[go: up one dir, main page]

CN117802400A - 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法 - Google Patents

一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法 Download PDF

Info

Publication number
CN117802400A
CN117802400A CN202211168303.5A CN202211168303A CN117802400A CN 117802400 A CN117802400 A CN 117802400A CN 202211168303 A CN202211168303 A CN 202211168303A CN 117802400 A CN117802400 A CN 117802400A
Authority
CN
China
Prior art keywords
steel
strength steel
coated ultra
manufacturing
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211168303.5A
Other languages
English (en)
Inventor
潘华
雷鸣
金鑫焱
龚涛
蒋浩民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202211168303.5A priority Critical patent/CN117802400A/zh
Priority to KR1020257012041A priority patent/KR20250075594A/ko
Priority to PCT/CN2023/120965 priority patent/WO2024061368A1/zh
Priority to AU2023345395A priority patent/AU2023345395A1/en
Publication of CN117802400A publication Critical patent/CN117802400A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明公开了一种低点焊裂纹敏感性的带镀层超高强钢,其包括钢基板以及钢基板表面的含锌镀层,所述钢基板含有Fe和不可避免的杂质元素,所述钢基板还含有质量百分含量如下的下述各化学元素:C:0.10~0.30%;Si:0.30~0.90%;Mn:1.00~2.20%;B:0.001~0.003%;Al:0.30~1.00%。相应地,本发明还公开了上述带镀层超高强钢的制造方法,采用该制造方法可以有效制备本发明上述的带镀层超高强钢,其最终的屈服强度为600MPa~850MPa,抗拉强度为980MPa~1150MPa,均匀延伸率不小于13%,断裂延伸率不小于15%。

Description

一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法
技术领域
本发明涉及一种高强钢及其制造方法,尤其涉及一种带镀层超高强钢及其制造方法。
背景技术
目前,随着汽车轻量化进程的推进,以及汽车行业对车辆耐腐蚀能力要求的提高,众多车企对带镀层的超高强度钢需求也变得越来越大,对于冷冲压钢来说,镀层主要是含锌镀层,如热镀纯锌、热镀锌铁及电镀纯锌等镀层。电阻点焊因其焊接速度快、成本低等优势,成为汽车焊接生产中最主要的连接方法。很多含锌镀层超高强钢点焊时接头常常表现出较好的准静态力学性能,但在与电极接触的钢板表面及其附近区域出现一种焊接裂纹,并将这种焊接裂纹称为点焊裂纹,图1就示意性地显示了带锌镀层的超高强钢的点焊裂纹的示意图。然而,抑制这种裂纹形成的难度非常高,因此,这种裂纹已成为含锌镀层超高强钢在汽车领域应用的重要障碍及瓶颈。
现有技术中已知一些技术方案对焊接裂纹进行控制,但仍然存在诸多缺点:
例如:公开号为CN108015401A,公开日为2018年5月11日,名称为“具有良好接头性能的镀锌高强钢电阻点焊方法”的中国专利文献,公开了一种通过点焊工艺创新,在保证焊点接头性能不降低的同时抑制点焊表面裂纹的方法。
又例如:公开号为CN109385515A,公开日为2019年2月26日,名称为“多层钢以及降低液态金属脆化的方法”的中国专利文献,公开了一种抑制高强钢点焊裂纹产生的方法,其将高强钢先脱碳再镀锌的方式抑制点焊裂纹的产生,以将脱碳层厚度在10至50微米之间。
再例如:公开号为CN110892087A,公开日为2020年3月17日,名称为“具有高可电阻点焊性的经锌涂覆的钢板”的中国专利文献,公开了一种通过提高露点,使钢板形成内氧化层,以改善表层成分分布,从而降低点焊裂纹发生的技术方案。但是,该技术方案存在着内氧化层厚度和均匀性以及钢板表层成分分布均匀性不易控制的问题。
发明内容
本发明的目的之一在于提供一种低点焊裂纹敏感性的带镀层超高强钢,该带镀层超高强钢具有十分优异的质量和性能,其在满足用户对带镀层高强钢性能及点焊接头力学性能要求的同时,还具有低点焊裂纹敏感性,其具有良好的推广应用前景。
为了实现上述目的,本发明提供了一种低点焊裂纹敏感性的带镀层超高强钢,其包括钢基板以及钢基板表面的含锌镀层,所述钢基板含有Fe和不可避免的杂质元素,所述钢基板还含有质量百分含量如下的下述各化学元素:
C:0.10~0.30%;Si:0.30~0.90%;Mn:1.00~2.20%;B:0.001~0.003%;Al:0.30~1.00%。
进一步地,在本发明所述的带镀层超高强钢中,所述钢基板的各化学元素质量百分含量为:
C:0.10~0.30%;Si:0.30~0.90%;Mn:1.00~2.20%;B:0.001~0.003%;Al:0.30~1.00%;余量为Fe和不可避免的杂质元素。
进一步地,在本发明所述的带镀层超高强钢中,所述钢基板的各化学元素还含有Mo:0.10~2.00%。
在本发明上述的技术方案中,其采用了以碳、硅、锰、硼或硼钼复合为主的化学成分设计,充分利用了碳、硅、锰、硼、钼元素在材料相变中的作用,从而实现了本发明所述的超高强钢在高力学性能与高点焊性能的统一,进而最终获得具有低点焊裂纹敏感性的带镀层超高强钢产品。
在本发明所述的带镀层超高强钢中,各化学元素的设计原理如下所述:
C:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,碳在奥氏体中的溶解度远高于其在铁素体中的溶解度,其可以延长奥氏体转变前的孕育期,降低Ms温度。钢中碳的质量百分比越高,则残余奥氏体的分数越多,配分时碳在残余奥氏体中的富集程度越高,有利于增强残余奥氏体稳定性,产生TRIP效应,提高材料延展性。此外,碳也是钢中最基本的固溶强化元素。但需要注意的是,钢中碳含量也不宜过高,当质量百分比过高的碳时,会降低钢材的焊接性,尤其会显著增大接头的焊点表面裂纹发生倾向。基于此,为了发挥C元素的有益效果,在本发明中,将C元素的质量百分含量控制在0.10~0.30%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将C元素的质量百分含量控制在0.15~0.20%之间。
Si:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,硅在碳化物中的溶解度极小,其能够在配分处理过程中强烈抑制渗碳体形成,促进碳向残余奥氏体中富集,提高残余奥氏体的稳定性。但需要注意的是,钢中不宜添加过量的硅,硅的质量百分比过高会降低钢的高温塑性,并在钢板表面形成稳定氧化物,降低钢板的润湿性,尤其是本案发明人发现硅是显著增大焊点表面裂纹倾向的一种元素。基于此,在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,具体将Si元素的质量百分含量控制在0.30~0.90%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Si元素的质量百分含量控制在0.40~0.80%之间。
Mn:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,锰能扩大奥氏体相区,降低Ac3、Ms和Mf点,提高奥氏体稳定性和钢的淬透性,降低临界转变速率,其有利于将残余奥氏体保存至室温,同时锰在钢中也能起到固溶强化效果,当钢中Mn元素含量过低时,会因偏析导致低冷速下产生铁素体、珠光体带状组织。另外,钢中锰元素的质量百分含量也不宜过高,当钢中锰的质量百分含量过高时,会加剧晶粒粗化趋势,降低钢的塑性和韧性,并恶化耐腐蚀性能,尤其是会增加镀层下母材浅表层锰的富集,增大接头的焊点表面裂纹敏感性,恶化焊接性能。基于此,为了发挥Mn元素的有益效果,在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,将Mn元素的质量百分含量控制在1.00~2.20%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Mn元素的质量百分含量控制在1.00~2.00%之间。
B:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,硼能显著提高钢的淬透性。一方面,硼易在晶界偏聚,填充了晶界缺陷,降低了晶界能,使原本是铁素体形核地的奥氏体晶界上新相形核困难增加,奥氏体稳定性增强,从而提高了淬透性;另一方面,硼元素的添加使钢对碳、锰等增加淬透性元素的需求减少。
另外,本案发明人还发现硼元素会降低锰元素向晶界的偏聚,从而降低了锰在镀层下钢基体的富集层形成,从而显著降低点焊裂纹的形成。但硼的含量也不是越多越好,当晶界缺陷被填满后,若仍有更多的硼非平衡偏聚,则会在晶界形成“硼相”沉淀,增加晶界能,同时“硼相”将作为新相的核心,促使形核速度增加,使奥氏体稳定性下降,使淬透性下降。即有明显的“硼相”析出对淬透性有不良影响,并且大量的“硼相”析出会使钢变脆,给钢的力学性能带来不好的影响;且脆化的晶界会促进点焊裂纹的发生及扩展。
本案发明人研究发现,0.0030%的硼含量是使晶界发生脆化的拐点。基于此,为了发挥B元素的优异效果,在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,将B元素的质量百分含量控制在0.001~0.003%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将B元素的质量百分含量控制在0.0015~0.003%之间。
Al:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,铝以固溶态存在时,能增加层错能,抑制渗碳体析出和γ到马氏体转变,提高奥氏体稳定性。并且铝与碳、氮形成细小弥散分布的难溶质点,可以细化晶粒,但是铝的强化效果弱于硅,其稳定奥氏体的能力也较硅弱。此外,当钢中铝的质量百分含量过高时,容易形成大量氧化物夹杂,不利于炼钢连铸。因此,在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,将Al元素的质量百分含量控制在0.30~1.00%之间。
Mo:在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,钼元素使C曲线右移的同时,能够使Ms点下降,从而提高钢的淬透性,且在提高钢强度的同时提高钢的延伸率;另外,钼是强碳化物形成元素,其在冶炼时会形成细小且弥散分布的MoC颗粒,且会在后续相变时以硬质第二相的形式分布在马氏体中,从而显提高钢的韧性。更重要的是,本案发明人发现,钼的添加能显著提高钢材的抗点焊裂纹的能力。基于此,综合考虑上述因素及钼的添加成本,在本发明所述的低点焊裂纹敏感性的带镀层超高强钢中,将Mo元素的质量百分含量控制在0.10~2.00%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Mo元素的质量百分含量控制在0.10~1.00%之间。
进一步地,在本发明所述的带镀层超高强钢中,所述钢基板的各化学元素质量百分含量满足下述各项的至少其中一项:
C:0.15~0.20%;
Si:0.40~0.80%;
Mn:1.00~2.00%;
B:0.0015~0.003%;
Mo:0.10~1.00%。
进一步地,在本发明所述的带镀层超高强钢中,所述钢基板的不可避免的杂质元素的质量百分含量满足:P≤0.01%,S≤0.005%。
在上述技术方案中,P、S元素均是本发明所述的带镀层超高强钢中的杂质元素,在技术条件允许情况下,为了获得性能更好且质量更优的钢材,应尽可能降低带镀层超高强钢中杂质元素的含量。
在本发明中,P、S元素均为杂质元素,其中,P虽然能起到固溶强化作用,抑制碳化物形成,有利于提高残余奥氏体的稳定性,但是P的质量百分比过高会弱化晶界,增大材料脆性,恶化焊接性能,也就是说P元素的正面作用弱于其负面作用,因此,优选地将P的质量百分比控制为P≤0.01%。
相应地,钢中S元素易在晶界处形成低熔共晶,其质量百分含量过高时,将会明显恶化材料的塑性,因此将S元素的质量百分含量控制为S≤0.005%。
进一步地,在本发明所述的带镀层超高强钢中,所述钢基板的微观组织为铁素体+马氏体+残余奥氏体。
进一步地,在本发明所述的带镀层超高强钢中,其中铁素体的体积比例为25%~45%;并且/或者马氏体的体积比例为45%~65%。
进一步地,在本发明所述的带镀层超高强钢中,其中在铁素体中,尺寸为10μm以下的晶粒的体积占比≥85%,尺寸为5μm以下的晶粒的体积占比≥55%。
进一步地,在本发明所述的带镀层超高强钢中,其中残余奥氏体的平均晶粒尺寸≤2μm;并且/或者残余奥氏体中的平均C含量≥1.0%。
进一步地,在本发明所述的带镀层超高强钢中,采用点焊工艺进行焊接时,若产生了焊点表面裂纹,则焊点表面裂纹的最大长度小于板厚的5%。
进一步地,在本发明所述的带镀层超高强钢中,其力学性能满足:其屈服强度为600MPa~850MPa,抗拉强度为980MPa~1150MPa,均匀延伸率不小于13%,断裂延伸率不小于15%。
进一步地,在本发明所述的带镀层超高强钢中,其镀层为纯锌镀层、锌铁合金镀层、锌铝镁镀层或铝锌镀层。
相应地,本发明的另一目的在于提供一种带镀层超高强钢的制造方法,该制造方法生产简单,所得到的高强度钢在同等力学性能条件下,点焊性能尤其是抗焊点表面裂纹的能力得到显著提高。
为了实现上述目的,本发明提出了一种带镀层超高强钢的制造方法,其具体包括步骤:
(1)冶炼和薄板连铸;
(2)加热;
(3)热轧:控制热轧后钢带表面氧化皮厚度≤4μm,并且热轧后带钢表面氧化皮中的FeO+Fe3O4的质量百分含量≤50wt%;
(4)酸洗,或者酸洗+冷轧;
(5)连续退火:在800~920℃退火,然后以3~10℃/s的冷速缓冷至700~770℃;再以50~500℃/s的冷速快冷至200~300℃;然后再加热至360~460℃,保温50~600s;最后冷却至室温;
(6)镀覆含锌镀层。
在本发明所述的技术方案中,该制造方法通过采用薄板坯连铸工艺配合酸洗或酸轧工艺,并在连续退火、镀层制造后能够获得低点焊裂纹敏感性的带镀层超高强钢。此制造方法生产的带镀层超高强钢可以使用车厂常规的点焊工艺进行焊接,且其焊点表面裂纹的最大长度小于板厚的5%,其具有很低的点焊裂纹敏感性,具有十分优异的质量。
在本发明上述步骤(1)中,由于采用的是薄板坯连铸,因此可以省却粗轧工序,减小热轧变形量,从而保证在后续的步骤(4)以及步骤(5)的钢板性能。此外,由于步骤(1)中采用的是薄板坯连铸,其可以充分利用板坯热量,降低加热所需能耗,从而获得更加均匀的铁素体或铁素体+珠光体组织,进而有利于步骤(6)中成品的基板微观组织中保持一定量的细晶粒铁素体,提高组织均匀性。
而在步骤(2)中,控制热轧后钢带表面氧化皮厚度≤4μm,并且热轧后带钢表面氧化皮中的(FeO+Fe3O4)≤50wt%,有利于后续在步骤(4)的进行,并对连续退火后所获得的钢板性能有着重要影响,这是因为:在本发明所述的技术方案中,FeO、Fe3O4比Fe2O3更加难酸洗,而控制本发明所制备的热轧后带钢表面氧化皮厚度以及热轧后带钢表面氧化皮中的(FeO+Fe3O4)≤50wt%,可以有效提高酸洗效果,获得可用于直接连续退火的酸洗板表面,而由于酸洗板可以直接进行连续退火,使得热轧组织变形量小,钢板组织以珠光体与铁素体为主;因而,在相同连续退火条件下可以降低材料强度,使得组织更加均匀,从而获得优异的延展性。
相应地,在步骤(5)中,发明人针对连续退火工艺进行了优化设计,其通过控制800~920℃退火温度进行退火,可以形成均匀化的奥氏体组织或奥氏体+铁素体组织;然后以3~10℃/s的冷速缓冷至700~770℃,以进一步调整组织中铁素体的含量,获得一定比例的铁素体,从而提高材料的塑形;之后以再以50~500℃/s的速度冷却至200~300℃(即介于Ms(马氏体转变的起始温度)与Mf(马氏体转变终了温度)之间),此时,奥氏体部分转变为马氏体,其能够保证钢材获得较高的强度;之后,再加热至360~460℃并保温50~600s,能够使碳在马氏体和奥氏体中发生配分,形成一定量富碳的残余奥氏体,稳定保持到室温,由于TRIP效应,可以显著提高钢的加工硬化能力和成形性,得到延展性优异的高强度钢板。
另外,鉴于本发明的发明人对碳、硅、锰、硼或硼钼对点焊裂纹影响的认识,尤其是硅、锰易在钢板浅表层富集显著增大焊点表面裂纹敏感性的认知。本发明除了在成分设计时对钢材的碳、硅、锰、硼或硼钼的含量进行了严格限定,其与同强度级别钢种相比,还减少了碳、硅、锰元素的含量,并复合添加了硼和钼元素来增加钢的淬透性,从而能够确保在步骤(5)中获得所需的微观组织成分,并保证了通过步骤(6)后获得的含锌镀层的超高强钢具有低点焊裂纹敏感性,即焊点表面裂纹的最大长度值小于板厚的5%。
需要说明的是,在步骤(6)中镀覆含锌镀层时,可以但不限于采用热镀、电镀、真空镀技术生产获得含锌镀层。
综上所述,由于本发明所设计的这种带镀层超高强钢采用的是:碳、硅、锰、硼、铝、钼的化学成分设计并配合进行了铁素体晶粒细化。因而,在连续退火过程中,在奥氏体逆相变的形核点增多的同时,能够进一步细化晶粒尺寸,从而稳定保持到室温的残余奥氏体的平均晶粒尺寸≤2μm;残余奥氏体中的平均C含量≥1.0%。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(1)中,控制薄带连铸出口端的板坯厚度为50~58mm。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(1)中,控制薄带连铸的拉速为2~5m/min。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(2)中,将板坯加热到1200~1250℃。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(3)中,控制终轧温度为860~930℃,卷取温度为450~600℃。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(4)中,当采用酸洗+冷轧时,控制冷轧变形量为40%~60%。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,在步骤(5)中,控制连续退火炉内的还原性气氛中氢气的体积含量为10~15%。
进一步地,在本发明所述的带镀层超高强钢的制造方法中,步骤(5)的退火工艺参数满足下述各项的至少其中之一:
退火温度为820~870℃;
以3~10℃/s的冷速缓冷至700~730℃;
快冷至250~300℃;
快冷后再加热至400~430℃,保温180~300s。
相较于现有技术,本发明所述的低点焊裂纹敏感性的带镀层超高强钢及其制造方法具有如下所述的优点以及有益效果:
在本发明所设计的这种带镀层超高强钢中,其化学元素成分以C、Si、Mn、B、Al和Mo为基础,通过优化各元素的配比,可以获得具有低点焊裂纹敏感性的带镀层超高强钢。
在本发明所述的低点焊裂纹敏感性的带镀层超高强钢具有十分优异的质量和性能,其在满足用户对带镀层高强钢性能及点焊接头力学性能要求的同时,还具有低点焊裂纹敏感性。
采用本发明这种技术方案所制备的带镀层超高强钢包括钢基板以及钢基板表面的含锌镀层,其力学性能满足:其屈服强度为600MPa~850MPa,抗拉强度为980MPa~1150MPa,均匀延伸率不小于13%,断裂延伸率不小于15%;并且,在实际采用点焊工艺进行焊接时,若产生了焊点表面裂纹,则焊点表面裂纹的最大长度小于板厚的5%。
本发明所设计的制造方法的生产工艺简单,所获的高强度钢在同等力学性能条件下,抗点焊裂纹能力显著提高,在下游用户安全结构件生产中将具有较好的应用前景。
附图说明
图1示意性地显示了带锌镀层的超高强钢的点焊裂纹的示意图。
具体实施方式
下面将结合具体的实施例对本发明所述的低点焊裂纹敏感性的带镀层超高强钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-28和对比例1-4
本发明所述的实施例1-28的带镀层超高强钢和对比例1-4的对比钢材均采用以下步骤制得:
(1)按照表1所设计的化学成分配比进行冶炼和薄板连铸,其中,控制薄带连铸出口端的板坯厚度为50~58mm,控制薄带连铸的拉速为2~5m/min,以获得对应的板坯。
(2)加热:将板坯加热到1200~1250℃。
(3)热轧:控制热轧后钢带表面氧化皮厚度≤4μm,并且热轧后带钢表面氧化皮中的(FeO+Fe3O4)≤50wt%,控制终轧温度为860~930℃,卷取温度为450~600℃。
(4)酸洗,或者酸洗+冷轧,当采用酸洗+冷轧时,控制其冷轧变形量为40%~60%,当酸洗后直接镀锌或锌合金时,表2-2中的冷轧变形量为0。
(5)连续退火:控制连续退火炉内的还原性气氛中氢气的体积含量为10~15%;在800~920℃退火,优选地可以控制退火温度为820~870℃,然后以3~10℃/s的冷速缓冷至700~770℃,以获得一定比例的铁素体,缓冷终冷温度可以优选地控制在700~730℃之间;而后再以50~500℃/s的冷速快冷至200~300℃,以使奥氏体部分转变为马氏体,快冷终冷温度可以优选地控制在250~300℃之间;然后快冷后再加热至360~460℃,优选为400~430℃,保温50~600s,优选保温时间为180~300s;最后冷却至室温。
(6)镀覆锌或锌合金镀层,其镀层可以具体选用为纯锌镀层、锌铁合金镀层、锌铝镁镀层或铝锌镀层。
需要注意的是,在本发明中,实施例1-28的带镀层超高强钢所采用的化学成分设计以及相关制造工艺均满足本发明所设计的规范要求。相应地,对比例1-4的对比钢材所采用的化学成分设计以及相关制造工艺中均存在不满足本发明设计要求的工艺参数。
表1列出了实施例1-28的带镀层超高强钢和对比例1-4的对比钢材的钢板基板的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和除P、S以外其他不可避免的杂质)
相应地,表2-1和表2-2列出了实施例1-28的带镀层超高强钢和对比例1-4的对比钢材在上述工艺步骤(1)-(6)中的具体工艺参数。
表2-1.
注:在上述表2-1中,“(FeO+Fe3O4)占比”表示热轧后带钢表面氧化皮中的FeO和Fe3O4占氧化皮的质量百分比。
表2-2.
需要注意的都是,在进行上述步骤(6)的镀覆工艺前,为了验证实施例1-28的带镀层超高强钢具有十分优异的性能,发明人在进行镀覆工艺前,将经过步骤(5)的连续退火工艺后所获得的实施例1-28的带镀层超高强钢基材和对比例1-4的对比钢材基材分别进行了取样,并对各实施例和对比例的基材进行了微观组织观察,同时对各实施例和对比例的基材的力学性能进行了检测。其中,各实施例和对比例的基材的微观组织观察结果列于下述表3之中,各实施例和对比例的基材的力学性能检测结果列于下述表4之中。
表3列出了实施例1-28的带镀层超高强钢基材和对比例1-4的对比钢材基材的微观组织观察结果。
表3.
相应地,在针对各实施例和对比例基材进行力学性能检测时,相关力学性能检测手段如下所述:
拉伸性能测试:采用GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法进行拉伸试验,以测试获得实施例1-28的带镀层超高强钢基材和对比例1-4的对比钢材基材的屈服强度、抗拉强度、均匀延伸率和断裂延伸率。
表4列出了实施例1-28的带镀层超高强钢基材和对比例1-4的对比钢材基材的力学性能观察结果。
表4.
相应地,为了验证经过上述步骤(1)-(6)所制备的成品实施例1-28的带镀层超高强钢具有相当优异的低点焊裂纹敏感性。针对最终所制备的成品实施例1-28的带镀层超高强钢和对比例1-4的对比钢板,发明人分别进行取样,并针对各实施例和对比例的成品钢板样品进行了点焊工艺进行焊接试验,相关点焊工艺参数参见下述表5。
表5列出了实施例1-28的带镀层超高强钢和对比例1-4的对比钢板的具体点焊工艺参数。
表5.
在实际进行点焊工艺时,每个焊接电流下分别焊接拉剪(TSS)试样、十字拉伸(CTS)试样、金相试样各一个,TSS、CTS能够对应采用拉伸试验机按ISO14273-2016及ISO14272-2016标准测量各实施例和对比例成品钢板样品经点焊焊接的接头承载力,结果见下述表6。
相应地,针对获得的金相试样,先用稀盐酸去除接头表面的镀层,并在显微镜下观测点焊裂纹的分布及走向,选取过熔核中心且可切割最多点焊裂纹的截面做为接头的金相剖切面,采用线切割进行取样,截面包含点焊接头所有焊接特征区域,对截取后的试样进行表面冲洗,防止异物对测试结果的干扰,冲洗后的样品进行干燥处理;对干燥后的试样进行镶样、磨抛处理,并在金相显微镜下进行测量,将最大裂纹长度填写在表6中。
表6列出了实施例1-28的带镀层超高强钢和对比例1-4的在进行点焊后的焊点力学性能及焊点裂纹测试结果。
表6.
注:表6中镀层公称重量的两个数值是指钢板的正面与背面的镀层重量。GI表示纯锌镀层,GA表示锌铁合金镀层,ZM表示锌铝镁镀层,AZ表示铝锌镀层。
由本发明上述的表3可以看出,本发明所设计的实施例1-28与对比例1-4的钢材的基板的微观组织均为:铁素体+马氏体+残余奥氏体。并且,各实施例和对比例的基板的微观组织均满足以下指标:铁素体的体积比例为25%~45%、马氏体的体积比例为45%~65%;其中,尺寸为10μm以下的铁素体晶粒的体积占比均≥85%,尺寸为5μm以下的铁素体晶粒的体积占比均≥55%;残余奥氏体的平均晶粒尺寸均≤2μm,残余奥氏体中的平均C含量均≥1.0%。
由上述表4可以看出,发明所设计的实施例1-28与对比例1-4的钢材的基板的均具有十分优异的力学性能,其力学性能均满足本发明的设计要求,且实施例1-28的带镀层超高强钢的基板的屈服强度具体在755~845MPa之间,其抗拉强度在1040~1140MPa之间,其均匀延伸率在14.7-16.4%之间,其断裂延伸率在22.6-25.4%之间。
同时由表6可知,对于本案实施例1-28的成品带镀层超高强钢,当焊接电流小于飞溅电流时焊接的焊点无点焊裂纹;当焊接电流大于飞溅电流时,焊接的焊点最长的裂纹也小于板厚的5%;而对于本案所设计的对比例1-4的对比例钢板,不论焊接电流是否大于飞溅电流,所焊接的焊点都会有裂纹,且飞溅焊点的裂纹比无飞溅焊点的裂纹严重,且最大裂纹长度与板厚之比均远大于5%。由此,说明了采用本发明技术方案所设计的实施例1-28的各实施例的带镀层超高强钢在保证板材性能的同时具有优异的低点焊裂纹敏感性。
需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (21)

1.一种低点焊裂纹敏感性的带镀层超高强钢,其包括钢基板以及钢基板表面的含锌镀层,所述钢基板含有Fe和不可避免的杂质元素,其特征在于,所述钢基板还含有质量百分含量如下的下述各化学元素:
C:0.10~0.30%;Si:0.30~0.90%;Mn:1.00~2.20%;B:0.001~0.003%;Al:0.30~1.00%。
2.如权利要求1所述的带镀层超高强钢,其特征在于,所述钢基板的各化学元素质量百分含量为:
C:0.10~0.30%;Si:0.30~0.90%;Mn:1.00~2.20%;B:0.001~0.003%;Al:0.30~1.00%;余量为Fe和不可避免的杂质元素。
3.如权利要求1或2所述的带镀层超高强钢,其特征在于,所述钢基板的各化学元素质量百分含量满足下述各项的至少其中一项:
C:0.15~0.20%;
Si:0.40~0.80%;
Mn:1.00~2.00%;
B:0.0015~0.003%。
4.如权利要求1或2所述的带镀层超高强钢,其特征在于,所述钢基板的化学元素还含有Mo:0.10~2.00%。
5.如权利要求4所述的带镀层超高强钢,其特征在于,所述钢基板的Mo质量百分含量为0.10~1.00%。
6.如权利要求1或2所述的带镀层超高强钢,其特征在于,所述钢基板的不可避免的杂质元素的质量百分含量满足:P≤0.01%,S≤0.005%。
7.如权利要求1或2所述的带镀层超高强钢,其特征在于,所述钢基板的微观组织为铁素体+马氏体+残余奥氏体。
8.如权利要求7所述的带镀层超高强钢,其特征在于,其中铁素体的体积比例为25%~45%;并且/或者马氏体的体积比例为45%~65%。
9.如权利要求7所述的带镀层超高强钢,其特征在于,其中在铁素体中,尺寸为10μm以下的晶粒的体积占比≥85%,尺寸为5μm以下的晶粒的体积占比≥55%。
10.如权利要求7所述的带镀层超高强钢,其特征在于,其中残余奥氏体的平均晶粒尺寸≤2μm;并且/或者残余奥氏体中的平均C含量≥1.0%。
11.如权利要求1或2所述的带镀层超高强钢,其特征在于,采用点焊工艺进行焊接时,若产生了焊点表面裂纹,则焊点表面裂纹的最大长度小于板厚的5%。
12.如权利要求1或2所述的带镀层超高强钢,其特征在于,其力学性能满足:其屈服强度为600MPa~850MPa,抗拉强度为980MPa~1150MPa,均匀延伸率不小于13%,断裂延伸率不小于15%。
13.如权利要求1或2所述的带镀层超高强钢,其特征在于,其镀层为纯锌镀层、锌铁合金镀层、锌铝镁镀层或铝锌镀层。
14.如权利要求1-13中任意一项所述的带镀层超高强钢的制造方法,其特征在于,包括步骤:
(1)冶炼和薄板连铸;
(2)加热;
(3)热轧:控制热轧后钢带表面氧化皮厚度≤4μm,并且热轧后带钢表面氧化皮中的FeO+Fe3O4的质量百分含量≤50wt%;
(4)酸洗,或者酸洗+冷轧;
(5)连续退火:在800~920℃退火,然后以3~10℃/s的冷速缓冷至700~770℃;再以50~500℃/s的冷速快冷至200~300℃;
然后再加热至360~460℃,保温50~600s;最后冷却至室温;
(6)镀覆含锌镀层。
15.如权利要求14中所述的制造方法,其特征在于,在步骤(1)中,控制薄带连铸出口端的板坯厚度为50~58mm。
16.如权利要求14中所述的制造方法,其特征在于,在步骤(1)中,控制薄带连铸的拉速为2~5m/min。
17.如权利要求14中所述的制造方法,其特征在于,在步骤(2)中,将板坯加热到1200~1250℃。
18.如权利要求14中所述的制造方法,其特征在于,在步骤(3)中,控制终轧温度为860~930℃,卷取温度为450~600℃。
19.如权利要求14中所述的制造方法,其特征在于,在步骤(4)中,当采用酸洗+冷轧时,控制冷轧变形量为40%~60%。
20.如权利要求14中所述的制造方法,其特征在于,在步骤(5)中,控制连续退火炉内的还原性气氛中氢气的体积含量为10~15%。
21.如权利要求14中所述的制造方法,其特征在于,步骤(5)的退火工艺参数满足下述各项的至少其中之一:
退火温度为820~870℃;
以3~10℃/s的冷速缓冷至700~730℃;
快冷至250~300℃;
快冷后再加热至400~430℃,保温180~300s。
CN202211168303.5A 2022-09-23 2022-09-23 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法 Pending CN117802400A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202211168303.5A CN117802400A (zh) 2022-09-23 2022-09-23 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法
KR1020257012041A KR20250075594A (ko) 2022-09-23 2023-09-25 낮은 점용접 균열 민감성의 도금층을 구비하는 초고강도 강 및 이의 제조 방법
PCT/CN2023/120965 WO2024061368A1 (zh) 2022-09-23 2023-09-25 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法
AU2023345395A AU2023345395A1 (en) 2022-09-23 2023-09-25 Coated ultrahigh-strength steel with low spot welding crack sensitivity and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211168303.5A CN117802400A (zh) 2022-09-23 2022-09-23 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法

Publications (1)

Publication Number Publication Date
CN117802400A true CN117802400A (zh) 2024-04-02

Family

ID=90427362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211168303.5A Pending CN117802400A (zh) 2022-09-23 2022-09-23 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法

Country Status (4)

Country Link
KR (1) KR20250075594A (zh)
CN (1) CN117802400A (zh)
AU (1) AU2023345395A1 (zh)
WO (1) WO2024061368A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100034118A (ko) * 2008-09-23 2010-04-01 포항공과대학교 산학협력단 마르텐사이트 조직을 가진 초고강도 용융아연도금 강판 및 그 제조 방법
JP2018524471A (ja) * 2015-07-01 2018-08-30 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 高強度溶融亜鉛めっき鋼帯
KR102173601B1 (ko) * 2016-08-10 2020-11-03 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그 제조 방법
CN108015401B (zh) 2016-11-04 2020-06-23 宝山钢铁股份有限公司 具有良好接头性能的镀锌高强钢电阻点焊方法
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY
US10329639B2 (en) 2017-08-04 2019-06-25 Gm Global Technology Operations Llc. Multilayer steel and method of reducing liquid metal embrittlement
KR102412400B1 (ko) * 2020-08-10 2022-06-24 주식회사 포스코 우수한 점용접성, 강도 및 성형성을 갖는 냉연강판 및 그 제조방법

Also Published As

Publication number Publication date
WO2024061368A1 (zh) 2024-03-28
KR20250075594A (ko) 2025-05-28
AU2023345395A1 (en) 2025-05-01

Similar Documents

Publication Publication Date Title
JP6237900B2 (ja) 高強度冷延薄鋼板およびその製造方法
CN101939457B (zh) 加工性优良的高强度热镀锌钢板及其制造方法
CN110777290B (zh) 一种热浸镀锌铝镁高强钢、制备方法及应用
EP3725904A1 (en) Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet
CN105734411B (zh) 具有优异拉伸性能的热浸镀锌和合金化热浸镀锌钢板及制造其的方法
WO2019003449A1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
CN102094149A (zh) 一种含铌高强度热镀锌钢板及其生产方法
WO2010104086A1 (ja) 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材
WO2017169940A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2020170667A1 (ja) 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法
JP6673534B2 (ja) 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
CN110777301B (zh) 一种冷轧搪瓷钢及其制造方法
JP4696870B2 (ja) 高強度鋼板及びその製造方法
CN116815061A (zh) 一种780MPa级低点焊碳当量合金化镀锌双相钢及其制备方法
JP4998365B2 (ja) 極低炭素鋼板およびその製造方法
JP6624352B1 (ja) 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
CN117802400A (zh) 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法
CN116463546B (zh) 一种100公斤级超高强度镀锌钢板及其制造方法
WO2024199203A1 (zh) 一种点焊性能优异的带镀层超高强钢及其制造方法
CN116463547B (zh) 一种120公斤级超高强度镀锌钢板及其制造方法
JP7708344B1 (ja) 亜鉛めっき鋼板および部材、ならびに、それらの製造方法
WO2024149279A1 (zh) 一种点焊性能优异的带镀层吉帕钢及其制造方法
EP4541916A1 (en) 800mpa-grade high-hole-expansion hot-dip galvanized steel plate and manufacturing method therefor
WO2024032528A9 (zh) 一种优异抗低温脆性的热冲压部件及其制造方法
CN117248165A (zh) 一种低点焊碳当量合金化镀锌双相钢制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination