[go: up one dir, main page]

CN117925655A - Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof - Google Patents

Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof Download PDF

Info

Publication number
CN117925655A
CN117925655A CN202410093141.6A CN202410093141A CN117925655A CN 117925655 A CN117925655 A CN 117925655A CN 202410093141 A CN202410093141 A CN 202410093141A CN 117925655 A CN117925655 A CN 117925655A
Authority
CN
China
Prior art keywords
stress
gene
upland cotton
cotton
ghpip5k22
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410093141.6A
Other languages
Chinese (zh)
Inventor
宿俊吉
王彩香
令萍洁
杨军宁
郭学峰
李丹丹
张雪利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Agricultural University
Original Assignee
Gansu Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Agricultural University filed Critical Gansu Agricultural University
Priority to CN202410093141.6A priority Critical patent/CN117925655A/en
Publication of CN117925655A publication Critical patent/CN117925655A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/010681-Phosphatidylinositol-4-phosphate 5-kinase (2.7.1.68)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof, and belongs to the technical field of genetic engineering. The nucleotide sequence of the GhPIP5K2 gene is shown as SEQ ID NO:1, the nucleotide sequence of the GhPIP5K22 gene is shown as SEQ ID NO: shown at 9. The invention also discloses application of the GhPIP5K2 and GhPIP5K22 genes in improving the stress resistance of cotton to abiotic stress. According to the invention, the target gene is silenced in cotton, and after abiotic stress treatment, the target gene is silenced to cause plant leaf wilting, the activity of antioxidant enzyme is reduced, the MDA content is increased and the expression of the gene related to adversity stress is reduced. Namely, the silencing target gene weakens the stress resistance of the cotton to the abiotic stress, and the positive regulation of the stress resistance of the cotton to the abiotic stress by the target gene is proved. The invention provides important gene resources for high stress resistance breeding of upland cotton.

Description

陆地棉GhPIP5K2和GhPIP5K22基因及其应用Upland cotton GhPIP5K2 and GhPIP5K22 genes and their applications

技术领域Technical Field

本发明涉及基因工程技术领域,特别是涉及陆地棉GhPIP5K2和GhPIP5K22基因及其应用。The invention relates to the technical field of genetic engineering, in particular to upland cotton GhPIP5K2 and GhPIP5K22 genes and applications thereof.

背景技术Background technique

磷脂酰肌醇-4,5-二磷酸(PtdIns(4,5)P2)是在磷脂酰肌醇磷酸激酶(PIPkinase)作用下,由磷脂酰肌醇-4-磷酸(PtdIns(4)P)或磷脂酰肌醇-5-磷酸(PtdIns(5)P)进行磷酸化产生的。作为一种信号分子,它在抗盐和抗渗透胁迫、囊泡运输、肌动蛋白组织和对钒酸盐敏感的H+-ATP酶调节质膜和离子通道活性等方面也发挥着至关重要的作用。磷脂酰肌醇-4,5-二磷酸既是与效应蛋白相互作用的脂质信号,也是磷脂酶C信号转导途径中的底物。该信号通路通过调节细胞内多种过程,包括细胞骨架组织、膜运输、保卫细胞运动和花粉管生长。PtdIns(4,5)P2信号功能的相关性在很大程度上取决于其时空分布,而时空分布主要由其在特定膜区域内的代谢活性所决定。PtdIns(4,5)P2的时空结构主要受到参与其合成和分解的酶的调控。在这些过程中,PIPKs家族的磷脂酰肌醇4-磷酸5-激酶(PIP5K)对于形成PtdIns(4,5)P2模式起着至关重要的作用。与动物和真菌基因组相比,高等植物基因组中编码PIP5K的基因数量较多,在拟南芥和水稻等模式植物中均发现了PIP5K基因。拟南芥共有11个PIP5K基因,其结构与动物源I型PtdInsP酶高度相似。Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) is produced by phosphorylation of phosphatidylinositol-4-phosphate (PtdIns(4)P) or phosphatidylinositol-5-phosphate (PtdIns(5)P) by phosphatidylinositol phosphokinase (PIPkinase). As a signaling molecule, it also plays a crucial role in resistance to salt and osmotic stress, vesicle trafficking, actin organization, and regulation of plasma membrane and ion channel activity by vanadate-sensitive H + -ATPase. Phosphatidylinositol-4,5-bisphosphate is both a lipid signal that interacts with effector proteins and a substrate in the phospholipase C signaling pathway. This signaling pathway regulates multiple intracellular processes, including cytoskeletal organization, membrane trafficking, guard cell motility, and pollen tube growth. The relevance of PtdIns(4,5)P2 signaling functions largely depends on its spatiotemporal distribution, which is mainly determined by its metabolic activity within specific membrane regions. The spatiotemporal structure of PtdIns(4,5)P2 is mainly regulated by enzymes involved in its synthesis and decomposition. In these processes, phosphatidylinositol 4-phosphate 5-kinase (PIP5K) of the PIPKs family plays a crucial role in the formation of PtdIns(4,5)P2 patterns. Compared with animal and fungal genomes, higher plant genomes contain a larger number of genes encoding PIP5K, and PIP5K genes have been found in model plants such as Arabidopsis and rice. Arabidopsis has a total of 11 PIP5K genes, and their structure is highly similar to that of animal-derived type I PtdInsP enzymes.

近年来,一些研究发现了部分PIP5Ks的生物学功能。例如,在拟南芥中,干旱、盐和ABA(脱落酸)等外界刺激能迅速诱导AtPIP5K1的表达,其调控还与可溶性蛋白激酶相关。AtPIP5K1和AtPIP5K2参与花粉发育,它们对液泡形成和花粉发育具有重要作用,在pip5k1和pip5k2缺失突变体花粉粒中,因失去作用导致液泡缺陷和外壁形成受损。研究发现,AtPIP5K4和AtPIP5K5有助于花粉萌发和花粉管伸长。AtPIP5K4、AtPIP5K5和AtPIP5K6冗余地参与花粉萌发。此外,AtPIP5K3通过在根中的特异性表达调控其根毛的伸长。AtPIP5K9与细胞质酶CINV1相互作用,在糖调控下对根细胞伸长产生抑制作用。AtPIP5K7、AtPIP5K8和AtPIP5K9在渗透胁迫下冗余地参与根的生长。研究发现,单个基因OsPIP5K1在水稻的抽穗过程中起着关键作用。PIP5K基因参与了小麦和辣椒的花粉发育。大豆GmPIP5K基因在拟南芥的过表达植株中增强了干旱胁迫的耐受性。这些结果表明,PIP5K在植物适应非生物环境以及生长发育过程中发挥着至关重要的作用。In recent years, some studies have discovered the biological functions of some PIP5Ks. For example, in Arabidopsis, external stimuli such as drought, salt and ABA (abscisic acid) can rapidly induce the expression of AtPIP5K1, and its regulation is also related to soluble protein kinases. AtPIP5K1 and AtPIP5K2 are involved in pollen development. They play an important role in vacuole formation and pollen development. In the pollen grains of pip5k1 and pip5k2 deletion mutants, the loss of function leads to vacuole defects and impaired outer wall formation. Studies have found that AtPIP5K4 and AtPIP5K5 contribute to pollen germination and pollen tube elongation. AtPIP5K4, AtPIP5K5 and AtPIP5K6 are redundantly involved in pollen germination. In addition, AtPIP5K3 regulates the elongation of its root hairs through specific expression in roots. AtPIP5K9 interacts with the cytoplasmic enzyme CINV1 and inhibits root cell elongation under sugar regulation. AtPIP5K7, AtPIP5K8, and AtPIP5K9 are redundantly involved in root growth under osmotic stress. Studies have found that a single gene, OsPIP5K1, plays a key role in the heading process of rice. PIP5K genes are involved in pollen development in wheat and pepper. The soybean GmPIP5K gene enhances drought stress tolerance in overexpressed Arabidopsis plants. These results indicate that PIP5K plays a vital role in plant adaptation to abiotic environments and growth and development.

棉花(Gossypium spp.)的繁殖容易受到多种不利条件的影响,从而导致低产。与其他作物相比,棉花具有更好的非生物胁迫耐受性,但在极端温度、盐碱和干旱胁迫下,其产量仍受到威胁。PIP5K基因是调节胁迫反应和花粉生成的关键基因,是信号通路中的一个重要组成部分。然而,GhPIP5K在棉花胁迫响应和生长调控中的确切作用仍不明确。Cotton (Gossypium spp.) reproduction is susceptible to a variety of adverse conditions, resulting in low yields. Compared with other crops, cotton has better tolerance to abiotic stresses, but its yield is still threatened under extreme temperature, salinity, and drought stress. The PIP5K gene is a key gene that regulates stress responses and pollen production and is an important component of the signaling pathway. However, the exact role of GhPIP5K in cotton stress response and growth regulation remains unclear.

发明内容Summary of the invention

本发明的目的是提供陆地棉GhPIP5K2和GhPIP5K22基因及其应用,以解决上述现有技术存在的问题。陆地棉GhPIP5K2和GhPIP5K22基因正向调控棉花响应非生物胁迫,在棉花中上调表达可提高其对非生物胁迫的抗逆性。The purpose of the present invention is to provide GhPIP5K2 and GhPIP5K22 genes of upland cotton and their applications to solve the problems existing in the above-mentioned prior art. GhPIP5K2 and GhPIP5K22 genes of upland cotton positively regulate cotton's response to abiotic stress, and up-regulating expression in cotton can improve its resistance to abiotic stress.

为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:

本发明提供了陆地棉GhPIP5K2基因在调控陆地棉对非生物胁迫的抗逆性中的应用,陆地棉GhPIP5K2基因的核苷酸序列如SEQ ID NO:1所示。The present invention provides an application of a GhPIP5K2 gene of upland cotton in regulating the resistance of upland cotton to abiotic stress. The nucleotide sequence of the GhPIP5K2 gene of upland cotton is shown in SEQ ID NO:1.

本发明还提供了包括所述的陆地棉GhPIP5K2基因的重组载体在调控陆地棉对非生物胁迫的抗逆性中的应用。The present invention also provides the use of a recombinant vector comprising the upland cotton GhPIP5K2 gene in regulating the resistance of upland cotton to abiotic stress.

本发明还提供了包括上述的重组载体的工程菌在调控陆地棉对非生物胁迫的抗逆性中的应用。The present invention also provides the use of an engineered bacterium comprising the above-mentioned recombinant vector in regulating the resistance of upland cotton to abiotic stress.

进一步地,通过在陆地棉中上调所述陆地棉GhPIP5K2基因的表达水平,以提高所述陆地棉对非生物胁迫的抗逆性,所述非生物胁迫包括高温、低温、干旱和盐胁迫。Furthermore, the expression level of the upland cotton GhPIP5K2 gene is upregulated in upland cotton to improve the resistance of the upland cotton to abiotic stress, wherein the abiotic stress includes high temperature, low temperature, drought and salt stress.

本发明还提供了陆地棉GhPIP5K22基因在调控陆地棉对非生物胁迫的抗逆性中的应用,陆地棉GhPIP5K22基因的核苷酸序列如SEQ ID NO:9所示。The present invention also provides an application of the upland cotton GhPIP5K22 gene in regulating the resistance of upland cotton to abiotic stress. The nucleotide sequence of the upland cotton GhPIP5K22 gene is shown in SEQ ID NO:9.

本发明还提供了包括所述的陆地棉GhPIP5K22基因的重组载体在调控陆地棉对非生物胁迫的抗逆性中的应用。The present invention also provides the use of a recombinant vector comprising the upland cotton GhPIP5K22 gene in regulating the resistance of upland cotton to abiotic stress.

本发明还提供了包括上述的重组载体的工程菌在调控陆地棉对非生物胁迫的抗逆性中的应用。The present invention also provides the use of an engineered bacterium comprising the above-mentioned recombinant vector in regulating the resistance of upland cotton to abiotic stress.

进一步地,通过在陆地棉中上调所述陆地棉GhPIP5K22基因表达水平,以提高所述陆地棉对非生物胁迫的抗逆性,所述非生物胁迫包括高温和低温胁迫。Furthermore, the expression level of the upland cotton GhPIP5K22 gene is upregulated in upland cotton to improve the resistance of the upland cotton to abiotic stress, wherein the abiotic stress includes high temperature and low temperature stress.

本发明还提供一种提高陆地棉对非生物胁迫的抗逆性的方法,其特征在于,包括在陆地棉中上调所述陆地棉GhPIP5K2和/或GhPIP5K22基因的表达水平的步骤。The present invention also provides a method for improving the resistance of upland cotton to abiotic stress, characterized in that it includes the step of upregulating the expression level of the upland cotton GhPIP5K2 and/or GhPIP5K22 gene in the upland cotton.

本发明公开了以下技术效果:The present invention discloses the following technical effects:

本发明通过对陆地棉进行生物信息学分析,成功鉴定了陆地棉PIP5K家族的28个基因。本发明对高温、低温、干旱和盐四种非生物胁迫处理下GhPIP5Ks的表达模式进行转录组分析,发现GhPIP5K家族成员可以响应非生物胁迫;同时发现GhPIP5K2在高温、低温、干旱和盐胁迫中高表达,GhPIP5K22在高温、低温胁迫中高表达。为了进一步明确GhPIP5K2和GhPIP5K22基因响应非生物胁迫的分子机理,利用VIGS技术将目的基因在棉花植株中沉默,并通过相应非生物胁迫处理后,发现沉默GhPIP5K2基因或沉默GhPIP5K22基因均会引起植株叶片枯萎、抗氧化酶(CAT、POD和SOD)活性的降低和MDA的含量增加。沉默GhPIP5K2降低逆境胁迫相关基因GhHSFB2A、GhDREB2A、GhDREB2C、GhRD20-1、GhRD29A、GhBIN2、GhCBL3、GhNHX1、GhPP2C、GhSnRK2.6和GhCBF1的表达,沉默GhPIP5K22降低逆境胁迫相关基因GhHSFB2B、GhDREB2A、GhDREB2C、GhRD20-1、GhRD29A、GhCBF1和GhCIPK6的表达。说明沉默GhPIP5K2和GhPIP5K22基因减弱棉花对非生物胁迫的抗逆性,进而证明GhPIP5K2和GhPIP5K22基因正向调控棉花响应非生物胁迫,为陆地棉对非生物胁迫的抗逆性育种提供重要基因资源。The present invention successfully identified 28 genes of the PIP5K family of upland cotton by bioinformatics analysis of upland cotton. The present invention performed transcriptome analysis on the expression pattern of GhPIP5Ks under four abiotic stress treatments of high temperature, low temperature, drought and salt, and found that GhPIP5K family members can respond to abiotic stress; at the same time, it was found that GhPIP5K2 was highly expressed in high temperature, low temperature, drought and salt stress, and GhPIP5K22 was highly expressed in high temperature and low temperature stress. In order to further clarify the molecular mechanism of GhPIP5K2 and GhPIP5K22 genes responding to abiotic stress, the target gene was silenced in cotton plants using VIGS technology, and after the corresponding abiotic stress treatment, it was found that silencing the GhPIP5K2 gene or silencing the GhPIP5K22 gene would cause plant leaf wilt, a decrease in the activity of antioxidant enzymes (CAT, POD and SOD) and an increase in the content of MDA. Silencing GhPIP5K2 reduced the expression of stress-related genes GhHSFB2A, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhSnRK2.6 and GhCBF1, while silencing GhPIP5K22 reduced the expression of stress-related genes GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhCBF1 and GhCIPK6. This indicates that silencing GhPIP5K2 and GhPIP5K22 genes weakens cotton's resistance to abiotic stress, and further proves that GhPIP5K2 and GhPIP5K22 genes positively regulate cotton's response to abiotic stress, providing important gene resources for breeding of upland cotton's resistance to abiotic stress.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.

图1为载体pEASY-T5 Zero和TRV载体图谱;Figure 1 is a map of the vector pEASY-T5 Zero and TRV vector;

图2为对照植株和TRV:GhPIP5K2沉默植株胁迫后表型观察结果;其中,a.阳性对照TRV:GhCLA1中的棉花叶片出现白化现象;b.使用qRT-PCR检测GhPIP5K2的沉默效率,与对照组相比,星号表示显著性水平(*P<0.05,**P<0.01);c.热胁迫对TRV:00和TRV:GhPIP5K2表型的影响;d.冷胁迫、干旱胁迫和盐胁迫对TRV:00和TRV:GhPIP5K2表型的影响;e.热胁迫后统计对照植株和沉默植株枯萎叶片的数量;f.冷胁迫后统计对照植株和沉默植株新生叶片变黑的数量;g.干旱胁迫后统计对照植株和沉默植株枯萎叶片的数量;h.盐胁迫后统计对照植株和沉默植株枯萎叶片的数量;Figure 2 shows the phenotypic observation results of control plants and TRV:GhPIP5K2 silenced plants after stress; a. The cotton leaves in the positive control TRV:GhCLA1 showed whitening; b. The silencing efficiency of GhPIP5K2 was detected by qRT-PCR, and the asterisk indicates the significance level compared with the control group (*P<0.05, **P<0.01); c. The effect of heat stress on the phenotype of TRV:00 and TRV:GhPIP5K2; d. The effect of cold stress, drought stress and salt stress on the phenotype of TRV:00 and TRV:GhPIP5K2; e. The number of withered leaves of control plants and silenced plants after heat stress was counted; f. The number of blackened new leaves of control plants and silenced plants after cold stress was counted; g. The number of withered leaves of control plants and silenced plants after drought stress was counted; h. The number of withered leaves of control plants and silenced plants after salt stress was counted;

图3为对照植株和TRV:GhPIP5K22沉默植株胁迫后表型观察结果;其中,a.阳性对照TRV:GhCLA1中的棉花叶片出现白化现象;b.使用qRT-PCR检测GhPIP5K22的沉默效率,与对照组相比,星号表示显著性水平(*P<0.05,**P<0.01);c.热胁迫后统计对照植株和沉默植株的变黄叶片数量;d.冷胁迫后统计对照植株和沉默植株的枯萎叶片数量;e.热胁迫和冷胁迫对TRV:00和TRV:GhPIP5K22表型的影响;Figure 3 shows the phenotypic observation results of control plants and TRV:GhPIP5K22 silenced plants after stress; a. The cotton leaves in the positive control TRV:GhCLA1 showed whitening; b. The silencing efficiency of GhPIP5K22 was detected by qRT-PCR, and the asterisk indicates the significance level compared with the control group (*P<0.05, **P<0.01); c. The number of yellowed leaves of control plants and silenced plants was counted after heat stress; d. The number of withered leaves of control plants and silenced plants was counted after cold stress; e. The effects of heat stress and cold stress on the phenotypes of TRV:00 and TRV:GhPIP5K22;

图4为非生物胁迫处理前后,TRV:00、TRV:GhPIP5K2和TRV:GhPIP5K22植株的生理生化指标检测结果;其中,a.TRV:GhPIP5K2的SOD活性、POD活性、CAT活性和MDA含量;b.TRV:GhPIP5K22的SOD活性、POD活性、CAT活性和MDA含量;不同字母表示差异(*P<0.05);Figure 4 shows the results of physiological and biochemical index detection of TRV:00, TRV:GhPIP5K2 and TRV:GhPIP5K22 plants before and after abiotic stress treatment; a. SOD activity, POD activity, CAT activity and MDA content of TRV:GhPIP5K2; b. SOD activity, POD activity, CAT activity and MDA content of TRV:GhPIP5K22; different letters indicate differences (*P<0.05);

图5为非生物胁迫处理前后,TRV:00、TRV:GhPIP5K2和TRV:GhPIP5K22植株的胁迫相关基因表达水平检测结果;a.TRV:GhPIP5K2的11个胁迫标记基因的表达量;b.TRV:GhPIP5K22的7个胁迫标记基因的表达量;与对照值相比,星号表示差异显著性水平(*P<0.05,**P<0.01)。Figure 5 shows the results of stress-related gene expression level detection in TRV:00, TRV:GhPIP5K2 and TRV:GhPIP5K22 plants before and after abiotic stress treatment; a. Expression levels of 11 stress marker genes of TRV:GhPIP5K2; b. Expression levels of 7 stress marker genes of TRV:GhPIP5K22; Compared with the control value, asterisks indicate the significant difference level (*P<0.05, **P<0.01).

具体实施方式Detailed ways

现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail. This detailed description should not be considered as limiting the present invention, but should be understood as a more detailed description of certain aspects, features, and embodiments of the present invention.

应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only for describing special embodiments and are not intended to limit the present invention. In addition, for the numerical range in the present invention, it should be understood that each intermediate value between the upper and lower limits of the scope is also specifically disclosed. The intermediate value in any stated value or stated range, and each smaller range between any other stated value or intermediate value in the described range is also included in the present invention. The upper and lower limits of these smaller ranges can be independently included or excluded in the scope.

除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless otherwise indicated, all technical and scientific terms used herein have the same meanings as commonly understood by those skilled in the art. Although the present invention describes only preferred methods and materials, any methods and materials similar or equivalent to those described herein may also be used in the implementation or testing of the present invention. All documents mentioned in this specification are incorporated by reference to disclose and describe methods and/or materials related to the documents. In the event of a conflict with any incorporated document, the content of this specification shall prevail.

在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations may be made to the specific embodiments of the present invention description without departing from the scope or spirit of the present invention. Other embodiments derived from the present invention description will be apparent to those skilled in the art. The present invention description and examples are exemplary only.

关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words “include,” “including,” “have,” “contain,” etc. used in this document are open-ended terms, meaning including but not limited to.

发明人通过对陆地棉进行生物信息学分析,成功鉴定了陆地棉PIP5K家族的28个基因。本发明对高温、低温、干旱和盐四种非生物胁迫处理下GhPIP5Ks的表达模式进行转录组分析,发现GhPIP5K家族成员可以响应非生物胁迫;同时发现GhPIP5K2在高温、低温、干旱和盐胁迫中高表达,GhPIP5K22在高温、低温胁迫中高表达。The inventors successfully identified 28 genes of the PIP5K family of upland cotton by bioinformatics analysis of upland cotton. The present invention conducted transcriptome analysis on the expression patterns of GhPIP5Ks under four abiotic stresses: high temperature, low temperature, drought and salt, and found that GhPIP5K family members can respond to abiotic stresses; at the same time, it was found that GhPIP5K2 was highly expressed in high temperature, low temperature, drought and salt stress, and GhPIP5K22 was highly expressed in high temperature and low temperature stress.

为了进一步明确GhPIP5K2和GhPIP5K22基因响应非生物胁迫的分子机理,利用VIGS技术将目的基因在棉花植株中沉默,将GhPIP5K2和GhPIP5K22目的基因片段进行了克隆,分别构建两种基因的VIGS沉默载体,研究在干旱和盐胁迫下的生物学功能。实验如下:In order to further clarify the molecular mechanism of GhPIP5K2 and GhPIP5K22 genes in response to abiotic stress, the target genes were silenced in cotton plants using VIGS technology, the target gene fragments of GhPIP5K2 and GhPIP5K22 were cloned, and VIGS silencing vectors of the two genes were constructed to study their biological functions under drought and salt stress. The experiment is as follows:

1.实验材料1. Experimental Materials

1.1棉花品种1.1 Cotton varieties

本发明以陆地棉品种“新石K25”为研究对象,种子由石河子农业科学研究院提供。The present invention takes the upland cotton variety "Xinshi K25" as the research object, and the seeds are provided by Shihezi Agricultural Science Research Institute.

1.2载体与感受态细胞1.2 Vectors and competent cells

pEASY-T5 Zero克隆载体(CT501-01,含DH5α大肠杆菌感受态细胞)和GV3101农杆菌感受态细胞分别购买自全式金生物科技有限公司和上海唯地生物技术有限公司,用于基因沉默的VIGS载体系统(TRV1、TRV2和TRV-GhCLA1)由中国农学科学院棉花研究所馈赠,载体图谱如图1所示。The pEASY-T5 Zero cloning vector (CT501-01, containing DH5α Escherichia coli competent cells) and GV3101 Agrobacterium competent cells were purchased from Quanshijin Biotechnology Co., Ltd. and Shanghai Weidi Biotechnology Co., Ltd., respectively. The VIGS vector system for gene silencing (TRV1, TRV2 and TRV-GhCLA1) was donated by the Cotton Research Institute of the Chinese Academy of Agricultural Sciences. The vector map is shown in Figure 1.

2.实验方法2. Experimental Methods

2.1引物设计2.1 Primer design

利用Primer-BLAST(https://www.ncbi.nlm.nih.gov/tools/primer-blast/)设计GhPIP5K2基因的克隆引物、qRT-PCR引物,以及用于VIGS沉默载体构建引物,引物序列(SEQ ID NO:3-8)如表1所示:Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to design cloning primers, qRT-PCR primers, and primers for VIGS silencing vector construction of GhPIP5K2 gene. The primer sequences (SEQ ID NO: 3-8) are shown in Table 1:

表1GhPIP5K2基因的克隆、qRT-PCR、VIGS沉默载体构建引物序列Table 1 Primer sequences for cloning, qRT-PCR and VIGS silencing vector construction of GhPIP5K2 gene

利用Primer-BLAST设计GhPIP5K22基因的克隆引物、qRT-PCR引物,以及用于VIGS沉默载体构建引物,引物序列(SEQ ID NO:11-16)如表2所示:Primer-BLAST was used to design cloning primers, qRT-PCR primers, and primers for constructing VIGS silencing vectors for GhPIP5K22 gene. The primer sequences (SEQ ID NOs: 11-16) are shown in Table 2:

表2GhPIP5K22基因的克隆、qRT-PCR、VIGS沉默载体构建引物序列Table 2 Primer sequences for cloning, qRT-PCR and VIGS silencing vector construction of GhPIP5K22 gene

2.2棉花种植2.2 Cotton Planting

a.在各个花盆中装等量的营养土(基质:蛭石=1:1),将其放置在含有自来水的大盆中浸水,直到将水吸到花盆表面,用于棉花种子萌发;a. Fill each pot with an equal amount of nutrient soil (substrate: vermiculite = 1:1), place it in a large basin containing tap water and soak it until the water is absorbed to the surface of the pot for cotton seed germination;

b.将新石K25的种子种植在上述花盆中,为使种子出苗一致,种子种植的深度保持在1.5cm,在人工气候培养箱进行培养(16h光照,8h黑暗,温度28℃,湿度70%);b. Plant the seeds of New Stone K25 in the above pots. To ensure uniform seed germination, the seed planting depth was maintained at 1.5 cm and cultured in an artificial climate incubator (16 h light, 8 h dark, temperature 28 ° C, humidity 70%).

c.待棉花生长至四叶期时,选幼嫩的叶片进行取样,所取样品先在液氮中速冻,后在-80℃保存备用。c. When the cotton grows to the four-leaf stage, select young and tender leaves for sampling. The samples are first quickly frozen in liquid nitrogen and then stored at -80℃ for later use.

2.3反转录和荧光定量检测分析2.3 Reverse transcription and fluorescence quantitative detection analysis

2.3.1总RNA的提取2.3.1 Total RNA extraction

根据RNAprep pure多糖多酚植物总RNA提取试剂盒(货号DP441,购自中国天根生化科技有限公司)说明书提取棉花叶片中的总RNA。Total RNA was extracted from cotton leaves according to the instructions of RNAprep pure polysaccharide and polyphenol plant total RNA extraction kit (catalog number DP441, purchased from China Tiangen Biochemical Technology Co., Ltd.).

利用美国Thermo Scientific公司的NanoDrop 2000分光光度计评估所有样本的RNA质量。样本以-80℃低温保存。The RNA quality of all samples was evaluated using a NanoDrop 2000 spectrophotometer from Thermo Scientific, USA. The samples were stored at -80°C.

2.3.2反转录2.3.2 Reverse transcription

以上述获得的总RNA为模板,根据FastKing一步法除基因组cDNA第一链合成预混试剂盒(货号KR118,购自中国天根生化科技有限公司)说明书进行反转录,生成cDNA。The total RNA obtained above was used as a template, and reverse transcription was performed according to the instructions of FastKing One-Step Genomic cDNA First-Strand Synthesis Premix Kit (Cat. No. KR118, purchased from China Tiangen Biochemical Technology Co., Ltd.) to generate cDNA.

反应完成后,检测cDNA的浓度及纯度,-20℃保存备用。After the reaction was completed, the concentration and purity of cDNA were tested and stored at -20°C for future use.

2.3.3荧光定量检测2.3.3 Fluorescence quantitative detection

以cDNA为模板,使用Talent荧光定量检测试剂盒(SYBR Green)(货号FP209,购自天根生化科技有限公司)进行荧光定量检测。反应体系如表3所示:Using cDNA as a template, Talent Fluorescence Quantitative Detection Kit (SYBR Green) (Cat. No. FP209, purchased from Tiangen Biochemical Technology Co., Ltd.) was used for fluorescence quantitative detection. The reaction system is shown in Table 3:

表3荧光定量检测反应体系Table 3 Fluorescence quantitative detection reaction system

针对GhPIP5K22基因的荧光定量检测使用与表3相同的反应体系,将其中引物替换为qRT-PCR的q-GhPIP5K22-F和q-GhPIP5K22-R引物。The fluorescence quantitative detection of the GhPIP5K22 gene used the same reaction system as in Table 3, except that the primers were replaced with q-GhPIP5K22-F and q-GhPIP5K22-R primers of qRT-PCR.

反应程序如表4所示:The reaction procedure is shown in Table 4:

表4荧光定量检测反应程序Table 4 Fluorescence quantitative detection reaction procedure

2.4目的基因片段扩增2.4 Amplification of target gene fragment

2.4.1反应体系2.4.1 Reaction system

以新石K25的cDNA为模板,利用GloriaNova HS2X Master Mix(货号RK20717,购自爱博泰克生物公司)进行GhPIP5K2目的基因片段的扩增,体系如下(表5):Using the cDNA of Neolith K25 as a template, GloriaNova HS2X Master Mix (Cat. No. RK20717, purchased from Ibotek Biotech) was used to amplify the GhPIP5K2 target gene fragment. The system is as follows (Table 5):

表5目的基因片段扩增反应体系Table 5 Target gene fragment amplification reaction system

GhPIP5K22基因的扩增使用与表5相同的反应体系,将其中引物替换为扩增GhPIP5K22基因的GhPIP5K22-F和GhPIP5K22-R引物。The amplification of the GhPIP5K22 gene used the same reaction system as in Table 5, except that the primers therein were replaced with GhPIP5K22-F and GhPIP5K22-R primers for amplifying the GhPIP5K22 gene.

2.4.2反应程序2.4.2 Reaction procedure

根据上述体系加完反应液后,轻摇混匀,短暂离心,按照表6的反应程序进行反应。After adding the reaction solution according to the above system, gently shake to mix, centrifuge briefly, and react according to the reaction procedure in Table 6.

表6目的基因片段扩增反应程序Table 6 Target gene fragment amplification reaction procedure

采用PCR方法扩增出GhPIP5K2基因目标片段,GhPIP5K2基因目标片段长417bp,其核苷酸序列如SEQ ID NO:2所示:The target fragment of the GhPIP5K2 gene was amplified by PCR. The target fragment of the GhPIP5K2 gene was 417 bp long and its nucleotide sequence was shown in SEQ ID NO: 2:

GCCTAGGGAGTGTTGCAGAGGAAGAGGAAGATGAAATCACCAACTATCCACAAGGCCTTGTATTGGTCCCTCGTGGAACAGATGACAATAGTGTTGTTGCAGGTTCTCATATACGAGGTCGACGTTTGCGTGCATCAGCTGTAGGTGATGAAGAAGTAGACCTGCTTCTCCCCGGCACGGCAAGACTCCAAATCCAGCTCGGAGTGAACATGCCAGCAAGAGCCGAACAGATTCCAGGAAAAGAAGAAAACATGTTCCATGAATCATATGACGTTGTGTTATATCTGGGAATCATTGACATTTTACAAGAGTATAACATGACTAAGAAGATTGAACATGCCTATAAATCTCTTCAGTTCGATTCACTATCCATATCTGCCGTCGACCCTACGTTTTACTCGCAACGGTTCTTGCAAT。GCCTAGGGAGTGTTGCAGAGGAAGAGGAAGATGAAATCACCAACTATCCACAAGGCCTTGTATTGGTCCCTCGTGGAACAGATGACAATAGTGTTGTTGCAGGTTCTCATATACGAGGTCGACGTTTGCGTGCATCAGCTGTAGGTGATGAAGAAGTAGACCTGCTTCTCCCCGGCACGGCAAGACTCCAAATCCAGCTCGGAGTGAACATGCCAGCAAGAGCCGAACAGATTCCAGGAAAAGAAGAAAACATGTTCCATGAATCATATGACGTTGTGTTATATCTGGGAATCATTGACATTTTACAAGAGTATAACATGACTAAGAAGATTGAACATGCCTATAAATCTCTTCAGTTCGATTCACTATCCATATCTGCCGTCGACCCTACGTTTTACTCGCAACGGTTCTTGCAAT.

GhPIP5K2基因全长的核苷酸序列如SEQ ID NO:1所示(下划线部分为目标片段):The full-length nucleotide sequence of the GhPIP5K2 gene is shown in SEQ ID NO: 1 (the underlined portion is the target fragment):

ATGTCTGGCCTTGTGGTCACTGTTGGTAACGTGGAAGAAGTACTTTCTCGCGCAGAAAGAACTAAATCTCTTGATGCCATCATTGACAAGGACAACGGATGTATACTAACTAATGGTGATGCTAACCATAGTTCCGAAACAGCTGGATTTAGAGTTGGAGAACTCTTGCTGCCGAATGGGGACTCTTATTCCGGGTCATTGCTCGGAAACATGCCAGAGGGTCAAGGGAAATATGTTTGGCAAGGTGGTTGTGTGTATGAAGGAGAATGGAGACGTGGGATGAGGCAAGGGATTGGCAAAATACAATGGCCTTCTGGAACTGTTTATGATGGTGAATTCTCAGGTGGATATATGCATGGTACTGGGACATATATTGGCTCTAATAAATTGACTTATAAGGGGAGATGGAAATTGAGTCTCAAACATGGTTTAGGATACCAAGTTTATCCTAATGGAGATGTGTTTGAAGGCTCCTGGATGCAGGGAACACCGGAAGGTCCTGGAAAATATACTTGGGCCAATGGAAATGTTTATCTAGGGAATATGAAGGGTGGAAAAATGTCAGGCAAAGGAACTCTCACTTGGACAAATGGAGACTCCTTTGAAGGAAGCTGGTTAAATGGAATGATACACGGATTTGGAGTGTATACTTGGAGAGATGGTGGTTGCTATGTAGGAACTTGGACACGGGGTTTAAAGGATGGAAAAGGATCATTTTATCCCCAAGGCAACCGGCTTCCAGCCTCACAAGAAGTTTACCTCAATGCTCTCAGAAAAAGAGGATTGTTACCAGATTTGAGAAAACAGAATCATTCTCATATCCACCATGCTGCTTCTGTGGACATGGGAAGTGTCAAGGTTGGTGGCAACCGGGTATCTGATCGTAATTCTGATAAGCTATCAGAAGGAAACTTATTAAATCTACAACAGTCTCGCAACAGAAATGTTTCCTTGGAAAGACGTTGGAGTCTGGAGGTATCCATTGAGAAAGTGATTGGGCACGATTCGTCATTAGAGTTATCTGATTCTTTTAAGGAAGGGAGAGAAAACGGAAGTGAAACAAATGCTCCAATCTTAGAACGTGAATACATGCAAGGTGTCTTAATTAGTGAGCTTGTGTTGAATAATAGTTTTTCACCACCATCTAGAAGAGCGAAGCGGAGACACAAAAAGTTAGCAAAAGAGGTTAAGAGGCCTGGAGAAGCAATCATTAAAGGTCACAGGAGTTATGATTTAATGCTTAGTTTGCAGCTTGGAATCAGATACACTGTGGGGAAAATTACACCTGTGCAACGACGAGAGGTTAGAGCATCAGACTTTGGCCCCCGAGCAAGCTTTTGGATGAATTTTCCTAAAGTGGGATCACAATTGACACCTACCCATCAGTCTGATGATTTTAAGTGGAAAGATTACTGCCCAATGGTTTTCAGGAATCTAAGGGAGATGTTCAAGATTGATGCTGCCGACTACATGATGTCCATTTGTGGAAATGATGCTCTCAGGGAACTTTCTTCTCCTGGGAAAAGTGGTAGTATCTTCTTTCTGTCTCAAGATGATCGTTTCATGATTAAGACACTCCGGAAATCTGAAGTAAAGGTTCTTCTAAGAATGCTTCCCAACTATCATCATCACGTGAGATCATATGAGAACACACTCATCACAAAGTTCTTTGGGCTTCACAGAATCAAACCATCTAGTGGTCAGAAGTTTCGCTTTGTAGTAATGGGAAATATGTTTTGCACCGAGTTAAGGATTCATAGAAGATATGACTTGAAAGGATCATCACAAGGGCGTTCTGCTGATAATGTTGAAATTGATGAGAACACAACGCTTAAAGATCTGGATCTCAACTACTGCTTTTATTTGGAACCTTCTTGGCGAGATGCTTTATTAAGGCAAATAGAGATTGATAGTAAATTTTTGGAAGCACAATGCATTATGGATTATAGCCTTTTGCTTGGTGTGCATTATCGGGCACCCCAGCATTTGAGGTCTCTCATGTCCTACAACAGAACGGACGGCCTAGGGAGTGTTGCAGAGGAAG AGGAAGATGAAATCACCAACTATCCACAAGGCCTTGTATTGGTCCCTCGTGGAACAGATGACAATAGTGTTGTTGC AGGTTCTCATATACGAGGTCGACGTTTGCGTGCATCAGCTGTAGGTGATGAAGAAGTAGACCTGCTTCTCCCCGGC ACGGCAAGACTCCAAATCCAGCTCGGAGTGAACATGCCAGCAAGAGCCGAACAGATTCCAGGAAAAGAAGAAAACA TGTTCCATGAATCATATGACGTTGTGTTATATCTGGGAATCATTGACATTTTACAAGAGTATAACATGACTAAGAA GATTGAACATGCCTATAAATCTCTTCAGTTCGATTCACTATCCATATCTGCCGTCGACCCTACGTTTTACTCGCAA CGGTTCTTGCAATTCATTCAGAAGGTATTTCCTCTGAATTCCATGAAAACTTGA。 GCCTAGGGAGTGTTGCAGAGGAAG AGGAAGATGAAATCACCAACTATCCACAAGGCCTTGTATTGGTCCCTCGTGGAACAGATGACAATAGTGTTGTTGC AGGTTCTCATATACGAGGTCGACGTTTGCGTGCATCAGCTGTAGGTGATGAAGAAGTAGACCTGCTTCTCCCCGGC ACGGCAAGACTCCAAATCCAGCTCGGAGTGAACATGCCAGCAAGAGCCGAACAGATTCCAGGAAAAGAAGAAAACA TGTTCCATGAATCATATGACGTTGTGTTATATCTGGGAATCATTGACATTTTACAAGAGTATAACATGACTAAGAA GATTGAACATGCCTATAAATCTCTTCAGTTCGATTCACTATCCATATCTGCCGTCGACCCTACGTTTTACTCGCAA CGGTTCTTGCAAT TCATTCAGAAGGTATTTCCTCTGAATTCCATGAAAACTTGA .

采用PCR方法扩增出GhPIP5K22基因目标片段,GhPIP5K22基因目标片段长431bp,其核苷酸序列如SEQ ID NO:10所示(下划线部分为目标片段):The target fragment of the GhPIP5K22 gene was amplified by PCR. The target fragment of the GhPIP5K22 gene is 431 bp long, and its nucleotide sequence is shown in SEQ ID NO: 10 (the underlined part is the target fragment):

AGACGGGTGCATGTACGAAGGAGAGTGGCGTCGTGGGAAAGCCAACGGGAAAGGTAAGTTTTCTTGGCCATCTGGAGCCACTTTTGAAGGTGGTTTCAAGTCGGGTCGGATGGAAGGATTCGGGACGTTTATCGGATCCGACGGCGACACGTACCGTGGGTCGTGGAGCTCCGATCTAAAACACGGCTATGGTCACAAGTGTTACGCAAATGGGGATTACTACGAAGGATCATGGAGGAAAAACCTACAAGAGGGGCACGGCCGTTATGTTTGGAGTAACGGTATCGAATACGTCGGTGAATGGAAAAACGGAGTCATCTCTGGCCGTGGAACCCTGATATGGGCAAATGGAAACGGGTACGATGGGCAATGGGAAAACGGTATGCCCAAAGGAGACGGAGTTTTCTCTTGGCCGGACGGAAGTTGCTATA。AGACGGGTGCATGTACGAAGGAGAGTGGCGTCGTGGGAAAGCCAACGGGAAAGGTAAGTTTTCTTGGCCATCTGGAGCCACTTTTGAAGGTGGTTTCAAGTCGGGTCGGATGGAAGGATTCGGGACGTTTATCGGATCCGACGGCGACACGTACCGTGGGTCGTGGAGCTCCGATCTAAAACACGGCTATGGTCACAAGTGTTACGCAAATGGGGATTACTACGAAGGATCATGGAGGAAAAACCTACAAGAGGGGCACGGCCGTTATGTTTGGAGTAACGGTATCGAATACGTCGGTGAATGGAAAAACGGAGTCATCTCTGGCCGTGGAACCCTGATATGGGCAAATGGAAACGGGTACGATGGGCAATGGGAAAACGGTATGCCCAAAGGAGACGGAGTTTTCTCTTGGCCGGACGGAAGTTGCTATA.

GhPIP5K22基因全长的核苷酸序列如SEQ ID NO:9所示:The full-length nucleotide sequence of the GhPIP5K22 gene is shown in SEQ ID NO: 9:

ATGGAGGAAGTAGTGCTCAATGAGCCGAGTGACGTCGTTTTAAACGCCAAGAAGAAGAAATCCGACGAGGAGAAGGACCAGTTGGTGGTTGCTGTTACGACACCTACGGATCACCATCACCGGAGCCGATCTCAAGCTGCCACACGGCGCGTGACTCCCACGACTAACGCCGCGTCTTTCTTCACCATGGGTTCGGGTGATACTGTCGAGAAATTCCTCCCTAACGGTGATCATGGAGGAAGTAGTGCTCAATGAGCCGAGTGACGTCGTTTTAAACGCCAAGAAGAAGAAATCCGACGAGGAGAAGGACCAGTTGGTGGTTGCTGTTACGACACCTACGGATCACCATCACCGGAGCCGATCTCAAGCTGCCACACGGCGCGTGACTCCCACGACTAACGCCGCGTCTTTCTTCACCATGGGTTCGGGTGATACTGTCGAGAAATTCCTCCCTAACGGTGATC

TTTACATCGGTAGCTTCTCAACCAACGCGCCACACGGATCCGGGAAGTACCTTTGGAAA TTTACATCGGTAGCTTCTCAACCAACGCGCCACACGGATCCGGGAAGTACCTTTGGAA

GACGGGTGCATGTACGAAGGAGAGTGGCGTCGTGGGAAAGCCAACGGGAAAGGTAAGGACGGGTGCATGTACGAAGGAGAGTGGCGTCGTGGGAAAGCCAACGGGAAAGGTAAG

TTTTCTTGGCCATCTGGAGCCACTTTTGAAGGTGATTTCAAGTCGGGTCGGATGGAAGGTTTTCTTGGCCATCTGGAGCCACTTTTGAAGGTGATTTCAAGTCGGGTCGGATGGAAGG

ATTCGGGACGTTTATCGGATCCGACGGCGACACGTACCGTGGGTCGTGGAGCTCCGATCATTCGGGACGTTTATCGGATCCGACGGCGACACGTACCGTGGGTCGTGGAGCTCCGATC

TAAAACACGGCTATGGTCACAAGTGTTACGCAAATGGGGATTACTACGAAGGATCATGGTAAAACACGGCTATGGTCACAAGTGTTACGCAAATGGGGATTACTACGAAGGATCATGG

AGGAAAAACCTACAAGAGGGGCACGGCCGTTATGTTTGGAGTAACGGTATCGAATACGTAGGAAAAACCTACAAGAGGGGCACGGCCGTTATGTTTGGAGTAACGGTATCGAATACGT

CGGTGAATGGAAAAACGGAGTCATCTCTGGCCGTGGAACCCTGATATGGGCAAATGGAACGGTGAATGGAAAAACGGAGTCATCTCTGGCCGTGGAACCCTGATATGGGCAAATGGAA

ACGGGTACGATGGGCAATGGGAAAACGGTATGCCCAAAGGAGACGGAGTTTTCTCTTGACGGGTACGATGGGCAATGGGAAAACGGTATGCCCAAAGGAGACGGAGTTTTCTCTTG

GCCGGACGGAAGTTGCTATATCGGAGCATGGAACGGAGATAACATGAAGAAAACTCAA GCCGGACGGAAGTTGCTATA TCGGAGCATGGAACGGAGATAACATGAAGAAAACTCAA

AAGTTGAACGGGACGTTTTATCACGGGAACGACGGGAAGGAGCATTGCCTGAAAGGAGAAGTTGAACGGGACGTTTTATCACGGGAACGACGGGAAGGAGCATTGCCTGAAAGGAG

GAGAGAGTTTGGTGCTTATGCCGAGGAAAAGATCGTCCGTAGATGGAAGGGGAAGCTTGAGAGAGTTTGGTGCTTATGCCGAGGAAAAGATCGTCCGTAGATGGAAGGGGAAGCTT

AGGGGAAAGAAACATGAATTTCCCAAGGATTTGCATATGGGAAAGCGATGGTGAAGCCAGGGGAAAGAAACATGAATTTCCCAAGGATTTGCATATGGGAAAGCGATGGTGAAGCC

GGAGATATCACCTGTGATATAATTGATAATGTGGAAGCTTCGATGATTTACAGAGATGGGTGGAGATATCACCTGTGATATAATTGATAATGTGGAAGCTTCGATGATTTACAGAGATGGGT

TTAGGCAATTTAGAAAGAATCCTTGTTGTTTTAGCGGGGAAATTAAGAAGCCAGGACAATTAGGCAATTTAGAAAGAATCCTTGTTGTTTTAGCGGGGAAATTAAGAAGCCAGGACAA

ACTATTTCCAAAGGCCATAAGAATTATGAGTTAATGCTTAACTTGCAATTGGGTATCAGGTACTATTTCCAAAGGCCATAAGAATTATGAGTTAATGCTTAACTTGCAATTGGGTATCAGGT

ATTCTGTTGGGAAAGATGCCTCAATTTTGCGCGATTTGAAGCCAAGTGATTTTGATCCCAATTCTGTTGGGAAAGATGCCTCAATTTTGCGCGATTTGAAGCCAAGTGATTTTGATCCCA

AGGAGAAGTTCTGGACCAGGTTTCCTGTTGAAGGATCAAAGCTTACACCTCCTCATCAAAGGAGAAGTTCTGGACCAGGTTTCCTGTTGAAGGATCAAAGCTTACACCTCCTCATCAA

TCTGTGGAGTTCCGGTGGAAGGATTATTGTCCGGTGGTTTTTAGACATTTGAGGGACCTATCTGTGGAGTTCCGGTGGAAGGATTATTGTCCGGTGGTTTTTAGACATTTGAGGGACCTA

TTCCAAGTTGATCCTGCTGATTACATGGTAGCTATTTGCGGTAGTGATGCCCTTAGGGAGTTCCAAGTTGATCCTGCTGATTACATGGTAGCTATTTGCGGTAGTGATGCCCTTAGGGAG

CTTTCTTCCCCGGGGAAGAGTGGAAGCTTCTTTTACCTTACTCAGGATGACAGATTTATGCTTTCTTCCCCGGGGAAGAGTGGAAGCTTCTTTTACCTTACTCAGGATGACAGATTTATG

ATAAAGACAGTAAAGAAATCTGAAGTCAAGGTTCTTATAAGGATGCTTCCAAGTTACTACATAAAGACAGTAAAGAAATCTGAAGTCAAGGTTCTTATAAGGATGCTTCCAAGTTACTAC

CAACATGTTTCTAAATACGAAAATTCCCTAGTGACAAAATTCTTTGGTGTGCACTGTGTCCAACATGTTTCTAAATACGAAAATTCCCTAGTGACAAAATTCTTTGGTGTGCACTGTGTC

AAACCTATAGGTGGCCAAAAGACACGGTTCATTGTGATGGGGAATCTGTTTTGCTCTGAAAACCTATAGGTGGCCAAAAGACACGGTTCATTGTGATGGGGAATCTGTTTTGCTCTGA

CTATCGAATTCATAGACGGTTTGACCTGAAAGGATCCTCCCATGGCCGCTCAACTGATAACTATCGAATTCATAGACGGTTTGACCTGAAAGGATCCTCCCATGGCCGCTCAACTGATAA

GCCGGAAGAGGAAATTGATGAAACCACTACCCTTAAAGACCTGGATCTTAATTATGTGTTGCCGGAAGAGGAAATTGATGAAACCACTACCCTTAAAGACCTGGATCTTAATTATGTGTT

TCGCCTCCAGCGGAATTGGTTCCAAGAGCTTATGAAGCAAATTGATCGAGATTGCGAGTTCGCCTCCAGCGGAATTGGTTCCAAGAGCTTATGAAGCAAATTGATCGAGATTGCGAGT

TCTTGGAGGCTGAGAGAATTATGGATTATAGTCTTTTGGTTGGACTACACTTTCGGGATGTCTTGGAGGCTGAGAGAATTATGGATTATAGTCTTTTGGTTGGACTACACTTTCGGGATG

ATAATAGAGGTGATAAAATGGGGTTATCACCGTTTCTGTTGCGCACAGGCAAAAAGGATTATAATAGAGGTGATAAAATGGGGTTATCACCGTTTCTGTTGCGCACAGGCAAAAAGGATT

CATATCAGAATGAAAAGTTTATGCGTGGCTGTAGATTCCTTGAAGCTGAGCTACAGGACACATATCAGAATGAAAAGTTTATGCGTGGCTGTAGATTCCTTGAAGCTGAGCTACAGGACA

TGGATCGGATTTTAGCTGGCCAGAAACCATTGATACGGCTAGGAGCAAACATGCCAGCATGGATCGGATTTTAGCTGGCCAGAAACCATTGATACGGCTAGGAGCAAACATGCCAGCA

AGAGCAGTGCGAATGTCTAGAAAAAGCGACTTTGATCAGTATACACAGGGTGGAGTCGAGAGCAGTGCGAATGTCTAGAAAAAGCGACTTTGATCAGTATACACAGGGTGGAGTCG

GTCTCTTTTCACATAGTGGCGAAGTTTATGAAGTTGTGTTATACTTTGGCATCATTGACATGTCTCTTTTCACATAGTGGCGAAGTTTATGAAGTTGTGTTATACTTTGGCATCATTGACAT

CTTACAAGACTACGACATCAGCAAGAAATTGGAGCATGCCTACAAATCACTACAAGCTGCTTACAAGACTACGACATCAGCAAGAAATTGGAGCATGCCTACAAATCACTACAAGCTG

ATCCTTCTTCAATATCAGCTGTTGGTCCAAAACTCTACTCGAAGAGGTTTCGGGATTTTATAGGAAGAATTTTCATTGAAGACGAGTAG。ATCCTTCTTCAATATCAGCTGTTGGTCCAAAACTCTACTCGAAGAGGTTTCGGGATTTTATAGGAAGAATTTTCATTGAAGACGAGTAG.

2.5构建载体和VIGS沉默目的基因2.5 Construction of vector and VIGS silencing of target gene

2.5.1构建沉默载体2.5.1 Construction of silencing vector

(1)目的基因片段与克隆载体pEASY-T5 Zero的连接(1) Ligation of the target gene fragment and the cloning vector pEASY-T5 Zero

a.从-80℃冰箱中取出pEASY-T5 Zero载体后,在冰上融化。a. Take out the pEASY-T5 Zero vector from the -80℃ freezer and thaw it on ice.

b.计算所加目的片段的体积,使载体与目的片段的摩尔比=1:5,在冰上,向无菌的1.5mL离心管中加入如表7所示成分:b. Calculate the volume of the added target fragment so that the molar ratio of the vector to the target fragment is 1:5. On ice, add the ingredients shown in Table 7 to a sterile 1.5 mL centrifuge tube:

表7连接体系Table 7 Connection system

c.将其轻摇混匀,短暂离心后,25℃连接5分钟。c. Shake gently to mix, centrifuge briefly, and connect at 25°C for 5 minutes.

(2)转化DH5α大肠杆菌感受态细胞(2) Transformation of DH5α E. coli competent cells

采用热激法转化到DH5α大肠杆菌感受态细胞中,以目的基因序列引物进行PCR验证并测序(由上海生工生物工程有限公司完成)。The heat shock method was used to transform into DH5α Escherichia coli competent cells, and PCR verification and sequencing were performed using primers of the target gene sequence (completed by Shanghai Shenggong Biotechnology Co., Ltd.).

(3)沉默载体的构建(3) Construction of silencing vector

a.将(2)中测序成功的阳性质粒为模板,通过添加了限制性酶EcoRI和XhoI酶切位点和保护碱基的引物进行沉默片段扩增,并通过双酶切的方法分别将GhPIP5K2和GhPIP5K22的片段插入到TRV2(pYL156)沉默载体中,构建TRV:GhPIP5K2和TRV:GhPIP5K22沉默载体,具体酶切体系如下:a. The positive plasmid sequenced successfully in (2) was used as a template, and the silencing fragment was amplified by adding restriction enzyme EcoRI and XhoI restriction sites and primers with protective bases, and the fragments of GhPIP5K2 and GhPIP5K22 were inserted into the TRV2 (pYL156) silencing vector by double enzyme digestion to construct TRV:GhPIP5K2 and TRV:GhPIP5K22 silencing vectors. The specific enzyme digestion system is as follows:

表8酶切体系Table 8 Enzyme Digestion System

b.在37℃,酶切3h后,加10×Loading Buffer停止反应,胶回收目的基因片段PCR产物,载体回收酶切大片段。酶切产物回收后,将目的片段与沉默载体连接,将连接产物转化到大肠杆菌感受态细胞中进行蓝白斑筛选实验后,进行菌液PCR和双酶切鉴定,完成后将阳性质粒测序(上海生工生物工程有限公司),并转入农杆菌GV3101感受态中,得到沉默载体。b. After 3 hours of restriction digestion at 37°C, add 10× Loading Buffer to stop the reaction, recover the target gene fragment PCR product by gel, and recover the large restriction fragment by vector. After the restriction product is recovered, connect the target fragment with the silencing vector, transform the ligation product into E. coli competent cells for blue-white screening experiment, perform bacterial liquid PCR and double restriction digestion identification, and after completion, sequence the positive plasmid (Shanghai Shenggong Biotechnology Co., Ltd.), and transfer it into Agrobacterium GV3101 competent cells to obtain the silencing vector.

2.5.2VIGS沉默目的基因2.5.2 VIGS silencing target gene

对新石25K幼苗进行VIGS沉默,具体方法如下:VIGS silencing was performed on the seedlings of Xinshi 25K. The specific method is as follows:

a.按2.2的方法种植陆地棉“新石25K”种子,待其生长至第7天,子叶完全展开时,将其浸水,直至花盆内的营养土将水吸收至表面后,停止浸水,放置备用。a. Plant the seeds of Upland Cotton "Xinshi 25K" according to the method in 2.2. When the seeds grow to the 7th day and the cotyledons are fully expanded, soak them in water until the nutrient soil in the flowerpot absorbs the water to the surface. Then stop soaking and set aside.

b.向LB液体培养基中加入Kan+和Rif备用,其中Kan+和Rif的终浓度分别为50μg/mL和25μg/mL。将从-80℃取出的VIGS载体系统和目的基因菌液在冰上融化,28℃,200rpm活化12-16h(菌液:LB液体培养基=1:10)。活化完成后,按同样比例进行扩繁。b. Add Kan + and Rif to LB liquid medium for later use, where the final concentrations of Kan + and Rif are 50 μg/mL and 25 μg/mL respectively. Thaw the VIGS vector system and target gene bacterial solution taken out from -80℃ on ice, and activate at 28℃, 200rpm for 12-16h (bacterial solution: LB liquid medium = 1:10). After activation, expand the culture in the same ratio.

c.菌液扩繁完成后,以5000rpm的转速,离心10min,倒掉上清液,保留菌体,并将其利用分光光度计用重悬液使菌体悬浮,OD600在0.8-1.0之间即可。c. After the bacterial liquid is expanded, centrifuge at 5000 rpm for 10 minutes, pour off the supernatant, retain the bacteria, and use a spectrophotometer to suspend the bacteria with a resuspension solution. The OD600 should be between 0.8-1.0.

d.重悬完成后,黑暗放置3h,使菌体复苏后,将pYL192(TRV1)分别与含TRV:00(空白对照组)、TRV:GhCLA1(阳性对照组)、TRV:GhPIP5K2(实验组1)、TRV:GhPIP5K22(实验组2)的菌体重悬液1:1混合,并将其充分混匀在黑暗条件下处理3小时。d. After resuspension, place in the dark for 3 hours to allow the bacteria to recover, then mix pYL192 (TRV1) with the bacterial resuspension containing TRV:00 (blank control group), TRV:GhCLA1 (positive control group), TRV:GhPIP5K2 (experimental group 1), and TRV:GhPIP5K22 (experimental group 2) in a 1:1 ratio, mix them thoroughly, and treat them in the dark for 3 hours.

e.在棉花幼苗生长的第7天,将其按照步骤a的方法浸水。在棉花幼苗生长的第8天对其进行VIGS注射,具体操作为:将子叶背面使用1mL注射器针头划口,将步骤d的混合菌液注射到棉花子叶中,尽可能使菌液充满整个子叶。e. On the 7th day of the growth of the cotton seedlings, soak them in water according to the method of step a. On the 8th day of the growth of the cotton seedlings, VIGS injection is performed on them. The specific operation is: use a 1mL syringe needle to cut the back of the cotyledon, and inject the mixed bacterial solution in step d into the cotton cotyledon, so that the bacterial solution fills the entire cotyledon as much as possible.

f.注射完成后,使用塑料袋将其包裹,25℃黑暗培养24h后,在正常生长条件下培养。f. After the injection, wrap it in a plastic bag, culture it in the dark at 25°C for 24 hours, and then culture it under normal growth conditions.

g.待阳性对照棉花幼苗出现白化后,采取实验组及空白对照组的棉花幼叶,进行荧光定量PCR检测其基因表达水平和沉默效率。g. After the positive control cotton seedlings turned white, young cotton leaves from the experimental group and the blank control group were taken to detect their gene expression levels and silencing efficiency by fluorescence quantitative PCR.

2.6非生物胁迫处理2.6 Abiotic stress treatment

沉默后,待注射过的阳性棉花幼苗出现白化,将TRV:00空载体植株(空白对照组)和TRV:GhPIP5K2植株生长至四周龄的棉花幼苗分别进行高温(42℃)、低温(12℃)、干旱(15%PEG)和盐(200mmol/LNaCl)胁迫处理。进行表型观察。After silencing, the injected positive cotton seedlings turned albino, and the cotton seedlings grown to four weeks old from TRV:00 empty vector plants (blank control group) and TRV:GhPIP5K2 plants were subjected to high temperature (42°C), low temperature (12°C), drought (15% PEG) and salt (200mmol/LNaCl) stress treatments, respectively. Phenotypic observations were performed.

同时,待注射过的阳性棉花幼苗出现白化,将TRV:GhPIP5K22植株生长至四周龄的棉花幼苗进行高温(42℃)和低温(12℃)胁迫处理。进行表型观察。At the same time, the injected positive cotton seedlings showed albino coloration, and the TRV:GhPIP5K22 plants were grown to four-week-old cotton seedlings and subjected to high temperature (42°C) and low temperature (12°C) stress treatments to observe the phenotype.

2.7抗逆性检测2.7 Stress resistance test

2.7.1目的基因沉默植株中生理生化指标测定2.7.1 Determination of physiological and biochemical indicators in target gene silenced plants

胁迫处理10天后,按照常规方法分别检测TRV:00空载体植株、TRV:GhPIP5K2植株、TRV:GhPIP5K22植株叶片的过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD),三种抗氧化酶的活性和丙二醛(MDA)的含量。After 10 days of stress treatment, the activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), three antioxidant enzymes and the content of malondialdehyde (MDA) in the leaves of TRV:00 empty vector plants, TRV:GhPIP5K2 plants and TRV:GhPIP5K22 plants were detected according to conventional methods.

2.7.2目的基因沉默植株中逆境胁迫相关基因荧光定量检测2.7.2 Fluorescence quantitative detection of stress-related genes in target gene silenced plants

在胁迫处理前后,采摘基因沉默株系的幼叶,通过根据RNAprep pure多糖多酚植物总RNA提取试剂盒(货号DP441,购自天根生化科技有限公司)提取RNA,并通过FastKing一步法除基因组cDNA第一链合成预混试剂盒(货号KR118,购自天根生化科技有限公司)进行反转录,最后通过Talent荧光定量检测试剂盒(SYBR Green)(货号FP209,购自天根生化科技有限公司)进行胁迫相关基因的表达水平检测,具体方法参照说明书。Before and after the stress treatment, young leaves of the gene-silenced strains were picked, and RNA was extracted using the RNAprep pure polysaccharide and polyphenol plant total RNA extraction kit (catalog number DP441, purchased from Tiangen Biochemical Technology Co., Ltd.), and reverse transcribed using the FastKing one-step genomic cDNA first-strand synthesis premix kit (catalog number KR118, purchased from Tiangen Biochemical Technology Co., Ltd.). Finally, the expression levels of stress-related genes were detected using the Talent fluorescent quantitative detection kit (SYBR Green) (catalog number FP209, purchased from Tiangen Biochemical Technology Co., Ltd.). For specific methods, refer to the instructions.

其中TRV:GhPIP5K2沉默植株检测的胁迫相关基因为GhHSFB2A、GhDREB2A、GhDREB2C、GhRD20-1、GhRD29A、GhBIN2、GhCBL3、GhNHX1、GhPP2C、GhSnRK2.6和GhCBF1。Among them, the stress-related genes detected in TRV:GhPIP5K2-silenced plants were GhHSFB2A, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhSnRK2.6 and GhCBF1.

TRV:GhPIP5K22沉默植株检测的胁迫相关基因为GhHSFB2B、GhDREB2A、GhDREB2C、GhRD20-1、GhRD29A、GhCBF1和GhCIPK6。The stress-related genes detected in TRV:GhPIP5K22-silenced plants were GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhCBF1 and GhCIPK6.

3.结果与分析3. Results and Analysis

3.1表型观察结果3.1 Phenotypic observations

感染后第9天,棉花叶片表现出白化的表型(图2中a和图3中a),阳性对照TRV:GhCLA1验证了VIGS技术的有效性,结合qRT-PCR检测沉默效率,VIGS显著地降低了目的基因的表达水平(图2中b和图3中b)。On the 9th day after infection, cotton leaves showed a whitening phenotype (Figure 2a and Figure 3a). The positive control TRV:GhCLA1 verified the effectiveness of the VIGS technology. Combined with qRT-PCR to detect the silencing efficiency, VIGS significantly reduced the expression level of the target gene (Figure 2b and Figure 3b).

对于GhPIP5K2在四种非生物胁迫条件(高温、低温、干旱和盐)下的功能,比较沉默的TRV:GhPIP5K2植株和正常植株,TRV:GhPIP5K2植株表现出枯萎、叶片变黄和缺水等特征(图2中c和d)。进一步地,与对照植株相比,沉默的TRV:GhPIP5K2植株在冷胁迫下新生叶片变黑(图2中d)。经统计,四种非生物胁迫处理后,带有发黄或枯萎的叶片的TRV:GhPIP5K2植株数量显著多于正常植株(图2中e、f、g和h)。Regarding the function of GhPIP5K2 under four abiotic stress conditions (high temperature, low temperature, drought and salt), the TRV:GhPIP5K2 plants with silenced and normal plants showed characteristics such as wilting, yellowing of leaves and water shortage (Figure 2c and d). Furthermore, compared with the control plants, the new leaves of the TRV:GhPIP5K2 plants with silenced turned black under cold stress (Figure 2d). According to statistics, the number of TRV:GhPIP5K2 plants with yellowing or wilting leaves after the four abiotic stress treatments was significantly higher than that of normal plants (Figure 2e, f, g and h).

对于GhPIP5K22在两种非生物胁迫条件(高温、低温)下的功能,比较沉默的TRV:GhPIP5K22植株和正常植株,TRV:GhPIP5K22植株表现出枯萎、叶片变黄和缺水等特征(图3中e)。经统计,两种非生物胁迫处理后,带有发黄或枯萎的叶片的TRV:GhPIP5K22植株数量显著多于正常植株(图3中c和d)。Regarding the function of GhPIP5K22 under two abiotic stress conditions (high temperature and low temperature), the silenced TRV:GhPIP5K22 plants and normal plants were compared, and the TRV:GhPIP5K22 plants showed characteristics such as wilting, yellowing of leaves, and water shortage (Figure 3e). According to statistics, after the two abiotic stress treatments, the number of TRV:GhPIP5K22 plants with yellowing or wilting leaves was significantly higher than that of normal plants (Figure 3c and d).

这些结果表明,GhPIP5K2和GhPIP5K22在棉花非生物胁迫处理中发挥了积极作用。These results suggest that GhPIP5K2 and GhPIP5K22 play active roles in cotton abiotic stress processing.

3.2生理生化指标检测结果3.2 Results of physiological and biochemical indexes

为了探索非生物胁迫对GhPIP5K2和GhPIP5K22的影响,本发明检测了TRV:GhPIP5K2和TRV:GhPIP5K22沉默棉株中SOD、POD、CAT活性的变化和MDA含量的变化。结果表明,与TRV:00植株相比,沉默植株TRV:GhPIP5K2和TRV:GhPIP5K22的抗氧化酶活性(SOD、POD和CAT)均明显降低;相反地,MDA含量均明显增加(图4)。In order to explore the effects of abiotic stress on GhPIP5K2 and GhPIP5K22, the present invention detected the changes in SOD, POD, and CAT activities and MDA content in TRV:GhPIP5K2 and TRV:GhPIP5K22 silenced cotton plants. The results showed that compared with TRV:00 plants, the antioxidant enzyme activities (SOD, POD, and CAT) of silenced plants TRV:GhPIP5K2 and TRV:GhPIP5K22 were significantly reduced; on the contrary, the MDA content was significantly increased (Figure 4).

上述发现表明,沉默GhPIP5K2和GhPIP5K22会削弱棉花对非生物胁迫的耐受性。These findings suggest that silencing GhPIP5K2 and GhPIP5K22 impairs cotton tolerance to abiotic stress.

3.3逆境胁迫相关基因荧光定量检测结果3.3 Results of fluorescence quantitative detection of genes related to stress

与对照植株相比,在胁迫处理前后TRV:GhPIP5K2和TRV:GhPIP5K22植株的胁迫相关基因的表达均发生了显著变化。Compared with the control plants, the expression of stress-related genes in TRV:GhPIP5K2 and TRV:GhPIP5K22 plants changed significantly before and after stress treatment.

在TRV:GhPIP5K2植株中,GhBIN2、GhCBL3和GhNHX1的表达在对照植株中上调,而在胁迫处理后沉默的植株中则显著下调。在处理前和处理后,沉默植株TRV:GhPIP5K2中GhDREB2A、GhHSFB2C、GhRD20-1、GhPP2C和GhSnRK2.6的表达量均低于对照植株。与处理前的对照相比,沉默植株中GhHSFB2A、GhDR29A和GhCBF1的表达量下调,而与对照植株相比,沉默植株在处理后至少一种胁迫处理下的表达量显著降低(图5中a)。结果表明,GhPIP5K2可能对非生物胁迫有正向调节作用。In TRV:GhPIP5K2 plants, the expression of GhBIN2, GhCBL3, and GhNHX1 was upregulated in the control plants, but significantly downregulated in the silenced plants after stress treatment. The expression levels of GhDREB2A, GhHSFB2C, GhRD20-1, GhPP2C, and GhSnRK2.6 in the silenced plants TRV:GhPIP5K2 were lower than those in the control plants before and after treatment. The expression levels of GhHSFB2A, GhDR29A, and GhCBF1 were downregulated in the silenced plants compared with the control plants before treatment, while the expression levels in the silenced plants were significantly reduced under at least one stress treatment after treatment compared with the control plants (Fig. 5a). The results suggest that GhPIP5K2 may have a positive regulatory effect on abiotic stress.

在TRV:GhPIP5K22植株中,GhHSFB2B的表达在对照植株上调,而在高温胁迫处理后的沉默植株中则明显下调。同样,其他三个与胁迫相关的基因(GhDREB2A、GhDREB2C和GhRD29A)也呈现出相似的模式。相反,在沉默植株TRV:GhPIP5K22中,处理前后都观察到了GhRD20-1、GhCIPK6和GhCBF1的表达水平低于对照植株(图5中b)。这些发现提示沉默GhPIP5K22可能直接影响GhRD20-1、GhCIPK6和GhCBF1的表达水平。综上所述,我们推测GhPIP5K22在温度胁迫响应过程中可能扮演着积极调控的角色。In TRV:GhPIP5K22 plants, the expression of GhHSFB2B was upregulated in control plants, but significantly downregulated in silenced plants after heat stress treatment. Similarly, the other three stress-related genes (GhDREB2A, GhDREB2C, and GhRD29A) showed a similar pattern. In contrast, in the silenced plants TRV:GhPIP5K22, lower expression levels of GhRD20-1, GhCIPK6, and GhCBF1 were observed before and after treatment than in control plants (Figure 5b). These findings suggest that silencing GhPIP5K22 may directly affect the expression levels of GhRD20-1, GhCIPK6, and GhCBF1. In summary, we speculate that GhPIP5K22 may play an active regulatory role in the temperature stress response process.

综上所述,通过VIGS沉默GhPIP5K2或沉默GhPIP5K22的陆地棉相比于对照组对非生物胁迫更为敏感,说明棉花抗逆性降低,因此证明上述基因正向调控棉花响应非生物胁迫反应。本发明为陆地棉对非生物胁迫的高抗逆性育种提供重要基因资源。In summary, the upland cotton with VIGS silencing GhPIP5K2 or silencing GhPIP5K22 is more sensitive to abiotic stress than the control group, indicating that the stress resistance of cotton is reduced, thus proving that the above genes positively regulate the response of cotton to abiotic stress. The present invention provides important gene resources for breeding of upland cotton with high stress resistance to abiotic stress.

以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The embodiments described above are only descriptions of the preferred modes of the present invention, and are not intended to limit the scope of the present invention. Without departing from the design spirit of the present invention, various modifications and improvements made to the technical solutions of the present invention by ordinary technicians in this field should all fall within the protection scope determined by the claims of the present invention.

Claims (9)

1. The application of the upland cotton GhPIP5K2 gene in regulating and controlling the stress resistance of the upland cotton to abiotic stress is characterized in that the nucleotide sequence of the upland cotton GhPIP5K2 gene is shown as SEQ ID NO: 1.
2. Use of a recombinant vector comprising the upland cotton GhPIP5K2 gene of claim 1 for regulating and controlling stress resistance of upland cotton to abiotic stress.
3. Use of an engineering bacterium comprising the recombinant vector of claim 2 for regulating stress resistance of upland cotton to abiotic stress.
4. The use according to any one of claims 1 to 3, wherein the upland cotton is raised in stress resistance to abiotic stress by up-regulating the expression level of the upland cotton ghip 5K2 gene in upland cotton;
the abiotic stresses include high temperature, low temperature, drought and salt stresses.
5. The application of the upland cotton GhPIP5K22 gene in regulating and controlling the stress resistance of the upland cotton to abiotic stress is characterized in that the nucleotide sequence of the upland cotton GhPIP5K22 gene is shown as SEQ ID NO: shown at 9.
6. Use of a recombinant vector comprising the upland cotton GhPIP5K22 gene of claim 6 for regulating and controlling stress resistance of upland cotton to abiotic stress.
7. Use of an engineering bacterium comprising the recombinant vector of claim 7 for regulating stress resistance of upland cotton to abiotic stress.
8. The use according to any one of claims 6 to 8, wherein the upland cotton is raised in stress resistance to abiotic stress by up-regulating the expression level of the upland cotton ghip 5K22 gene in upland cotton;
The abiotic stress includes high and low temperature stress.
9. A method for increasing stress resistance of upland cotton to abiotic stress, comprising the step of up-regulating the expression level of the upland cotton ghip 5K2 and/or ghip 5K22 gene in upland cotton.
CN202410093141.6A 2024-01-23 2024-01-23 Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof Pending CN117925655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410093141.6A CN117925655A (en) 2024-01-23 2024-01-23 Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410093141.6A CN117925655A (en) 2024-01-23 2024-01-23 Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof

Publications (1)

Publication Number Publication Date
CN117925655A true CN117925655A (en) 2024-04-26

Family

ID=90765913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410093141.6A Pending CN117925655A (en) 2024-01-23 2024-01-23 Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof

Country Status (1)

Country Link
CN (1) CN117925655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117904181A (en) * 2024-01-26 2024-04-19 甘肃农业大学 Application of upland cotton GhANN gene in drought resistance and salt tolerance of upland cotton

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117904181A (en) * 2024-01-26 2024-04-19 甘肃农业大学 Application of upland cotton GhANN gene in drought resistance and salt tolerance of upland cotton

Similar Documents

Publication Publication Date Title
CN109576282B (en) Chinese rose transcription factor RhMYB4 and application thereof in flower organ development regulation
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN116514941B (en) MsRGP1 protein, its encoding gene and its application in improving plant drought resistance and salt tolerance
CN117343938B (en) Mint McTRY gene and its expressed protein and application
CN108624596B (en) A Gene GmSPX5 Regulating Legume Nodules Growth and Its Application
CN111454966B (en) Cymbidium CgWRKY4 gene and application thereof
CN117925655A (en) Upland cotton GhPIP5K2 and GhPIP5K22 genes and application thereof
CN115851813A (en) Application of camellia oleifera CoBBX22 protein in regulation and control of plant drought tolerance
CN118147175B (en) Application of MtCOMT13 gene in regulating salt and drought tolerance in plants
CN111424038B (en) Cymbidium CgWRKY40 gene and application thereof
CN111304221B (en) A kind of Chunlan CgWRKY31 gene and its application
CN111424037B (en) Cymbidium CgWRKY70 gene and application thereof
CN118726410A (en) WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application
CN105505948A (en) Soybean phosphate-starvation negative regulatory gene GmSPX1, and coding protein and application thereof
CN109628468A (en) A kind of Chunlan CgWRKY53 gene and its application
CN105255914A (en) Lycium barbarum mitogen activated protein kinase kinase and application in improving saline-alkaline tolerance of plant
CN108892722A (en) Application of the AtSRAC1 gene in regulation plant salt stress resistance
CN111424041B (en) Cymbidium CgWRKY49 gene and application thereof
CN115011630A (en) Application of tomato SlGID1L2 gene in regulation of tomato drought tolerance and cultivation of drought tolerant tomato
CN116179564A (en) Upland Cotton GhABC1K12-A07 Gene and Its Application
CN116463363B (en) Cloning of Maize Sphingosine Kinase ZmSphK1 Gene and Its Application in Salt Stress
CN110205328A (en) One kind gene TcAE relevant to plant stress-resistance and its application
CN117209583B (en) Application of gene ZmMYB86 in improving plant drought resistance
CN118440957B (en) Transcription factor McZFP4 for regulating and controlling epidermal hair and root hair development and salt stress tolerance in peppermint and application thereof
CN111424039B (en) A kind of Chunlan CgWRKY65 gene and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination