CN118090867B - A FET hydrogen sensor and its preparation method - Google Patents
A FET hydrogen sensor and its preparation method Download PDFInfo
- Publication number
- CN118090867B CN118090867B CN202410494694.2A CN202410494694A CN118090867B CN 118090867 B CN118090867 B CN 118090867B CN 202410494694 A CN202410494694 A CN 202410494694A CN 118090867 B CN118090867 B CN 118090867B
- Authority
- CN
- China
- Prior art keywords
- electrode
- hydrogen
- layer
- region
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4141—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4146—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4148—Integrated circuits therefor, e.g. fabricated by CMOS processing
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Computer Hardware Design (AREA)
- Nanotechnology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种FET氢气传感器及其制备方法,属于氢气检测设备技术领域。The invention relates to a FET hydrogen sensor and a preparation method thereof, belonging to the technical field of hydrogen detection equipment.
背景技术Background technique
随着氢能源的不断发展,燃料电池技术成为清洁能源的重要组成部分,在化工、制药、电子等行业中准确监测氢气浓度对生产过程的安全性至关重要。氢气传感器的应用可以及时检测潜在的泄漏风险,有效预防事故发生,因此工业生产对氢气传感器的需求在不断扩大,倾向于采用高性能的氢气传感器来监测氢气的浓度,确保燃料电池系统的安全运行。With the continuous development of hydrogen energy, fuel cell technology has become an important part of clean energy. Accurate monitoring of hydrogen concentration is crucial to the safety of the production process in the chemical, pharmaceutical, and electronic industries. The application of hydrogen sensors can detect potential leakage risks in a timely manner and effectively prevent accidents. Therefore, the demand for hydrogen sensors in industrial production is constantly expanding, and high-performance hydrogen sensors are preferred to monitor hydrogen concentration and ensure the safe operation of fuel cell systems.
目前,氢气传感器的研究集中在提高安全性和性能方面,传统的电容薄膜和热导原理传感器存在集成难度和功耗较高的问题。室温高灵敏传感器通过钯掺杂的三氧化钨和石墨烯实现了对低浓度氢气的敏感检测,但仍需改进恢复速度和基础稳定性。At present, the research on hydrogen sensors focuses on improving safety and performance. Traditional capacitor film and thermal conductivity principle sensors have problems of difficulty in integration and high power consumption. Room temperature high-sensitivity sensors achieve sensitive detection of low-concentration hydrogen through palladium-doped tungsten trioxide and graphene, but the recovery speed and basic stability still need to be improved.
氧化锡基传感器具有制造简单、生产成本低、灵敏度高等特点具有广泛的应用前景,应用中更多使用金属氧化物纳米材料做FET(场效应管)的栅极进而实现氢气传感器的小型化、集成化。FET传感器以硅平面工艺制作,适用于低浓度气体探测,但存在响应时间长、低灵敏度、高浓度检测分辨率低、成本高、选择性不足等挑战。Tin oxide-based sensors have the characteristics of simple manufacturing, low production cost, and high sensitivity, and have broad application prospects. In applications, metal oxide nanomaterials are more often used as gates of FETs (field effect transistors) to achieve miniaturization and integration of hydrogen sensors. FET sensors are made using silicon planar technology and are suitable for low-concentration gas detection, but they have challenges such as long response time, low sensitivity, low resolution for high-concentration detection, high cost, and insufficient selectivity.
发明内容Summary of the invention
本发明的目的在于克服现有技术中的不足,提供一种FET氢气传感器及其制备方法,可提供多种氢气检测方案,从而有效实现低浓度氢气的高分辨率检测。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a FET hydrogen sensor and a preparation method thereof, which can provide a variety of hydrogen detection schemes, thereby effectively achieving high-resolution detection of low-concentration hydrogen.
为达到上述目的,本发明是采用下述技术方案实现的:To achieve the above object, the present invention is implemented by adopting the following technical solutions:
一方面,本发明提供一种FET氢气传感器,其从下到上依次包括衬底、沟道层、栅介质层、FET电极、隔离层、缓冲层、氢气感应层和叉指电极;On the one hand, the present invention provides a FET hydrogen sensor, which includes, from bottom to top, a substrate, a channel layer, a gate dielectric layer, a FET electrode, an isolation layer, a buffer layer, a hydrogen sensing layer and an interdigital electrode;
所述衬底设置于所述FET氢气传感器最底层;The substrate is arranged at the bottom layer of the FET hydrogen sensor;
所述沟道层包括P型外延层和三个N掺杂区,所述P型外延层设于衬底上,所述N掺杂区设于P型外延层表面,其从左到右依次为N掺杂A区、N掺杂B区和N掺杂C区,所述N掺杂A区与N掺杂B区之间设有第一沟道,所述N掺杂B区和N掺杂C区之间设有第二沟道;The channel layer includes a P-type epitaxial layer and three N-doped regions, the P-type epitaxial layer is arranged on the substrate, the N-doped region is arranged on the surface of the P-type epitaxial layer, and from left to right are N-doped region A, N-doped region B and N-doped region C, a first channel is arranged between the N-doped region A and the N-doped region B, and a second channel is arranged between the N-doped region B and the N-doped region C;
所述栅介质层设于沟道层上方且覆盖沟道层;The gate dielectric layer is disposed above the channel layer and covers the channel layer;
所述FET电极包括从左到右依次设置的源电极、第一栅电极、第二栅电极和漏电极,且所述源电极、第一栅电极、第二栅电极和漏电极均从下到上依次由主体部分和外延部分组成;The FET electrode comprises a source electrode, a first gate electrode, a second gate electrode and a drain electrode arranged in sequence from left to right, and the source electrode, the first gate electrode, the second gate electrode and the drain electrode are all composed of a main body part and an epitaxial part in sequence from bottom to top;
所述隔离层设置于所述栅介质层上方并包覆FET电极的主体部分与栅介质层。The isolation layer is arranged above the gate dielectric layer and covers the main body of the FET electrode and the gate dielectric layer.
所述缓冲层设置于所述隔离层上方且覆盖隔离层;The buffer layer is disposed above the isolation layer and covers the isolation layer;
所述氢气感应层设置于隔离层上方,其包括对称分布的氢气敏感区和半导体电阻区;The hydrogen sensing layer is arranged above the isolation layer, and comprises a symmetrically distributed hydrogen sensitive area and a semiconductor resistance area;
所述叉指电极分布于氢气感应层表面,包括第一叉指电极、第二叉指电极、第三叉指电极和第四叉指电极,所述第一叉指电极和第四叉指电极设于氢气敏感区上方,所述第二叉指电极和第三叉指电极设于半导体电阻区上方,所述第一叉指电极与第二叉指电极串联,且所述第一叉指电极和第二叉指电极的连接点为第一分压点,所述第一分压点覆盖第一栅电极的外延部分延伸出氢气感应层表面的部分,所述第三叉指电极和第四叉指电极串联,且所述第三叉指电极和第四叉指电极的连接点为第二分压点,所述第二分压点覆盖第二栅电极的外延部分延伸出氢气感应层表面的部分,通过串联相应叉指电极能够将半导体电阻区与氢气敏感区相连,形成由氢气敏感电阻与半导体电阻串联的工作点控制电路。The interdigital electrodes are distributed on the surface of the hydrogen sensing layer, including a first interdigital electrode, a second interdigital electrode, a third interdigital electrode and a fourth interdigital electrode. The first interdigital electrode and the fourth interdigital electrode are arranged above the hydrogen sensitive area, and the second interdigital electrode and the third interdigital electrode are arranged above the semiconductor resistance area. The first interdigital electrode is connected in series with the second interdigital electrode, and the connection point of the first interdigital electrode and the second interdigital electrode is a first voltage dividing point. The first voltage dividing point covers the part of the epitaxial part of the first gate electrode extending out of the surface of the hydrogen sensing layer. The third interdigital electrode and the fourth interdigital electrode are connected in series, and the connection point of the third interdigital electrode and the fourth interdigital electrode is a second voltage dividing point. The second voltage dividing point covers the part of the epitaxial part of the second gate electrode extending out of the surface of the hydrogen sensing layer. By connecting the corresponding interdigital electrodes in series, the semiconductor resistance area can be connected to the hydrogen sensitive area to form a working point control circuit composed of a hydrogen sensitive resistor and a semiconductor resistor in series.
优选的,所述衬底为氧化铝、硅、碳化硅、氮化镓、氮化铝中的一种。Preferably, the substrate is one of aluminum oxide, silicon, silicon carbide, gallium nitride, and aluminum nitride.
优选的,所述P型外延层采用P型掺杂半导体薄膜,所述P型掺杂半导体薄膜的材质为硅、碳化硅、氮化镓、砷化镓中的一种,且掺杂浓度为1×1015cm-3~5×1016cm-3,厚度为0.5~2μm;Preferably, the P-type epitaxial layer adopts a P-type doped semiconductor film, the material of the P-type doped semiconductor film is one of silicon, silicon carbide, gallium nitride, and gallium arsenide, and the doping concentration is 1×10 15 cm -3 to 5×10 16 cm -3 , and the thickness is 0.5 to 2 μm;
所述N掺杂区的长度均为2~25μm,掺杂浓度均为5×1018cm-3~5×1019cm-3,所述沟道层的栅宽为10~100μm;The length of the N-doped region is 2-25 μm, the doping concentration is 5×10 18 cm -3 ~5×10 19 cm -3 , and the gate width of the channel layer is 10-100 μm;
所述第一沟道和第二沟道的长度均为2~15μm。The lengths of the first channel and the second channel are both 2-15 μm.
优选的,所述栅介质层材质为氧化硅、氮化硅、氧化镓中的一种,其中,氧化硅的厚度为5~20nm,氮化硅的厚度为5~20nm,氧化镓的厚度为6~25nm,根据不同栅介质层材质设置栅介质层厚度使得栅介质层的最高击穿电压大于50 V。Preferably, the gate dielectric layer is made of one of silicon oxide, silicon nitride and gallium oxide, wherein the thickness of silicon oxide is 5-20 nm, the thickness of silicon nitride is 5-20 nm, and the thickness of gallium oxide is 6-25 nm. The thickness of the gate dielectric layer is set according to different gate dielectric layer materials so that the maximum breakdown voltage of the gate dielectric layer is greater than 50 V.
优选的,所述FET电极材质为镍、铂、铝、铜、金、银中的一种;Preferably, the FET electrode material is one of nickel, platinum, aluminum, copper, gold and silver;
所述源电极、漏电极的主体部分分别设置于N掺杂A区、N掺杂C区相远离的两侧上方,且穿过栅介质层分别与下方的N掺杂A区、N掺杂C区进行欧姆接触;所述第一栅电极、第二栅电极的主体部分分别设于位于第一沟道、第二沟道上方的栅介质层上;The main parts of the source electrode and the drain electrode are respectively arranged above the two sides away from each other of the N-doped A region and the N-doped C region, and pass through the gate dielectric layer to make ohmic contact with the N-doped A region and the N-doped C region below; the main parts of the first gate electrode and the second gate electrode are respectively arranged on the gate dielectric layer located above the first channel and the second channel;
所述外延部分设于主体部分的中心,外延部分上部穿过隔离层、缓冲层至氢气感应层表面与外界连通。The epitaxial part is arranged at the center of the main body part, and the upper part of the epitaxial part passes through the isolation layer and the buffer layer to the surface of the hydrogen sensing layer and is connected with the outside.
优选的,所述源电极、漏电极的主体部分的宽度分别与N掺杂A区、N掺杂C区的宽度相同,所述源电极、漏电极的主体部分的长度分别小于N掺杂A区、N掺杂C区的长度,且均为1~15μm;Preferably, the width of the main body of the source electrode and the drain electrode is the same as the width of the N-doped A region and the N-doped C region, respectively, and the length of the main body of the source electrode and the drain electrode is smaller than the length of the N-doped A region and the N-doped C region, respectively, and both are 1 to 15 μm;
所述第一栅电极的长度、宽度与第一沟道相同,所述第二栅电极的长度、宽度与第二沟道相同;The length and width of the first gate electrode are the same as those of the first channel, and the length and width of the second gate electrode are the same as those of the second channel;
所述外延部分的长度和主体部分相同,且宽度为5~15μm,所述主体部分的厚度为50~500nm。The length of the epitaxial part is the same as that of the main part, and the width is 5-15 μm, and the thickness of the main part is 50-500 nm.
优选的,所述隔离层的材质为氧化硅、氮化硅、氧化铝中的一种,且厚度为1~2μm,设置隔离层以防止工作点控制电路影响FET电极的工作,提高传感器工作时的信噪比,同时保护FET电极。Preferably, the isolation layer is made of one of silicon oxide, silicon nitride, and aluminum oxide, and has a thickness of 1 to 2 μm. The isolation layer is provided to prevent the operating point control circuit from affecting the operation of the FET electrode, improve the signal-to-noise ratio of the sensor during operation, and protect the FET electrode.
优选的,所述缓冲层的材质为氮化镓、氧化铝中的一种,且厚度为50~200nm。 设置缓冲层可以提高薄膜质量,进而提高传感器对氢气的响应度,信噪比等各项性能。Preferably, the buffer layer is made of gallium nitride or aluminum oxide, and has a thickness of 50 to 200 nm. Providing a buffer layer can improve the film quality, thereby improving the sensor's responsiveness to hydrogen, signal-to-noise ratio and other performances.
优选的,所述氢气敏感区包括由下到上依次设置的氧化镓薄膜、氧化锡薄膜、氢气催化剂纳米团簇;Preferably, the hydrogen sensitive area includes a gallium oxide film, a tin oxide film, and a hydrogen catalyst nanocluster arranged in sequence from bottom to top;
所述氧化镓薄膜的厚度为50~100nm;氧化镓薄膜选用氧化镓纳米带薄膜或β相氧化镓薄膜。The thickness of the gallium oxide film is 50-100 nm; the gallium oxide film is selected from a gallium oxide nanobelt film or a β-phase gallium oxide film.
优选的,所述氧化锡薄膜为氧化锡量子点薄膜,所述量子点直径为1~20nm;用氧化锡薄膜包裹所述氧化镓薄膜,可以进一步提高室温下所述氧化锡薄膜的氢气响应度,减少材料对氢气的响应与恢复时间,提高对氢气的分辨率,进一步实现对氢气的高效监测。Preferably, the tin oxide film is a tin oxide quantum dot film, and the diameter of the quantum dots is 1 to 20 nm; wrapping the gallium oxide film with a tin oxide film can further improve the hydrogen responsiveness of the tin oxide film at room temperature, reduce the response and recovery time of the material to hydrogen, improve the resolution of hydrogen, and further achieve efficient monitoring of hydrogen.
优选的,氢气催化剂纳米团簇的材质为铂、钯、镍中的一种或多种。纳米团簇直径大小为1~10nm,纳米团簇含量不超过总面积的5%。氢气催化剂纳米团簇对氢气具有选择性催化的作用,优先催化裂解氢气为氢原子,使其具备更强的反应活性,以提高传感器对氢气的选择性与灵敏度。催化剂的选用满足对氢气具有良好的催化特性与选择性即可,因此不仅局限于常见的氢气催化剂,其余满足条件的各种化合物催化剂也适用于本发明。Preferably, the material of the hydrogen catalyst nanoclusters is one or more of platinum, palladium, and nickel. The diameter of the nanoclusters is 1 to 10 nm, and the content of the nanoclusters does not exceed 5% of the total area. The hydrogen catalyst nanoclusters have a selective catalytic effect on hydrogen, preferentially catalyzing the cracking of hydrogen into hydrogen atoms, making it more reactive, so as to improve the selectivity and sensitivity of the sensor to hydrogen. The selection of the catalyst only needs to satisfy the requirement of having good catalytic properties and selectivity for hydrogen, so it is not limited to common hydrogen catalysts, and various compound catalysts that meet the other conditions are also applicable to the present invention.
优选的,所述半导体电阻区的材质为多晶硅,其厚度为60~130nm。Preferably, the semiconductor resistance region is made of polysilicon with a thickness of 60-130 nm.
优选的,所述氢气敏感电阻分别由氢气敏感区内的第一叉指电极及其叉指电极间隙内区域和第四叉指电极及其叉指电极间隙内区域构成,所述半导体电阻由半导体电阻区内的第二叉指电极及其叉指电极间隙内区域和第三叉指电极及其叉指电极间隙内区域构成,所述氢气敏感区、半导体电阻区以及叉指电极所组成的整体上表面积大于沟道层所占的面积,所述氢气敏感区、半导体电阻区以及叉指电极所组成的整体上表面积范围为150μm×150μm~500μm×500μm。Preferably, the hydrogen sensitive resistor is respectively composed of the first interdigitated electrode and the area within the interdigitated electrode gap and the fourth interdigitated electrode and the area within the interdigitated electrode gap in the hydrogen sensitive region, and the semiconductor resistor is composed of the second interdigitated electrode and the area within the interdigitated electrode gap and the third interdigitated electrode and the area within the interdigitated electrode gap in the semiconductor resistor region, the overall upper surface area composed of the hydrogen sensitive region, the semiconductor resistor region and the interdigitated electrodes is larger than the area occupied by the channel layer, and the overall upper surface area composed of the hydrogen sensitive region, the semiconductor resistor region and the interdigitated electrodes ranges from 150μm×150μm to 500μm×500μm.
优选的,叉指电极的材质为镍、铂、钯、铝、铜、金、银中的一种,进一步优选的,叉指电极的材质为镍、铂、钯,利用对氢气具有催化效果的贵金属制成叉指电极可以进一步提高该传感器对氢气的选择性与分辨率,减短传感器响应时间。Preferably, the material of the interdigital electrodes is one of nickel, platinum, palladium, aluminum, copper, gold, and silver. Further preferably, the material of the interdigital electrodes is nickel, platinum, and palladium. Using precious metals that have a catalytic effect on hydrogen to make interdigital electrodes can further improve the selectivity and resolution of the sensor for hydrogen and shorten the response time of the sensor.
另一方面,本发明提供一种FET氢气传感器的制备方法,所述方法用于制备上述任一项所述的FET氢气传感器,其包括:In another aspect, the present invention provides a method for preparing a FET hydrogen sensor, the method being used to prepare the FET hydrogen sensor described in any one of the above items, comprising:
制备沟道层:在衬底上设置P型掺杂半导体薄膜,得到P型外延衬底;Preparation of channel layer: a P-type doped semiconductor film is arranged on a substrate to obtain a P-type epitaxial substrate;
利用离子注入工艺在P型掺杂半导体薄膜上进行N掺杂A区、N掺杂B区和N掺杂C区掺杂;Doping an N-doped A region, an N-doped B region, and an N-doped C region on a P-type doped semiconductor film by using an ion implantation process;
制备栅介质层:采用等离子体增强化学气相沉积(Plasma Enhanced ChemicalVapor Deposition,PECVD)、低压力化学气相沉积(Low Pressure Chemical VaporDeposition,LPCVD)、原子层沉积(Atomiclayer Deposition,ALD)、磁控溅射中的一种在沟道层上方制备栅介质层;Preparing a gate dielectric layer: preparing a gate dielectric layer on the channel layer by using one of plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), atomic layer deposition (ALD), and magnetron sputtering;
制备FET电极:利用光刻工艺去除N掺杂A区和N掺杂C区上方的栅介质层,直至完全暴露形成源电极、漏电极电极窗口,在源电极、漏电极电极窗口上使用真空蒸镀、磁控溅射、电子束蒸发工艺中的一种分别制备源电极、漏电极,并在第一沟道、第二沟道上方分别制备第一栅电极、第二栅电极;Prepare FET electrodes: remove the gate dielectric layer above the N-doped A region and the N-doped C region by photolithography until the source electrode and the drain electrode windows are completely exposed, and prepare the source electrode and the drain electrode on the source electrode and the drain electrode windows by vacuum evaporation, magnetron sputtering, or electron beam evaporation, respectively, and prepare the first gate electrode and the second gate electrode on the first channel and the second channel, respectively;
制备隔离层:通过PECVD、LPCVD、磁控溅射技术中的一种在栅介质层上方沉积隔离层,使得隔离层覆盖FET电极以及栅介质层;Prepare the isolation layer: deposit the isolation layer on the gate dielectric layer by one of PECVD, LPCVD and magnetron sputtering techniques, so that the isolation layer covers the FET electrode and the gate dielectric layer;
制备缓冲层:通过PECVD、LPCVD、ALD、MOCVD(Metal-organic Chemical VaporDeposition ,金属有机化合物化学气相沉淀)技术中的一种,在隔离层上方沉积缓冲层;Prepare the buffer layer: deposit the buffer layer on the isolation layer by one of the following techniques: PECVD, LPCVD, ALD, MOCVD (Metal-organic Chemical Vapor Deposition);
制备氢气感应层:使用PECVD、LPCVD、MOCVD、磁控溅射、机械转移技术中的一种在缓冲层上方制备一层β相氧化镓薄膜或使用热蒸发法在缓冲层上方制备一层氧化镓纳米带薄膜。使用点胶、喷涂、旋涂、电喷印工艺技术中的一种在β相氧化镓薄膜或氧化镓纳米带薄膜上方制备一层氧化锡薄膜。使用ALD技术在氧化锡表面制备氢气催化剂纳米团簇形成氢气敏感区;Preparation of hydrogen sensing layer: Use one of PECVD, LPCVD, MOCVD, magnetron sputtering, and mechanical transfer technology to prepare a β-phase gallium oxide film on the buffer layer, or use thermal evaporation to prepare a gallium oxide nanobelt film on the buffer layer. Use one of dispensing, spraying, spin coating, and electrospraying technology to prepare a tin oxide film on the β-phase gallium oxide film or gallium oxide nanobelt film. Use ALD technology to prepare hydrogen catalyst nanoclusters on the surface of tin oxide to form a hydrogen sensitive area;
将氢气敏感区分为两半,在其中一半部分利用光刻工艺刻蚀直至缓冲层完全暴露,在暴露的缓冲层上使用PECVD、LPCVD、MOCVD等技术中的一种制备多晶硅,采用离子注入工艺与快速退火工艺调整多晶硅的晶粒尺寸与晶界数量,形成半导体电阻区;The hydrogen sensitive area is divided into two halves, one half is etched by photolithography until the buffer layer is completely exposed, polysilicon is prepared on the exposed buffer layer by using one of the technologies such as PECVD, LPCVD, MOCVD, etc., and the grain size and grain boundary number of the polysilicon are adjusted by using ion implantation and rapid annealing to form a semiconductor resistance area;
外延出FET电极:利用光刻工艺去除FET电极上覆盖的部分隔离层、缓冲层以及氢气感应层,暴露出部分FET电极形成电极窗口,在电极窗口使用真空蒸镀、磁控溅射或者电子束蒸发工艺中的一种沉积金属制备外延电极;Epitaxially grow FET electrodes: Use photolithography to remove part of the isolation layer, buffer layer and hydrogen sensing layer covering the FET electrodes, expose part of the FET electrodes to form electrode windows, and use vacuum evaporation, magnetron sputtering or electron beam evaporation to deposit metals in the electrode windows to prepare epitaxial electrodes;
制备叉指电极:使用磁控溅射在氢气感应层上制备叉指电极,完成FET氢气传感器制备。Preparation of interdigital electrodes: Interdigital electrodes are prepared on the hydrogen sensing layer using magnetron sputtering to complete the preparation of the FET hydrogen sensor.
进一步的,离子注入的N型离子为磷、砷、锑中的一种,N型离子的能量范围是15~120 Kev,在半导体电阻区的形成过程中通过控制离子注入的能量与快速退火的时间温度调整多晶硅电阻阻值。Furthermore, the N-type ions implanted are one of phosphorus, arsenic, and antimony, and the energy range of the N-type ions is 15 to 120 Kev. During the formation of the semiconductor resistance region, the resistance value of the polysilicon resistor is adjusted by controlling the energy of the ion implantation and the time and temperature of the rapid annealing.
进一步的,快速退火温度为800~1000℃,时间为20~30s,对多晶硅退火时可以使晶粒尺寸变大,晶界数量减少进而形成多晶硅电阻,与此同时退火工艺可以使源电极与漏电极与半导体沟道层形成良好的欧姆接触。Furthermore, the rapid annealing temperature is 800-1000°C and the time is 20-30s. When annealing polysilicon, the grain size can be enlarged, the number of grain boundaries can be reduced, and polysilicon resistance can be formed. At the same time, the annealing process can enable the source electrode and the drain electrode to form a good ohmic contact with the semiconductor channel layer.
与现有技术相比,本发明所达到的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明将双栅型FET结构、氢气敏感栅极结构、工作点控制电路结合。The present invention combines a dual-gate FET structure, a hydrogen-sensitive gate structure, and an operating point control circuit.
FET结构设置有双重栅电极,具有工作稳定、抗干扰能力强、低功耗、高增益且增益可控、易于集成等特点,可将化学信号转换的电信号充分可靠放大;The FET structure is equipped with double gate electrodes, and has the characteristics of stable operation, strong anti-interference ability, low power consumption, high gain and controllable gain, and easy integration. It can fully and reliably amplify the electrical signal converted from the chemical signal;
氢气敏感栅极结构为表面分散有氢气催化剂纳米团簇并包裹氧化锡薄膜的氧化镓的复合层,其中氧化镓薄膜由氧化锡量子点薄膜包裹,氧化锡量子点薄膜比表面积大,表面活性高,能给气体分子提供更多的吸附位点,可实现室温下对低浓度氢气的高灵敏探测;氧化锡量子点表面分布的氢气催化剂纳米团簇优先催化裂解氢气为氢原子,使其具备更强的反应活性,对氢气具有优良的选择性。同时,氧化锡量子点与氢气催化剂纳米团簇的颗粒尺寸均为纳米级别,表面活性高,能够降低气敏材料的工作温度,进一步提高该传感器在室温下对低浓度气体的高灵敏探测,具有广阔的应用场景。The hydrogen sensitive gate structure is a composite layer of gallium oxide with hydrogen catalyst nanoclusters dispersed on the surface and wrapped with tin oxide film, wherein the gallium oxide film is wrapped by tin oxide quantum dot film, which has a large specific surface area and high surface activity, and can provide more adsorption sites for gas molecules, and can achieve high-sensitivity detection of low-concentration hydrogen at room temperature; the hydrogen catalyst nanoclusters distributed on the surface of tin oxide quantum dots preferentially catalyze the cracking of hydrogen into hydrogen atoms, making it more reactive and having excellent selectivity for hydrogen. At the same time, the particle size of tin oxide quantum dots and hydrogen catalyst nanoclusters are both nanometer-level, with high surface activity, which can reduce the working temperature of gas-sensitive materials, further improving the high-sensitivity detection of low-concentration gases by the sensor at room temperature, and has a wide range of application scenarios.
结合工作点控制电路可提供多种氢气检测方案,传感器工作时流过半导体电阻与氢气敏感电阻的电流微弱,FET处于亚阈值区,使得氢气传感器或氢气传感阵列整体功耗低。同时,通过调整不同的电极电压设定,能够实现对传感器氢气分辨率的控制,可极大的扩展本发明的应用情景,如:将FET通过并联方式制备集成阵列,在传感器阵列外接积分电路存储感应信号,使用ADC电路进行信号采集,连接计算机运算分析数据,对阵列中传感器统一进行偏压,利用FET的放大作用与并联各FET漏源电流相加的特性充分放大电信号,通过统一调整第二栅电极的偏压实现增益控制,改变电流达饱和时氢气浓度,扩大氢气测量范围,改变传感器的分辨率,并且集成后传感器可调增益范围扩大,可以应对不同情况下氢气检测需求;也可以统一进行偏压,使FET处于亚阈值区或强反型区,一旦暴露于氢气中,电路在极低的氢气浓度范围内实现增益遍历,实现低浓度氢气的高分辨率检测。Combined with the working point control circuit, a variety of hydrogen detection schemes can be provided. When the sensor is working, the current flowing through the semiconductor resistor and the hydrogen sensitive resistor is weak, and the FET is in the subthreshold region, so that the overall power consumption of the hydrogen sensor or hydrogen sensor array is low. At the same time, by adjusting different electrode voltage settings, the control of the hydrogen resolution of the sensor can be achieved, and the application scenario of the present invention can be greatly expanded, such as: FET is prepared into an integrated array in parallel, the sensor array is connected to an external integration circuit to store the sensing signal, the ADC circuit is used for signal acquisition, the computer is connected to calculate and analyze the data, the sensors in the array are uniformly biased, and the electrical signal is fully amplified by using the amplification effect of the FET and the characteristics of the drain-source current addition of each parallel FET. Gain control is achieved by uniformly adjusting the bias of the second gate electrode, the hydrogen concentration when the current reaches saturation is changed, the hydrogen measurement range is expanded, the resolution of the sensor is changed, and the adjustable gain range of the sensor after integration is expanded, which can cope with the hydrogen detection needs under different conditions; it can also be uniformly biased to make the FET in the subthreshold region or the strong inversion region. Once exposed to hydrogen, the circuit achieves gain traversal within an extremely low hydrogen concentration range, and achieves high-resolution detection of low-concentration hydrogen.
本发明建立在现有FET制造工艺上,可大大降低生产成本。根据应用需求,设计传感器矩阵,调整沟道长度、栅介质层厚度、叉指电极大小,设定合适的栅极、漏极、源极偏压等综合参数,可设计制备高性能的氢气传感器,以应对不同氢气浓度下高分辨率、低功耗、高效的氢气检测。The present invention is based on the existing FET manufacturing process and can greatly reduce production costs. According to application requirements, the sensor matrix is designed, the channel length, gate dielectric layer thickness, finger electrode size are adjusted, and appropriate gate, drain, source bias and other comprehensive parameters are set, so that high-performance hydrogen sensors can be designed and prepared to cope with high-resolution, low-power, and high-efficiency hydrogen detection under different hydrogen concentrations.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的一种实施例中FET氢气传感器的氢气敏感区的剖视示意图;FIG1 is a cross-sectional schematic diagram of a hydrogen sensitive area of a FET hydrogen sensor in an embodiment of the present invention;
图2为本发明的一种实施例中FET氢气传感器的半导体电阻区的剖视示意图;FIG2 is a cross-sectional schematic diagram of a semiconductor resistance region of a FET hydrogen sensor in an embodiment of the present invention;
图3为本发明的一种实施例中FET氢气传感器的俯视结构示意图;FIG3 is a schematic diagram of a top view of a FET hydrogen sensor in an embodiment of the present invention;
图中:1-衬底、2-沟道层、201-P型外延层、202-N掺杂A区、203-N掺杂B区、204-N掺杂C区、205-第一沟道、206-第二沟道、3-栅介质层、4-FET电极、401-源电极、402-第一栅电极、403-第二栅电极、404-漏电极、5-隔离层、6-缓冲层、7-氢气敏感区、701-氧化镓薄膜、702-氧化锡薄膜、703-氢气催化剂纳米团簇、8-半导体电阻区、9-叉指电极、901-第一叉指电极、902-第二叉指电极、903-第三叉指电极、904-第四叉指电极、905-第一分压点、906-第二分压点。In the figure: 1-substrate, 2-channel layer, 201-P-type epitaxial layer, 202-N-doped A region, 203-N-doped B region, 204-N-doped C region, 205-first channel, 206-second channel, 3-gate dielectric layer, 4-FET electrode, 401-source electrode, 402-first gate electrode, 403-second gate electrode, 404-drain electrode, 5-isolation layer, 6-buffer layer, 7-hydrogen sensitive region, 701-gallium oxide film, 702-tin oxide film, 703-hydrogen catalyst nanoclusters, 8-semiconductor resistance region, 9-interdigitated electrodes, 901-first interdigitated electrodes, 902-second interdigitated electrodes, 903-third interdigitated electrodes, 904-fourth interdigitated electrodes, 905-first voltage dividing point, 906-second voltage dividing point.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following embodiments are only used to more clearly illustrate the technical solution of the present invention, and cannot be used to limit the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、 “底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside" and the like indicate positions or positional relationships based on the positions or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the present invention. In the description of the present invention, unless otherwise specified, "multiple" means two or more.
实施例1Example 1
如图1和图2所示,本发明实施例提供的FET氢气传感器的制备方法包括:As shown in FIG. 1 and FIG. 2 , the method for preparing the FET hydrogen sensor provided by the embodiment of the present invention includes:
选用1cm×1cm的氧化铝衬底作为衬底1。An alumina substrate of 1 cm×1 cm was selected as substrate 1 .
沟道层2制备:氧化铝衬底上使用金属有机化合物化学气相沉(Metal-organicChemical Vapor Deposition ,MOCVD)外延制备1.5μm厚的P型外延层201,P型外延层201采用P型氮化镓外延层,其掺杂浓度为1.5×1015cm-3。使用离子注入工艺在P型氮化镓外延层由左向右依次制备长度均为12μm,掺杂浓度均为6×1018cm-3的N掺杂A区202,N掺杂B区203,N掺杂C区204。N掺杂A区202和N掺杂B区203之间的第一沟道205长度为10μm,N掺杂B区203和N掺杂C区204之间的第二沟道206长度为12μm,所组成的沟道层2的栅宽为50μm。Preparation of channel layer 2: A 1.5 μm thick P-type epitaxial layer 201 is prepared epitaxially on an alumina substrate using metal-organic chemical vapor deposition (MOCVD). The P-type epitaxial layer 201 is a P-type gallium nitride epitaxial layer with a doping concentration of 1.5×10 15 cm -3 . An N-doped A region 202, an N-doped B region 203, and an N-doped C region 204 are prepared from left to right on the P-type gallium nitride epitaxial layer using an ion implantation process. The length of the first channel 205 between the N-doped A region 202 and the N-doped B region 203 is 10 μm, and the length of the second channel 206 between the N-doped B region 203 and the N-doped C region 204 is 12 μm. The gate width of the channel layer 2 formed is 50 μm.
栅介质层3制备:采用等离子体增强化学气相沉积在沟道层2上方制备厚度为10nm的氧化镓作为栅介质层3,其理论击穿电压大于80V。Preparation of the gate dielectric layer 3: A 10 nm thick gallium oxide is prepared on the channel layer 2 by plasma enhanced chemical vapor deposition as the gate dielectric layer 3, and its theoretical breakdown voltage is greater than 80V.
在一些实施例中,等离子增强化学气相沉积可调整为低压力气相沉积、原子层沉积、磁控溅射中的任意一种工艺。In some embodiments, the plasma enhanced chemical vapor deposition can be adjusted to any one of low pressure vapor deposition, atomic layer deposition, and magnetron sputtering.
FET电极4制备:使用标准光刻工艺去除N掺杂A区202和N掺杂C区204正上方的栅介质层3,直至完全暴露N掺杂A区202和N掺杂C区204形成源电极401、漏电极404电极窗口。光刻区域宽度与N掺杂A区202和N掺杂C区204一致,均为50μm,长度小于N掺杂A区202和N掺杂C区204,其为8μm,并且设置于靠近N掺杂A区202和N掺杂C区204相远离的一侧。Preparation of FET electrode 4: Use standard photolithography process to remove the gate dielectric layer 3 directly above the N-doped A region 202 and the N-doped C region 204 until the N-doped A region 202 and the N-doped C region 204 are completely exposed to form the source electrode 401 and the drain electrode 404 electrode windows. The width of the photolithography area is consistent with that of the N-doped A region 202 and the N-doped C region 204, both of which are 50 μm, and the length is smaller than that of the N-doped A region 202 and the N-doped C region 204, which is 8 μm, and is arranged close to the side away from the N-doped A region 202 and the N-doped C region 204.
使用磁控溅射工艺分别制备厚度为70 nm,材质为银的源电极401和漏电极404,源电极401和漏电极404与沟道层2形成欧姆接触。使用磁控溅射工艺在第一沟道205,第二沟道206正上方制备厚度为60 nm,材质为银的第一栅电极402、第二栅电极403。The source electrode 401 and the drain electrode 404 are made of silver and have a thickness of 70 nm, respectively, and are formed into an ohmic contact with the channel layer 2 by magnetron sputtering. The first gate electrode 402 and the second gate electrode 403 are made of silver and have a thickness of 60 nm, respectively, and are formed directly above the first channel 205 and the second channel 206 by magnetron sputtering.
在一些实施例中,磁控溅射工艺可调整为真空蒸镀、电子束蒸发工艺中的任意一种。In some embodiments, the magnetron sputtering process can be adjusted to any one of vacuum evaporation and electron beam evaporation processes.
隔离层5制备:使用MOCVD在氧化镓栅介质层3上方沉积一层厚度为1.5μm的氧化铝隔离层5,其完全覆盖所有FET电极4以及栅介质层3。Preparation of isolation layer 5 : MOCVD is used to deposit an aluminum oxide isolation layer 5 with a thickness of 1.5 μm on the gallium oxide gate dielectric layer 3 , which completely covers all FET electrodes 4 and the gate dielectric layer 3 .
在一些实施例中,MOCVD可调整为等离子增强化学气相沉积、低压力气相沉积、磁控溅射工艺中的任意一种。In some embodiments, MOCVD can be adjusted to any one of plasma enhanced chemical vapor deposition, low pressure vapor deposition, and magnetron sputtering processes.
缓冲层6制备:使用MOCVD,在隔离层5上方沉积一层厚度为100 nm的氮化镓缓冲层6。Preparation of buffer layer 6: Using MOCVD, a gallium nitride buffer layer 6 with a thickness of 100 nm is deposited on the isolation layer 5.
在一些实施例中,MOCVD可调整为等离子增强化学气相沉积、低压力气相沉积、磁控溅射、ALD工艺中的任意一种。In some embodiments, MOCVD can be adjusted to any one of plasma enhanced chemical vapor deposition, low pressure vapor deposition, magnetron sputtering, and ALD processes.
氢气感应层制备:使用热蒸发法在氮化镓缓冲层6上方制备一层厚度为70 nm的氧化镓纳米带薄膜。使用旋涂技术在氧化镓纳米带薄膜上方制备一层厚度为25 nm的氧化锡量子点薄膜,量子点直径为10 nm。使用ALD技术在氧化锡量子点薄膜表面制备铂氢气催化剂纳米团簇,铂氢气催化剂纳米团簇直径大小为7 nm,铂氢气催化剂纳米团簇含量为氧化锡薄膜702表面总面积的6%,从而形成氢气敏感区7。Preparation of hydrogen sensing layer: A 70 nm thick gallium oxide nanobelt film is prepared on the gallium nitride buffer layer 6 by thermal evaporation. A 25 nm thick tin oxide quantum dot film is prepared on the gallium oxide nanobelt film by spin coating, and the quantum dot diameter is 10 nm. A platinum hydrogen catalyst nanoclusters are prepared on the surface of the tin oxide quantum dot film by ALD technology, and the diameter of the platinum hydrogen catalyst nanoclusters is 7 nm. The content of the platinum hydrogen catalyst nanoclusters is 6% of the total surface area of the tin oxide film 702, thereby forming a hydrogen sensitive area 7.
在一些实施例中,旋涂工艺可调整为点胶、喷涂、电喷印工艺中的任意一种。In some embodiments, the spin coating process can be adjusted to any one of dispensing, spraying, and electrospraying processes.
使用标准光刻工艺,刻蚀氢气敏感区7下半区域(即半导体电阻区8)直至完全暴露氮化镓缓冲层6,使用MOCVD技术制备厚度为95 nm的多晶硅薄膜,采用离子注入工艺与退火工艺调整多晶硅的晶粒尺寸与晶界数量。Using standard photolithography, the lower half of the hydrogen sensitive region 7 (i.e., the semiconductor resistance region 8) is etched until the gallium nitride buffer layer 6 is completely exposed. A polycrystalline silicon film with a thickness of 95 nm is prepared using MOCVD technology. The grain size and grain boundary number of the polycrystalline silicon are adjusted using ion implantation and annealing processes.
其中,离子注入的N型离子为磷、砷、锑中的一种,N型离子的能量范围是15~120Kev,在半导体电阻区8的形成过程中通过控制离子注入的能量与快速退火的时间温度调整多晶硅电阻阻值。The N-type ions implanted are one of phosphorus, arsenic and antimony, and the energy range of the N-type ions is 15 to 120 KeV. During the formation of the semiconductor resistance region 8, the resistance value of the polysilicon resistor is adjusted by controlling the energy of the ion implantation and the time and temperature of the rapid annealing.
快速退火温度为800~1000℃,时间为20~30s,对多晶硅退火时可以使晶粒尺寸变大,晶界数量减少进而形成多晶硅电阻,与此同时退火工艺可以使源电极401与漏电极404与半导体沟道层2形成良好的欧姆接触。The rapid annealing temperature is 800-1000°C and the time is 20-30s. When annealing polysilicon, the grain size can be enlarged, the number of grain boundaries can be reduced, and polysilicon resistance can be formed. At the same time, the annealing process can make the source electrode 401 and the drain electrode 404 form a good ohmic contact with the semiconductor channel layer 2.
外延出FET电极:使用标准的光刻工艺,以栅宽中心处为基准线,去除源电极401、漏电极404上方8μm×15μm的所有半导体材料(隔离层、缓冲层以及氢气感应层),去除第一栅电极402上方面积为10μm×15μm的所有半导体材料,第二栅电极403上方面积为12μm×15μm的所有半导体材料直至暴露出部分FET电极形成电极窗口,使用真空蒸镀工艺或磁控溅射或电子束蒸发工艺在电极窗口沉积银制备外延电极将FET电极引出,形成FET电极的外延部分。Epitaxially grow FET electrodes: using standard photolithography process, with the center of the gate width as the reference line, remove all semiconductor materials (isolation layer, buffer layer and hydrogen sensing layer) of 8μm×15μm above the source electrode 401 and the drain electrode 404, remove all semiconductor materials of 10μm×15μm above the first gate electrode 402, and all semiconductor materials of 12μm×15μm above the second gate electrode 403 until part of the FET electrode is exposed to form an electrode window, and use vacuum evaporation process or magnetron sputtering or electron beam evaporation process to deposit silver in the electrode window to prepare epitaxial electrode to lead out the FET electrode, so as to form the epitaxial part of the FET electrode.
叉指电极的制备:使用磁控溅射在氢气感应层中心正上方200μm×200μm的区域内依次设置四个叉指间距为4μm,对数为20,长度为60μm,厚度为60 nm的铂叉指电极,其中,第一叉指电极901与第四叉指电极904设置于氢气敏感区7上方,第二叉指电极902与第三叉指电极903设置于半导体电阻区8上方。氢气敏感区7的氢气感应电阻以及半导体电阻区8的半导体电阻均由其区域内叉指电极9及其叉指电极9间隙内区域构成,制备的氢气感应电阻在未暴露于氢气中时的阻值与半导体电阻阻值处于同一数量级。Preparation of interdigital electrodes: magnetron sputtering is used to sequentially arrange four platinum interdigital electrodes with an interdigital spacing of 4 μm, a pair number of 20, a length of 60 μm, and a thickness of 60 nm in an area of 200 μm×200 μm directly above the center of the hydrogen sensing layer, wherein the first interdigital electrode 901 and the fourth interdigital electrode 904 are arranged above the hydrogen sensitive area 7, and the second interdigital electrode 902 and the third interdigital electrode 903 are arranged above the semiconductor resistance area 8. The hydrogen sensing resistor of the hydrogen sensitive area 7 and the semiconductor resistor of the semiconductor resistance area 8 are both composed of the interdigital electrodes 9 in their area and the area in the gap between the interdigital electrodes 9. The resistance value of the prepared hydrogen sensing resistor when not exposed to hydrogen is in the same order of magnitude as the resistance value of the semiconductor resistor.
第一叉指电极901与第二叉指电极902串联,连接点为第一分压点905,第一分压点905覆盖第一栅电极402的外延部分延伸出氢气感应层表面的部分。第三叉指电极903与第四叉指电极904串联,连接点为第二分压点906,第二分压点906覆盖第二栅电极403的外延部分延伸出氢气感应层表面的部分。串联叉指电极9将半导体电阻区8与氢气敏感区7相连,形成由氢气敏感电阻与半导体电阻串联的工作点控制电路,完成FET氢气传感器的制备,其俯视图如图3所示。The first interdigital electrode 901 is connected in series with the second interdigital electrode 902, and the connection point is the first dividing voltage point 905. The first dividing voltage point 905 covers the part of the epitaxial part of the first gate electrode 402 extending out of the surface of the hydrogen sensing layer. The third interdigital electrode 903 is connected in series with the fourth interdigital electrode 904, and the connection point is the second dividing voltage point 906. The second dividing voltage point 906 covers the part of the epitaxial part of the second gate electrode 403 extending out of the surface of the hydrogen sensing layer. The series interdigital electrodes 9 connect the semiconductor resistance area 8 with the hydrogen sensitive area 7, forming an operating point control circuit composed of a hydrogen sensitive resistor and a semiconductor resistor in series, and completing the preparation of the FET hydrogen sensor, and its top view is shown in Figure 3.
实施例2Example 2
本发明实施例提供的FET氢气传感器的制备方法包括:The method for preparing the FET hydrogen sensor provided by the embodiment of the present invention comprises:
选用1cm×1cm的硅衬底作为衬底1。A 1 cm×1 cm silicon substrate is selected as the substrate 1 .
沟道层2制备:在硅衬底上使用标准光刻工艺与热扩散工艺制备P型外延层201,P型外延层201采用P型硅外延层,其掺杂浓度为2×1015cm-3。使用离子注入工艺在P型硅外延层上由左向右依次制备长度均为10μm,掺杂浓度均为7×1018cm-3的N掺杂A区202,N掺杂B区203,N掺杂C区204。N掺杂A区202和N掺杂B区203之间的第一沟道205长度为8μm,N掺杂B区203和N掺杂C区204之间的第二沟道206长度为12μm,所组成的沟道层2的栅宽为40μm。Preparation of channel layer 2: A P-type epitaxial layer 201 is prepared on a silicon substrate using a standard photolithography process and a thermal diffusion process. The P-type epitaxial layer 201 uses a P-type silicon epitaxial layer with a doping concentration of 2× 10 15 cm -3 . An N-doped A region 202, an N-doped B region 203, and an N-doped C region 204 are prepared from left to right on the P-type silicon epitaxial layer using an ion implantation process. The length of the first channel 205 between the N-doped A region 202 and the N-doped B region 203 is 8 μm, and the length of the second channel 206 between the N-doped B region 203 and the N-doped C region 204 is 12 μm. The gate width of the channel layer 2 formed is 40 μm.
栅介质层3制备:采用磁控溅射在沟道层2上方制备厚度为12nm的氮化硅作为栅介质层3,其理论击穿电压大于100v。Preparation of gate dielectric layer 3: Silicon nitride with a thickness of 12 nm is prepared on the channel layer 2 by magnetron sputtering as the gate dielectric layer 3, and its theoretical breakdown voltage is greater than 100V.
FET电极4制备:使用标准光刻工艺去除N掺杂A区202和N掺杂C区204正上方的栅介质层3,直至完全暴露N掺杂A区202和N掺杂C区204形成源电极401、漏电极404电极窗口。光刻区域宽度与N掺杂A区202和N掺杂C区204一致均为40μm,长度小于N掺杂A区202和N掺杂C区204,其为8μm,并且设置于靠近N掺杂A区202和N掺杂C区204相远离的一侧。Preparation of FET electrode 4: Use standard photolithography process to remove the gate dielectric layer 3 directly above the N-doped A region 202 and the N-doped C region 204 until the N-doped A region 202 and the N-doped C region 204 are completely exposed to form the source electrode 401 and the drain electrode 404 electrode windows. The width of the photolithography area is consistent with that of the N-doped A region 202 and the N-doped C region 204, both of which are 40 μm, and the length is smaller than that of the N-doped A region 202 and the N-doped C region 204, which is 8 μm, and is arranged close to the side away from the N-doped A region 202 and the N-doped C region 204.
使用磁控溅射工艺分别制备厚度为72 nm,材质为金的源电极401和漏电极404,源电极401和漏电极404与沟道层2形成欧姆接触。使用磁控溅射工艺在第一沟道205,第二沟道206正上方制备厚度为60 nm,材质为金的第一栅电极402、第二栅电极403。The source electrode 401 and the drain electrode 404 are made of gold and have a thickness of 72 nm, respectively, and the source electrode 401 and the drain electrode 404 form an ohmic contact with the channel layer 2. The first gate electrode 402 and the second gate electrode 403 are made of gold and have a thickness of 60 nm, respectively, and are prepared directly above the first channel 205 and the second channel 206 by the magnetron sputtering process.
隔离层5制备:使用MOCVD在氧化硅栅介质层3上方沉积一层厚度为2μm的氮化硅隔离层5,其完全覆盖所有FET电极4以及栅介质层3。Preparation of isolation layer 5 : A silicon nitride isolation layer 5 with a thickness of 2 μm is deposited on the silicon oxide gate dielectric layer 3 by using MOCVD, which completely covers all FET electrodes 4 and the gate dielectric layer 3 .
缓冲层6制备:使用MOCVD,在隔离层5上方沉积一层厚度为50 nm的氧化铝缓冲层6。Preparation of buffer layer 6: Using MOCVD, an aluminum oxide buffer layer 6 with a thickness of 50 nm is deposited on the isolation layer 5.
氢气感应层制备:使用MOCVD在氧化铝缓冲层6上方制备一层厚度为50 nm的β相氧化镓薄膜。使用电喷印工艺技术在β相氧化镓薄膜上方制备一层厚度为30 nm的氧化锡量子点薄膜,量子点直径为15 nm。使用ALD技术在氧化锡薄膜表面制备Pd纳米团簇,Pd纳米团簇直径大小为3 nm,Pd纳米团簇含量为氧化锡薄膜表面总面积的3%,从而制备得到氢气敏感区7。Preparation of hydrogen sensing layer: A 50 nm thick β-phase gallium oxide film was prepared on the aluminum oxide buffer layer 6 using MOCVD. A 30 nm thick tin oxide quantum dot film was prepared on the β-phase gallium oxide film using electrospray printing technology, and the quantum dot diameter was 15 nm. Pd nanoclusters were prepared on the surface of the tin oxide film using ALD technology, and the diameter of the Pd nanoclusters was 3 nm. The content of Pd nanoclusters was 3% of the total surface area of the tin oxide film, thereby preparing a hydrogen sensitive area 7.
使用标准光刻工艺,刻蚀氢气敏感区7下半区域(即半导体电阻区8)直至完全暴露氧化铝缓冲层6,使用MOCVD技术制备厚度为100 nm的多晶硅薄膜,采用离子注入工艺与退火工艺调整多晶硅的晶粒尺寸与晶界数量。Using standard photolithography, the lower half of the hydrogen sensitive region 7 (i.e., the semiconductor resistance region 8) is etched until the aluminum oxide buffer layer 6 is completely exposed. A polycrystalline silicon film with a thickness of 100 nm is prepared using MOCVD technology. The grain size and grain boundary number of the polycrystalline silicon are adjusted using ion implantation and annealing processes.
外延出FET电极:使用标准的光刻工艺,以栅宽中心处为基准线,去除源电极401、漏电极404上方8μm×15μm的所有半导体材料(隔离层、缓冲层以及氢气感应层),去除第一栅电极402上方面积为8μm×15μm的所有半导体材料,第二栅电极403上方面积为12μm×15μm的所有半导体材料,直至暴露出部分电极形成电极窗口,使用磁控溅射工艺在电极窗口沉积银制备外延电极将FET电极引出,形成FET电极的外延部分。Epitaxially grow FET electrodes: using standard photolithography technology, with the center of the gate width as the reference line, remove all semiconductor materials (isolation layer, buffer layer and hydrogen sensing layer) of 8μm×15μm above the source electrode 401 and the drain electrode 404, remove all semiconductor materials of 8μm×15μm above the first gate electrode 402, and all semiconductor materials of 12μm×15μm above the second gate electrode 403, until part of the electrode is exposed to form an electrode window, use magnetron sputtering technology to deposit silver in the electrode window to prepare epitaxial electrodes to lead out the FET electrodes, and form the epitaxial part of the FET electrodes.
使用磁控溅射在氢气感应层中心正上方200μm×200μm的区域内依次设置四个叉指间距为4μm,对数为20,长度为60μm,厚度为60 nm的铂叉指电极9,其中,第一叉指电极901与第四叉指电极904设置于氢气敏感区7上方,第二叉指电极902与第三叉指电极903设置于半导体电阻区8上方。氢气敏感区7的氢气感应电阻以及半导体电阻区8的半导体电阻由其区域内叉指电极9及其叉指电极9间隙内区域构成。制备的氢气感应电阻在未暴露于氢气中时的阻值与半导体电阻阻值处于同一数量级。Four platinum interdigital electrodes 9 with an interdigital spacing of 4 μm, a pair number of 20, a length of 60 μm, and a thickness of 60 nm are sequentially arranged in a 200 μm×200 μm area directly above the center of the hydrogen sensing layer by magnetron sputtering, wherein the first interdigital electrode 901 and the fourth interdigital electrode 904 are arranged above the hydrogen sensitive area 7, and the second interdigital electrode 902 and the third interdigital electrode 903 are arranged above the semiconductor resistance area 8. The hydrogen sensing resistor of the hydrogen sensitive area 7 and the semiconductor resistor of the semiconductor resistance area 8 are composed of the interdigital electrodes 9 in the area and the area in the gap between the interdigital electrodes 9. The resistance value of the prepared hydrogen sensing resistor when not exposed to hydrogen is in the same order of magnitude as the resistance value of the semiconductor resistor.
第一叉指电极901与第二叉指电极902串联,连接点为第一分压点905,第一分压点905覆盖第一栅电极402的外延部分延伸出氢气感应层表面的部分。第三叉指电极903与第四叉指电极904串联,连接点为第二分压点906,第二分压点906覆盖第二栅电极403的外延部分延伸出氢气感应层表面的部分。串联叉指电极9将半导体电阻区8与氢气敏感区7相连,形成由氢气敏感电阻与半导体电阻串联的工作点控制电路,完成FET氢气传感器的制备。The first interdigital electrode 901 is connected in series with the second interdigital electrode 902, and the connection point is the first dividing voltage point 905. The first dividing voltage point 905 covers the part of the epitaxial part of the first gate electrode 402 extending out of the surface of the hydrogen sensing layer. The third interdigital electrode 903 is connected in series with the fourth interdigital electrode 904, and the connection point is the second dividing voltage point 906. The second dividing voltage point 906 covers the part of the epitaxial part of the second gate electrode 403 extending out of the surface of the hydrogen sensing layer. The series interdigital electrodes 9 connect the semiconductor resistance area 8 with the hydrogen sensitive area 7, forming an operating point control circuit composed of a hydrogen sensitive resistor and a semiconductor resistor in series, and completing the preparation of the FET hydrogen sensor.
实施例1和实施例2中使用到的标准光刻工艺可包括涂胶、曝光、显影、去胶等流程,但不限于此,制备氢气传感器过程中所有工艺的具体参数可由本领域技术人员根据实际需求进行设置,在此不多作赘述也不限定。The standard photolithography process used in Example 1 and Example 2 may include processes such as coating, exposure, development, and degumming, but is not limited thereto. The specific parameters of all processes in the process of preparing the hydrogen sensor can be set by those skilled in the art according to actual needs, and will not be elaborated or limited here.
工作原理:working principle:
制备完成的FET氢气传感器在使用过程中的连接方式有三种,具体的,第一种连接方式为:There are three ways to connect the prepared FET hydrogen sensor during use. Specifically, the first connection method is:
通过外接导线或探针将源电极401和漏电极404的电极引出并串联源电极401和漏电极404。通过外接导线或探针将第二分压点906引出,通过外接导线或探针将第一叉指电极901和第二叉指电极902引出并串联第一叉指电极901和第二叉指电极902。The source electrode 401 and the drain electrode 404 are led out through an external wire or probe and connected in series with the source electrode 401 and the drain electrode 404. The second voltage dividing point 906 is led out through an external wire or probe, and the first interdigital electrode 901 and the second interdigital electrode 902 are led out through an external wire or probe and connected in series with the first interdigital electrode 901 and the second interdigital electrode 902.
在源电极401和漏电极404间加固定偏压,在第二分压点906处加可调偏压,控制第二沟道206开启程度。在第一叉指电极901、第二叉指电极902分别设置固定偏压,第一叉指电极901(氢气敏感区7)电位高,第二叉指电极902(半导体电阻区8)电位低。调整在第一叉指电极901、第二叉指电极902分别设置的固定偏压,进而调整第一分压点905处电位,使得第一栅电极402处于亚阈值区。A fixed bias is applied between the source electrode 401 and the drain electrode 404, and an adjustable bias is applied at the second voltage dividing point 906 to control the opening degree of the second channel 206. Fixed biases are set at the first interdigital electrode 901 and the second interdigital electrode 902, respectively. The potential of the first interdigital electrode 901 (hydrogen sensitive region 7) is high, and the potential of the second interdigital electrode 902 (semiconductor resistance region 8) is low. The fixed biases set at the first interdigital electrode 901 and the second interdigital electrode 902 are adjusted, and then the potential at the first voltage dividing point 905 is adjusted, so that the first gate electrode 402 is in the subthreshold region.
当氢气敏感区7暴露于氢气中时,氢气敏感电阻减小,第一分压点905电位升高,将化学信号转换为电信号。通过FET氢气传感器的放大作用放大电流信号。传感器外接积分电路存储感应信号,使用ADC电路进行信号采集,连接计算机运算分析数据。可以通过调整第二栅电极403的偏压(由于第二栅电极403被导线引出,可直接调整其偏压)实现增益控制,改变电流达饱和时氢气浓度,改变传感器的分辨率,扩大氢气测量范围,以应对不同情况下氢气检测需求。When the hydrogen sensitive area 7 is exposed to hydrogen, the hydrogen sensitive resistance decreases, the potential of the first voltage dividing point 905 increases, and the chemical signal is converted into an electrical signal. The current signal is amplified by the amplification effect of the FET hydrogen sensor. The sensor is connected to an external integration circuit to store the sensing signal, and the ADC circuit is used for signal acquisition, and the computer is connected to calculate and analyze the data. Gain control can be achieved by adjusting the bias voltage of the second gate electrode 403 (since the second gate electrode 403 is led out by a wire, its bias voltage can be directly adjusted), changing the hydrogen concentration when the current reaches saturation, changing the resolution of the sensor, and expanding the hydrogen measurement range to meet the needs of hydrogen detection in different situations.
第二种连接方式为:The second connection method is:
通过外接导线或探针将源电极401和漏电极404电极引出并串联源电极401和漏电极404。通过外接导线或探针将第一叉指电极901和第二叉指电极902引出并串联第一叉指电极901和第二叉指电极902。通过外接导线或探针将第三叉指电极903和第四叉指电极904引出并串联第三叉指电极903和第四叉指电极904。The source electrode 401 and the drain electrode 404 are led out through an external wire or a probe and connected in series with the source electrode 401 and the drain electrode 404. The first interdigital electrode 901 and the second interdigital electrode 902 are led out through an external wire or a probe and connected in series with the first interdigital electrode 901 and the second interdigital electrode 902. The third interdigital electrode 903 and the fourth interdigital electrode 904 are led out through an external wire or a probe and connected in series with the third interdigital electrode 903 and the fourth interdigital electrode 904.
在源电极401和漏电极404间加固定偏压,在第一叉指电极901、第二叉指电极902分别设置固定偏压,第一叉指电极901(氢气敏感区7)电位高,第二叉指电极902(半导体电阻区8)电位低。调整在第一叉指电极901、第二叉指电极902分别设置的固定偏压,进而调整第一分压点905处电位,使得第一栅电极402处于亚阈值区。在第三叉指电极903、第四叉指电极904分别设置固定偏压,第四叉指电极904(氢气敏感区7)电位高,第三叉指电极903(半导体电阻区8)电位低。调整在第四叉指电极904、第三叉指电极903分别设置的固定偏压,进而调整第二分压点906处电位,使得第二栅电极403处于亚阈值区。当氢气敏感区7暴露氢气中时,氢气敏感电阻减小,第一分压点905和第二分压点906的电位均上升,在极低的氢气浓度范围内实现增益遍历。传感器外接跨阻放大电路放大信号,ADC电路采样,单片机电路进行信号处理与显示,实现低浓度氢气的高分辨率的检测。A fixed bias is applied between the source electrode 401 and the drain electrode 404, and a fixed bias is set at the first interdigital electrode 901 and the second interdigital electrode 902, respectively. The potential of the first interdigital electrode 901 (hydrogen sensitive area 7) is high, and the potential of the second interdigital electrode 902 (semiconductor resistance area 8) is low. The fixed biases set at the first interdigital electrode 901 and the second interdigital electrode 902 are adjusted, and the potential at the first voltage dividing point 905 is adjusted, so that the first gate electrode 402 is in the subthreshold region. Fixed biases are set at the third interdigital electrode 903 and the fourth interdigital electrode 904, respectively. The potential of the fourth interdigital electrode 904 (hydrogen sensitive area 7) is high, and the potential of the third interdigital electrode 903 (semiconductor resistance area 8) is low. The fixed biases set at the fourth interdigital electrode 904 and the third interdigital electrode 903 are adjusted, and the potential at the second voltage dividing point 906 is adjusted, so that the second gate electrode 403 is in the subthreshold region. When the hydrogen sensitive area 7 is exposed to hydrogen, the hydrogen sensitive resistance decreases, the potentials of the first voltage dividing point 905 and the second voltage dividing point 906 both rise, and gain traversal is achieved in an extremely low hydrogen concentration range. The sensor is connected to an external transimpedance amplifier circuit to amplify the signal, the ADC circuit to sample, and the single chip microcomputer circuit to process and display the signal, thereby achieving high-resolution detection of low-concentration hydrogen.
第三种连接方式:The third connection method:
通过外接导线或探针将第一叉指电极901和第二叉指电极902引出并串联第一叉指电极901和第二叉指电极902。通过外接导线或探针将第三叉指电极903和第四叉指电极904引出并串联第三叉指电极903和第四叉指电极904。Lead out the first interdigital electrode 901 and the second interdigital electrode 902 through an external wire or probe and connect them in series. Lead out the third interdigital electrode 903 and the fourth interdigital electrode 904 through an external wire or probe and connect them in series.
在氢气传感器工作时,可在第一栅电极402或第二栅电极403上方叉指电极9设置不同固定偏压,通过测量第一分压点905或第二分压点906电压在暴露于氢气氛围前后电压的变化实现在源电极401和漏电极404未加电源的情况下实现氢气检测。When the hydrogen sensor is working, different fixed bias voltages can be set on the interdigitated electrodes 9 above the first gate electrode 402 or the second gate electrode 403, and hydrogen detection can be achieved when no power is supplied to the source electrode 401 and the drain electrode 404 by measuring the voltage change of the first voltage dividing point 905 or the second voltage dividing point 906 before and after exposure to the hydrogen atmosphere.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the technical principles of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410494694.2A CN118090867B (en) | 2024-04-24 | 2024-04-24 | A FET hydrogen sensor and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410494694.2A CN118090867B (en) | 2024-04-24 | 2024-04-24 | A FET hydrogen sensor and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118090867A CN118090867A (en) | 2024-05-28 |
CN118090867B true CN118090867B (en) | 2024-06-25 |
Family
ID=91155587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410494694.2A Active CN118090867B (en) | 2024-04-24 | 2024-04-24 | A FET hydrogen sensor and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118090867B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112666229A (en) * | 2020-12-14 | 2021-04-16 | 深圳华中科技大学研究院 | Field-effect tube hydrogen sensor and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7763208B2 (en) * | 2003-11-12 | 2010-07-27 | E.I. Du Pont De Nemours And Company | System and method for sensing and analyzing gases |
US10020300B2 (en) * | 2014-12-18 | 2018-07-10 | Agilome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
WO2017031254A1 (en) * | 2015-08-17 | 2017-02-23 | Agilome, Inc. | Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same |
CN114646675B (en) * | 2022-04-02 | 2022-09-27 | 西安电子科技大学杭州研究院 | A kind of hydrogen sensor/fabrication method based on thin film transistor and its application |
-
2024
- 2024-04-24 CN CN202410494694.2A patent/CN118090867B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112666229A (en) * | 2020-12-14 | 2021-04-16 | 深圳华中科技大学研究院 | Field-effect tube hydrogen sensor and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
气体传感器研究进展和发展方向;吴玉锋, 田彦文, 韩元山, 翟玉春;计算机测量与控制;20031025(10);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN118090867A (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Gas sensing devices based on two-dimensional materials: a review | |
CN110579526B (en) | Field effect transistor gas sensor and array preparation method thereof | |
JP5603193B2 (en) | Gas sensor | |
US6894359B2 (en) | Sensitivity control for nanotube sensors | |
CN102778479B (en) | Integratable amorphous metal oxide semiconductor gas sensor | |
CN109580725B (en) | Two-dimensional transition metal sulfide gas sensor based on antenna structure and preparation | |
CN102856169B (en) | Preparation method of thin film transistor and top gate type thin film transistor | |
US8025843B2 (en) | Hydrogen sensor | |
JP2011203256A (en) | Amorphous thin film for sensing | |
CN102395878A (en) | Gas sensor | |
CN102778481A (en) | Induction grid type amorphous metal oxide TFT gas sensor | |
CN112666229A (en) | Field-effect tube hydrogen sensor and preparation method thereof | |
CN113241376B (en) | A full-surround channel field-effect transistor, its preparation method and application | |
CN110672666A (en) | Electronic nose device and preparation method thereof | |
Zeng et al. | A novel room temperature SO2 gas sensor based on TiO2/rGO buried-gate FET | |
Das et al. | MoS₂ Decorated α-Fe₂O₃ Nanostructures for Efficient NO₂ Gas Sensor | |
CN103033276A (en) | Silicon carbide (SIC) temperature sensor and manufacturing method thereof | |
CN118090867B (en) | A FET hydrogen sensor and its preparation method | |
Juang | Ag additive and nanorod structure enhanced gas sensing properties of metal oxide-based CO 2 sensor | |
CN116879375A (en) | Floating gate structure field effect type gas sensor and preparation method thereof | |
CN114791445A (en) | Noble metal modified composite gas sensor | |
Ghosal et al. | A review on the sensing performances for three different ternary hybrid (Pd/RGO/TiO 2-NTs, Pd/RGO/MnO 2-NFs and Pd/RGO/WO 3-NFs) gas sensor device structures | |
KR102613378B1 (en) | Carbon nanotube-based humidity sensor and manufacturing method thereof | |
KR20200120381A (en) | Hydrogen gas sensor | |
CN221747233U (en) | A top-gate field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |