CN118159667A - Method for detecting repeated spreading sequences - Google Patents
Method for detecting repeated spreading sequences Download PDFInfo
- Publication number
- CN118159667A CN118159667A CN202280053833.7A CN202280053833A CN118159667A CN 118159667 A CN118159667 A CN 118159667A CN 202280053833 A CN202280053833 A CN 202280053833A CN 118159667 A CN118159667 A CN 118159667A
- Authority
- CN
- China
- Prior art keywords
- gene
- sequence
- nucleic acid
- repeat
- primer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 215
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 93
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 90
- 239000002773 nucleotide Substances 0.000 claims abstract description 88
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 65
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 65
- 230000003321 amplification Effects 0.000 claims abstract description 33
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 33
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 47
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 claims description 42
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 claims description 42
- 201000010099 disease Diseases 0.000 claims description 42
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 claims description 39
- 102000014461 Ataxins Human genes 0.000 claims description 30
- 108010078286 Ataxins Proteins 0.000 claims description 30
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 30
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 claims description 30
- 238000001962 electrophoresis Methods 0.000 claims description 30
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 28
- 208000001914 Fragile X syndrome Diseases 0.000 claims description 20
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 claims description 16
- 102000007372 Ataxin-1 Human genes 0.000 claims description 16
- 108010032963 Ataxin-1 Proteins 0.000 claims description 16
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 14
- 238000012216 screening Methods 0.000 claims description 13
- 208000002569 Machado-Joseph Disease Diseases 0.000 claims description 11
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 claims description 11
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 claims description 10
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 claims description 9
- 208000027087 primary ovarian insufficiency 1 Diseases 0.000 claims description 8
- 201000003415 fragile X-associated tremor/ataxia syndrome Diseases 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 6
- 238000012163 sequencing technique Methods 0.000 claims description 6
- 208000035475 disorder Diseases 0.000 claims description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 206010003694 Atrophy Diseases 0.000 claims description 3
- 230000037444 atrophy Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 201000003374 non-syndromic intellectual disability Diseases 0.000 claims description 3
- 210000004558 lewy body Anatomy 0.000 claims description 2
- 230000004544 DNA amplification Effects 0.000 claims 1
- 108700028369 Alleles Proteins 0.000 description 97
- 239000000523 sample Substances 0.000 description 51
- 230000035772 mutation Effects 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 30
- 102000007371 Ataxin-3 Human genes 0.000 description 17
- 108010032947 Ataxin-3 Proteins 0.000 description 16
- 101000935117 Homo sapiens Voltage-dependent P/Q-type calcium channel subunit alpha-1A Proteins 0.000 description 14
- 238000000137 annealing Methods 0.000 description 14
- 102000007368 Ataxin-7 Human genes 0.000 description 13
- 108010032953 Ataxin-7 Proteins 0.000 description 13
- 102000007370 Ataxin2 Human genes 0.000 description 13
- 108010032951 Ataxin2 Proteins 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 210000000349 chromosome Anatomy 0.000 description 13
- 238000009396 hybridization Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000005251 capillar electrophoresis Methods 0.000 description 12
- 101000915806 Homo sapiens Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform Proteins 0.000 description 11
- 102100029014 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform Human genes 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000002068 genetic effect Effects 0.000 description 11
- 108091006146 Channels Proteins 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 230000003252 repetitive effect Effects 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 208000023105 Huntington disease Diseases 0.000 description 8
- 201000003622 Spinocerebellar ataxia type 2 Diseases 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 230000001717 pathogenic effect Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 102000014817 CACNA1A Human genes 0.000 description 6
- 102100025330 Voltage-dependent P/Q-type calcium channel subunit alpha-1A Human genes 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 102100020741 Atrophin-1 Human genes 0.000 description 5
- 101000785083 Homo sapiens Atrophin-1 Proteins 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 201000006347 Intellectual Disability Diseases 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000001917 fluorescence detection Methods 0.000 description 4
- 238000009830 intercalation Methods 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108020005029 5' Flanking Region Proteins 0.000 description 3
- 206010003591 Ataxia Diseases 0.000 description 3
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 101150082209 Fmr1 gene Proteins 0.000 description 3
- 208000021642 Muscular disease Diseases 0.000 description 3
- 201000009623 Myopathy Diseases 0.000 description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 3
- 201000009110 Oculopharyngeal muscular dystrophy Diseases 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 208000032274 Encephalopathy Diseases 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 101000614618 Homo sapiens Junctophilin-3 Proteins 0.000 description 2
- 208000010158 Huntington disease-like 2 Diseases 0.000 description 2
- 102100040488 Junctophilin-3 Human genes 0.000 description 2
- 208000034800 Leukoencephalopathies Diseases 0.000 description 2
- 102000018658 Myotonin-Protein Kinase Human genes 0.000 description 2
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 102100040296 TATA-box-binding protein Human genes 0.000 description 2
- 210000001766 X chromosome Anatomy 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000001037 epileptic effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 208000005632 oculopharyngodistal myopathy Diseases 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 206010036601 premature menopause Diseases 0.000 description 2
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 101150084229 ATXN1 gene Proteins 0.000 description 1
- 101150029341 ATXN2 gene Proteins 0.000 description 1
- 101150072286 ATXN7 gene Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 102100026565 Ataxin-8 Human genes 0.000 description 1
- 101150025446 Atn1 gene Proteins 0.000 description 1
- 101150074725 Atxn3 gene Proteins 0.000 description 1
- 101150041164 Cacna1a gene Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- OQEBIHBLFRADNM-UHFFFAOYSA-N D-iminoxylitol Natural products OCC1NCC(O)C1O OQEBIHBLFRADNM-UHFFFAOYSA-N 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 101000923091 Danio rerio Aristaless-related homeobox protein Proteins 0.000 description 1
- 102100028561 Disabled homolog 1 Human genes 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102100031470 Homeobox protein ARX Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100164975 Homo sapiens ATXN2 gene Proteins 0.000 description 1
- 101100164990 Homo sapiens ATXN7 gene Proteins 0.000 description 1
- 101000765700 Homo sapiens Ataxin-8 Proteins 0.000 description 1
- 101000915416 Homo sapiens Disabled homolog 1 Proteins 0.000 description 1
- 101000923090 Homo sapiens Homeobox protein ARX Proteins 0.000 description 1
- 101000984626 Homo sapiens Low-density lipoprotein receptor-related protein 12 Proteins 0.000 description 1
- 101000591189 Homo sapiens Notch homolog 2 N-terminal-like protein C Proteins 0.000 description 1
- 101000886818 Homo sapiens PDZ domain-containing protein GIPC1 Proteins 0.000 description 1
- 101000609211 Homo sapiens Polyadenylate-binding protein 2 Proteins 0.000 description 1
- 101000701517 Homo sapiens Putative protein ATXN8OS Proteins 0.000 description 1
- 101001089245 Homo sapiens RILP-like protein 1 Proteins 0.000 description 1
- 101000848727 Homo sapiens Rap guanine nucleotide exchange factor 2 Proteins 0.000 description 1
- 101000716931 Homo sapiens Sterile alpha motif domain-containing protein 12 Proteins 0.000 description 1
- 101000891654 Homo sapiens TATA-box-binding protein Proteins 0.000 description 1
- 101000976959 Homo sapiens Transcription factor 4 Proteins 0.000 description 1
- 101000596771 Homo sapiens Transcription factor 7-like 2 Proteins 0.000 description 1
- 101000611194 Homo sapiens Trinucleotide repeat-containing gene 6A protein Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108091029795 Intergenic region Proteins 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102100027120 Low-density lipoprotein receptor-related protein 12 Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 102100034094 Notch homolog 2 N-terminal-like protein C Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102100039983 PDZ domain-containing protein GIPC1 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 102100039427 Polyadenylate-binding protein 2 Human genes 0.000 description 1
- 101710156592 Putative TATA-binding protein pB263R Proteins 0.000 description 1
- 102100030469 Putative protein ATXN8OS Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102100033759 RILP-like protein 1 Human genes 0.000 description 1
- 102100034585 Rap guanine nucleotide exchange factor 2 Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 1
- 201000003620 Spinocerebellar ataxia type 6 Diseases 0.000 description 1
- 102100026760 StAR-related lipid transfer protein 7, mitochondrial Human genes 0.000 description 1
- 101150000240 Stard7 gene Proteins 0.000 description 1
- 208000037140 Steinert myotonic dystrophy Diseases 0.000 description 1
- 102100020929 Sterile alpha motif domain-containing protein 12 Human genes 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 101710145783 TATA-box-binding protein Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100023489 Transcription factor 4 Human genes 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 102100040241 Trinucleotide repeat-containing gene 6A protein Human genes 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 102220024007 c.496_498CAG(?31)(?31 Human genes 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 201000004180 corneal endothelial dystrophy Diseases 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013503 de-identification Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 201000009340 myotonic dystrophy type 1 Diseases 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 101150056959 ppp2r2b gene Proteins 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000026473 slurred speech Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 201000003632 spinocerebellar ataxia type 7 Diseases 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 101150065190 term gene Proteins 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本公开涉及分子生物学领域。特别地,说明书教导了检测核酸样品中的两个或更多个基因中重复扩展序列存在或不存在的方法,以及在受试者中筛查多重重复扩展疾病的方法。The present disclosure relates to the field of molecular biology. In particular, the specification teaches methods for detecting the presence or absence of repeat expansion sequences in two or more genes in a nucleic acid sample, and methods for screening for multiple repeat expansion diseases in a subject.
背景技术Background Art
散布在整个人类基因组中的简单序列重复的扩展现在已知会直接引起超过35种人类疾病。最常见的重复扩展疾病是由三核苷酸重复引起的,尽管四核苷酸、五核苷酸、六核苷酸和甚至十二核苷酸重复扩展也已被确定为其他疾病中的潜在突变。Expansions of simple sequence repeats scattered throughout the human genome are now known to directly cause more than 35 human diseases. The most common repeat expansion diseases are caused by trinucleotide repeats, although tetranucleotide, pentanucleotide, hexanucleotide, and even dodecanucleotide repeat expansions have also been identified as potential mutations in other diseases.
重复扩展疾病通常表现出明显不同的表型,并且由于广泛的临床重叠和其他伴随的表型,因此通常难以单独通过体征和症状来区分。因此,分子遗传学检测对于鉴定致病突变以确认有症状个体的疾病状态是必要的。若干种疾病是由位于不同基因座的常见重复扩展突变引起的,例如CGG或GCG重复扩展引起脆性X综合征(FXS)、若干种类型的眼咽远端型肌病、眼咽肌营养不良以及发育性癫痫性脑病,CCG重复扩展引起一种类型的智力发育和伴有白质脑病的眼咽肌病,CAG重复扩展引起亨廷顿病和若干种类型的脊髓小脑性共济失调(SCA),CTG重复扩展引起1型强直性肌营养不良、亨廷顿病样2和Fuchs角膜内皮营养不良,而TTTCA五核苷酸重复扩展引起若干种类型的家族性成人肌阵挛性癫痫和脊髓小脑性共济失调。可能需要多轮遗传学检测来实现对受影响个体的正确诊断,这导致额外的成本和时间。Repeat expansion diseases often present with distinct phenotypes and are often difficult to distinguish by signs and symptoms alone due to extensive clinical overlap and other concomitant phenotypes. Therefore, molecular genetic testing is necessary to identify pathogenic mutations to confirm the disease state in symptomatic individuals. Several diseases are caused by common repeat expansion mutations located at different loci, such as CGG or GCG repeat expansions causing fragile X syndrome (FXS), several types of distal oculopharyngeal myopathy, oculopharyngeal muscular dystrophy, and developmental epileptic encephalopathy, CCG repeat expansions causing a type of intellectual development and oculopharyngeal myopathy with leukoencephalopathy, CAG repeat expansions causing Huntington's disease and several types of spinocerebellar ataxia (SCA), CTG repeat expansions causing myotonic dystrophy type 1, Huntington's disease-like 2, and Fuchs corneal endothelial dystrophy, and TTTCA pentanucleotide repeat expansions causing several types of familial adult myoclonic epilepsy and spinocerebellar ataxia. Multiple rounds of genetic testing may be required to achieve a correct diagnosis for an affected individual, resulting in additional cost and time.
因此,存在对克服或至少减轻上述提及的问题中的一个或多个的需求。Therefore, there exists a need to overcome or at least alleviate one or more of the above mentioned problems.
发明内容Summary of the invention
本文公开了一种检测从受试者获得的核酸样品中的两个或更多个基因中重复扩展序列存在或不存在的方法,该方法包括:i)使核酸样品在两个或更多个基因的每一个的扩增条件下与以下接触:a)特异性地与各个基因的不同靶序列结合的基因特异性引物,其中基因包含核苷酸重复序列,并且其中不同靶序列在核苷酸重复序列的上游或下游,和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;和ii)分析扩增产物。Disclosed herein is a method for detecting the presence or absence of a repeat expansion sequence in two or more genes in a nucleic acid sample obtained from a subject, the method comprising: i) contacting the nucleic acid sample under amplification conditions for each of the two or more genes with: a) gene-specific primers that specifically bind to different target sequences of each gene, wherein the genes comprise nucleotide repeat sequences, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequences, and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand to that bound by the gene-specific primers; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; and ii) analyzing the amplification products.
本文公开了一种用于检测从受试者获得的核酸样品中的两个或更多个基因中重复扩展序列的存在或不存在的试剂盒,该试剂盒包括:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物。Disclosed herein is a kit for detecting the presence or absence of a repeat expansion sequence in two or more genes in a nucleic acid sample obtained from a subject, the kit comprising: a) gene-specific primers that specifically bind to different target sequences of each of the two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and is located on the opposite strand to that bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene.
本文公开了包含从受试者获得的核酸样品的组合物,该组合物包含a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;Disclosed herein is a composition comprising a nucleic acid sample obtained from a subject, the composition comprising a) gene-specific primers that specifically bind to different target sequences of each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) a universal primer that binds to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and is located on the opposite strand to that bound by the gene-specific primer of each gene;
其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物。Gene-specific primers and universal primers can generate one or more amplification products from each gene.
本文公开了一种在受试者中筛查一种或多种多重重复扩展疾病的方法,该方法包括:i)使来自受试者的核酸样品在扩增条件下与以下接触:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;和ii)分析扩增产物以在受试者中筛查一种或多种多重重复扩展疾病。Disclosed herein is a method for screening for one or more multiple repeat expansion diseases in a subject, the method comprising: i) contacting a nucleic acid sample from the subject with: a) gene-specific primers that specifically bind to different target sequences in each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand to that bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; and ii) analyzing the amplification products to screen for one or more multiple repeat expansion diseases in the subject.
本文公开了一种在受试者中筛查一种或多种多重重复扩展疾病并治疗该受试者的方法,该方法包括:i)使来自受试者的核酸样品在扩增条件下与以下接触:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;ii)分析扩增产物以在受试者中筛查一种或多种多重重复扩展疾病;和iii)治疗被发现患有至少一种多重重复扩展疾病的受试者。Disclosed herein is a method for screening for one or more multiple repeat expansion diseases in a subject and treating the subject, the method comprising: i) contacting a nucleic acid sample from the subject with: a) gene-specific primers that specifically bind to different target sequences in each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; ii) analyzing the amplification products to screen for one or more multiple repeat expansion diseases in the subject; and iii) treating the subject found to have at least one multiple repeat expansion disease.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
现在将参考附图通过仅为非限制性实例的方式来描述本发明的一些实施方案,附图中:Some embodiments of the present invention will now be described by way of non-limiting examples only, with reference to the accompanying drawings, in which:
图1.FMR1和AFF2双重TP-PCR反应的示意图。指示了基因座特异性侧翼引物退火位置(黑色和灰色箭头,其中其末端标记有星形符号),在重复中的TP引物退火位置也是如此(黑色和灰色箭头)。灰色箭头指示较差的扩增,因为TP引物离基因座特异性引物更远,或者因为中断介导的错配。显示了仅携带正常FMR1和正常AFF2等位基因(A)、扩展的FMR1等位基因和扩展的AFF2等位基因(C)的样品的预期电泳图模式。黑色矩形表示FMR1 CGG或AFF2CCG三核苷酸。灰色矩形表示如每个矩形上方所示的非CGG或非CCG三核苷酸。Fig. 1. schematic diagram of FMR1 and AFF2 dual TP-PCR reaction.Indicated locus specific flanking primer annealing position (black and gray arrows, wherein its end is marked with a star symbol), as is the TP primer annealing position in the repetition (black and gray arrows).Gray arrow indicates poor amplification, because the TP primer is farther from the locus specific primer, or because of the mispairing of the mediation of interruption.Shown the expected electrophoretogram pattern of the sample carrying only normal FMR1 and normal AFF2 allele (A), extended FMR1 allele and extended AFF2 allele (C).Black rectangle represents FMR1 CGG or AFF2CCG trinucleotide.Gray rectangle represents non-CGG or non-CCG trinucleotide as shown above each rectangle.
图2.来自正常、FMR1前突变和FMR1全突变男性和女性DNA样品的FMR1(FAM/深灰色)和AFF2(HEX/浅灰色)双重TP-PCR产物的电泳图。电泳图展示了FAM和HEX二者(左)、仅FAM(中)和仅HEX(右)荧光通道。深灰色峰指示FAM标记的FMR1 TP-PCR产物,而浅灰色峰指示HEX标记的AFF2 TP-PCR产物。将正常等位基因与扩展的等位基因分开的阈值重复尺寸由垂直虚线指示。Fig. 2. electrophoretogram of FMR1 (FAM/dark grey) and AFF2 (HEX/light grey) dual TP-PCR products from normal, FMR1 premutation and FMR1 full mutation male and female DNA samples. Electrophoretogram shows both FAM and HEX (left), only FAM (middle) and only HEX (right) fluorescence channels. Dark grey peak indicates FAM-labeled FMR1 TP-PCR product, while light grey peak indicates HEX-labeled AFF2 TP-PCR product. The threshold repeat size separating normal allele from extended allele is indicated by vertical dotted line.
图3.来自AFF2前突变和全突变DNA样品的FMR1(FAM/深灰色)和AFF2(HEX/浅灰色)双重TP-PCR产物的电泳图。电泳图展示了在FAM和HEX二者(左)、仅FAM(中)和仅HEX(右)荧光通道。深灰色峰指示FAM标记的FMR1 TP-PCR产物,而浅灰色峰指示HEX标记的AFF2 TP-PCR产物。将正常等位基因与扩展的等位基因分开的阈值重复尺寸由垂直虚线指示。Fig. 3. Electrophoretogram of FMR1 (FAM/dark gray) and AFF2 (HEX/light gray) dual TP-PCR products from AFF2 premutation and full mutation DNA samples. Electrophoretograms show both FAM and HEX (left), FAM only (middle) and HEX only (right) fluorescence channels. Dark gray peak indicates FAM-labeled FMR1 TP-PCR product, while light gray peak indicates HEX-labeled AFF2 TP-PCR product. The threshold repeat size separating normal alleles from extended alleles is indicated by vertical dotted lines.
图4.AFF2 CCG重复尺寸和结构分布。A,AFF2 CCG重复尺寸(x轴)和频率(y轴)在非裔美国人(灰色填充)、高加索人(未填充)、中国人(黑色填充)、印度人(深灰色粗条纹)和马来人(灰色正斜杠)群体中的群体分布。B,Zhong等人(灰色)和本研究(黑色)中的中国人等位基因频率分布的比较。C,Zhong等人(浅灰色)和本研究(灰色)中的高加索人等位基因频率分布的比较。D,描绘了具有不同FMR1 CGG和AFF2CCG重复尺寸组合的X染色体的群体分布(顶部),以及常见和变异型AFF2等位基因的群体重复尺寸分布和丰度(底部)的热图。Figure 4. AFF2 CCG repeat size and structure distribution. A, Population distribution of AFF2 CCG repeat size (x-axis) and frequency (y-axis) in African American (gray fill), Caucasian (unfilled), Chinese (black fill), Indian (dark gray thick stripes), and Malay (gray forward slashes) populations. B, Comparison of allele frequency distribution in Chinese in Zhong et al. (gray) and this study (black). C, Comparison of allele frequency distribution in Caucasians in Zhong et al. (light gray) and this study (gray). D, Depicts the population distribution of X chromosomes with different FMR1 CGG and AFF2CCG repeat size combinations (top), and heat maps of population repeat size distribution and abundance (bottom) of common and variant AFF2 alleles.
图5.AFF2 CCG重复结构的光谱和相应的TP-PCR电泳图模式。A,具有rs868914124(T)参考核苷酸的常见正常等位基因。B,具有rs868914124(C)变体核苷酸的变体正常等位基因。C,具有rs868914124(T)参考核苷酸和rs1389911365(T)变体核苷酸的变体正常等位基因。D,具有rs868914124(C)变体核苷酸和三个连续的非CCG中断的全突变等位基因。“+”指示非CCG中断,而“+++”指示三个连续的非CCG中断。最左边111bp的孤立峰是由重复段上游的TP引物退火产生的。rs868914124(T)常见等位基因的第一重复产生的TP-PCR产物迁移为138bp片段。来自rs868914124(C)稀有等位基因的第一重复产生的TP-PCR产物迁移为132bp片段。重复内的中断导致错配的TP引物配对,这导致了峰簇内的无峰间隙。Fig. 5 . spectrum of AFF2 CCG repeat structure and corresponding TP-PCR electrophoretogram pattern.A, common normal allele with rs868914124 (T) reference nucleotide.B, variant normal allele with rs868914124 (C) variant nucleotide.C, variant normal allele with rs868914124 (T) reference nucleotide and rs1389911365 (T) variant nucleotide.D, full mutation allele with rs868914124 (C) variant nucleotide and three consecutive non-CCG interruptions. "+" indicates non-CCG interruption, while "+++" indicates three consecutive non-CCG interruptions. The isolated peak of 111bp on the left is produced by annealing of TP primers upstream of the repeat segment. The TP-PCR product produced by the first repeat of the common allele of rs868914124 (T) migrates to a 138bp fragment. The TP-PCR product generated from the first repeat of the rs868914124 (C) rare allele migrated as a 132 bp fragment. Interruptions within the repeat resulted in mismatched TP primer pairing, which resulted in peak-free gaps within the peak cluster.
图6.(A)全突变男性FX0229和(B)其全突变舅父FX0230的AFF2CCG重复结构和相应的TP-PCR电泳图模式。A,全突变等位基因携带rs868914124(C)稀有变体和在重复8-10处的三个连续的非CCG中断。B,具有rs868914124(C)稀有变体和多个非CCG中断的全突变等位基因。“+++”指示三个连续的非CCG中断。Figure 6. (A) AFF2CCG repeat structure and corresponding TP-PCR electrophoresis pattern of full mutation male FX0229 and (B) his full mutation uncle FX0230. A, full mutation allele carries rs868914124 (C) rare variant and three consecutive non-CCG interruptions at repeat 8-10. B, full mutation allele with rs868914124 (C) rare variant and multiple non-CCG interruptions. "+++" indicates three consecutive non-CCG interruptions.
图7.(A)全突变男性DNA_25926和(B)其前突变子代DNA_3802的AFF2 CCG重复结构和相应的TP-PCR电泳图模式。A,携带rs868914124(C)稀有变体和在重复6-8处的三个连续的非CCG中断的全突变等位基因。B,携带rs868914124(T)常见参考核苷酸的22个CCG重复的正常等位基因,以及具有rs86891412(C)稀有变体和在重复6-8处的三个连续的非CCG中断的约137个重复的前突变等位基因。“+++”指示三个连续的非CCG中断。Fig. 7. (A) AFF2 CCG repeat structure and corresponding TP-PCR electrophoresis pattern of full mutation male DNA_25926 and (B) its premutation progeny DNA_3802. A, full mutation allele carrying rs868914124 (C) rare variant and three consecutive non-CCG interruptions at repeat 6-8. B, normal allele carrying 22 CCG repeats of rs868914124 (T) common reference nucleotides, and premutation allele with about 137 repeats of rs86891412 (C) rare variant and three consecutive non-CCG interruptions at repeat 6-8. "+++" indicates three consecutive non-CCG interruptions.
图8.七个常见SCA重复基因座的多重三引物PCR。SCA1、SCA2、SCA3、SCA6、SCA7、SCA12和DRPLA重复结构和引物退火位置的示意图(A)以及每个重复基因座的预期TP-PCR电泳图(B)。星号指示荧光团标签。每个基因座的正常等位基因重复尺寸的上限由垂直虚线指示。Figure 8. Multiplex three-primer PCR of seven common SCA repeat loci. Schematic diagram of SCA1, SCA2, SCA3, SCA6, SCA7, SCA12 and DRPLA repeat structure and primer annealing positions (A) and expected TP-PCR electropherograms for each repeat locus (B). Asterisks indicate fluorophore labels. The upper limit of normal allele repeat size for each locus is indicated by vertical dashed lines.
图9.七重TP-PCR毛细管电泳图产生自对七个SCA重复基因座的任一个处的扩展呈阴性的DNA样品。上图显示了在所有四个荧光团通道(Fam、Vic、Ned和Pet)打开的情况下可见的表示来自所有七个重复基因座的TP-PCR产物的电泳峰。下面的四个图显示了相同但一次打开一个荧光团通道的情况下的毛细管电泳图。每个基因座的正常等位基因重复尺寸的上限由垂直虚线指示。Fig. 9. seven TP-PCR capillary electropherograms are generated from DNA samples that are negative for expansion at any one of the seven SCA repeat loci. The upper figure shows the electrophoretic peaks of TP-PCR products from all seven repeat loci visible when all four fluorophore channels (Fam, Vic, Ned and Pet) are turned on. The following four figures show the same capillary electropherograms when one fluorophore channel is turned on at a time. The upper limit of the normal allele repeat size of each locus is indicated by a vertical dotted line.
图10.受SCA影响的DNA样品的七重TP-PCR毛细管电泳图结果。对于每个样品,仅显示其中荧光团通道显示了在相关SCA基因座处的重复扩展的电泳图。样品对ATXN1(顶行)、ATXN2(第二行)、ATXN3(第三行)、CACNA1A(第四行)、ATXN7(第五行)、PPP2R2B(第六行)和ATN1(底行)中的CAG重复扩展呈阳性。每个基因座的正常等位基因重复尺寸的上限由垂直虚线指示。Figure 10. Seven-fold TP-PCR capillary electropherogram results of DNA samples affected by SCA. For each sample, only the electropherogram in which the fluorophore channel shows the repeat expansion at the relevant SCA locus is shown. The samples are positive for CAG repeat expansion in ATXN1 (top row), ATXN2 (second row), ATXN3 (third row), CACNA1A (fourth row), ATXN7 (fifth row), PPP2R2B (sixth row) and ATN1 (bottom row). The upper limit of the normal allele repeat size for each locus is indicated by the vertical dotted line.
具体实施方式DETAILED DESCRIPTION
本说明书教导了一种检测从受试者获得的核酸样品中的两个或更多个基因中重复扩展序列存在或不存在的方法,该方法包括:i)使核酸样品在两个或更多个基因中的每一个的扩增条件下与以下接触:a)特异性地与各个基因的不同靶序列结合的基因特异性引物,其中基因包含核苷酸重复序列,并且其中不同靶序列在核苷酸重复序列的上游或下游,和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;和ii)分析扩增产物。The present specification teaches a method for detecting the presence or absence of a repeat expansion sequence in two or more genes in a nucleic acid sample obtained from a subject, the method comprising: i) contacting the nucleic acid sample under amplification conditions for each of the two or more genes with: a) gene-specific primers that specifically bind to different target sequences of each gene, wherein the genes comprise nucleotide repeat sequences, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequences, and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand to that bound by the gene-specific primers; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; and ii) analyzing the amplification products.
在一个实施方案中,该方法是检测从受试者获得的核酸样品中的两个或更多个基因中重复扩展序列存在或不存在的同步方法In one embodiment, the method is a simultaneous method for detecting the presence or absence of a repeat expansion sequence in two or more genes in a nucleic acid sample obtained from a subject.
在不受理论约束的情况下,本发明人开发了一种同时筛查患者的两个或更多个可疑基因中重复扩展突变的存在的策略,并使用两个实例在本发明公开中描述了其应用。该策略采用单管测定来筛查造成不同的重复扩展疾病的多个遗传基因座,所述重复扩展疾病由相同类型重复的扩展引起。本文所示的特异性测定采用多重三引物PCR(TP-PCR),通过使用差异标记的基因座特异性侧翼引物和通用三引物(TP)引物,来检测涉及例如不同基因中存在的三核苷酸重复序列的扩展突变。显示重复尺寸在致病尺寸范围内,或超过最大正常重复尺寸的任何基因座处的扩展产物,可以通过毛细管电泳快速鉴定和确定尺寸。单个扩增反应提供了多种疾病基因的可靠一步突变筛查,从而大大缩短了受影响个体的诊断的漫长过程。该策略可以应用于同时筛查共享相同重复序列的疾病基因的任意组。Without being bound by theory, the inventors have developed a strategy for the presence of repeat expansion mutations in two or more suspicious genes of a patient, and described its application in the present disclosure using two examples. The strategy uses a single tube assay to screen multiple genetic loci that cause different repeat expansion diseases, which are caused by the expansion of the same type of repeats. The specific assay shown herein uses multiple three-primer PCR (TP-PCR) to detect expansion mutations involving, for example, trinucleotide repeat sequences present in different genes by using differentially labeled locus-specific flanking primers and universal three-primer (TP) primers. Expansion products at any locus that show repeat sizes within the pathogenic size range, or that exceed the maximum normal repeat size, can be quickly identified and sized by capillary electrophoresis. A single amplification reaction provides a reliable one-step mutation screening of multiple disease genes, thereby greatly shortening the long process of diagnosis of affected individuals. The strategy can be applied to simultaneously screen any group of disease genes that share the same repeat sequence.
在一个实施方案中,扩增产物根据尺寸进行分离。在一个实施方案中,与参考相比,基因的扩增产物的尺寸变化指示基因中存在重复扩展序列。在一个实施方案中,与参考相比,基因的扩增产物的尺寸没有变化指示基因中不存在重复扩展序列。In one embodiment, the amplified products are separated according to size. In one embodiment, a change in the size of the amplified products of a gene compared to a reference indicates the presence of a repeat expansion sequence in the gene. In one embodiment, no change in the size of the amplified products of a gene compared to a reference indicates the absence of a repeat expansion sequence in the gene.
术语“检测、“确定”、“测量”、“评估”、“评定”和“测定”在本文中可互换使用,是指任何形式的测量,并包括确定要素是否存在。这些术语包括定量和/或定性确定。评定可以是相对或绝对的。The terms "detect," "determine," "measure," "evaluate," "assess," and "determine" are used interchangeably herein to refer to any form of measurement, including determining the presence or absence of an element. These terms include quantitative and/or qualitative determination. Assessments may be relative or absolute.
术语“核酸”是指单链或双链形式的脱氧核糖核苷酸或核糖核苷酸聚合物,并且除非另有限制,否则涵盖以类似于天然存在的核苷酸的方式与核酸杂交的天然核苷酸的已知类似物。The term "nucleic acid" refers to a deoxyribonucleotide or ribonucleotide polymer in single- or double-stranded form, and unless otherwise limited, encompasses known analogs of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides.
如本文所用,术语“核酸”和等价术语,例如“多核苷酸”是指任何长度的聚合形式的核苷酸,例如核糖核苷酸、脱氧核糖核苷酸或肽核酸(PNA),其包含嘌呤和嘧啶碱基,或其他天然的、化学或生物化学修饰的、非天然的或衍生的核苷酸碱基。核酸可以是双链的或单链的。提及单链核酸包括提及有义或反义链。多核苷酸的主链可包括如通常可在RNA或DNA中发现的糖和磷酸基团,或者修饰或取代的糖或磷酸基团。多核苷酸可以包括修饰的核苷酸,例如甲基化核苷酸和核苷酸类似物。核苷酸的序列可以被非核苷酸组分中断。术语核苷、核苷酸、脱氧核苷和脱氧核苷酸通常包括核苷、核苷酸、脱氧核苷和脱氧核苷酸或其类似物的互补物、片段和变体。As used herein, the term "nucleic acid" and equivalent terms, such as "polynucleotide" refer to nucleotides of any length in polymeric form, such as ribonucleotides, deoxyribonucleotides or peptide nucleic acids (PNA), which contain purine and pyrimidine bases, or other natural, chemically or biochemically modified, non-natural or derived nucleotide bases. Nucleic acids can be double-stranded or single-stranded. Reference to single-stranded nucleic acids includes reference to sense or antisense strands. The backbone of a polynucleotide may include sugar and phosphate groups as commonly found in RNA or DNA, or modified or substituted sugar or phosphate groups. A polynucleotide may include modified nucleotides, such as methylated nucleotides and nucleotide analogs. The sequence of nucleotides may be interrupted by non-nucleotide components. The terms nucleoside, nucleotide, deoxynucleoside and deoxynucleotide generally include complements, fragments and variants of nucleosides, nucleotides, deoxynucleosides and deoxynucleotides or their analogs.
术语“引物”在本文中用于指能够在例如PCR技术中用作引物的任何单链寡核苷酸序列。因此,根据本公开的“引物”是指单链寡核苷酸序列,其能够充当引物延伸产物合成的起始点,所述引物延伸产物与待复制的核酸链基本相同(对于正向引物),或者与待复制的核酸链的反向互补物基本相同(对于反向引物)。引物可适用于例如PCR技术。单链包括,例如,由单链核苷酸序列形成的发夹结构。The term "primer" is used herein to refer to any single-stranded oligonucleotide sequence that can be used as a primer in, for example, PCR technology. Therefore, "primer" according to the present disclosure refers to a single-stranded oligonucleotide sequence that can serve as a starting point for the synthesis of a primer extension product that is substantially identical to the nucleic acid strand to be replicated (for a forward primer) or substantially identical to the reverse complement of the nucleic acid strand to be replicated (for a reverse primer). Primers may be suitable for, for example, PCR technology. Single strands include, for example, hairpin structures formed by single-stranded nucleotide sequences.
引物的设计,例如其长度和特异性序列,取决于靶核苷酸序列的性质和引物的使用条件,例如温度和离子强度。The design of the primer, such as its length and specific sequence, depends on the nature of the target nucleotide sequence and the conditions under which the primer is used, such as temperature and ionic strength.
引物可以由本文所述的核苷酸序列组成,或者可以是包含本文所述序列或落在本文所述序列内的10、15、20、25、30、35、40、45、50、75、100个或更多个核苷酸,条件是它们适合于在严格条件下特异性地结合靶序列。在一个实施方案中,引物序列的长度小于35个核苷酸,例如引物序列的长度小于34、33、32、31、30、29、28、27、26、25、24、23、22或21个核苷酸。Primer can be made up of nucleotide sequence as described herein, or can be 10,15,20,25,30,35,40,45,50,75,100 or more nucleotides that comprise sequence as described herein or fall within sequence as described herein, condition is that they are suitable for specifically binding target sequence under stringent conditions.In one embodiment, the length of primer sequence is less than 35 nucleotides, for example the length of primer sequence is less than 34,33,32,31,30,29,28,27,26,25,24,23,22 or 21 nucleotides.
可以对引物或探针的长度或序列进行轻微修改,以维持给定情况下所需的特异性和敏感性。在本公开的一个实施方案中,本文所述的探针和/或引物的长度可以例如在任意方向上延伸1、2、3、4或5个核苷酸,或者减少1、2、3、4或5个核苷酸。The length or sequence of the primer or probe may be slightly modified to maintain the specificity and sensitivity required in a given situation. In one embodiment of the present disclosure, the length of the probe and/or primer described herein may be, for example, extended by 1, 2, 3, 4, or 5 nucleotides in either direction, or reduced by 1, 2, 3, 4, or 5 nucleotides.
引物序列可以使用本领域公知的任何方法合成。Primer sequences can be synthesized using any method known in the art.
术语“互补的”是指核苷酸或核酸之间的碱基配对,例如双链DNA分子的两条链之间,或寡核苷酸引物和待测序或扩增的单链核酸上的引物结合位点之间的碱基配对。互补的核苷酸通常是A和T(或A和U),或C和G。当经过最佳排列和比较,并具有适当的核苷酸插入或缺失的一条链的核苷酸与另一条链的至少约80%的核苷酸(通常为另一条链的至少约90%至95%的核苷酸,且更优选另一条链的约98%至100%的核苷酸)配对时,两个单链RNA或DNA分子被认为是互补的。备选地,当RNA或DNA链在选择性杂交条件下将与其互补物杂交时,存在互补性。典型地,当在一段至少14至25个的核苷酸上有至少约65%的互补性,优选至少约75%,且更优选至少约90%的互补性时,将发生选择性杂交。The term "complementary" refers to base pairing between nucleotides or nucleic acids, such as between the two strands of a double-stranded DNA molecule, or between an oligonucleotide primer and a primer binding site on a single-stranded nucleic acid to be sequenced or amplified. Complementary nucleotides are typically A and T (or A and U), or C and G. Two single-stranded RNA or DNA molecules are considered complementary when the nucleotides of one strand, after optimal alignment and comparison, and with appropriate nucleotide insertions or deletions, are paired with at least about 80% of the nucleotides of the other strand (usually at least about 90% to 95% of the nucleotides of the other strand, and more preferably about 98% to 100% of the nucleotides of the other strand). Alternatively, complementarity exists when an RNA or DNA strand will hybridize with its complement under selective hybridization conditions. Typically, selective hybridization will occur when there is at least about 65% complementarity, preferably at least about 75%, and more preferably at least about 90% complementarity over a stretch of at least 14 to 25 nucleotides.
如本文所用,术语“杂交”是指两个单链多核苷酸非共价地结合形成稳定的双链多核苷酸的过程。所得(通常)双链多核苷酸是“杂交体”。形成稳定杂交体的多核苷酸群体的比例在本文中称为“杂交度”As used herein, the term "hybridization" refers to the process by which two single-stranded polynucleotides non-covalently bind to form a stable double-stranded polynucleotide. The resulting (usually) double-stranded polynucleotide is a "hybrid." The proportion of a population of polynucleotides that form stable hybrids is referred to herein as the "degree of hybridization."
典型地,杂交条件将包括小于约1M,更通常小于约500mM和小于约200mM的盐浓度。杂交温度可低至5℃,但通常大于22℃,更通常大于约30℃,且优选超过约37℃。杂交通常在严格条件(即探针将与其靶子序列杂交的条件)下进行。严格条件是序列依赖性的,并且在不同环境下是不同的。较长的片段可能需要更高的杂交温度来进行特异性杂交。由于其他因素可能影响杂交的严格性,包括互补链的碱基组成和长度、有机溶剂的存在和碱基错配的程度,因此参数的组合比单独的任一个的绝对度量更重要。通常,严格条件被选择为比特定序列在限定的离子强度和pH下的热力学熔点(Tm)低约5℃。Tm是平衡状态下50%的与靶序列互补的探针与靶序列杂交的温度(在限定的离子强度、pH和核酸组成下)。典型地,严格条件包括在pH 7.0至8.3和至少25℃的温度下至少0.01M至不超过1M Na离子浓度(或其他盐)的盐浓度。例如,5X SSPE(750mM NaCl,50mM Na磷酸盐,5mM EDTA,pH 7.4)和25-30℃的温度的条件适合于等位基因特异性探针杂交。Typically, hybridization conditions will include a salt concentration of less than about 1M, more usually less than about 500mM and less than about 200mM. The hybridization temperature can be as low as 5°C, but is usually greater than 22°C, more usually greater than about 30°C, and preferably greater than about 37°C. Hybridization is usually carried out under stringent conditions (i.e., conditions under which the probe will hybridize with its target subsequence). Stringent conditions are sequence-dependent and are different under different environments. Longer fragments may require higher hybridization temperatures for specific hybridization. Since other factors may affect the stringency of hybridization, including the base composition and length of the complementary chain, the presence of organic solvents, and the degree of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. Typically, stringent conditions are selected to be about 5°C lower than the thermodynamic melting point (Tm) of a specific sequence at a defined ionic strength and pH. Tm is the temperature at which 50% of the probes complementary to the target sequence hybridize with the target sequence in a state of equilibrium (under defined ionic strength, pH, and nucleic acid composition). Typically, stringent conditions include a salt concentration of at least 0.01 M to no more than 1 M Na ion concentration (or other salts) at a pH of 7.0 to 8.3 and a temperature of at least 25° C. For example, conditions of 5X SSPE (750 mM NaCl, 50 mM Na phosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30° C. are suitable for allele-specific probe hybridization.
引物与靶序列的“特异性结合”或“特异性杂交”意指在所使用的实验条件下,例如在严格杂交条件下,引物与靶序列区域的部分或与整个靶序列(根据需要)形成双链体(双链核苷酸序列),并且在这些条件下,引物不与待分析样品中存在的核苷酸序列的其他区域形成双链体。"Specific binding" or "specific hybridization" of a primer to a target sequence means that under the experimental conditions used, for example, under stringent hybridization conditions, the primer forms a duplex (double-stranded nucleotide sequence) with part of the target sequence region or with the entire target sequence (as required), and under these conditions, the primer does not form a duplex with other regions of the nucleotide sequence present in the sample to be analyzed.
术语“重复扩展序列”可指已经过扩展突变,导致核苷酸重复序列延长超过正常重复尺寸的核苷酸重复序列。The term "repeat expansion sequence" may refer to a nucleotide repeat sequence that has undergone an expansion mutation resulting in the nucleotide repeat sequence being elongated beyond the normal repeat size.
在一个实施方案中,重复扩展序列是三核苷酸重复扩展序列。在其他实施方案中,重复扩展序列是四核苷酸或五核苷酸重复扩展序列或其他长度的重复扩展序列,例如6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个核苷酸的重复序列。In one embodiment, the repeat expansion sequence is a trinucleotide repeat expansion sequence. In other embodiments, the repeat expansion sequence is a tetranucleotide or pentanucleotide repeat expansion sequence or a repeat expansion sequence of other lengths, such as a repeat sequence of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides.
在一个实施方案中,核苷酸重复序列是三核苷酸重复序列。在一个实施方案中,三核苷酸重复序列选自(CGG)n、(CCG)n、(CAG)n、(CTG)n、(GCC)n、(GGC)n、(GAA)n或(TTC)n,其中n为2至200或更大。(CGG)n重复序列包括(GCG)n和(GGC)n。类似地,(CCG)n序列包括(CGC)n和(GCC)n,并且(CTG)n序列包括(TGC)n和(GCT)n。In one embodiment, the nucleotide repeat sequence is a trinucleotide repeat sequence. In one embodiment, the trinucleotide repeat sequence is selected from (CGG) n , (CCG) n , (CAG) n , (CTG) n , (GCC) n , (GGC) n , (GAA) n or (TTC) n , wherein n is 2 to 200 or greater. (CGG) n repeat sequences include (GCG) n and (GGC) n . Similarly, (CCG) n sequences include (CGC) n and (GCC) n , and (CTG) n sequences include (TGC) n and (GCT) n .
如本文提及的“通用引物”可与由两个或更多个基因共享的“共同靶序列”结合,其中“共同靶序列”位于核苷酸重复序列内并且位于由基因特异性引物结合的相反链上。A "universal primer" as referred to herein can bind to a "common target sequence" shared by two or more genes, wherein the "common target sequence" is located within the nucleotide repeat sequence and is located on the opposite strand to that bound by the gene-specific primer.
如本文提及的“基因特异性引物”可指特异性地与特定基因结合但不与其他基因结合的引物。A "gene-specific primer" as mentioned herein may refer to a primer that specifically binds to a particular gene but does not bind to other genes.
术语“基因”广泛用于指与生物功能相关的任何核酸。基因通常包括编码序列和/或此类编码序列表达所需的调控序列。术语基因可应用于特定的基因组序列,以及应用于由该基因组序列编码的cDNA或mRNA。基因还包括非表达核酸段,其例如形成其他蛋白的识别序列。非表达的调控序列包括启动子和增强子,调控蛋白(例如转录因子)与之结合,导致相邻或附近序列的转录。The term "gene" is widely used to refer to any nucleic acid associated with a biological function. A gene generally includes a coding sequence and/or a regulatory sequence required for the expression of such a coding sequence. The term gene can be applied to a specific genomic sequence, as well as to a cDNA or mRNA encoded by the genomic sequence. A gene also includes a non-expressed nucleic acid segment, which, for example, forms a recognition sequence for other proteins. Non-expressed regulatory sequences include promoters and enhancers, to which regulatory proteins (e.g., transcription factors) bind, resulting in transcription of adjacent or nearby sequences.
在一个实施方案中,通用引物与共同靶序列结合,所述共同靶序列包含5、6、7、8、9、10个或更多个连续的三核苷酸重复或由其组成。在一个实施方案中,通用引物与(CGG)5(SEQ ID NO:15)结合。在一个实施方案中,通用引物与(CTG)5(SEQ ID NO:16)结合。In one embodiment, the universal primer binds to a common target sequence comprising or consisting of 5, 6, 7, 8, 9, 10 or more consecutive trinucleotide repeats. In one embodiment, the universal primer binds to (CGG) 5 (SEQ ID NO: 15). In one embodiment, the universal primer binds to (CTG) 5 (SEQ ID NO: 16).
在一个实施方案中,通用引物与共同靶序列结合,所述共同靶序列包含2、3、4、5、6、7、8、9、10个或更多个连续的四核苷酸、五核苷酸或更多核苷酸的重复单元或由其组成。在一个实施方案中,五核苷酸重复序列是(TTTCA)n,其包括(CATTT)n和(ATTTC)n。In one embodiment, the universal primer binds to a common target sequence that comprises or consists of 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive repeating units of tetranucleotides, pentanucleotides or more. In one embodiment, the pentanucleotide repeat sequence is (TTTCA) n , which includes (CATTT) n and (ATTTC) n .
在一个实施方案中,通用引物包含独特尾部序列。在一个实施方案中,通用引物包含独特5'尾部序列。术语“独特尾部序列”或“独特5'尾部序列”是指在严格条件下不与核酸样品中任何基因或基因间区域中的任何区域杂交序列,其用于检测重复扩展序列的存在或不存在。In one embodiment, the universal primer comprises a unique tail sequence. In one embodiment, the universal primer comprises a unique 5' tail sequence. The term "unique tail sequence" or "unique 5' tail sequence" refers to a sequence that does not hybridize to any region in any gene or intergenic region in a nucleic acid sample under stringent conditions, and is used to detect the presence or absence of a repeat expansion sequence.
在一个实施方案中,该方法包括提供特异性地结合通用引物的独特5'尾部序列的尾部引物。将独特5'尾部序列添加到通用引物中,并提供特异性地与独特5'尾部序列结合的尾部引物,可改善重复尺寸确定的准确性。In one embodiment, the method includes providing a tail primer that specifically binds to a unique 5' tail sequence of a universal primer. Adding a unique 5' tail sequence to a universal primer and providing a tail primer that specifically binds to the unique 5' tail sequence can improve the accuracy of repeat size determination.
在一个实施方案中,基因特异性引物被标记。每个基因特异性引物可以例如用不同的荧光团标记,以使来自每个基因的扩增产物能够彼此区分。例如,可以使用FAM或Hex标记。In one embodiment, the gene-specific primer is labeled. Each gene-specific primer can be labeled, for example, with a different fluorophore so that the amplified products from each gene can be distinguished from each other. For example, FAM or Hex labels can be used.
在一个实施方案中,荧光标记可以在光谱的蓝色、黄色、绿色和远红色区域中有活性。在优选实施方案中,可用于本公开的方法的荧光标记物的非限制性实例包括:荧光标记物或报告染料,例如6-羧基荧光素(6FAMTM)、NEDTM(Applera Corporation)、HEXTM或VICTM(Applied Biosystems);TAMRATM标记物(Applied Biosystems,CA,USA)、ROX。本领域技术人员将理解,在根据本公开的方法中也可以使用其他替代性荧光标记。In one embodiment, the fluorescent label can be active in the blue, yellow, green and far red regions of the spectrum. In a preferred embodiment, non-limiting examples of fluorescent labels that can be used for the methods of the present disclosure include: fluorescent labels or reporter dyes, such as 6-carboxyfluorescein (6FAM ™ ), NED ™ (Applera Corporation), HEX ™ or VIC ™ (Applied Biosystems); TAMRA ™ markers (Applied Biosystems, CA, USA), ROX. It will be appreciated by those skilled in the art that other alternative fluorescent labels may also be used in the methods according to the present disclosure.
在另一个实施方案中,可以使用化学发光标记,例如钌探针;以及放射性标记,例如氚化胸苷形式的氚。32-磷也可用作放射性标记。In another embodiment, chemiluminescent labels, such as ruthenium probes, and radioactive labels, such as tritium in the form of tritiated thymidine, can be used. 32-Phosphorus can also be used as a radioactive label.
备选地,标记可选自电致发光标签、磁性标签、亲和力或结合性标签、核苷酸序列标签、位置特异性标签和/或具有特定物理性质(例如不同的尺寸、质量、回转、离子强度、介电性质、极化或阻抗)的标签。Alternatively, the label may be selected from electroluminescent tags, magnetic tags, affinity or binding tags, nucleotide sequence tags, position-specific tags and/or tags with specific physical properties (e.g. different size, mass, rotation, ionic strength, dielectric properties, polarization or impedance).
在一个实施方案中,可检测标记可以直接或间接附着于引物上。在一个实施方案中,标记的引物是反向引物。在一个实施方案中,可检测标记包括附着在探针的5'端的荧光部分。在最优选的实施方案中,标记选自6-FAM和NED。In one embodiment, the detectable label can be attached directly or indirectly to the primer. In one embodiment, the labeled primer is a reverse primer. In one embodiment, the detectable label comprises a fluorescent moiety attached to the 5' end of the probe. In a most preferred embodiment, the label is selected from 6-FAM and NED.
在备选实施方案中,用核酸嵌入荧光团检测核酸。优选地,嵌入荧光团是SYBRGreen或EvaGreen等。本领域技术人员将理解,可以使用在光谱的蓝色、黄色、绿色和远红色区域中有活性的其他嵌入荧光团。将进一步理解的是,根据本公开内容,可以使用其他嵌入荧光团。In an alternative embodiment, nucleic acids are detected with nucleic acid intercalating fluorophores. Preferably, the intercalating fluorophore is SYBRGreen or EvaGreen, etc. It will be appreciated by those skilled in the art that other intercalating fluorophores active in the blue, yellow, green, and far-red regions of the spectrum may be used. It will be further appreciated that other intercalating fluorophores may be used in accordance with the present disclosure.
本文提及的术语“样品”可来源于生物流体、细胞、组织、器官或生物体,其包括将进行拷贝数变化的筛查的具有至少一个核酸序列的核酸或核酸混合物。在某些实施方案中,样品具有至少一个核酸序列,怀疑其拷贝数已经过变化。此类样品包括但不限于痰/口腔液、羊水、血液、血液级分或细针活检样品、尿液、腹膜液、胸膜液等。尽管样品通常取自人受试者(例如患者),但样品可以取自任何哺乳动物,包括但不限于狗、猫、马、山羊、绵羊、牛、猪等。样品可以如从生物来源获得的直接使用或在改变样品的特性的预处理后使用。例如,这种预处理可以包括从血液制备血浆、稀释粘性流体等等。预处理的方法还可涉及但不限于过滤、沉淀、稀释、蒸馏、混合、离心、冷冻、冻干、浓缩、扩增、核酸片段化、干扰组分的灭活、试剂的添加、裂解等。在对于样品采用此类预处理方法的情况下,此类预处理方法通常使得目的核酸保留在测试样品中,有时浓度与未经处理的测试样品(例如,即,未经受任何此类预处理方法的样品)中的浓度成比例。The term "sample" mentioned herein may be derived from a biological fluid, cell, tissue, organ or organism, including a nucleic acid or a mixture of nucleic acids with at least one nucleic acid sequence for screening of copy number variation. In certain embodiments, the sample has at least one nucleic acid sequence, and it is suspected that its copy number has been changed. Such samples include but are not limited to sputum/oral fluid, amniotic fluid, blood, blood fractions or fine needle biopsy samples, urine, peritoneal fluid, pleural fluid, etc. Although samples are usually taken from human subjects (such as patients), samples can be taken from any mammal, including but not limited to dogs, cats, horses, goats, sheep, cattle, pigs, etc. Samples can be used directly or after pretreatment of the characteristics of the sample as obtained from biological sources. For example, this pretreatment can include preparing plasma from blood, diluting viscous fluids, etc. The method of pretreatment may also be related to but not limited to filtration, precipitation, dilution, distillation, mixing, centrifugation, freezing, freeze-drying, concentration, amplification, nucleic acid fragmentation, inactivation of interfering components, addition of reagents, cracking, etc. Where such pretreatment methods are employed on a sample, such pretreatment methods typically result in retention of the nucleic acid of interest in the test sample, sometimes at a concentration proportional to that in an untreated test sample (e.g., i.e., a sample that has not been subjected to any such pretreatment methods).
对照样品可以是阴性或阳性对照样品。“阴性对照样品”或“未受影响的样品”是指包括已知或预期具有重复序列的核酸的样品,所述重复序列具有在非致病范围内的重复数量。“阳性对照样品”或“受影响的样品”已知或预期具有重复序列,所述重复序列具有在致病范围内的重复数量。阴性对照样品中重复序列的重复通常并未扩展超过正常范围,而阳性对照样品中重复序列的重复通常已经扩展超过正常范围。因此,可以将测试样品中的核酸与一个或多个对照样品进行比较。A control sample can be a negative or positive control sample. A "negative control sample" or "unaffected sample" refers to a sample that includes a nucleic acid known or expected to have a repetitive sequence with a number of repeats within the non-pathogenic range. A "positive control sample" or "affected sample" is known or expected to have a repetitive sequence with a number of repeats within the pathogenic range. The repetition of the repetitive sequence in the negative control sample is generally not extended beyond the normal range, while the repetition of the repetitive sequence in the positive control sample is generally extended beyond the normal range. Therefore, the nucleic acid in the test sample can be compared to one or more control samples.
本文中的术语“生物流体”是指取自生物源的液体,并且包括例如血液、血清、血浆、痰、灌洗液、脑脊液、尿液、精液、汗液、泪液、唾液等。如本文所用,术语“血液”、“血浆”和“血清”明确涵盖其级分或经加工的部分。同样,在样品取自活检、拭子、涂片等的情况下,“样品”明确涵盖来源于活检、拭子、涂片等的经加工的级分或部分。The term "biological fluid" herein refers to a liquid taken from a biological source, and includes, for example, blood, serum, plasma, sputum, lavage fluid, cerebrospinal fluid, urine, semen, sweat, tears, saliva, etc. As used herein, the terms "blood", "plasma" and "serum" explicitly encompass fractions or processed portions thereof. Similarly, in the case where the sample is taken from a biopsy, swab, smear, etc., the "sample" explicitly encompasses processed fractions or portions derived from a biopsy, swab, smear, etc.
“标记”是指能够产生可测量信号并与多核苷酸共价或非共价连接的报告分子(例如荧光团)。"Label" refers to a reporter molecule (eg, a fluorophore) that is capable of producing a measurable signal and is covalently or non-covalently attached to a polynucleotide.
在一个实施方案中,该方法包括使用尺寸分离技术或测序技术分析扩增产物。尺寸分离技术可以是基于电泳的技术(例如毛细管电泳)。例如,可以使用通过尺寸分离聚合物进行的毛细管电泳。荧光标记的PCR产物(经由使用5'端标记的引物)在其通过聚合物填充的毛细管迁移和分辨时经由激光激发进行检测。另一种尺寸分离技术是平板凝胶PAGE(聚丙烯酰胺凝胶电泳)。PCR产物可以使用5'端标记的引物进行荧光标记,并在其通过平板凝胶迁移和分辨时经由激光激发进行检测。PCR产物也可以经由5'端标记的引物或经由在PCR过程期间掺入放射性同位素标记的核苷酸进行放射性标记,并通过将平板凝胶暴露于X射线胶片来检测。测序技术可以是下一代测序。通过使用长读下一代测序,可以对PCR产物进行测序,并且属于目标基因的所有读段可从最短到最长进行排列,或反之亦然。In one embodiment, the method includes using size separation technology or sequencing technology to analyze the amplified product. Size separation technology can be a technology based on electrophoresis (such as capillary electrophoresis). For example, capillary electrophoresis performed by size separation polymer can be used. Fluorescently labeled PCR products (via primers using 5' end labels) are detected via laser excitation when they migrate and resolve through polymer-filled capillaries. Another size separation technology is slab gel PAGE (polyacrylamide gel electrophoresis). PCR products can be fluorescently labeled using 5' end-labeled primers, and detected via laser excitation when they migrate and resolve through slab gels. PCR products can also be radiolabeled via 5' end-labeled primers or via incorporation of radioisotope-labeled nucleotides during the PCR process, and detected by exposing the slab gel to X-ray film. Sequencing technology can be next generation sequencing. By using long read next generation sequencing, PCR products can be sequenced, and all reads belonging to the target gene can be arranged from the shortest to the longest, or vice versa.
如本文提及的两个或更多个基因可以在同一染色体上彼此相邻或彼此接近。备选地,它们可以在不同的染色体上。As mentioned herein, two or more genes can be adjacent to each other or close to each other on the same chromosome. Alternatively, they can be on different chromosomes.
在一个实施方案中,两个或更多个基因由FMR1和AFF2组成或包含FMR1和AFF2。FMR1和AFF2位于相邻染色体带中长臂上的同一染色体(X)上。这提供了一种同时测试包括FMR1和AFF2的两个或更多个基因的简单方法,FMR1和AFF2中的任一个都可造成患者表现出的疾病。In one embodiment, the two or more genes consist of or include FMR1 and AFF2. FMR1 and AFF2 are located on the same chromosome (X) on the long arm in adjacent chromosome bands. This provides a simple method for simultaneously testing two or more genes including FMR1 and AFF2, either of which can cause the disease exhibited by the patient.
在一个实施方案中,该方法包括使核酸样品与以下接触:a)基因特异性引物,其包含与SEQ ID NO:1的核酸序列具有至少90%序列同一性的核酸或由其组成;b)基因特异性引物,其包含与SEQ ID NO:2的核酸序列具有至少90%序列同一性的核酸或由其组成;和C)通用引物,其包含与SEQ ID NO:3或(CGG)5(SEQ ID NO 15)的核酸序列具有至少90%序列同一性的核酸序列或由其组成。In one embodiment, the method comprises contacting a nucleic acid sample with: a) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 1; b) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 2; and c) a universal primer comprising or consisting of a nucleic acid sequence having at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 3 or (CGG) 5 (SEQ ID NO 15).
在一个实施方案中,两个或更多个基因包括或选自SCA1、SCA2、SCA3、SCA6、SCA7、SCA12和DRPLA。在一个实施方案中,两个或更多个基因由两个、三个、四个、五个、六个或七个或更多个基因组成,所述基因包括或选自SCA1、SCA2、SCA3、SCA6、SCA7、SCA12和DRPLA。In one embodiment, the two or more genes include or are selected from SCA1, SCA2, SCA3, SCA6, SCA7, SCA12 and DRPLA. In one embodiment, the two or more genes consist of two, three, four, five, six or seven or more genes, and the genes include or are selected from SCA1, SCA2, SCA3, SCA6, SCA7, SCA12 and DRPLA.
在一个实施方案中,两个或更多个基因是HTT和JPH3。In one embodiment, the two or more genes are HTT and JPH3.
在一个实施方案中,两个或更多个基因由ATXN1、ATXN2、ATXN3、CACNA1A、ATXN7、PPP2R2B和ATN1组成。In one embodiment, the two or more genes consist of ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, PPP2R2B, and ATN1.
在一个实施方案中,两个或更多个基因包括或选自ATXN1、ATXN2、ATXN3、CACNA1A、ATXN7、PPP2R2B、ATN1、TBP、ATXN8、ATXN8OS、AR、HTT、JPH3、TCF4和DMPK,并且由这些基因中的两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个或全部组成。In one embodiment, the two or more genes include or are selected from ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, PPP2R2B, ATN1, TBP, ATXN8, ATXN8OS, AR, HTT, JPH3, TCF4 and DMPK, and consist of two, three, four, five, six, seven, eight, nine, ten or more or all of these genes.
在一个实施方案中,两个或更多个基因包括或选自FMR1、AFF2、NUTM2BAS1、LRP12、GIPC1、NOTCH2NLC、RILPL1、PABPN1和ARX,并且由这些基因中的两个、三个、四个、五个、六个、七个、八个或全部组成。In one embodiment, the two or more genes include or are selected from FMR1, AFF2, NUTM2BAS1, LRP12, GIPC1, NOTCH2NLC, RILPL1, PABPN1 and ARX, and consist of two, three, four, five, six, seven, eight or all of these genes.
在一个实施方案中,两个或更多个基因包括或选自DAB1、SAMD12、STARD7、TNRC6A和RAPGEF2,并且由这些基因中的两个、三个、四个或全部组成。In one embodiment, the two or more genes include or are selected from DAB1, SAMD12, STARD7, TNRC6A and RAPGEF2, and consist of two, three, four or all of these genes.
在一个实施方案中,该方法包括使核酸样品与以下接触:a)基因特异性引物,其包含与SEQ ID NO:7的核酸序列具有至少90%序列同一性的核酸或由其组成;b)基因特异性引物,其包含与SEQ ID NO:8的核酸序列具有至少90%序列同一性的核酸或由其组成;c)基因特异性引物,其包含与SEQ ID NO:9的核酸序列具有至少90%序列同一性的核酸或由其组成;d)基因特异性引物,其包含与SEQ ID NO:10的核酸序列具有至少90%序列同一性的核酸或由其组成;e)基因特异性引物,其包含与SEQ ID NO:11的核酸序列具有至少90%序列同一性的核酸或由其组成;f)基因特异性引物,其包含与SEQ ID NO:12的核酸序列具有至少90%序列同一性的核酸或由其组成;和/或g)基因特异性引物,其包含与SEQ ID NO:13的核酸序列具有至少90%序列同一性的核酸或由其组成,和h)通用引物,其包含与SEQ IDNO:14或(CTG)5(SEQ ID NO:16)的核酸序列具有至少90%序列同一性的核酸序列或由其组成。In one embodiment, the method comprises contacting the nucleic acid sample with: a) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:7; b) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:8; c) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:9; d) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:10; e) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:11; f) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:12; and/or g) a gene-specific primer comprising or consisting of a nucleic acid having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:13. NO:13, and h) a universal primer comprising or consisting of a nucleic acid sequence having at least 90% sequence identity to the nucleic acid sequence of SEQ ID NO:14 or (CTG) 5 (SEQ ID NO:16).
本文公开了一种用于检测从受试者获得的核酸样品中的两个或更多个基因中重复扩展序列存在或不存在的试剂盒,该试剂盒包括:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物。Disclosed herein is a kit for detecting the presence or absence of a repeat expansion sequence in two or more genes in a nucleic acid sample obtained from a subject, the kit comprising: a) gene-specific primers that specifically bind to different target sequences of each of the two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and is located on the opposite strand to that bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene.
本文公开了包含从受试者获得的核酸样品的组合物,该组合物包含a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物。Disclosed herein is a composition comprising a nucleic acid sample obtained from a subject, the composition comprising a) gene-specific primers that specifically bind to different target sequences of each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) a universal primer that binds to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and is located on the opposite strand to that bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene.
本文公开了一种在受试者中筛查一种或多种多重重复扩展疾病的方法,该方法包括:i)使来自受试者的核酸样品在扩增条件下与以下接触:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;和ii)分析扩增产物以在受试者中筛查一种或多种多重重复扩展疾病。Disclosed herein is a method for screening for one or more multiple repeat expansion diseases in a subject, the method comprising: i) contacting a nucleic acid sample from the subject with: a) gene-specific primers that specifically bind to different target sequences in each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand to that bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; and ii) analyzing the amplification products to screen for one or more multiple repeat expansion diseases in the subject.
术语“多重复扩展疾病”是指由某些基因中DNA重复基序(例如三核苷酸重复基序)的数量增加超过正常、稳定的阈值(每个基因的阈值不同)而引起的遗传性疾病。该术语旨在包括所有这种性质的疾病,并包括表1中列出的疾病。The term "multiple repeat expansion disease" refers to a genetic disorder caused by an increase in the number of DNA repeat motifs (e.g., trinucleotide repeat motifs) in certain genes above a normal, stable threshold (the threshold is different for each gene). The term is intended to include all disorders of this nature and includes the disorders listed in Table 1.
表1.由不同重复基序的扩展引起的疾病Table 1. Diseases caused by expansions of different repeat motifs
在一个实施方案中,一种或多种多重重复扩展疾病包括表1中列出的一种或多种疾病或由表1中列出的一种或多种疾病组成。In one embodiment, the one or more multiple repeat expansion diseases include or consist of one or more diseases listed in Table 1.
在一个实施方案中,一种或多种多重重复扩展疾病包含包括或选自以下的疾病或由其组成:脆性X综合征(FXS)、脆性X相关原发性卵巢功能不全(FXPOI)、脆性X相关震颤/共济失调综合征(FXTAS)和脆性XE非综合征性智力障碍(FRAXE NSID)。In one embodiment, the one or more multiple repeat expansion diseases comprise or consist of a disease comprising or selected from the group consisting of Fragile X syndrome (FXS), Fragile X-associated primary ovarian insufficiency (FXPOI), Fragile X-associated tremor/ataxia syndrome (FXTAS), and Fragile XE non-syndromic intellectual disability (FRAXE NSID).
在一个实施方案中,该方法区分FXS、FXPOI、FXTAS和FRAXE NSID。In one embodiment, the method distinguishes between FXS, FXPOI, FXTAS, and FRAXE NSID.
在一个实施方案中,一种或多种多重重复扩展疾病是脊髓小脑性共济失调(SCA)和/或齿状核红核苍白球路易体萎缩症(DRPLA)。In one embodiment, the one or more multiple repeat expansion diseases are spinocerebellar ataxia (SCA) and/or dentatorubral pallidum atrophy with Lewy bodies (DRPLA).
在一个实施方案中,该方法区分SCA和DRPLA。在一个实施方案中,该方法区分不同的SCA类型和DRPLA。In one embodiment, the method distinguishes between SCA and DRPLA. In one embodiment, the method distinguishes between different SCA types and DRPLA.
在一个实施方案中,一种或多种多重重复扩展疾病是亨廷顿病(HD)和亨廷顿病样2(HDL2)。In one embodiment, the one or more multiple repeat expansion diseases are Huntington's disease (HD) and Huntington's disease-like 2 (HDL2).
在一个实施方案中,该方法区分亨廷顿病(HD)和亨廷顿病样2(HDL2)。In one embodiment, the method distinguishes between Huntington's disease (HD) and Huntington's disease-like 2 (HDL2).
在一个实施方案中,该方法区分不同的眼咽远端型肌病(OPDM)类型、眼咽肌营养不良(OPMD)、伴有白质脑病的眼咽肌病(OPML)和发育性癫痫性脑病(DEE)。In one embodiment, the method distinguishes between different types of oculopharyngeal distal myopathy (OPDM), oculopharyngeal muscular dystrophy (OPMD), oculopharyngeal myopathy with leukoencephalopathy (OPML), and developmental epileptic encephalopathy (DEE).
在一个实施方案中,该方法区分不同的家族性成人肌阵挛性癫痫(FAME)类型和脊髓小脑性共济失调(SCA)类型37。In one embodiment, the method distinguishes between different types of familial adult myoclonic epilepsy (FAME) and spinocerebellar ataxia (SCA)37.
“受试者”或“患者”是指需要治疗的任何单个受试者,包括人、牛、马、猪、山羊、绵羊、狗、猫、豚鼠、兔、鸡、昆虫等。受试者还旨在包括参与临床研究试验但未显示出任何疾病临床体征的任何受试者或参与流行病学研究的受试者,或用作对照的受试者。"Subject" or "patient" refers to any individual subject in need of treatment, including humans, cows, horses, pigs, goats, sheep, dogs, cats, guinea pigs, rabbits, chickens, insects, etc. Subjects are also intended to include any subject participating in a clinical research trial but not showing any clinical signs of disease or a subject participating in an epidemiological study, or a subject used as a control.
本文公开了一种在受试者中筛查一种或多种多重重复扩展疾病并治疗该受试者的方法,该方法包括:i)使来自受试者的核酸样品在扩增条件下与以下接触:a)特异性地与两个或更多个基因中各个基因的不同靶序列结合的基因特异性引物,其中每个基因包含核苷酸重复序列,并且其中不同靶序列在每个基因中的核苷酸重复序列的上游或下游;和b)与由两个或更多个基因共享的共同靶序列结合的通用引物,其中共同靶序列位于核苷酸重复序列内并且位于由每个基因的基因特异性引物结合的相反链上;其中基因特异性引物和通用引物能够从每个基因产生一种或多种扩增产物;ii)分析扩增产物以在受试者中筛查一种或多种多重重复扩展疾病;和iii)治疗被发现患有至少一种多重重复扩展疾病的受试者。Disclosed herein is a method for screening for one or more multiple repeat expansion diseases in a subject and treating the subject, the method comprising: i) contacting a nucleic acid sample from the subject with: a) gene-specific primers that specifically bind to different target sequences in each of two or more genes, wherein each gene comprises a nucleotide repeat sequence, and wherein the different target sequences are upstream or downstream of the nucleotide repeat sequence in each gene; and b) universal primers that bind to a common target sequence shared by the two or more genes, wherein the common target sequence is located within the nucleotide repeat sequence and on the opposite strand bound by the gene-specific primer of each gene; wherein the gene-specific primers and the universal primer are capable of producing one or more amplification products from each gene; ii) analyzing the amplification products to screen for one or more multiple repeat expansion diseases in the subject; and iii) treating the subject found to have at least one multiple repeat expansion disease.
术语“治疗”等还包括在至少一段时间内缓解、减少、减轻、改善或以其他方式抑制病况的影响。还应理解的是,术语“治疗”等并不意味着病况或其症状被永久缓解、减少、减轻、改善或以其他方式抑制,并且因此也涵盖病况或其症状的暂时缓解、减少、减轻、改善或以其他方式的抑制。The terms "treat", "treatment", and the like also include alleviating, reducing, alleviating, improving, or otherwise inhibiting the effects of a condition for at least a period of time. It should also be understood that the terms "treat", "treatment", and the like do not mean that a condition or its symptoms are permanently alleviated, reduced, alleviated, improved, or otherwise inhibited, and thus also encompass temporary alleviation, reduction, alleviation, improvement, or other inhibition of a condition or its symptoms.
治疗受试者的方法可包括向受试者施用药物,或者可包括向受试者提供早期干预管理。The method of treating a subject may include administering a drug to the subject, or may include providing early intervention management to the subject.
术语“施用”是指使如本文提及的抑制剂与受试者接触、将其施加、注射、输注或提供给受试者。The term "administering" means bringing an inhibitor as referred to herein into contact with a subject, applying it, injecting it, infusing it or providing it to a subject.
在整个本说明书和所附的声明中,除非上下文另有要求,否则词语“包含(comprise)”以及诸如“包含(comprises)”和“包含(comprising)”之类的变体将被理解为意味着包括所述整数或步骤或整数或步骤组,但不排除任何其他整数或步骤或整数或步骤组。Throughout this specification and the appended claims, unless the context requires otherwise, the word "comprise" and variations such as "comprises" and "comprising", will be understood to mean the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
如本说明书中所用,单数形式“一个”、“一种”和“该/所述”包括复数形式,除非上下文另有明确规定。因此,例如,提及“一种方法”包括单种方法以及两种或更多种方法;提及“一种药剂”包括单种药剂以及两种或更多种药剂;提及“本公开”包括本公开教导的单个和多个方面;等等。本文教导和授权的方面涵盖在术语“发明”中。考虑了任何变体和衍生物。As used in this specification, the singular forms "a", "an", and "the" include the plural forms unless the context clearly dictates otherwise. Thus, for example, reference to "a method" includes a single method as well as two or more methods; reference to "an agent" includes a single agent as well as two or more agents; reference to "the disclosure" includes single and multiple aspects of the disclosure teachings; and so forth. Aspects taught and enabled herein are encompassed within the term "invention". Any variations and derivatives are contemplated.
本说明书中对任何现有出版物(或来源于其的信息)的引用,或对任何已知事项的引用,不是且不应被视为对现有出版物(或来源于其的信息)或已知事项构成本说明书所涉及的领域中的公知常识的部分的确认或承认或任何形式的意见。Reference in this specification to any prior publication (or information derived therefrom), or reference to any known matter, is not and should not be taken as an acknowledgement or acknowledgment or any form of opinion that the prior publication (or information derived therefrom) or known matter constitutes part of the common general knowledge in the field to which this specification relates.
实施例Example
现在将参考以下实施例对本发明的某些实施例进行描述,这些实施例仅旨在用于说明的目的,而不旨在限制上文所述主体的范围。Certain embodiments of the present invention will now be described with reference to the following examples, which are intended for illustrative purposes only and are not intended to limit the scope of the subject matter described above.
实施例1:FRAXA/FRAXEExample 1: FRAXA/FRAXE
材料和方法Materials and methods
生物样品Biological samples
从出生在National University Hospital,Singapore的161个中国男婴、158个马来男婴和89个印度男婴的408个不相关且匿名的脐带血中提取基因组DNA。来自人类变体DNA组(HD100CAU和HD100AA-2)的另外44个高加索男性DNA样品和14个非裔美国男性DNA样品购自Coriell Cell Repositories(Camden,New Jersey,USA)。在测定验证中使用了由40个正常、17个FMR1前突变阳性、23个FMR1全突变阳性和6个AFF2扩展阳性样品组成的已归档和先前表征的基因组DNA。去识别化的正常和FMR1 CGG重复扩展阳性样品从KK Women’sand Children’s Hospital获得。AFF2 CCG重复扩展阳性样品为来自Baylor College ofMedicine(Houston,TX,USA)和The University of Adelaide(Adelaide,SouthAustralia,Australia)的去识别化的归档样品。六个AFF2 CCG重复扩展阳性样品中的四个是相关的。FX0230和FX0229分别为舅父和外甥,而DNA_25926和DNA_3802为父亲和女儿。Genomic DNA was extracted from 408 unrelated and anonymous umbilical cord bloods of 161 Chinese male infants, 158 Malay male infants and 89 Indian male infants born in National University Hospital, Singapore. Another 44 Caucasian male DNA samples and 14 African American male DNA samples from human variant DNA groups (HD100CAU and HD100AA-2) were purchased from Coriell Cell Repositories (Camden, New Jersey, USA). The archived and previously characterized genomic DNA consisting of 40 normal, 17 FMR1 premutation positive, 23 FMR1 full mutation positive and 6 AFF2 expansion positive samples was used in the determination validation. The normal and FMR1 CGG repeat expansion positive samples of de-identification were obtained from KK Women'sand Children's Hospital. The AFF2 CCG repeat expansion positive samples were de-identified archived samples from Baylor College of Medicine (Houston, TX, USA) and The University of Adelaide (Adelaide, South Australia, Australia). Four of the six AFF2 CCG repeat expansion positive samples were related. FX0230 and FX0229 were uncle and nephew, respectively, while DNA_25926 and DNA_3802 were father and daughter.
FMR1和AFF2三核苷酸重复的双重TP-PCRDuplex TP-PCR of FMR1 and AFF2 trinucleotide repeats
对AFF2和FMR1三联体重复扩展的双重筛查利用了三引物(TP)PCR方法,涉及四个引物,Fam标记的FMR1-R(5’-AGCCCCGCACTTCCACCACCAGCTCCTCCA-3’(SEQ ID NO:1)),Hex标记的AFF2-F(5’-CCATGTCGCGGCTTCTAGCTGTCCAGGCTCC-3’(SEQ ID NO:2)),和共享引物TP(5’-TGCTCTGGACCCTGAAGTGTGCCGTTGATACGGCGGCGGCGGCGG-3’(SEQ ID NO:3))以及尾部(5’-TGCTCTGGACCCTGAAGTGTGCCGTTGATA-3’(SEQ ID NO:4))。每个15μl PCR反应含有100ng的基因组DNA,2.5x Q-Solution(Qiagen,Hilden,Germany),含有1.5mM的MgCl2的1x PCR缓冲液(Qiagen),2mM dNTP(dGTP/dCTP与dATP/dTTP的比为5:1)(Roche Applied Science,Mannheim,Germany),各0.6μM的AFF2-F、FMR1-R和尾部引物,0.0006μM的TP引物以及5U的HotStarTaq DNA聚合酶(Qiagen)。在95℃下进行初始15分钟的酶活化,接着是99℃ 45秒,55℃ 45秒和70℃ 8分钟(其中每个延伸周期增加15秒)的40个循环,并最后在72℃下延伸10分钟。Dual screening for AFF2 and FMR1 triplet repeat expansions utilized a three-primer (TP) PCR approach involving four primers, Fam-tagged FMR1-R (5'-AGCCCCGCACTTCCACCACCAGCTCCTCCA-3' (SEQ ID NO: 1)), Hex-tagged AFF2-F (5'-CCATGTCGCGGCTTCTAGCTGTCCAGGCTCC-3' (SEQ ID NO: 2)), and shared primers TP (5'-TGCTCTGGACCCTGAAGTGTGCCGTTGATACGGCGGCGGCGGCGG-3' (SEQ ID NO: 3)) and tail (5'-TGCTCTGGACCCTGAAGTGTGCCGTTGATA-3' (SEQ ID NO: 4)). Each 15 μl PCR reaction contained 100 ng of genomic DNA, 2.5× Q-Solution (Qiagen, Hilden, Germany), 1× PCR buffer (Qiagen) containing 1.5 mM MgCl 2 , 2 mM dNTP (dGTP/dCTP to dATP/dTTP ratio of 5:1) (Roche Applied Science, Mannheim, Germany), 0.6 μM each of AFF2-F, FMR1-R and tail primers, 0.0006 μM TP primer and 5 U of HotStarTaq DNA polymerase (Qiagen). An initial 15-minute enzyme activation was performed at 95° C., followed by 40 cycles of 99° C. 45 seconds, 55° C. 45 seconds and 70° C. 8 minutes (with 15-second increments for each extension cycle), and a final extension at 72° C. for 10 minutes.
跨越FMR1和AFF2三核苷酸重复的标准PCRStandard PCR spanning the FMR1 and AFF2 trinucleotide repeats
跨越FMR1 CGG重复的标准/常规PCR利用了各0.6μM的引物5’-F1和Fam标记的FMR1-R,而跨越AFF2 CCG重复的PCR利用了Hex标记的AFF2-F和AFF2-R(5’-CGCTGCGGGCTCAGGCGGGCT-3’(SEQ ID NO:5))。除了在每个反应中使用50ng的基因组DNA之外,PCR反应和循环条件类似于上述提及的双重TP-PCR。Standard/conventional PCR across the FMR1 CGG repeat utilized primers 5'-F1 and Fam-tagged FMR1-R at 0.6 μM each, while PCR across the AFF2 CCG repeat utilized Hex-tagged AFF2-F and AFF2-R (5'-CGCTGCGGGCTCAGGCGGGCT-3' (SEQ ID NO:5)). PCR reactions and cycling conditions were similar to the above-mentioned duplex TP-PCR except that 50 ng of genomic DNA was used in each reaction.
毛细管电泳Capillary electrophoresis
将2μl双重TP-PCR产物的等分试样与9μl的Hi-DiTM甲酰胺和0.5μl的GeneScanTM500ROXTM染料尺寸标准品(Applied Biosystems,Foster City,California,USA)混合,在95℃下变性5分钟,冷却至4℃,并在使用填充有POP-7TM聚合物的36cm毛细管的3130xl遗传分析仪(Applied Biosystems)中进行分辨。将混合物在1kV下电动注射5秒,并在60℃下电泳40分钟。使用GeneMapperTM软件v4.0(Applied Biosystems)进行分析。如果在初始的毛细管电泳(CE)运行后检测到扩展的等位基因,则使用在10kV下电动注射5秒,并在60℃下电泳40分钟进行第二次CE运行。The aliquot of 2 μ l duplex TP-PCR product is mixed with 9 μ l Hi-Di TM formamide and 0.5 μ l GeneScan TM 500ROX TM dye size standard (Applied Biosystems, Foster City, California, USA), denatured at 95 ℃ for 5 minutes, cooled to 4 ℃, and resolved in the 3130xl genetic analyzer (Applied Biosystems) using the 36 cm capillary filled with POP-7 TM polymer. The mixture is injected electrically for 5 seconds at 1 kV, and electrophoresed for 40 minutes at 60 ℃. GeneMapper TM software v4.0 (Applied Biosystems) is used to analyze. If the extended allele is detected after the initial capillary electrophoresis (CE) runs, then use an electric injection of 5 seconds at 10 kV, and electrophoresis for 40 minutes at 60 ℃ to run the second CE.
将1μl二十分之一稀释的标准PCR产物的等分试样与9μl的Hi-DiTM甲酰胺(AppliedBiosystems)和0.3μl的GeneScanTM500ROXTM染料尺寸标准品(Applied Biosystems)混合,在95℃下变性5分钟,冷却至4℃,并在使用填充有POP-7TM聚合物的36cm毛细管的3130xl遗传分析仪(Applied Biosystems)中进行分辨。将混合物在1.2kV下电动注射23秒,并在60℃下电泳20分钟。An aliquot of 1 μl of the 20th diluted standard PCR product was mixed with 9 μl of Hi-Di TM formamide (Applied Biosystems) and 0.3 μl of GeneScan TM 500ROX TM dye size standard (Applied Biosystems), denatured at 95°C for 5 minutes, cooled to 4°C, and resolved in a 3130xl genetic analyzer (Applied Biosystems) using a 36 cm capillary filled with POP-7 TM polymer. The mixture was electrokinetically injected at 1.2 kV for 23 seconds and electrophoresed at 60°C for 20 minutes.
使用GeneMapperTM软件v4.0(Applied Biosystems)进行CE后分析。Post-CE analysis was performed using GeneMapper ™ software v4.0 (Applied Biosystems).
数据解读Data interpretation
引物AFF2-F与紧靠AFF2序列的CCG重复上游的AFF2序列退火并产生Hex标记的TP-PCR扩增子,而引物FMRI-R与紧靠FMR1序列的CGG重复下游的FMR1序列退火并产生Fam标记的TP-PCR产物。两种TP-PCR反应都使用常见的三引物(TP)引物和尾部引物,且它们的产物可以使用不同的荧光检测通道分别分析,也可以一起分析。TP引物被设计为与AFF2有义链或FMR1反义链上的任何一段五个CCG三核苷酸最佳退火。当存在连续不间断的一段超过五个的重复时,电泳图将展示出一系列连续的峰,这些峰彼此相距3bp。如果存在非CCG中断,电泳图将展示出荧光峰之间约18bp的间隙,相当于不存在5个荧光峰(图1)。不间断的一段的重复尺寸是连续荧光峰的总数加四(第一个荧光峰产生自与前5个重复退火的TP引物)。对于具有非CCG中断的等位基因,重复尺寸是连续荧光峰的总数加上缺失峰的总数,再加四。在杂合子女性中,将看到超过一定尺寸的峰的荧光强度会下降;较小等位基因的重复尺寸可从下降之前的峰的数量得出,而较大等位基因的重复尺寸可从峰的总数得出(数据未示出)。对于AFF2 TP-PCR反应,最左边的孤立峰不是在重复序列内产生的,而是由TP引物与紧靠CCG重复上游的(CCG)4CCT(SEQ ID NO:6)序列的退火产生的,所述CCG重复定义为在CTG三核苷酸之后开始(图1)。AFF2等位基因的尺寸和结构在结果中进一步详述。Primer AFF2-F anneals to the AFF2 sequence immediately upstream of the CCG repeats of the AFF2 sequence and produces Hex-labeled TP-PCR amplicons, while primer FMRI-R anneals to the FMR1 sequence immediately downstream of the CGG repeats of the FMR1 sequence and produces Fam-labeled TP-PCR products. Both TP-PCR reactions use common tri-primer (TP) primers and tail primers, and their products can be analyzed separately or together using different fluorescence detection channels. The TP primers are designed to anneal optimally to any stretch of five CCG trinucleotides on the sense strand of AFF2 or the antisense strand of FMR1. When there is a continuous uninterrupted stretch of more than five repeats, the electropherogram will show a series of continuous peaks that are 3 bp apart from each other. If there is a non-CCG interruption, the electropherogram will show a gap of about 18 bp between the fluorescent peaks, which is equivalent to the absence of 5 fluorescent peaks (Figure 1). The repeat size of an uninterrupted stretch is the total number of consecutive fluorescence peaks plus four (the first fluorescence peak is generated by the TP primer annealing to the first 5 repeats). For alleles with non-CCG interruptions, the repeat size is the total number of consecutive fluorescence peaks plus the total number of deletion peaks, plus four. In heterozygous females, a decrease in fluorescence intensity will be seen for peaks above a certain size; the repeat size of the smaller allele can be derived from the number of peaks before the decrease, while the repeat size of the larger allele can be derived from the total number of peaks (data not shown). For the AFF2 TP-PCR reaction, the leftmost isolated peak is not generated within the repeat sequence, but is generated by the annealing of the TP primer to the (CCG) 4 CCT (SEQ ID NO: 6) sequence immediately upstream of the CCG repeat, which is defined as starting after the CTG trinucleotide (Figure 1). The size and structure of the AFF2 allele are further detailed in the results.
AFF2 CCG重复的测序Sequencing of the AFF2 CCG repeat
除了所有引物都未标记之外,如上所述进行AFF2 TP-PCR和标准/常规PCR。根据制造商的说明,使用珠(Agencourt Bioscience,Beverly,Massachusetts,USA)纯化TP-PCR和标准/常规PCR产物,并使用NanodropTM1000分光光度计(Thermo ScientificTM,Waltham,Massachusetts,USA)进行定量。每个20μl测序反应含有10-50ng纯化的标准PCR或TP-PCR产物,1x Terminator Ready Reaction Mix(Applied Biosystems),2.5x Q-Solution(Qiagen)和3.2pmol的AFF2-F引物。在96℃下进行初始变性1分钟,接着是98℃10秒、60℃ 5秒和60℃ 4分钟的25次循环。根据制造商的说明,使用Oligo Clean&ConcentratorTM柱(Zymo Research,Irvine,California,USA)纯化延伸产物。将洗脱的纯化延伸产物在Savant 浓缩仪(Thermo Scientific)中真空干燥5分钟,重悬于12μl的Hi-DiTM甲酰胺(Applied Biosystems)中,并在使用填充有POP-7TM聚合物的36cm毛细管的3130xl遗传分析仪(Applied Biosystems)中进行分辨。将混合物在1.2kV下电动注射16秒,并在60℃下电泳20分钟。使用测序分析软件v6.0(Applied Biosystems)进行后CE分析。AFF2 TP-PCR and standard/conventional PCR were performed as described above except that all primers were unlabeled. TP-PCR and standard/conventional PCR products were purified using Nanodrop ™ 1000 spectrophotometer (Thermo Scientific ™ , Waltham, Massachusetts, USA). Each 20 μl sequencing reaction contained 10-50 ng of purified standard PCR or TP-PCR product, 1× Terminator Ready Reaction Mix (Applied Biosystems), 2.5x Q-Solution (Qiagen) and 3.2 pmol of AFF2-F primer were added. Initial denaturation was performed at 96°C for 1 minute, followed by 25 cycles of 98°C for 10 seconds, 60°C for 5 seconds and 60°C for 4 minutes. The extension products were purified using Oligo Clean & Concentrator TM columns (Zymo Research, Irvine, California, USA) according to the manufacturer's instructions. The eluted purified extension products were concentrated in a Savant The samples were vacuum dried for 5 minutes in a concentrator (Thermo Scientific), resuspended in 12 μl of Hi-Di TM formamide (Applied Biosystems), and resolved in a 3130xl genetic analyzer (Applied Biosystems) using a 36 cm capillary filled with POP-7 TM polymer. The mixture was electrokinetically injected for 16 seconds at 1.2 kV and electrophoresed at 60° C. for 20 minutes. Post-CE analysis was performed using sequencing analysis software v6.0 (Applied Biosystems).
结果result
对正常样品以及FMR1和AFF2三联体重复扩展阳性样品的双重TP-PCR的评估Evaluation of duplex TP-PCR on normal samples and samples positive for FMR1 and AFF2 triplet repeat expansions
X染色体上的FRAXE叶酸敏感性脆性位点与若干种医学病况有关,包括智力障碍、强迫症和卵巢早衰。FRAXE脆性是由AFF2(以前的FMR2)基因(ClinVar:VCV000010526.1)的外显子1中的5'非翻译区(UTR)内的CCG三核苷酸重复的过度扩展引起的。从范围为6-30个重复的正常等位基因过度扩展到>200个重复伴随着重复的CpG甲基化。这反过来又使AFF2表达沉默,AFF2是SEC-L2的亚基,其调节若干个基因的转录。AFF2 CCG重复过度扩展是导致脆性XE非综合征智力障碍(FRAXE NSID;OMIM 309548)(其是一种轻度(IQ 50-70)至临界(IQ 70-85)智力障碍,估计每50000至100000个男性中有一人受其影响),以及还有其他认知/行为异常(包括强迫症)的遗传突变。矛盾的是,具有少于11个的重复或具有重复内或其附近的微缺失的等位基因在卵巢早衰患者中富集。将中等(31-60)重复尺寸与帕金森病(一种神经退行性运动系统疾病)联系起来的研究尚未得出结论。The FRAXE folate sensitivity fragile site on the X chromosome is associated with several medical conditions, including intellectual disability, obsessive-compulsive disorder, and premature ovarian failure. FRAXE fragility is caused by an overexpansion of CCG trinucleotide repeats within the 5' untranslated region (UTR) in exon 1 of the AFF2 (formerly FMR2) gene (ClinVar: VCV000010526.1). Overexpansion from the normal allele, which ranges from 6-30 repeats, to >200 repeats is accompanied by repeated CpG methylation. This in turn silences the expression of AFF2, which is a subunit of SEC-L2 that regulates the transcription of several genes. AFF2 CCG repeat overexpansion is the genetic mutation that causes Fragile XE nonsyndromic intellectual disability (FRAXE NSID; OMIM 309548), a mild (IQ 50-70) to borderline (IQ 70-85) intellectual disability estimated to affect one in 50,000 to 100,000 males, as well as other cognitive/behavioral abnormalities including obsessive-compulsive disorder. Paradoxically, alleles with fewer than 11 repeats or with microdeletions within or near the repeats are enriched in patients with premature ovarian failure. Studies linking medium (31-60) repeat sizes to Parkinson's disease, a neurodegenerative motor system disorder, have been inconclusive.
FRAXE与X染色体上研究充分的脆性位点FRAXA共享相似的遗传特征,FRAXA具有更明确证明的临床参与。FRAXA位点在FMR1基因的外显子1中的5'UTR内含有CGG重复。FMR1CGG重复过度扩展至>200伴随着CpG甲基化和FMR1基因沉默,这导致脆性X综合征(FXS;OMIM309550)(ClinVar:VCV000009972.1)。FXS是智力障碍最常见的遗传性单基因原因,约每5000个男性中有一人以及每4000至8000个女性中有一人受其影响。前突变等位基因与许多行为特征有关,包括焦虑、强迫症和抑郁症。此外,约五分之一携带前突变等位基因(55-200个CGG重复)的女性患有脆性X相关原发性卵巢功能不全(FXPOI)。在2%的散发性POI和14%的家族性POI患者中鉴定了FMR1前突变,使FXPOI成为整倍体女性中POI最常见的遗传原因。此外,FMR1前突变携带者子集最终将会发展成脆性X相关震颤/共济失调综合征(FXTAS),这是一种以共济失调、震颤和帕金森综合征为特征的神经退行性疾病,约每4000个超过55岁的男性有1人以及每7800个超过55岁的女性中有1人受其影响。FMR1基因还与帕金森病有关。FRAXE shares similar genetic features with the well-studied fragile site FRAXA on chromosome X, which has more clearly demonstrated clinical involvement. The FRAXA site contains CGG repeats within the 5'UTR in exon 1 of the FMR1 gene. Overexpansion of the FMR1 CGG repeats to >200 with accompanying CpG methylation and FMR1 gene silencing results in fragile X syndrome (FXS; OMIM309550) (ClinVar: VCV000009972.1). FXS is the most common inherited monogenic cause of intellectual disability, affecting approximately 1 in 5000 males and 1 in 4000 to 8000 females. Premutation alleles are associated with a number of behavioral traits, including anxiety, obsessive-compulsive disorder, and depression. In addition, approximately one in five females carrying premutation alleles (55-200 CGG repeats) suffer from fragile X-associated primary ovarian insufficiency (FXPOI). FMR1 premutations have been identified in 2% of sporadic POI and 14% of familial POI patients, making FXPOI the most common genetic cause of POI in euploid females. In addition, a subset of FMR1 premutation carriers will eventually develop fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder characterized by ataxia, tremor, and parkinsonism that affects approximately 1 in 4,000 males and 1 in 7,800 females over the age of 55. The FMR1 gene has also been implicated in Parkinson's disease.
尽管FRAXA和FRAXE脆性位点二者都与智力障碍密切相关,但与FXS相比,FRAXENSID的轻度至临界表型可引起确定不足和诊断不足。诊断不足可部分归因于缺乏快速、简单和廉价的测定来筛查FRAXE位点处的重复扩展。尽管已经描述了作为独立测定或多重测定的对FRAXE位点处的重复扩展的标准PCR方法,但它们无法检测大的前突变和全突变等位基因,这些等位基因的检测仍然依赖于Southern印迹分析。因为FRAXE的非综合征性质(即缺乏特征性和一致的临床表现,与例如FXS患者中存在的面部畸形(突出的耳朵、下巴、前额和长脸)和巨睾丸症形成对比),因此分子诊断对于证实FRAXE至关重要。Although both FRAXA and FRAXE fragile sites are closely related to intellectual disability, the mild to critical phenotype of FRAXENSID can cause insufficient determination and insufficient diagnosis compared with FXS. Insufficient diagnosis can be partly attributed to the lack of fast, simple and inexpensive determination to screen the repeat expansion at the FRAXE site. Although the standard PCR method for the repeat expansion at the FRAXE site as an independent determination or multiple determination has been described, they cannot detect large premutation and full mutation alleles, and the detection of these alleles still relies on Southern blot analysis. Because the non-syndromic nature of FRAXE (i.e. lack of characteristic and consistent clinical manifestations, in contrast to the facial deformity (prominent ears, chin, forehead and long face) and macroorchidism present in, for example, FXS patients), molecular diagnosis is crucial for confirming FRAXE.
最初利用了12个DNA样品来评估双重TP-PCR测定。图2和图3显示了产生自正常男性和女性以及FMR1和AFF2前突变(PM)或全突变(FM)个体的TP-PCR电泳图模式。由AFF2 TP-PCR反应产生的最左边的峰不是由TP引物在AFF2 CCG重复内的退火产生的,所述AFF2 CCG重复在5'侧翼序列的最后一个CTG三核苷酸之后开始。相反,迁移为明显的111bp片段的这个孤立峰由TP引物与紧靠重复段上游的(CCG)4CCT(SEQ ID NO:6)序列的退火产生(图1)。由TP引物与AFF2重复的CCG 1-5的退火而产生的第一个真峰在电泳图上作为明显的138bp片段出现。TP引物退火发生在含有五个连续CCG(CCG 2-6、3-7等)的重复段中的所有其他位置,其中最后的荧光峰由TP引物与重复段的最后五个CCG的退火产生。因此,AFF2等位基因的重复尺寸可以通过计数从重复段内产生的峰的数量(即排除最左边的孤立峰)并将该数量加上四来快速而容易地确定。Initially 12 DNA samples were utilized to evaluate the duplex TP-PCR assay. Figures 2 and 3 show the TP-PCR electropherogram patterns generated from normal males and females and individuals with FMR1 and AFF2 premutation (PM) or full mutation (FM). The leftmost peak generated by the AFF2 TP-PCR reaction is not generated by the annealing of the TP primer within the AFF2 CCG repeat, which begins after the last CTG trinucleotide of the 5' flanking sequence. Instead, this isolated peak that migrates as a distinct 111 bp fragment is generated by the annealing of the TP primer to the (CCG) 4 CCT (SEQ ID NO:6) sequence just upstream of the repeat (Figure 1). The first true peak generated by the annealing of the TP primer to the CCG 1-5 of the AFF2 repeat appears as a distinct 138 bp fragment on the electropherogram. Annealing of the TP primer occurs at all other positions in the repeat containing five consecutive CCGs (CCGs 2-6, 3-7, etc.), with the final fluorescence peak resulting from annealing of the TP primer to the last five CCGs of the repeat. Thus, the repeat size of the AFF2 allele can be quickly and easily determined by counting the number of peaks arising from within the repeat (i.e., excluding the leftmost isolated peak) and adding four to that number.
不存在超过55个重复的荧光峰指示不存在扩展,而延伸超过55个重复且最高达200个重复的连续荧光峰指示存在前突变(PM)等位基因,并且延伸超过200个重复的荧光峰指示存在全突变(FM)。这些结果指示,双重TP-PCR测定成功检测并准确鉴定了男性和女性DNA样品中的FMR1 CGG和AFF2 CCG重复前突变和全突变(图2和图3)。The absence of a fluorescence peak that is more than 55 repeats indicates that there is no expansion, while a continuous fluorescence peak that extends more than 55 repeats and up to 200 repeats indicates the presence of a premutation (PM) allele, and a fluorescence peak that extends more than 200 repeats indicates the presence of a full mutation (FM). These results indicate that dual TP-PCR assays successfully detect and accurately identify FMR1 CGG and AFF2 CCG repeat premutations and full mutations in male and female DNA samples (Fig. 2 and Fig. 3).
群体等位基因分布与重复结构的鉴定Population allele distribution and identification of repeat structure
使用双重TP-PCR对总共466个男性DNA样品(包括161个中国人、158个马来人、89个印度人、44个高加索人和14个非裔美国人的DNA)进行基因分型,以确定等位基因尺寸分布(图4和表2)。在各种族中观察到不同的等位基因分布,其中中国人和马来人(分别为32.3%和27.8%)的众数AFF2重复尺寸为18,但高加索人(40.9%)、非裔美国人(50.0%)和印度人(32.6%)为15。与印度人(10-27)、高加索人(9-26)和非裔美国人(14-28)相比,中国人(5-31)和马来人(6-37)的等位基因尺寸范围更宽,这可能部分归因于中国人和马来人的样本大小更大。使用常规分类,24个样品具有最小等位基因(<11个重复),440个样品具有正常的等位基因(11-30个重复),以及剩余2个样品具有中等等位基因(31-60个重复)。未观察到前突变和全突变等位基因。这些结果类似于对中国汉族(众数18,范围9-26)和纽约市高加索人(众数16,范围8-34)中AFF2等位基因分布的早期研究(图4A-C)。A total of 466 male DNA samples (including DNA from 161 Chinese, 158 Malays, 89 Indians, 44 Caucasians, and 14 African Americans) were genotyped using duplex TP-PCR to determine the allele size distribution (Figure 4 and Table 2). Different allele distributions were observed among ethnic groups, with the modal AFF2 repeat size being 18 for Chinese and Malays (32.3% and 27.8%, respectively), but 15 for Caucasians (40.9%), African Americans (50.0%), and Indians (32.6%). The allele size range was wider in Chinese (5-31) and Malays (6-37) compared to Indians (10-27), Caucasians (9-26), and African Americans (14-28), which may be partly attributed to the larger sample size of Chinese and Malays. Using conventional classification, 24 samples had the smallest allele (<11 repeats), 440 samples had the normal allele (11-30 repeats), and the remaining 2 samples had the intermediate allele (31-60 repeats). No premutation and full mutation alleles were observed. These results are similar to early studies on the distribution of AFF2 alleles in Chinese Han (mode 18, range 9-26) and Caucasians in New York City (mode 16, range 8-34) (Figure 4A-C).
携带29个FMR1 CGG重复和18个AFF2 CCG重复组合的染色体是最常见的(图4D,上图)。在筛查的466个男性群体DNA样品中,观察到三种AFF2 TP-PCR电泳图模式。如GenomeReference Consortium Human Build 38(GRCh38)中记录的,最常见的模式存在于459个样品(98.1%)中,其代表了大多数正常和所有的中等等位基因,而通过Sanger测序鉴定另两种模式是由两种单核苷酸多态性(SNP)变体的存在引起的(图4D,下图)。The chromosome carrying 29 FMR1 CGG repeats and 18 AFF2 CCG repeat combinations is the most common (Fig. 4D, upper figure). In the 466 male population DNA samples screened, three AFF2 TP-PCR electrophoresis patterns were observed. As recorded in GenomeReference Consortium Human Build 38 (GRCh38), the most common pattern was present in 459 samples (98.1%), which represented most normal and all neutral alleles, and the other two patterns were identified by Sanger sequencing as being caused by the presence of two single nucleotide polymorphism (SNP) variants (Fig. 4D, lower figure).
SNP变体之一,在chrX:148,500,637(rs868914124,GRCh38)处的T>C取代,在AFF2CCG重复的5'起始处将CTG三核苷酸转化为CCG。尽管rs868914124(T)常见等位基因中的AFF2三核苷酸重复在5'侧翼序列的最后一个CTG三核苷酸之后开始(图5A),但该CTG三核苷酸在rs86891412(C)变体等位基因中成为CCG三核苷酸,从而将AFF2三核苷酸重复段向上游延伸2个CCG或6bp,以在5'侧翼序列的最后一个CAG三核苷酸之后开始(图5B)。因此,从rs868914124(C)变体等位基因的重复段内产生的第一TP-PCR产物作为明显的132bp荧光峰出现(图5B),与来自rs868934124(T)常见等位基因的138bp第一个荧光峰(图5A)形成对比。在TP-PCR电泳图中,这种尺寸差异显示为与rs868914124(T)常见等位基因的26bp较宽间隙(图5A,C)相比,rs868914124(C)变体等位基因的AFF2 CCG重复的最左边孤立峰和第一个峰之间20bp的较窄间隙(图5B)。One of the SNP variants, a T>C substitution at chrX:148,500,637 (rs868914124, GRCh38), converts the CTG trinucleotide to CCG at the 5' start of the AFF2CCG repeat. Although the AFF2 trinucleotide repeat in the rs868914124 (T) common allele starts after the last CTG trinucleotide of the 5' flanking sequence (Figure 5A), this CTG trinucleotide becomes a CCG trinucleotide in the rs86891412 (C) variant allele, thereby extending the AFF2 trinucleotide repeat segment upstream by 2 CCGs or 6 bp to start after the last CAG trinucleotide of the 5' flanking sequence (Figure 5B). Therefore, the first TP-PCR product produced in the repeat segment of rs868914124 (C) variant allele appears as an obvious 132bp fluorescence peak (Fig. 5 B), contrasted with the 138bp first fluorescence peak (Fig. 5 A) from rs868934124 (T) common allele. In the TP-PCR electrophoretogram, this size difference is shown as a narrower gap (Fig. 5 B) of 20bp between the leftmost isolated peak and the first peak of the AFF2 CCG of rs868914124 (C) variant allele compared with the 26bp wider gap (Fig. 5 A, C) of rs868914124 (T) common allele.
在466个AFF2等位基因中的8个(1.72%)中观察到rs868914124(C)变体(图4D,下图,B行),其中6个是马来人等位基因。与458个携带rs868941424(T)的样品中的21个相比,具有rs868914124(C)变体的8个样品中的3个含有最小等位基因(<11个重复)。使用Fisher精确检验(双尾),观察到这种稀有的变体在马来人组中富集(优势比=6.01;95%置信区间1.06-61.7;P=0.021),并且其具有最小等位基因(优势比=12.3;置信区间1.79-68.4;P=0.006)。引人关注的是,所有6个AFF2扩展的等位基因(5个全突变和1个前突变)都携带稀有的rs868914124(C)变体,尽管受影响的男性及其舅父的扩展等位基因,以及来自父女对的扩展等位基因在血统上被认为是相同的(图5D和图6和图7)。rs868914124 (C) variant was observed in 8 (1.72%) of 466 AFF2 alleles (Fig. 4D, lower figure, row B), of which 6 were Malay alleles. Compared with 21 of 458 samples carrying rs868941424 (T), 3 of 8 samples with rs868914124 (C) variant contained minimal alleles (<11 repeats). Using Fisher's exact test (two-tailed), it was observed that this rare variant was enriched in the Malay group (odds ratio = 6.01; 95% confidence interval 1.06-61.7; P = 0.021), and it had minimal alleles (odds ratio = 12.3; confidence interval 1.79-68.4; P = 0.006). Interestingly, all six AFF2 expanded alleles (five full mutations and one premutation) carried the rare rs868914124(C) variant, although the expanded alleles from the affected male and his uncle, as well as from the father-daughter pair, were considered identical in ancestry (Fig. 5D and Figs. 6 and 7).
与正常FMR1等位基因中常观察到的CGG重复内的AGG中断不同,我们只观察到一个在其重复段内含有非CCG中断的正常AFF2等位基因(0.21%),即在第五个重复位置处的CTG中断(图4D,下图,C行和图5C)。这种中断是由在chrX:148,500,652(rs1389911365,GRCh38)处的C>T取代引起的。TP引物在包括这种中断的位置处的退火将导致错配的配对,并且无法从该位置产生PCR产物。在TP-PCR电泳图中,引物错配位置处失败的PCR作为无峰的间隙出现(图5C)。Unlike the AGG interruptions within the CGG repeats commonly observed in normal FMR1 alleles, we observed only one normal AFF2 allele (0.21%) containing a non-CCG interruption within its repeat segment, namely a CTG interruption at the fifth repeat position (Figure 4D, bottom panel, row C and Figure 5C). This interruption was caused by a C>T substitution at chrX:148,500,652 (rs1389911365, GRCh38). Annealing of the TP primer at a position that includes this interruption will result in mismatched pairing, and no PCR product can be generated from this position. In the TP-PCR electropherogram, failed PCR at the primer mismatch position appears as a gap without a peak (Figure 5C).
引人关注的是,在所有6个AFF2扩展阳性样品中还观察到新的非CCG中断。基于四个AFF2 FM男性的TP-PCR电泳图模式(其显示峰簇之间有无峰/缺失峰的间隙),最初怀疑的是重复内的中断(图3)。Sanger测序揭示,在重复的5'端存在一个或多个非CCG中断,其携带与紧靠重复上游5'的一段9个核苷酸相同的序列CCTGTGCAG。中断的数量从一个(图6A)到超过四个(图6B)变化。它们的位置也变化,例如从第8到第10个重复位置(图6A)或从第6到第8个位置(图7)。Interestingly, new non-CCG interruptions were also observed in all 6 AFF2 expansion positive samples. Based on the TP-PCR electropherogram patterns of the four AFF2 FM males (which show gaps with or without peaks/missing peaks between peak clusters), it was initially suspected that the interruptions were within the repeat (Figure 3). Sanger sequencing revealed that there were one or more non-CCG interruptions at the 5' end of the repeat, which carried the same sequence CCTGTGCAG as a 9-nucleotide section 5' just upstream of the repeat. The number of interruptions varied from one (Figure 6A) to more than four (Figure 6B). Their positions also varied, for example from the 8th to the 10th repeat position (Figure 6A) or from the 6th to the 8th position (Figure 7).
我们观察到,在父女对(图7)中,AFF2 CCG重复扩展在父亲(DNA_25926)中是全突变而在女儿(DNA_3802)中是前突变,这指示了先前记录的在传递时的收缩。尽管外甥(FX0229)和舅父(FX0230)的AFF2全突变等位基因(图6)在血统上被认为是相同的,但他们的重复结构由于舅父中存在额外的非CCG中断而不同。这种差异的确切原因或机制尚未得到研究。We observed that in the father-daughter pair (Figure 7), the AFF2 CCG repeat expansion was a full mutation in the father (DNA_25926) and a premutation in the daughter (DNA_3802), indicating a previously documented contraction at transmission. Although the AFF2 full mutation alleles of the nephew (FX0229) and uncle (FX0230) (Figure 6) were considered identical in ancestry, their repeat structures differed due to the presence of an additional non-CCG interruption in the uncle. The exact cause or mechanism of this difference has not been investigated.
对先前表征的样品的双重TP-PCR测定的盲法验证Blind validation of the duplex TP-PCR assay on previously characterized samples
双重TP-PCR测定的盲法验证中包括82个已归档的和先前表征的基因组DNA。AFF2CCG重复如材料和方法中所述确定尺寸。双重TP-PCR测定准确地对测试中包括的所有40个正常、17个FMR1 PM、23个FMR1 FM和2个AFF2 FM样品进行了分类(表3)。82 archived and previously characterized genomic DNAs were included in the blind validation of the duplex TP-PCR assay. The AFF2CCG repeat was sized as described in Materials and Methods. The duplex TP-PCR assay accurately classified all 40 normal, 17 FMR1 PM, 23 FMR1 FM, and 2 AFF2 FM samples included in the test (Table 3).
表2.五个群体中的AFF2 CCG重复等位基因频率。Table 2. AFF2 CCG repeat allele frequencies in five populations.
CH,中国人;ML,马来人;IN,印度人;CAU,高加索人;AA,非商美国人CH, Chinese; ML, Malay; IN, Indian; CAU, Caucasian; AA, African American
表3.具有或不具有FMR1或AFF2重复扩展的样品的一致性分析。Table 3. Concordance analysis of samples with or without FMR1 or AFF2 repeat expansions.
实施例2:脊髓小脑性共济失调(SCA)Example 2: Spinocerebellar Ataxia (SCA)
材料和方法Materials and methods
生物样品Biological samples
基因组DNA和细胞系从Coriell Cell Repositories(CCR;Coriell Institutefor Medical Research,Camden,NJ,USA)获得。NA06926、NA13536和NA13537各自携带扩展的ATXN1 CAG重复,NA14982携带扩展的ATXN2 CAG重复,GM06151携带扩展的ATXN3 CAG重复,NA03562携带扩展的ATXN7 CAG重复,以及NA13716和NA13717各自携带扩展的ATN1 CAG重复。GM16243携带扩展的FXN GAA重复,GM06907携带扩展的FMR1 CGG重复,以及GM05164和GM06075各自携带扩展的DMPK CTG重复。分别携带扩展的CACNA1A CAG重复和PPP2R2B CAG重复的两个临床DNA样品160920和183254从KK Women’s and Children’s Hospital获得。60个基因型已知的已归档DNA样品从Siriraj Hospital-Mahidol University获得,并包括在测定准确性的盲法评估中。Genomic DNA and cell lines were obtained from Coriell Cell Repositories (CCR; Coriell Institute for Medical Research, Camden, NJ, USA). NA06926, NA13536 and NA13537 each carry an expanded ATXN1 CAG repeat, NA14982 carries an expanded ATXN2 CAG repeat, GM06151 carries an expanded ATXN3 CAG repeat, NA03562 carries an expanded ATXN7 CAG repeat, and NA13716 and NA13717 each carry an expanded ATN1 CAG repeat. GM16243 carries an expanded FXN GAA repeat, GM06907 carries an expanded FMR1 CGG repeat, and GM05164 and GM06075 each carry an expanded DMPK CTG repeat. Two clinical DNA samples 160920 and 183254 carrying expanded CACNA1A CAG repeats and PPP2R2B CAG repeats, respectively, were obtained from KK Women’s and Children’s Hospital. Sixty archival DNA samples with known genotypes were obtained from Siriraj Hospital-Mahidol University and included in the blinded evaluation of assay accuracy.
七重TP-PCRSeven-plex TP-PCR
在含有以下的25-μl反应中进行七重TP-PCR:10ng的基因组DNA,1.5x Q-Solution(Qiagen,Hilden,Germany),含有1.5mmol/L的MgCl2的1x PCR缓冲液(Qiagen),由各0.2mmol/L的dATP、dTTP、dCTP和dGTP组成的脱氧核糖核酸三磷酸(dNTP)混合物(RocheApplied Science,Penzberg,Germany)和2单位的HotStar Taq DNA聚合酶(Qiagen)。八个引物(七个荧光标记的基因座特异性引物和一个通用TP引物TP-R)以其各自的最佳工作浓度被包括在内。引物序列、荧光团标签和引物浓度显示于表4和表5中。在SimpliAmp热循环仪(Applied Biosystems-Thermo Fisher Scientific,Foster City,CA,USA)上,热循环由以下组成:在95℃下进行初始聚合酶活化15分钟,接着是98℃ 45秒,60℃ 1分钟和72℃ 2分钟的35个循环,并最后在72℃下延伸5分钟。Seven TP-PCRs were performed in a 25 μl reaction containing: 10 ng of genomic DNA, 1.5× Q-Solution (Qiagen, Hilden, Germany), 1 × PCR buffer (Qiagen) containing 1.5 mmol/L of MgCl, a mixture of deoxyribonucleic acid triphosphates (dNTPs) (Roche Applied Science, Penzberg, Germany) and 2 units of HotStar Taq DNA polymerase (Qiagen) consisting of dATP, dTTP, dCTP and dGTP of each 0.2 mmol/L. Eight primers (seven fluorescently labeled locus-specific primers and one universal TP primer TP-R) were included at their respective optimal working concentrations. Primer sequences, fluorophore labels and primer concentrations are shown in Tables 4 and 5. Thermal cycling consisted of initial polymerase activation at 95°C for 15 min, followed by 35 cycles of 98°C for 45 s, 60°C for 1 min, and 72°C for 2 min, and a final extension at 72°C for 5 min on a SimpliAmp thermal cycler (Applied Biosystems-Thermo Fisher Scientific, Foster City, CA, USA).
毛细管电泳(CE)Capillary electrophoresis (CE)
将1-μL荧光标记的TP-PCR产物的等分试样与9μL的Hi-DiTM甲酰胺(AppliedBiosystems)以及0.5μL的GeneScanTM500LIZTM染料尺寸标准(Applied Biosystems)混合,然后将其在95℃下变性5分钟,快速冷却至4℃,并在使用填充有POP-7TM聚合物的36-cm毛细管的3130xl遗传分析仪(Applied Biosystems)中进行分辨。将样品在1kV下电动注射15秒,并在60℃下电泳40分钟。使用GeneMapper 5.0软件(Applied Biosystems)进行GeneScan分析。来自每个基因座的扩增产物可以通过其产物尺寸范围和峰颜色来鉴定。七重TP-PCR产物展示出四种不同颜色的电泳峰,并且可以通过打开所有四个荧光检测通道一起分析,或者使用一个荧光检测通道同时关闭其他通道而分别地分析。The aliquot of 1-μ L fluorescently labeled TP-PCR product is mixed with the Hi-Di TM formamide (Applied Biosystems) of 9 μ L and the GeneScan TM 500LIZ TM dye size standard (Applied Biosystems) of 0.5 μ L, then it is denatured at 95 ℃ for 5 minutes, quickly cooled to 4 ℃, and resolved in the 3130xl genetic analyzer (Applied Biosystems) of the 36-cm capillary that uses to be filled with POP-7 TM polymer.Sample is injected electrically for 15 seconds under 1kV, and electrophoresis is carried out for 40 minutes at 60 ℃.GeneScan is analyzed using GeneMapper 5.0 software (Applied Biosystems).The amplified product from each locus can be identified by its product size range and peak color.Sevenfold TP-PCR product shows the electrophoresis peak of four different colors, and can be analyzed together by opening all four fluorescence detection channels, or use a fluorescence detection channel to close other channels simultaneously and analyze respectively.
结果result
通过单管七重TP-PCR检测扩展的CAG重复Detection of expanded CAG repeats by single-tube seven-plex TP-PCR
脊髓小脑性共济失调(SCA)是一种神经退行性疾病,其引起小脑的退化,且有时引起脊髓的退化,并且其主要特征是步态共济失调步态、手眼协调不良和口齿不清。这些常染色体显性遗传疾病具有遗传多样性,并且可由常规突变以及重复扩展突变引起。总体来讲,全球范围内SCA的患病率平均为每100,000个体2.7例,其中SCA3最为常见。有超过40种遗传上不同的SCA,其中至少12种是由重复扩展引起的。其中,SCA1、SCA2、SCA3、SCA6、SCA7、SCA12和SCA17是由异常的CAG三核苷酸重复扩展引起的。另一种疾病,齿状核红核苍白球路易体萎缩症(DRPLA),也是由CAG重复扩展引起的,其由于其与其他SCA的异质性和重叠的临床表型而被归类为SCA。Spinocerebellar ataxia (SCA) is a neurodegenerative disease that causes degeneration of the cerebellum and sometimes the spinal cord and is primarily characterized by ataxic gait, poor hand-eye coordination, and slurred speech. These autosomal dominant disorders are genetically heterogeneous and can be caused by conventional mutations as well as repeat expansion mutations. Overall, the prevalence of SCAs worldwide averages 2.7 cases per 100,000 individuals, with SCA3 being the most common. There are more than 40 genetically distinct SCAs, at least 12 of which are caused by repeat expansions. Of these, SCA1, SCA2, SCA3, SCA6, SCA7, SCA12, and SCA17 are caused by abnormal CAG trinucleotide repeat expansions. Another disease, dentatorubral pallidum-Lewy body atrophy (DRPLA), is also caused by CAG repeat expansions and is classified as an SCA due to its heterogeneity and overlapping clinical phenotypes with other SCAs.
SCA1是由染色体6p22.3上ATXN1基因的外显子8中的CAG重复扩展引起的。非扩展(正常)ATXN1等位基因含有6至44个CAT中断的CAG。当未中断时,含有36至38个CAG的等位基因是可变的正常等位基因,在传播给下一代时其可能扩展到致病性尺寸范围内,但与临床症状本身无关,而含有≥39个CAG的那些是致病性的。SCA2是由染色体12q24.12上ATXN2基因的外显子1中的CAG重复扩展引起的。正常ATXN2等位基因含有14至31个纯的或CAA中断的CAG,且含有32个CAG的那些是具有不确定临床意义的中间等位基因。含有33至500个CAG的等位基因是致病性的。SCA3或马查多-约瑟夫病是由染色体14q32.12上ATXN3基因的外显子10中的CAG重复扩展引起的。正常ATXN3等位基因含有12至44个CAG,而含有45至59个CAG的那些是易扩展的中间等位基因,且具有60至87个CAG的那些是全外显等位基因。SCA6是由染色体19p13.13上CACNA1A基因的外显子47中的CAG重复扩展引起的。正常CACNA1A等位基因含有≤18个CAG,而全外显等位基因含有20至33个CAG。含有19个CAG的CACNA1A等位基因具有不确定的临床意义。SCA7是由染色体3p14.1上ATXN7基因的外显子3中的CAG重复扩展引起的。正常ATXN7等位基因含有7至27个CAG,而含有28至33个CAG的那些是可变的正常等位基因,且具有≥34个CAG的等位突变是致病性的。SCA12是由染色体5q32上PPP2R2B基因的5'区中的CAG重复扩展引起的。正常的PPP2R2B等位基因含有7至32个CAG,而含有51到78个CAG的那些是全外显等位基因。DRPLA是由染色体12p13.31上ATN1基因的外显子5中的CAG重复扩展引起的。正常ATN1等位基因含有6至35个CAG,而含有≥48个CAG的那些是全外显等位基因。SCA1 is caused by a CAG repeat expansion in exon 8 of the ATXN1 gene on chromosome 6p22.3. Non-expanded (normal) ATXN1 alleles contain 6 to 44 CAGs interrupted by CAT. When not interrupted, alleles containing 36 to 38 CAGs are variable normal alleles that may expand into the pathogenic size range when transmitted to the next generation, but are not associated with clinical symptoms per se, while those containing ≥39 CAGs are pathogenic. SCA2 is caused by a CAG repeat expansion in exon 1 of the ATXN2 gene on chromosome 12q24.12. Normal ATXN2 alleles contain 14 to 31 pure or CAA interrupted CAGs, and those containing 32 CAGs are intermediate alleles of uncertain clinical significance. Alleles containing 33 to 500 CAGs are pathogenic. SCA3, or Machado-Joseph disease, is caused by a CAG repeat expansion in exon 10 of the ATXN3 gene on chromosome 14q32.12. Normal ATXN3 alleles contain 12 to 44 CAGs, while those containing 45 to 59 CAGs are intermediate alleles that are susceptible to expansion, and those with 60 to 87 CAGs are full-penetrance alleles. SCA6 is caused by a CAG repeat expansion in exon 47 of the CACNA1A gene on chromosome 19p13.13. Normal CACNA1A alleles contain ≤18 CAGs, while full-penetrance alleles contain 20 to 33 CAGs. CACNA1A alleles containing 19 CAGs are of uncertain clinical significance. SCA7 is caused by a CAG repeat expansion in exon 3 of the ATXN7 gene on chromosome 3p14.1. Normal ATXN7 alleles contain 7 to 27 CAGs, while those containing 28 to 33 CAGs are variable normal alleles, and allelic mutations with ≥34 CAGs are pathogenic. SCA12 is caused by a CAG repeat expansion in the 5' region of the PPP2R2B gene on chromosome 5q32. Normal PPP2R2B alleles contain 7 to 32 CAGs, while those containing 51 to 78 CAGs are full-penetrance alleles. DRPLA is caused by a CAG repeat expansion in exon 5 of the ATN1 gene on chromosome 12p13.31. Normal ATN1 alleles contain 6 to 35 CAGs, while those containing ≥48 CAGs are full-penetrance alleles.
各种SCA类型通常表现出明显不同的表型,并且由于广泛的临床重叠和其他伴随的非共济失调表型,因此通常难以单独通过体征和症状来区分。因此,分子遗传学检测是必要的,并且是鉴定致病突变以确认有症状个体疾病状态的唯一方法。由于在没有已知家族史或疾病特异性症状的情况下很难针对某些基因进行检测,因此鉴定致病基因可能耗时且昂贵。欧洲分子基因诊断质量联盟(European Molecular Genetics Quality Network)建议,所有实验室应最低限度地提供五种最常见的SCA类型(SCA1、SCA2、SCA3、SCA6和SCA7)的检测,而其他类型的检测将取决于当地的流行情况。The various SCA types often present with distinct phenotypes and are often difficult to distinguish by signs and symptoms alone due to extensive clinical overlap and other concomitant non-ataxia phenotypes. Therefore, molecular genetic testing is necessary and is the only way to identify the causative mutation to confirm disease status in symptomatic individuals. Identification of causative genes can be time-consuming and expensive, as some genes are difficult to test in the absence of a known family history or disease-specific symptoms. The European Molecular Genetics Quality Network recommends that all laboratories should offer testing for the five most common SCA types (SCA1, SCA2, SCA3, SCA6, and SCA7) as a minimum, while testing for other types will depend on local prevalence.
不同SCA中CAG重复的检测和尺寸确定依赖于标准PCR或三引物PCR(TP-PCR),然后是毛细管电泳。当仅检测到来自正常等位基因的单个片段时,通过标准PCR进行的重复尺寸确定通常必须伴随低通量和劳动密集型的Southern印迹分析来确认非常大的等位基因的存在并估计其重复尺寸,或者通过酶消化来确定扩展的ATXN1等位基因中CAT中断的存在。由Warner等人[24]首次描述的TP-PCR已广泛用于检测造成许多重复扩展疾病的重复扩展,无论扩展尺寸如何。其使用基因座特异性侧翼引物、三引物(TP)引物和尾部引物,并且能够检测非常大的扩展,准确地确定所有正常等位基因和适度扩展的尺寸,并通过不同的TP-PCR电泳图模式鉴定重复段内的中断。Detection and sizing of CAG repeats in different SCAs relies on standard PCR or three-primer PCR (TP-PCR) followed by capillary electrophoresis. Repeat sizing by standard PCR must typically be accompanied by low-throughput and labor-intensive Southern blot analysis to confirm the presence of very large alleles and estimate their repeat size, or by enzymatic digestion to determine the presence of CAT interruptions in expanded ATXN1 alleles, when only a single fragment from the normal allele is detected. TP-PCR, first described by Warner et al. [24], has been widely used to detect repeat expansions that cause many repeat expansion diseases, regardless of the size of the expansion. It uses locus-specific flanking primers, a three-primer (TP) primer, and a tail primer and is able to detect very large expansions, accurately size all normal alleles and modest expansions, and identify interruptions within the repeat segment through distinct TP-PCR electropherogram patterns.
由于在SCA患者中鉴定致病基因之前可能需要进行多轮遗传学检测,因此同时筛查不同疾病基因的三核苷酸重复除了节省多次检测的成本外,还可以促进更快地鉴定致病基因。我们报道了一种新的单管多重TP-PCR测定的开发,该测定能够同时筛查造成一些最常见SCA(SCA1、SCA2、SCA3、SCA6、SCA7、SCA12和DRPLA)的七个基因座处的扩展突变。七重测定使用对每个重复基因座差异标记的基因座特异性侧翼引物,以及在CAG内退火的通用引物。Because multiple rounds of genetic testing may be required before the causative gene is identified in SCA patients, simultaneous screening of trinucleotide repeats in different disease genes may facilitate faster identification of the causative gene in addition to saving the cost of multiple testing. We report the development of a new single-tube multiplex TP-PCR assay that enables simultaneous screening of expanded mutations at seven loci responsible for some of the most common SCAs (SCA1, SCA2, SCA3, SCA6, SCA7, SCA12, and DRPLA). The seven-plex assay uses locus-specific flanking primers that differentially label each repeat locus, as well as a universal primer that anneals within CAG.
SCA七重TP-PCR测定利用位于每个疾病基因的CAG重复上游的荧光标记的基因座特异性侧翼引物和在所有CAG重复内退火的通用TP引物,以使来自七个不同SCA基因座的CAG重复能够在单个反应管中共同扩增。每个侧翼引物由四个荧光团(Ned、Vic、Fam或Pet)中的一个标记。此外,每个侧翼引物与其各自的重复段的距离不同,使得产生自一个重复基因座的正常等位基因的电泳峰不会与来自另一个用相同荧光团标记的重复基因座的正常等位的电泳峰重叠(图8)。七个侧翼引物的差异荧光团标记和定位的综合效应是,由每个重复基因座的正常等位基因产生的TP-PCR产物不重叠,并且可以在毛细管电泳后进行区分。重复数量是通过从电泳图左侧开始计数电泳峰来确定的,其中第一个峰代表重复段的前五个纯CAG(图8)。The SCA seven-plex TP-PCR assay utilizes fluorescently labeled locus-specific flanking primers located upstream of the CAG repeats of each disease gene and a universal TP primer that anneals within all CAG repeats to enable CAG repeats from seven different SCA loci to be co-amplified in a single reaction tube. Each flanking primer is labeled with one of four fluorophores (Ned, Vic, Fam, or Pet). In addition, each flanking primer is at a different distance from its respective repeat segment so that the electrophoretic peak generated from a normal allele of one repeat locus does not overlap with the electrophoretic peak of a normal allele from another repeat locus labeled with the same fluorophore (Figure 8). The combined effect of differential fluorophore labeling and positioning of the seven flanking primers is that the TP-PCR products generated by the normal alleles of each repeat locus do not overlap and can be distinguished after capillary electrophoresis. The number of repeats is determined by counting the electrophoretic peaks starting from the left side of the electropherogram, with the first peak representing the first five pure CAGs of the repeat segment (Figure 8).
首先在基因型已知样品上测试七重TP-PCR测定,以确认每个侧翼引物的基因座特异性退火以及在每个扩展的重复基因座处检测扩展的CAG重复。当TP引物与五个连续的CAG重复退火时,TP-PCR产生片段的混合物,每个片段相差一个三联体。所有基因座的最小扩增产物含有五个CAG三联体,除了ATXN3,由于ATXN3的野生型等位基因在第3和第6个三联体位置存在CAA,并且在第4个三联体位置存在AAG,因此ATXN3具有11个三联体(图8A)。电泳图展示了一系列连续的梯状峰(图8B),因为TP引物在不间断的CAG重复内与多个位置退火(图8A)。每个连续的电泳峰代表TP-PCR产物,其大一个重复或三个碱基对,并且等位基因中的重复尺寸可以从计数峰的数量得出。ATXN1和ATXN2等位基因中可能发生的在重复段中间的非CAG中断的存在阻止了TP-聚合物在这些位置有效退火,导致峰簇之间不存在荧光峰。扩展阴性样品产生由两个位于正常重复尺寸范围内的非扩展(正常)等位基因产生的TP-PCR产物(图9),而扩展阳性样品另外产生由扩展的等位基因产生的较长TP-PCR产物(图10)。重复尺寸超过特定重复基因座处的正常等位基因尺寸范围上限的样品将指示该重复基因座处的扩展(图10)。The seven-plex TP-PCR assay was first tested on samples of known genotype to confirm locus-specific annealing of each flanking primer and detection of extended CAG repeats at each extended repeat locus. When the TP primer anneals to five consecutive CAG repeats, TP-PCR produces a mixture of fragments, each of which differs by one triplet. The minimum amplification product of all loci contains five CAG triplets, except ATXN3, which has 11 triplets (Figure 8A) due to the presence of CAA at the 3rd and 6th triplet positions and AAG at the 4th triplet position in the wild-type allele of ATXN3. The electropherogram shows a series of continuous ladder peaks (Figure 8B) because the TP primer anneals to multiple positions within the uninterrupted CAG repeat (Figure 8A). Each continuous electrophoretic peak represents a TP-PCR product that is one repeat or three base pairs larger, and the repeat size in the allele can be derived from the number of counted peaks. The presence of non-CAG interruptions in the middle of the repeat segment that may occur in the ATXN1 and ATXN2 alleles prevents the TP-polymers from effectively annealing at these positions, resulting in the absence of fluorescence peaks between the peak clusters. The extended negative sample produces a TP-PCR product produced by two non-extended (normal) alleles within the normal repeat size range (Figure 9), while the extended positive sample additionally produces a longer TP-PCR product produced by the extended allele (Figure 10). Samples whose repeat size exceeds the upper limit of the normal allele size range at a specific repeat locus will indicate an expansion at the repeat locus (Figure 10).
盲法临床样品验证Blind clinical sample validation
为了评估七重TP-PCR测定准确鉴定受影响患者样品中七个重复基因座处的扩展的能力,对60个基因型已知的已归档临床DNA样品进行了盲法分析。在TP-PCR和毛细管电泳后,一次打开一个荧光检测通道,以便于对用不同荧光团标记的扩增产物分别进行分析。这使得在七个SCA基因座中的任一个处显示出超出正常等位基因尺寸范围上限的电泳峰的样品能够被明确地鉴定。对于对七个SCA重复扩展中的一个呈阳性的所有31个DNA样品(5个SCA1阳性、7个SCA2阳性、12个SCA3阳性、5个SCA6阳性、1个SCA7阳性和1个DRPLA阳性),七重TP-PCR正确地检测到了预期SCA重复基因座中的重复扩展(表6)。在所有筛查阳性样品上进行涉及相关重复基因座的侧翼引物和通用TP引物的单重PCR,以确认结果(数据未显示)。在29个扩展阴性的DNA样品的任一个中均没有检测到扩展。In order to assess the ability of seven TP-PCR assays to accurately identify the expansion of seven repetitive loci in affected patient samples, 60 archived clinical DNA samples with known genotypes were blindly analyzed. After TP-PCR and capillary electrophoresis, a fluorescence detection channel was opened once, so that the amplified products labeled with different fluorophores were analyzed respectively. This enables the sample of the electrophoresis peak that demonstrates the upper limit of the normal allele size range at any one of the seven SCA loci to be clearly identified. For all 31 DNA samples (5 SCA1 positives, 7 SCA2 positives, 12 SCA3 positives, 5 SCA6 positives, 1 SCA7 positives and 1 DRPLA positive) that are positive for one of the seven SCA repetitive expansions, seven TP-PCRs correctly detected the repetitive expansion (table 6) in the expected SCA repetitive loci. Single PCR involving the flanking primers and universal TP primers of the relevant repetitive loci was carried out on all screening positive samples to confirm the result (data not shown). No expansion was detected in any one of the 29 negative DNA samples of expansion.
表4.SCA七重TP-PCR引物和预期的TP-PCR产物尺寸Table 4. SCA seven-plex TP-PCR primers and expected TP-PCR product size
表5.SCA七重预期TP-PCR产物尺寸Table 5. Expected TP-PCR product sizes for SCA sevenfold
表6:60个基因型已知的已归档DNA样品的疾病状态和CAG重复尺寸Table 6: Disease status and CAG repeat size for 60 archived DNA samples with known genotypes
参考文献References
Zhong,N.等人,A survey of FRAXE allele sizes in three populations.Am JMed Genet,1996.64(2):p.415-9.Zhong, N. et al., A survey of FRAXE allele sizes in three populations. Am JMed Genet, 1996.64(2):p.415-9.
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG10202105851T | 2021-06-02 | ||
SG10202105851T | 2021-06-02 | ||
PCT/SG2022/050380 WO2022255952A2 (en) | 2021-06-02 | 2022-06-02 | Method of detecting a repeat expansion sequence |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118159667A true CN118159667A (en) | 2024-06-07 |
Family
ID=84324630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280053833.7A Pending CN118159667A (en) | 2021-06-02 | 2022-06-02 | Method for detecting repeated spreading sequences |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118159667A (en) |
WO (1) | WO2022255952A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116103388B (en) * | 2022-12-23 | 2024-01-23 | 北京大学第三医院(北京大学第三临床医学院) | Kit, system and method for detecting ATXN3 gene of embryo before implantation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011046518A1 (en) * | 2009-10-16 | 2011-04-21 | National University Of Singapore | Screening method for trinucleotide repeat sequences |
-
2022
- 2022-06-02 WO PCT/SG2022/050380 patent/WO2022255952A2/en active Application Filing
- 2022-06-02 CN CN202280053833.7A patent/CN118159667A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022255952A2 (en) | 2022-12-08 |
WO2022255952A3 (en) | 2023-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210054458A1 (en) | Methods of fetal abnormality detection | |
JP2853864B2 (en) | Methods for detecting nucleotide sequences | |
Anasagasti et al. | Current mutation discovery approaches in Retinitis Pigmentosa | |
EP3378954B1 (en) | Quantification of a minority nucleic acid species | |
CN103898199B (en) | A kind of high-throughput nucleic acid analysis method and application thereof | |
CN111670254B (en) | Improved detection of microsatellite instability | |
PT1368496E (en) | Method for alteration detection in nucleic acids | |
US11542556B2 (en) | Single nucleotide polymorphism in HLA-B*15:02 and use thereof | |
KR20100063050A (en) | Analysis of nucleic acids of varying lengths by digital pcr | |
US5550020A (en) | Method, reagents and kit for diagnosis and targeted screening for retinoblastoma | |
CN115851973A (en) | Method, kit and application for rapid detection of human InDel genetic polymorphism by real-time fluorescent PCR | |
CN118159667A (en) | Method for detecting repeated spreading sequences | |
US10894978B2 (en) | Genetic test for detecting congenital adrenal hyperplasia | |
WO2011090154A1 (en) | Target sequence amplification method, polymorphism detection method, and reagents for use in the methods | |
US20070196849A1 (en) | Double-ligation Method for Haplotype and Large-scale Polymorphism Detection | |
US20160060696A1 (en) | Method for the identification by molecular techniques of genetic variants that encode no d antigen (d-) and altered c antigen (c+w) | |
Atanasovska et al. | Efficient detection of Mediterranean β-thalassemia mutations by multiplex single-nucleotide primer extension | |
Horiuchi et al. | Polymerase chain reaction-based analysis using deaminated DNA of dodecamer expansions in CSTB, associated with Unverricht-Lundborg myoclonus epilepsy | |
WO2022030840A1 (en) | Snp marker for diagnosing immunoglobulin a nephropathy and vasculitis and diagnosis method using same | |
KR101899235B1 (en) | Primer set for diagnosing adhd in korean, kit for diagnosing comprising the same, and method of predicting adhd risk in korean using thereof | |
JPWO2006070666A1 (en) | Simultaneous detection method of gene polymorphism | |
RU2412247C2 (en) | Method of genetic polymorphism analysis for carrying out postnatal dna-diagnostics of mucoviscidosis | |
Essop | Molecular Aspects of X-Linked Mental Retardation Loci | |
JPWO2010107113A1 (en) | Retro element polymorphism detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |