer. The substance ratio of molybdenum disulfide and lead bromide is 1:0.45. By controlling the current, the vacuum thermal evaporation rates of molybdenum disulfide and lead bromide are both The hole transport layer thickness was 55 nm.
第八步:采用真空蒸镀的方式在空穴传输层上共沉积碘化铅、碘化锡和氯化铯,得到锚定层。其中,碘化铅和碘化锡的真空蒸镀速率为氯化铯的真空蒸镀速率为锚定层的厚度为500nm。The eighth step: co-depositing lead iodide, tin iodide and cesium chloride on the hole transport layer by vacuum evaporation to obtain an anchor layer. Among them, the vacuum evaporation rate of lead iodide and tin iodide is The vacuum evaporation rate of cesium chloride is The thickness of the anchor layer was 500 nm.
第九步:配置甲脒氢碘酸盐(Formamidinium Iodide,缩写为FAI)及甲脒氢溴酸盐(Formamidinium Bromide,缩写为FABr)混合溶液,摩尔浓度比为3:1,溶剂为乙醇。取100μL的FAI及FABr混合溶液旋涂在锚定层上并发生反应,形成钙钛矿吸收材料薄膜。The ninth step: configure a mixed solution of Formamidinium Iodide (Formamidinium Iodide, abbreviated as FAI) and Formamidinium Bromide (abbreviated as FABr), the molar concentration ratio is 3:1, and the solvent is ethanol. 100 μL of the mixed solution of FAI and FABr was spin-coated on the anchor layer and reacted to form a perovskite absorbing material film.
第十步:对钙钛矿吸收材料薄膜进行退火处理形成厚度为100nm的致密均匀的钙钛矿吸收层。退火处理的温度为170℃,退火处理的时间为60min。The tenth step: annealing the perovskite absorbing material film to form a dense and uniform perovskite absorbing layer with a thickness of 100 nm. The temperature of the annealing treatment was 170° C., and the time of the annealing treatment was 60 min.
第十一步:在钙钛矿吸收层上蒸镀LiF形成厚度为5nm的LiF电子传输界面层。然后,在LiF电子传输界面层上蒸镀厚度为15nm的C60形成C60电子传输界面层。Step 11: Evaporate LiF on the perovskite absorber layer to form a LiF electron transport interface layer with a thickness of 5 nm. Then, C 60 with a thickness of 15 nm was evaporated on the LiF electron transport interface layer to form the C 60 electron transport interface layer.
第十二步:采用原子层沉积法(Atomic layer deposition,缩写为ALD)制作厚度为15nm的SnO2电子传输层。The twelfth step: using atomic layer deposition (Atomic layer deposition, abbreviated as ALD) to fabricate a SnO 2 electron transport layer with a thickness of 15 nm.
第十三步:采用磁控溅射法制作厚度为200nm的ITiO透明导电薄膜。再使用蒸镀法在ITiO透明导电薄膜上制作银电极栅线制得叠层电池,银电极栅线的厚度为255nm。The thirteenth step: using a magnetron sputtering method to fabricate an ITiO transparent conductive film with a thickness of 200 nm. Then, a silver electrode grid line was fabricated on the ITiO transparent conductive film by evaporation method to obtain a stacked battery, and the thickness of the silver electrode grid line was 255 nm.
实施例五
本发明实施例提供的n型硅异质结-钙钛矿叠层电池的制作方法,具体如下所述:The manufacturing method of the n-type silicon heterojunction-perovskite tandem battery provided by the embodiment of the present invention is as follows:
第一步:提供一电阻率为1Ω·cm-5Ω·cm,厚度为200μm的N型M2硅片。对该硅片进行抛光、制绒及清洗处理,形成具有绒面的n型单晶硅基底。The first step: providing an N-type M2 silicon wafer with a resistivity of 1Ω·cm-5Ω·cm and a thickness of 200 μm. The silicon wafer is polished, textured and cleaned to form an n-type single crystal silicon substrate with textured surfaces.
第二步:采用等离子体增强化学的气相沉积法(Plasma Enhanced ChemicalVapor Deposition,缩写PECVD)在n型单晶硅基底两侧分别沉积本征非晶硅钝化层,形成正面钝化层薄膜和背面钝化层薄膜。正面钝化层薄膜和背面钝化层薄膜的厚度为20nm。Step 2: Use plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) to deposit intrinsic amorphous silicon passivation layers on both sides of the n-type single crystal silicon substrate respectively to form the front passivation layer film and the back side Passivation film. The thickness of the front passivation layer film and the back passivation layer film is 20 nm.
第三步:采用PECVD的方法在硅片正面沉积磷掺杂(掺杂浓度1020cm-3)的N型非晶硅层,N型非晶硅层的厚度为30nm,形成正面发射极。The third step: using the PECVD method to deposit an N-type amorphous silicon layer doped with phosphorus (
第四步:采用PECVD的方法在硅片背面沉积硼掺杂(掺杂浓度1019cm-3)的P型非晶硅层,N型非晶硅层的厚度30nm,形成背场结构。The fourth step: depositing a boron-doped (
第五步:采用磁控溅射工艺在P型非晶硅层上制备厚度为120nm的IWO材质的透明导电层。The fifth step: using a magnetron sputtering process to prepare a transparent conductive layer of IWO material with a thickness of 120 nm on the P-type amorphous silicon layer.
第六步:在底电池绒面上分别制作厚度为30nm的磷和硼掺杂的微晶硅薄膜,形成隧穿复合层。The sixth step: respectively fabricating phosphorus- and boron-doped microcrystalline silicon films with a thickness of 30 nm on the textured surface of the bottom cell to form a tunneling composite layer.
第七步:采用真空热蒸发的工艺在底电池绒面上方共沉积硫化镁以及硫氰化铅和醋酸铅的混合物制作空穴传输层。硫化镍以及硫氰化铅和醋酸铅的混合物的物质的量比为1:0.5。通过控制电流,使硫化镍以及硫氰化铅和醋酸铅的混合物的真空热蒸发速率均为空穴传输层厚度为100nm。Step 7: Co-depositing magnesium sulfide and a mixture of lead thiocyanate and lead acetate on the bottom battery suede by a vacuum thermal evaporation process to form a hole transport layer. The substance ratio of nickel sulfide and the mixture of lead thiocyanate and lead acetate is 1:0.5. By controlling the current, the vacuum thermal evaporation rates of nickel sulfide and the mixture of lead thiocyanate and lead acetate are both The hole transport layer thickness was 100 nm.
第八步:采用真空蒸镀的方式在空穴传输层上共沉积氯化铅和碘化铯,其中,氯化铅的真空蒸镀速率为碘化铯的真空蒸镀速率为锚定层的厚度为1000nm。The eighth step: co-deposit lead chloride and cesium iodide on the hole transport layer by vacuum evaporation, wherein the vacuum evaporation rate of lead chloride is The vacuum evaporation rate of cesium iodide is The thickness of the anchor layer was 1000 nm.
第九步:配置甲脒氢碘酸盐(Formamidinium Iodide,缩写为FAI)及甲脒氢溴酸盐(Formamidinium Bromide,缩写为FABr)混合溶液,摩尔浓度比为3:1,溶剂为乙醇。取100μL的FAI及FABr混合溶液旋涂在锚定层上并发生反应,形成钙钛矿吸收材料薄膜。The ninth step: configure a mixed solution of Formamidinium Iodide (Formamidinium Iodide, abbreviated as FAI) and Formamidinium Bromide (abbreviated as FABr), the molar concentration ratio is 3:1, and the solvent is ethanol. 100 μL of the mixed solution of FAI and FABr was spin-coated on the anchor layer and reacted to form a perovskite absorbing material film.
第十步:对钙钛矿吸收材料薄膜进行退火处理形成厚度为1000nm的致密均匀的钙钛矿吸收层。退火处理的温度为200℃,退火处理的时间为30min。The tenth step: annealing the perovskite absorbing material film to form a dense and uniform perovskite absorbing layer with a thickness of 1000 nm. The temperature of the annealing treatment was 200° C., and the time of the annealing treatment was 30 min.
第十一步:在钙钛矿吸收层上蒸镀LiF形成厚度为10nm的LiF电子传输界面层。然后,在LiF电子传输界面层上蒸镀厚度为20nm的C60形成C60电子传输界面层。Step 11: Evaporate LiF on the perovskite absorber layer to form a LiF electron transport interface layer with a thickness of 10 nm. Then, C 60 with a thickness of 20 nm was evaporated on the LiF electron transport interface layer to form the C 60 electron transport interface layer.
第十二步:采用原子层沉积法(Atomic layer deposition,缩写为ALD)制作厚度为1nm的SnO2电子传输层。The twelfth step: using atomic layer deposition (Atomic layer deposition, abbreviated as ALD) to fabricate a SnO 2 electron transport layer with a thickness of 1 nm.
第十三步:采用磁控溅射法制作厚度为30nm的IWO透明导电薄膜。再使用蒸镀法在IWO透明导电薄膜上制作银电极栅线制得叠层电池,银电极栅线的厚度为500nm。The thirteenth step: using a magnetron sputtering method to fabricate an IWO transparent conductive film with a thickness of 30 nm. Then use the evaporation method to make silver electrode gridlines on the IWO transparent conductive film to obtain a stacked battery, and the thickness of the silver electrode gridlines is 500 nm.
对比例一Comparative Example 1
本对比例提供的叠层电池的制作方法与上述实施例一记载的方法基本相同,区别仅在于:空穴传输层的材质为Spiro-TTB。The manufacturing method of the laminated battery provided in this comparative example is basically the same as the method described in the above-mentioned first embodiment, the only difference is that the material of the hole transport layer is Spiro-TTB.
对比例二Comparative Example 2
本对比例提供的叠层电池的制作方法与上述实施例一记载的方法基本相同,区别仅在于:空穴传输层的材质为氧化镍。The manufacturing method of the laminated battery provided by this comparative example is basically the same as the method described in the above-mentioned
为验证叠层电池的性能,对实例一、对比例一和对比例二所制备的叠层电池进行扫描电子显微镜(SEM)和I-V测试,并对比各器件的光电转换效率、填充因子、开路电压、短路电流等性能参数(表1)。In order to verify the performance of the tandem cells, scanning electron microscope (SEM) and I-V tests were carried out on the tandem cells prepared in Example 1, Comparative Example 1 and Comparative Example 2, and the photoelectric conversion efficiency, fill factor and open circuit voltage of each device were compared. , short-circuit current and other performance parameters (Table 1).
表1叠层电池的性能参数表Table 1 The performance parameters of the tandem battery
根据表1可知,使用硫化锰和无机铅化合物作为空穴传输材料制得的叠层电池的各项性能参数明显优于目前广泛使用的Spiro类和氧化镍等材料。According to Table 1, it can be seen that the performance parameters of the tandem battery prepared by using manganese sulfide and inorganic lead compounds as hole transport materials are obviously better than those of the currently widely used materials such as Spiro and nickel oxide.
图4示出了实施例一中制作的叠层电池的绒面截面SEM图像,图5为实施例一中制得的叠层电池的绒面SEM图像,从图4和图5中可以看出钙钛矿层下表面与底电池贴合紧密,没有出现界面空洞和剥离现象,且钙钛矿薄膜生长均匀,没有明显的晶界缺陷,由此证明使用本发明实施例的方法制得的叠层电池可以保留底电池的绒面结构,增加叠层电池的效率。FIG. 4 shows the SEM image of the textured surface of the laminated battery produced in Example 1, and FIG. 5 is the SEM image of the textured surface of the laminated battery prepared in Example 1. It can be seen from FIGS. 4 and 5 The lower surface of the perovskite layer is closely attached to the bottom cell, there is no interfacial void and peeling phenomenon, and the perovskite thin film grows uniformly without obvious grain boundary defects, which proves that the laminate prepared by the method of the embodiment of the present invention is used. The cell can retain the textured structure of the bottom cell and increase the efficiency of the tandem cell.
图6示出本发明实例一、对比例一及对比例二所制备的叠层电池在AM1.5G太阳光强射下的I-V曲线。由图6可知,实施例一制备的叠层电池的短路电流Jsc为20.0mA/cm2,开路电压Voc为1.68V,填充因为FF为77%,最终电池转换效率为26.0%。实施例一所制备的叠层电池的各项器件性能参数,明显优于传统叠层电池。FIG. 6 shows the IV curves of the tandem cells prepared in Example 1, Comparative Example 1 and Comparative Example 2 of the present invention under the strong irradiation of AM1.5G sunlight. It can be seen from FIG. 6 that the short-circuit current J sc of the laminated battery prepared in Example 1 is 20.0 mA/cm 2 , the open-circuit voltage V oc is 1.68 V, the filling factor FF is 77%, and the final battery conversion efficiency is 26.0%. The device performance parameters of the laminated battery prepared in Example 1 are obviously better than those of the traditional laminated battery.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design methods that are not exactly the same as those described above. Additionally, although the various embodiments have been described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010850989.0A CN112086534B (en) | 2020-08-21 | 2020-08-21 | Laminated battery and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010850989.0A CN112086534B (en) | 2020-08-21 | 2020-08-21 | Laminated battery and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112086534A CN112086534A (en) | 2020-12-15 |
CN112086534B true CN112086534B (en) | 2022-06-10 |
Family
ID=73728512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010850989.0A Active CN112086534B (en) | 2020-08-21 | 2020-08-21 | Laminated battery and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112086534B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206123A (en) * | 2021-04-22 | 2021-08-03 | 南京大学 | Perovskite/crystalline silicon laminated cell and preparation method thereof |
CN118139427A (en) * | 2024-04-09 | 2024-06-04 | 天合光能股份有限公司 | Perovskite solar cell and manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103915567A (en) * | 2014-03-28 | 2014-07-09 | 中国科学院上海技术物理研究所 | Perovskite solar cell with inorganic compound as hole transfer layer |
CN107287656B (en) * | 2017-06-13 | 2018-02-27 | 华中科技大学 | A kind of method of III V races quantum dot induced growth perovskite crystal |
CN110970562A (en) * | 2018-09-28 | 2020-04-07 | 东泰高科装备科技有限公司 | Perovskite/crystalline silicon laminated solar cell and preparation method thereof |
CN111370582B (en) * | 2020-03-25 | 2023-07-25 | 常州大学 | Preparation method of perovskite solar cell on micron-sized large suede |
-
2020
- 2020-08-21 CN CN202010850989.0A patent/CN112086534B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112086534A (en) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7606599B2 (en) | Tandem solar cell | |
CN105493304B (en) | Efficiently stacked solar cells | |
CN112259686B (en) | Laminated battery and manufacturing method thereof | |
CN113257940B (en) | Laminated photovoltaic device and production method | |
CN110867516A (en) | Novel tandem solar cells based on perovskite and crystalline silicon back passivation and their fabrication methods | |
CN112018209A (en) | A kind of perovskite-silicon heterojunction tandem solar cell and fabrication method thereof | |
WO2023082584A1 (en) | Perovskite silicon-based laminated solar cell and manufacturing method therefor | |
CN114267789A (en) | A method to simultaneously improve the open circuit voltage and stability of full-textured perovskite/crystalline silicon tandem solar cells | |
CN117178649A (en) | Perovskite solar cell and tandem solar cell comprising same | |
CN112086534B (en) | Laminated battery and method of making the same | |
WO2021196606A1 (en) | Laminated photovoltaic device, and production method | |
CN117059691A (en) | Heterojunction solar cells | |
CN114335359B (en) | A method for manufacturing a perovskite film, a solar cell and a stacked cell | |
CN114335348A (en) | A kind of PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof | |
CN118315450A (en) | Laminated photovoltaic device and production method | |
CN217719655U (en) | Perovskite/crystalline silicon tandem cell structure | |
KR20240045490A (en) | Bifacial Silicon / Perovskite Tandem solar cell | |
CN116344674A (en) | Method for producing a solar cell and solar cell | |
CN111180593A (en) | Silicon-based double-sided organic/inorganic heterojunction solar cell and preparation method thereof | |
CN210668381U (en) | Silicon-based laminated solar cell | |
CN222090033U (en) | Stacked solar cell and electricity utilization device | |
US20240224550A1 (en) | Solar cell | |
CN118524723B (en) | Laminated solar cell and preparation method thereof | |
CN118175907A (en) | Preparation method of perovskite light absorption layer, solar cell and preparation method thereof | |
WO2025018250A1 (en) | Tandem solar battery and method for manufacturing tandem solar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |