CN117737045A - 青霉素g酰化酶 - Google Patents
青霉素g酰化酶 Download PDFInfo
- Publication number
- CN117737045A CN117737045A CN202311728239.6A CN202311728239A CN117737045A CN 117737045 A CN117737045 A CN 117737045A CN 202311728239 A CN202311728239 A CN 202311728239A CN 117737045 A CN117737045 A CN 117737045A
- Authority
- CN
- China
- Prior art keywords
- engineered
- seq
- acylase
- variant
- penicillin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108010073038 Penicillin Amidase Proteins 0.000 title 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
- C12N9/84—Penicillin amidase (3.5.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/01—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
- C12Y305/01011—Penicillin amidase (3.5.1.11), i.e. penicillin-amidohydrolase
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
本申请涉及工程化青霉素G酰化酶。本发明提供了工程化青霉素G酰化酶(PGA)、编码该酶的多核苷酸、包含该酶的组合物以及使用该工程化PGA酶的方法。
Description
本申请是申请日为2018年05月23日,申请号为201880056032.X,发明名称为“青霉素G酰化酶”的申请的分案申请。
本申请要求2017年6月27日提交的美国临时专利申请序列号62/525,404和2017年6月30日提交的美国临时专利申请序列号62/527,199的优先权,为了所有目的,它们在此被通过引用整体并入。
发明领域
本发明提供了工程化青霉素G酰化酶(PGA)、编码该酶的多核苷酸、包含该酶的组合物以及使用该工程化PGA酶的方法。
对序列表、表格或计算机程序的引用
序列表的正式副本作为ASCII格式化文本文件与说明书一起经由EFS-Web同时提交,具有文件名“CX2-163USP1_ST25.txt”,创建日期2017年6月26日,且大小为424千字节。经由EFS-Web提交的序列表为说明书的一部分并且被通过引用以其整体并入本文。
发明背景
青霉素G酰化酶(PGA)(青霉素酰胺酶,EC 3.5.1.11)催化青霉素G(苄基青霉素)侧链的酰胺键的裂解。该酶在商业上被用于制造6-氨基-青霉烷酸(6-APA)和苯基乙酸(PAA)。6-APA是工业生产半合成的β-内酰胺抗生素诸如阿莫西林、氨苄青霉素和头孢氨苄的关键化合物。天然存在的PGA酶在商业方法中显示出不稳定性,需要固定在固体基底上以便于商业化应用。PGA已经被共价结合至各种支持物,并且PGA固定化系统已经被报道为用于合成纯的光学异构体的有用工具。然而,附接到固体表面导致酶特性受损,诸如降低的活性和/或选择性以及对溶质接触的限制。此外,尽管附接到固体基底允许捕获酶并在另外的加工循环中再使用,但酶的稳定性使得此类应用可能受到限制。PGA对青霉素G的酶促催化形成6-APA是区域专一性(regiospecific)(它不裂解内酰胺的酰胺键)和立体特异性的。生产6-APA可能构成药物生产中对酶促催化的最大利用。PGA与苯乙酰基部分相关的酶活性允许立体特异性地水解伯胺以及醇的多种苯乙酰基衍生物。
发明概述
本发明提供了工程化青霉素G酰化酶(PGA)、编码该酶的多核苷酸、包含该酶的组合物以及使用该工程化PGA酶的方法。
本发明提供了能够去除胰岛素二聚体的A1/B1/A1'/B1'-四-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多地相同。在一些实施方案中,本发明提供了能够去除胰岛素二聚体的A1/B1/A1'/B1'-四-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同。在一些另外的实施方案中,本发明提供了能够去除胰岛素的A1/B1/A1'/B1'-四-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶包含SEQ ID NO:2、4、6、8、34、46、54、74和/或88。在一些另外的实施方案中,青霉素G酰化酶包含至少一个如表6.1、7.1、8.1、8.2、9.1、10.1和/或11.1中提供的突变。
本发明提供了能够去除胰岛素二聚体的A1/A1'-二-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多地相同。在一些实施方案中,本发明提供了能够去除胰岛素二聚体的A1/A1'-二-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同。在一些另外的实施方案中,本发明提供了能够去除胰岛素的A1/A1'-二-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化青霉素G酰化酶,其中该青霉素G酰化酶包含SEQ ID NO:2、4、6、8、34、46、54、74和/或88。在一些另外的实施方案中,青霉素G酰化酶包含至少一个如表6.1、7.1、8.1、8.2、9.1、10.1和/或11.1中提供的突变。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:6具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代:54、62、115、125、127、127、185、253、254、254/255、254/255/370、255、256、257、257、260、268、322、325、348、369、370、372、373、377、378、384、384/513/536、388、389、391、435、461、517、530、554、556、557、559、560、600/623、623、624、626、627、705、706、707、723、740、748和752,其中所述位置参考SEQ ID NO:6来编号。在一些实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:6具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的序列同一性,并且具有选自以下的一个或更多个取代:54C、62G、115A/P、125L/T、127S/V、185V、253K/V、254T、254W/255G、254W/255G/370I、255L、255M/Q/T/Y、256Q、257I、257V、260A/P、268S/V、322P、325G、348C、348Q、369L、369P、369V、369W、370F/G/S、372A/H/L、373F/M、377P、378H、384A、384F/513Q/536M、384G/L、388T、389L、391P/S、435R、461A、517L/P、530C/Y、554A/E/P/V、556G、557G/S、559P/S、560I、600T/623V、623A/G/R/W、624A、626G、627G/H、705G/P、706G、707S、723A/G、740L、748G和752E。在一些另外的实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:6具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的序列同一性,并且具有选自以下的一个或更多个取代:G54C、T62G、T115A/P、N125L/T、I127S/V、N185V、L253K/V、F254T、F254W/A255G、F254W/A255G/W370I、A255L/M/Q/T/Y、F256Q、L257I/V、G260A/P、D268S/V、K322P、S325G、N348C/Q、K369L/P/V/W、W370F/G/S、S372A/H/L、A373F/M、E377P、T378H、T384A、T384F/P513Q/L536M、T384G、T384L、N388T、I389L、V391P/S、S435R、G461A、A517L/P、S530C/Y、Q554A/E/P/V、Q556G、L557G/S、Q559P/S、T560I、M600T/D623V、D623A/G/R/W、I624A、Q626G、N627G/H、T705G/P、S706G、E707S、K723A/G、S740L、R748G和Y752E。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:8具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的至少一个取代集:103/370/444/706/766、103/369/370/442/444/536/556/766 、 103/369/370/444 、103/369/370/444/556/706/766 、103/369/370/444/765/766 、103/369/370/765/766、257/362/384/451、257/362/384/451/723、362/451/705、369/370、369/370/444/706/766、369/370/556/766、369/370/388/444/556/766、369/370/444、369/370/444/556/766、369/370/556、369/370/556/765、369/370/556/766、369/370/766、369/370/444/556、369/370/444/556/612/766、369/370/444/556/706/765、369/370/444/706/765/766、372/373/384/513/560、372/384/451/705、372/384/560/705、384/451/560/705/723、384/451/705/723、451/560/705/723和451/705/723,其中所述位置参考SEQ ID NO:8来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自以下的取代集:103V/370F/444S/706G/766G、103V/369W/370F/442I/444S/536M/556G/766G、103V/369W/370F/444S、103V/369W/370F/444S/556G/706G/766G、103V/369W/370F/444S/765P/766G、103V/369W/370F/765P/766G、257V/362V/384A/451R、257V/362V/384L/451R/723L、362V/451R/705D、369P/370F、369P/370F/444S/706G/766G、369P/370F/556G/766G、369V/370F/388T/444S/556G/766G、369V/370F/444S、369V/370F/444S/556G/766G、369V/370F/556G、369V/370F/556G/765P、369V/370F/556G/766G、369V/370F/766G、369W/370F/444S/556G、369W/370F/444S/556G/612A/766G、369W/370F/444S/556G/706G/765P、369W/370F/444S/706G/765P/766G、372A/373M/384L/513Q/560G、372A/384L/451R/705D 、 372A/384L/560G/705D 、384A/451R/560G/705D/723L 、 384L/451R/705D/723L 、451R/560G/705D/723L和451R/705D/723L,其中所述位置参考SEQ ID NO:8来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自以下的取代集:K103V/I370F/G444S/S706G/H766G、K103V/K369W/I370F/V442I/G444S/L536M/Q556G/H766G 、K103V/K369W/I370F/G444S 、K103V/K369W/I370F/G444S/Q556G/S706G/H766G 、K103V/K369W/I370F/G444S/H765P/H766G 、K103V/K369W/I370F/H765P/H766G、L257V/A362V/T384A/A451R、L257V/A362V/T384L/A451R/K723L、A362V/A451R/T705D、K369P/I370F、K369P/I370F/G444S/S706G/H766G、K369P/I370F/Q556G/H766G、K369V/I370F/N388T/G444S/Q556G/H766G、K369V/I370F/G444S、K369V/I370F/G444S/Q556G/H766G、 K369V/I370F/Q556G、K369V/I370F/Q556G/H765P、 K369V/I370F/Q556G/H766G、K369V/I370F/H766G 、 K369W/I370F/G444S/Q556G 、K369W/I370F/G444S/Q556G/V612A/H766G 、K369W/I370F/G444S/Q556G/S706G/H765P 、K369W/I370F/G444S/S706G/H765P/H766G 、S372A/A373M/T384L/P513Q/T560G、S372A/T384L/A451R/T705D、S372A/T384L/T560G/T705D、T384A/A451R/T560G/T705D/K723L、T384L/A451R/T705D/K723L、A451R/T560G/T705D/K723L和A451R/T705D/K723L,其中所述位置参考SEQ ID NO:8来编号。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:34具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代:55、275、403、482、496、541、616、619/664、622、639、664、747和759,其中所述位置参考SEQ ID NO:34来编号。在一些实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:55V、275E、403T、482A/S、496K、541A、616G、619N/664G、622R、639G、664G、747G和759N,其中所述位置参考SEQ ID NO:34来编号。在一些实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:L55V、P275E、D403T、E482A/S、P496K、Q541A、A616G、K619N/A664G、K622R、S639G、A664G、A747G和Q759N,其中所述位置参考SEQ ID NO:34来编号。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体包含选自以下的至少一个取代集:103/372/373/557、253/322/369/623、253/254/322/369/623、253/254/369/391/623/723、253/254/369/619/623/723、253/254/369/623/723、253/254/373/623/723、253/254/255/369/623/723、253/254/369、253/322/369/373/723、253/369/623/723、253/373/623、253/254/255/322/369/619/723、260/372/373/556、260/372/373/556/557/559、322/369、322/369/373/723、322/369/623/723和369/373/556,其中所述位置参考SEQ ID NO:34来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自以下的取代集:103V/372S/373F/557G、253H/322T/369W/623G、253H/254Q/322T/369W/623G、253H/254Q/369W/391A/623G/723A、253H/254Q/369W/619R/623G/723A、253H/254Q/369W/623G/723A、253H/254Q/373L/623G/723A、253H/254S/255V/369W/623S/723A、253H/254S/369W、253H/322T/369W/373W/723A、253H/369W/623G/723A、253H/373L/623S、253S/254S/255V/322T/369W/619R/723A、260S/372S/373F/556G、260S/372S/373F/556G/557V/559S、322T/369W、322T/369W/373W/723A、322T/369W/623G/723A和369W/373F/556G,其中所述位置参考SEQ ID NO:34来编号。在一些另外的实施方案中,青霉素G酰化酶变体包含选自以下的取代集:K103V/A372S/M373F/L557G、L253H/K322T/K369W/D623G、L253H/W254Q/K322T/K369W/D623G、L253H/W254Q/K369W/V391A/D623G/K723A 、L253H/W254Q/K369W/K619R/D623G/K723A 、L253H/W254Q/K369W/D623G/K723A 、L253H/W254Q/M373L/D623G/K723A 、L253H/W254S/G255V/K369W/D623S/K723A、L253H/W254S/K369W、L253H/K322T/K369W/M373W/K723A、L253H/K369W/D623G/K723A、L253H/M373L/D623S、L253S/W254S/G255V/K322T/K369W/K619R/K723A、G260S/A372S/M373F/Q556G、G260S/A372S/M373F/Q556G/L557V/Q559S、K322T/K369W、K322T/K369W/M373W/K723A、K322T/K369W/D623G/K723A和K369W/M373F/Q556G,其中所述位置参考SEQ ID NO:34来编号。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:46具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:9/25/103/253/348/444/557/623、9/103/322/391/444/557/623、9/103/253/322/348/444/556/557/623、25/103/241/253/322/348/444/556/557/623、28、71、77、103/257/260/322/348/384/444/556/623、103/257/260/322/348/444/557、103/322/348/373/444/556/557、103/260/322/348/444/556/557/623、103/260/322/348/444/623、103/260/322/348/373/391/444/556/557/623、111、128、129、131、146/309/556/619/748、176/233/373/619/664、176/373/482/569、176/373/482/622/664、176/373/482/622、176/373/482/569/622/623/764、176/482、225/304/309/556/557/619/748、225/304/322/494/496/616/619/664/747/756、225/304/494/616/619/664/747/759、233/275/482/569/664、233/275/482/619、233/373/482/622/664、304/496/616/619/664/747/756/759、322/348/373/391/444/556/623、322/348/444/557、369、369/764、370、373/482/569/619/764S、373、379D、380、389、451、471、482/623、494/496/616/619/664、616、617、619、622、626和705,其中所述位置参考SEQ ID NO:46来编号。在一些实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:9K/25V/103V/253S/348A/444S/557G/623D 、9K/103V/322T/391A/444S/557G/623D、9K/103V/253S/322T/348A/444S/556G/557G/623D 、25V/103V/241K/253S/322T/348A/444S/556G/557G/623D、28A/C/Q/S、A71C/F/G/L、77T/V、103V/257V/260S/322T/348A/384T/444S/556G/623D、103V/257V/260S/322T/348A/444S/557G 、103V/322T/348A/373A/444S/556G/557G 、 103V/260S 、322T/348A/444S/556G/557G/623D、103V/260S/322T/348A/444S/623D、103V/260S/322T/348A/373A/391A/444S/556G/557G/623D、111S、128H、129E、131D、146M/309D/556N/619S/748A、176S/233E/373A/619N/664R、176S/373F/482A/569W、176S/373F/482A/622F/664G、176S/373F/482A/622V、176S/373F/482C/569W/622C/623D/764S 、 176S/482A 、225K/304C/309V/556N/557R/619S/748A 、225T/304I/322T/494E/496N/616G/619N/664G/747S/756P 、225T/304I/494E/616G/619N/664G/747P/759E、233E/275E/482A/569W/664G、233E/275E/482C/619N 、 233E/373F/482A/622V/664G 、304I/496K/616S/619N/664E/747P/756P/759E 、322T/348A/373A/391A/444S/556G/623D、322T/348A/444S/557G、369A/E/L、369、369L/764G、369V、I370M/Q、373A/482C/569W/619N/764S、373G、379D/S、380D、389V、451H、471V、482S/623D、494E/496K/616S/619N/664E、616D/E/G/N/Q/T、617W、619A/H/L/P/S/V、622I/V、626D/E和705N,其中所述位置参考SEQ ID NO:46来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:N9K/G25V/K103V/H253S/N348A/G444S/L557G/G623D 、N9K/K103V/K322T/V391A/G444S/L557G/G623D 、N9K/K103V/H253S/K322T/N348A/G444S/Q556G/L557G/G623D、G25V/K103V/N241K/H253S/K322T/N348A/G444S/Q556G/L557G/G623D、N28A/C/Q/S 、A71C/F/G/L 、 I77T/V 、K103V/L257V/G260S/K322T/N348A/L384T/G444S/Q556G/G623D 、K103V/L257V/G260S/K322T/N348A/G444S/L557G 、K103V/K322T/N348A/M373A/G444S/Q556G/L557G 、K103V/G260S/K322T/N348A/G444S/Q556G/L557G/G623D 、K103V/G260S/K322T/N348A/G444S/G623D 、K103V/G260S/K322T/N348A/M373A/V391A/G444S/Q556G/L557G/G623D、G111S、K128H、T129E、T131D、K146M/N309D/Q556N/K619S/R748A、T176S/Q233E/M373A/K619N/A664R、T176S/M373F/E482A/Y569W、T176S/M373F/E482A/K622F/A664G、T176S/M373F/E482A/K622V、T176S/M373F/E482C/Y569W/K622C/G623D/A764S、T176S/E482A、L225K/K304C/N309V/Q556N/L557R/K619S/R748A、L225T/K304I/K322T/N494E/P496N/A616G/K619N/A664G/A747S/F756P、L225T/K304I/N494E/A616G/K619N/A664G/A747P/Q759E、Q233E/P275E/E482A/Y569W/A664G、Q233E/P275E/E482C/K619N、Q233E/M373F/E482A/K622V/A664G 、K304I/P496K/A616S/K619N/A664E/A747P/F756P/Q759E 、K322T/N348A/M373A/V391A/G444S/Q556G/G623D 、K322T/N348A/G444S/L557G、W369A/E/L、W369L/A764G、W369V、I370M/Q、M373A/E482C/Y569W/K619N/A764S、M373G、T379D/S、Q380D、I389V、A451H、R471V、E482S/G623D、N494E/P496K/A616S/K619N/A664E、A616D/E/G/N/Q/T、F617W、K619A/H/L/P/S/V、K622I、K622V、Q626D/E和T705N,其中所述位置参考SEQ ID NO:46来编号。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:54具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:28/71/128/176/619/664、28/71/128/176/626/753、71、71/176/233/260/275/482/619/759、71/176/233/482、71/176/260/451/619、71/176/275/482、71/176/275/664、71、71/128/176/373/482/496/619、71/128/176/373/482/496/569、71/128/176/482/496、71/128/176/496/664、71/128/373/482/664/753、71/176/233/260/451/482/664/759、71/176/233/373/482/569/753、71/176/260/275/482/557/759、71/176/260/482、71/176/260/482/557/619/664、71/176/373/626/664/753、71/176/451/482/619/759、71/176/482、71/176/482/619/664/759、71/233/260/482/557/759、71/260/451/482/664/759、71/373/756、82、122、126、128/176/233/373/482/626/753、128/176/233/496/664/753、128/176/373/482/664、128/176/373/496/753、176/233/260/275/482/664/759、176/233/451/482/619/664/759、180、184、472、496、658、679、686和739,其中所述位置参考SEQ ID NO:54来编号。在一些实施方案中,该工程化青霉素G酰化酶变体包含至少一个选自以下的取代或取代集:28A/71L/128H/176S/619N/664E、28A/71L/128H/176S/626D/753C、71F/176S/233E/260G/275C/482S/619N/759D、71F/176S/233E/482A、71F/176S/260G/451H/619V、71F/176S/275C/482S、71F/176S/275E/664D、71F/G/I/L、71L/128H/176S/373A/482C/496K/619S、71L/128H/176S/373A/482S/496K/569C、71L/128H/176S/482S/496K、71L/128H/176S/496K/664E、 71L/128H/373A/482S/664E/753C、71L/176S/233E/260G/451H/482S/664C/759E 、71L/176S/233E/373A/482C/569C/753C 、71L/176S/260G/275C/482A/557G/759E、 71L/176S/260G/482A、71L/176S/260G/482A/557G/619P/664D、71L/176S/373A/626E/664E/753C、71L/176S/451H/482A/619V/759E、71L/176S/482A、71L/176S/482A/619P/664D/759E、71L/233E/260G/482A/557G/759E、71L/260G/451H/482A/664D/759E、71L/373A/756C、71M/V、82V、122M、126L、128H/176S/233E/373A/482S/626E/753C、128H/176S/233E/496K/664E/753C、128H/176S/373A/482S/664E、128H/176S/373A/496K/753C、176S/233E/260G/275E/482C/664E/759D、176S/233E/451H/482S/619N/664C/759D、180F、184A/F、472F/V、496K、658C、679L、686A和P739D/S,其中所述位置参考SEQ ID NO:54来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含至少一个选自以下的取代或取代集:N28A/A71L/K128H/T176S/K619N/A664E、N28A/A71L/K128H/T176S/Q626D/P753C 、A71F/T176S/Q233E/S260G/P275C/E482S/K619N/Q759D、A71F/T176S/Q233E/E482A、A71F/T176S/S260G/A451H/K619V、A71F/T176S/P275C/E482S、A71F/T176S/P275E/A664D、A71F/G/I/L、A71L/K128H/T176S/M373A/E482C/P496K/K619S 、A71L/K128H/T176S/M373A/E482S/P496K/Y569C 、A71L/K128H/T176S/E482S/P496K、A71L/K128H/T176S/P496K/A664E、A71L/K128H/M373A/E482S/A664E/P753C 、A71L/T176S/Q233E/S260G/A451H/E482S/A664C/Q759E 、A71L/T176S/Q233E/M373A/E482C/Y569C/P753C 、A71L/T176S/S260G/P275C/E482A/L557G/Q759E 、A71L/T176S/S260G/E482A 、A71L/T176S/S260G/E482A/L557G/K619P/A664D 、A71L/T176S/M373A/Q626E/A664E/P753C 、A71L/T176S/A451H/E482A/K619V/Q759E、A71L/T176S/E482A、A71L/T176S/E482A/K619P/A664D/Q759E 、A71L/Q233E/S260G/E482A/L557G/Q759E 、A71L/S260G/A451H/E482A/A664D/Q759E、A71L/M373A/F756C、A71M/V、L82V、L122M、V126L、K128H/T176S/Q233E/M373A/E482S/Q626E/P753C、K128H/T176S/Q233E/P496K/A664E/P753C、K128H/T176S/M373A/E482S/A664E、K128H/T176S/M373A/P496K/P753C、T176S/Q233E/S260G/P275E/E482C/A664E/Q759D、T176S/Q233E/A451H/E482S/K619N/A664C/Q759D、Y180F、V184A/F、H472F/V、P496K、W658C、F679L、P686A和P739D/S,其中所述位置参考SEQ IDNO:54来编号。
本发明还提供了工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:74具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:71/352、71/451/748、71/353/357/451/705/748、71/451/556/705/748、77/176/712、111/176/352、176、176/233、176/233/352、176/233/557/619/759、176/233/759、176/275/348/557/759、176/275/569/759、176/275/557/759、176/275、176/348/557/569/616、176/352、176/361、176/482/616/759、176/557/616、176/557/708、176/557/569/616/708、176/557/569/616、176/557/619、176/569/616/619/759、176/616、176/616/619、176/616和176/Q759,其中所述位置参考SEQ ID NO:74来编号。在一些实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:71C/352S、71C/451H/748A、71F/353A/357A/451H/705N/748A、71F/451H/556N/705N/748A、77T/176S/712V、111S/176S/352S、176S、176S/233E、176S/233E/352S、176S/233E/557G/619G/759D、176S/233E/759E、176S/275C/348M/557G/759D、176S/275C/569W/759D、176S/275E/557G/759E、176S/275E、176S/348M/557G/569W/616G、176S/352S、176S/361T、176S/482C/616G/759E、176S/557G/616N、176S/557G/708L、176S/557G/569W/616G/708L、176S/557G/569W/616T、176S/557G/619G、176S/569W/616G/619S/759D、176S/616G、176S/616S、176S/616G/619R、176S/616T和176S/759D,其中所述位置参考SEQ ID NO:74来编号。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自以下的至少一个取代或取代集:L71C/T352S、L71C/A451H/R748A、L71F/S353A/R357A/A451H/T705N/R748A 、L71F/A451H/Q556N/T705N/R748A 、 I77T/T176S/A712V 、G111S/T176S/T352S、T176S、T176S/Q233E、T176S/Q233E/T352S、T176S/Q233E/L557G/K619G/Q759D、T176S/Q233E/Q759E、T176S/P275C/A348M/L557G/Q759D、T176S/P275C/Y569W/Q759D、T176S/P275E/L557G/Q759E、T176S/P275E、T176S/A348M/L557G/Y569W/A616G、T176S/T352S、T176S/A361T、T176S/S482C/A616G/Q759E、T176S/L557G/A616N、T176S/L557G/I708L、T176S/L557G/Y569W/A616G/I708L、T176S/L557G/Y569W/A616T、T176S/L557G/K619G、T176S/Y569W/A616G/K619S/Q759D、T176S/A616G、T176S/A616S、T176S/A616G/K619R、T176S/A616T和T176S/Q759D,其中所述位置参考SEQ ID NO:74来编号。
本发明还提供了工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶包含组氨酸标签。在一些实施方案中,组氨酸标签存在于所述工程化青霉素G酰化酶变体的C-末端。
本发明还提供了工程化青霉素G酰化酶变体,其包含变体编号1-308中列出的多肽序列。在一些另外的实施方案中,该工程化青霉素G酰化酶变体包含选自SEQ ID NO:2、4、6、8、34、46、54、74和/或88的多肽序列。
本发明还提供了能够脱去受保护的胰岛素的酰基的工程化青霉素G酰化酶变体。在一些实施方案中,受保护的胰岛素包括二保护的胰岛素,而在一些实施方案中,受保护的胰岛素包括四保护的胰岛素。在一些另外的实施方案中,受保护的胰岛素是二聚体,而在一些替代性实施方案中,受保护的胰岛素是四聚体。
本发明还提供了编码本文提供的工程化青霉素G酰化酶变体的工程化多核苷酸序列。在一些实施方案中,该工程化多核苷酸序列编码变体编号1-308中列出的青霉素G酰化酶。在一些实施方案中,该工程化多核苷酸序列包含与选自SEQ ID NO:3、5、7、33、45、53、73和87的序列至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同的多核苷酸序列。
本发明还提供了由与选自SEQ ID NO:3、5、7、33、45、53、73和87的至少一个序列具有至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多序列同一性的多核苷酸序列编码的青霉素G酰化酶变体。
在一些实施方案中,青霉素G酰化酶变体由与选自SEQ ID NO:3、5、7、33、45、53、73和87的多核苷酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多序列同一性的多核苷酸序列编码。在一些实施方案中,青霉素G酰化酶变体由选自SEQ ID NO:3、5、7、33、45、53、73和87的多核苷酸序列编码。
本发明还提供了包含编码本文提供的青霉素G酰化酶变体的工程化多核苷酸序列的载体。在一些实施方案中,载体包含本文提供的多核苷酸序列(例如,SEQ ID NO:3、5、7、33、45、53、73和87)。本发明还提供包含本文提供的载体(例如,包含多核苷酸序列SEQ IDNO:3、5、7、33、45、53、73和87的载体)的宿主细胞。在一些实施方案中,载体还包含至少一个控制序列。在一些实施方案中,控制序列是启动子。在一些另外的实施方案中,启动子是异源启动子。意图本发明不受限于包含启动子的控制序列,因为任何合适的和/或期望的控制序列均可用于本发明。
本发明还提供了包含本文提供的至少一种载体的宿主细胞。在一些实施方案中,宿主细胞是真核细胞,而在一些可选择的实施方案中,宿主细胞是原核细胞。在一些实施方案中,宿主细胞是大肠杆菌(E.coli)。
本发明还提供了用于产生本文提供的工程化青霉素G酰化酶变体的方法,所述方法包括在使宿主细胞产生所述工程化青霉素G酰化酶变体的条件下培养所述宿主细胞,所述宿主细胞包含编码至少一种工程化青霉素G酰化酶变体的载体和/或多核苷酸。在一些实施方案中,该方法还包括回收宿主细胞产生的工程化青霉素G酰化酶变体的步骤。
本发明还提供了用于产生游离胰岛素的方法,所述方法包括i)提供至少一种本文提供的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团;以及ii)在使得工程化青霉素G酰化酶变体去除A1/B1/A1'/B1'-四-乙酸苯酯保护基团并产生游离胰岛素的条件下,将工程化青霉素G酰化酶变体暴露于包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团的胰岛素二聚体。
本发明还提供了用于产生游离胰岛素的方法,所述方法包括i)提供至少一种本文提供的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得工程化青霉素G酰化酶变体去除A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的胰岛素二聚体。
本发明还提供用于产生游离胰岛素二聚体的方法,所述方法包括:i)提供至少一种本文提供的工程化青霉素G酰化酶和包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团的胰岛素二聚体;以及ii)在使得工程化青霉素G酰化酶去除A1/B1/A1'/B1'-四-乙酸苯酯保护基团并产生游离胰岛素二聚体的条件下,将工程化青霉素G酰化酶暴露于包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团的胰岛素二聚体。在该方法的一些实施方案中,青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多地相同。在该方法的一些实施方案中,青霉素G酰化酶与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同。在该方法的一些另外的实施方案中,青霉素G酰化酶包含SEQ IDNO:2、4、6、8、34、46、54、74和/或88。在一些实施方案中,该工程化青霉素G酰化酶产生了多于90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的游离胰岛素二聚体。本发明还提供了包含根据本文提供的方法产生的游离胰岛素二聚体的组合物。
本发明还提供用于产生游离胰岛素二聚体的方法,所述方法包括:i)提供至少一种本文提供的工程化青霉素G酰化酶变体和包含A1/A1'-二-乙酸苯酯保护基团的胰岛素二聚体;以及ii)在使得工程化青霉素G酰化酶变体去除A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素二聚体的条件下,将工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的胰岛素二聚体。在该方法的一些实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多地相同。在该方法的一些实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同。在该方法的一些另外的实施方案中,该工程化青霉素G酰化酶变体包括SEQ ID NO:2、4、6、8、34、46、54、74和/或88。在一些实施方案中,该工程化青霉素G酰化酶变体产生了多于90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的游离胰岛素二聚体。本发明还提供了包含根据本文提供的方法产生的游离胰岛素二聚体的组合物。
本发明还提供了用于产生游离胰岛素的方法,所述方法包括i)提供至少一种本文提供的工程化青霉素G酰化酶变体和包含胰岛素的组合物,所述胰岛素包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得工程化青霉素G酰化酶变体去除A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的胰岛素。在该方法的一些实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或更多地相同。在该方法的一些实施方案中,该工程化青霉素G酰化酶变体与SEQ ID NO:2、4、6、8、34、46、54、74和/或88至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同。在该方法的一些另外的实施方案中,该工程化青霉素G酰化酶变体包括SEQ ID NO:2、4、6、8、34、46、54、74和/或88。在一些实施方案中,该工程化青霉素G酰化酶变体产生了多于90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的游离胰岛素。本发明还提供了包含根据本文提供的方法产生的游离胰岛素的组合物。
发明描述
本发明提供了能够将青霉素裂解为苯乙酸和6-氨基青霉烷酸(6-APA)的工程化青霉素G酰化酶(PGA;即,青霉素G酰化酶变体),6-氨基青霉烷酸是合成各种各样的β-内酰胺抗生素的关键中间体。特别地,本发明提供了能够去除胰岛素二聚体的A1/B1/A1'/B1'-四-乙酸苯酯保护基团以产生游离胰岛素二聚体的工程化PGA。在一些另外的实施方案中,PGA能够去除胰岛素二聚体的A1/A1'-二-乙酸苯酯保护基团以产生游离胰岛素。
通常,天然存在的PGA是包含α亚基和β亚基的异二聚体酶。野生型PGA被天然地合成为原PGA前体(pre-pro-PGA)多肽,包含介导易位至周质的N-末端信号肽和将α亚基的C-末端连接至β亚基的N-末端的接头区域。蛋白水解处理产生成熟的异二聚体酶。分子间接头区域还可以起促进酶的正确折叠的功能。本文提供的PGA基于来自Kluyvera citrophila的PGA,其中已经引入了多种修饰以产生如下文详细描述的改进的酶学特性。
对于本文提供的描述,单数形式的使用包括复数(并且反之亦然),除非另外具体说明。例如,单数形式“一(a)”、“一(an)”和“该(the)”包括复数指代物,除非上下文另外清楚指明。类似地,“包括/包含(comprise)”、“包括/包含(comprises)”、“包括/包含(comprising)”、“包括/包含(include)”、“包括/包含(includes)”和“包括/包含(including)”是可互换的,而意图是非限制性的。
还应理解,在各种实施方案的描述使用术语“包括/包含(comprising)”的情况下,本领域技术人员将理解,在一些特定情况下,实施方案可以使用语言“主要由...组成”或“由...组成”来可选择地描述。
前述的一般性描述和以下的详细描述仅是示例性和解释性的,而不限制本公开内容。此外,本文使用的章节标题仅用于组织目的,而不应被解释为限制所描述的主题。
定义
如本文使用的,意图以下术语具有以下含义。参考本公开内容,除非另外具体定义,否则本文描述中使用的技术和科学术语将具有本领域普通技术人员通常理解的含义。因此,以下术语意图具有以下含义。另外,本文提及的所有专利和出版物,包括这些专利和出版物中公开的所有序列,都被通过引用明确并入。
除非另外指出,否则本发明的实践涉及分子生物学、发酵、微生物学和相关领域中常用的常规技术,这些技术是本领域技术人员已知的。除非本文另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的相同的含义。尽管与本文描述的那些相似或等效的任何方法和材料都可用于实践或测试本发明,但描述了优选的方法和材料。实际上,意图的是本发明并不受限于本文描述的特定方法、方案和试剂,因为它们可以根据使用它们的环境而变化。本文提供的标题不是可以通过参考作为整体的本说明书而被具有的本发明的各方面或实施方案的限制。因此,以下定义的术语通过参考作为整体的本说明书而被更充分地定义。
尽管如此,但为了便于理解本发明,以下定义了许多术语。数值范围包括限定该范围的数字。因此,本文公开的每个数值范围意图包括落在这些较宽数值范围内的每个较窄数值范围,如同这些较窄数值范围在本文中被全部明确记录。还意图本文公开的每个最大(或最小)的数值限制包括每一个更低(或更高)的数值限制,如同这些更低(或更高)的数值限制在本文中被明确记录。
如本文使用的,术语“包含(comprising)”及其同根词以其包含性含义被使用(即,等同于术语“包括(including)”及其相应的同根词)。
如本文和所附权利要求中所使用的,单数形式的“一(a)”、“一(an)”及“该(the)”包括复数的指示物,除非上下文另外清楚地指示。因此,例如,提及“宿主细胞”包括多于一个这样的宿主细胞。
除非另外指示,否则,分别地,核酸以5'至3'方向从左至右书写;并且氨基酸序列以氨基至羧基方向从左至右书写。
如本文使用的,术语“蛋白”、“多肽”和“肽”在本文中可互换使用,以表示通过酰胺键共价连接的至少两个氨基酸的聚合物,而不论长度或翻译后修饰(例如糖基化、磷酸化、脂质化、豆蔻酰化、泛素化等)。此定义中包括D-氨基酸和L-氨基酸以及D-氨基酸和L-氨基酸的混合物。
如本文使用的,“多核苷酸”和“核酸”是指共价连接在一起的两个或更多个核苷。多核苷酸可以完全由核糖核苷(即,RNA)构成、完全由2'脱氧核糖核苷酸(即,DNA)构成或为核糖核苷和2'脱氧核糖核苷的混合物。虽然核苷通常将经由标准磷酸二酯键(linkage)连接在一起,但多核苷酸可以包括一个或更多个非标准连接。多核苷酸可以是单链或双链的,或者可以包括单链区和双链区两者。此外,虽然多核苷酸通常将包含天然存在的编码核苷碱基(即,腺嘌呤、鸟嘌呤、尿嘧啶、胸腺嘧啶和胞嘧啶),但它也可以包含一种或更多种修饰和/或合成的核苷碱基(例如,肌苷、黄嘌呤、次黄嘌呤等)。优选地,这些修饰的或合成的核苷碱基将是编码核苷碱基。
如本文使用的,“杂交严格性”涉及核酸杂交中的杂交条件,诸如洗涤条件。通常,杂交反应在较低严格性的条件下进行,随后是不同但严格性更高的洗涤。术语“中等严格性杂交”是指允许靶DNA结合互补核酸的条件,所述互补核酸与靶DNA具有约60%同一性、优选地约75%同一性、约85%同一性;与靶多核苷酸具有大于约90%同一性。示例性中等严格性条件是相当于在50%甲酰胺、5×Denhart溶液、5×SSPE、0.2% SDS中在42℃杂交、随后在0.2×SSPE、0.2% SDS中在42℃洗涤的条件。“高度严格性杂交”通常是指与在针对限定的多核苷酸序列的溶液条件下确定的热解链温度Tm相差约10℃或更少的条件。在一些实施方案中,高度严格性条件是指仅允许在65℃在0.018M NaCl中形成稳定杂交体的那些核酸序列杂交的条件(即,如本文设想的,如果杂交体在65℃在0.018M NaCl中不稳定,它在高度严格性条件下将不稳定)。高度严格性条件可以例如通过在相当于在42℃、50%甲酰胺、5×Denhart溶液、5×SSPE、0.2% SDS的条件杂交,然后在65℃、0.1×SSPE和0.1% SDS中洗涤来提供。另一种高度严格性条件是在相当于在65℃、在含有0.1%(w:v)SDS的5×SSC中杂交的条件杂交,并在65℃、在含有0.1% SDS的0.1×SSC中洗涤。其他高度严格性杂交条件以及中等严格性条件是本领域技术人员已知的。
如本文使用的,“编码序列”是指编码蛋白的氨基酸序列的那部分核酸(例如,基因)。
如本文使用的,“密码子优化的”是指编码蛋白的多核苷酸的密码子被改变成特定生物体中优先使用的密码子,使得编码的蛋白在感兴趣的生物体中有效地表达。在一些实施方案中,编码PGA酶的多核苷酸可以被密码子优化以便被所选择的用于表达的宿主生物体最佳地产生。尽管遗传密码是简并的,因为大多数氨基酸由数个被称为“同义(synonym)”或“同义(synonymous)”密码子的密码子代表,但熟知的是特定生物体的密码子使用是非随机的,并且偏向于特定的密码子三联体。这种密码子使用偏好对于特定基因、具有共同功能或祖先来源的基因、高表达蛋白相比于低拷贝数蛋白以及生物体基因组的密集蛋白编码区可能更高。在一些实施方案中,编码PGA酶的多核苷酸可以被密码子优化以便从所选择的用于表达的宿主生物体最佳地产生。
如本文使用的,“优选的、最佳的、高密码子使用偏好密码子”可互换地指在蛋白编码区中使用频率高于编码相同氨基酸的其他密码子的密码子。优选的密码子可以根据单个基因、具有共同功能或来源的一组基因、高表达基因中的密码子使用、整个生物体的聚集蛋白编码区中的密码子频率、相关生物体的聚集蛋白编码区中的密码子频率或其组合来确定。其频率随基因表达的水平而增加的密码子通常是用于表达的最佳密码子。用来确定特定生物体中密码子的频率(例如,密码子使用、相对同义密码子使用)和密码子偏好的多种方法是已知的,包括多变量分析,例如使用聚类分析或相关性分析和基因中使用的密码子的有效数目(参见例如,GCG CodonPreference,Genetics Computer Group WisconsinPackage;CodonW,John Peden,University of Nottingham;McInerney,Bioinform.,14:372-73[1998];Stenico等人,Nucleic Acids Res.,222:437-46[1994];和Wright,Gene87:23-29[1990])。密码子使用表可用于越来越多的生物体(参见例如,Wada等人,NucleicAcids Res.,20:2111-2118[1992];Nakamura等人,Nucl.Acids Res.,28:292[2000];Duret,等人,同上;Henaut和Danchin,“Escherichia coli and Salmonella,”Neidhardt等人(编辑),ASM Press,Washington D.C.,[1996],第2047-2066页。用于获得密码子使用的数据源可以依赖于能够编码蛋白的任何可得的核苷酸序列。这些数据集包括实际已知编码表达蛋白的核酸序列(例如,完整的蛋白编码序列-CDS)、表达序列标签(ESTS)或基因组序列的预测编码区(参见例如,Uberbacher,Meth.Enzymol.,266:259-281[1996];Tiwari等人,Comput.Appl.Biosci.,13:263-270[1997])。
如本文使用的,“控制序列”在本文中定义为包括对本发明的多核苷酸和/或多肽的表达是必需或有利的所有组分。每个控制序列对于感兴趣的多核苷酸可以是天然的或外源的。这样的控制序列包括但不限于前导序列、多腺苷酸化序列、前肽序列、启动子、信号肽序列和转录终止子。
如本文使用的,“可操作地连接”在本文中定义为控制序列被适当地放置(即,以功能关系)在相对于感兴趣的多核苷酸的位置处的布置,使得控制序列指导或调控感兴趣的多核苷酸和/或多肽的表达。
如本文使用的,“启动子序列”是指被宿主细胞识别用于表达感兴趣的多核苷酸诸如编码序列的核酸序列。控制序列可以包括适当的启动子序列。启动子序列包含介导感兴趣的多核苷酸的表达的转录控制序列。启动子可以是在选择的宿主细胞中显示出转录活性的任何核酸序列,包括突变的、截短的和杂合的启动子,并且可以从编码与宿主细胞同源或异源的细胞外多肽或细胞内多肽的基因获得。
如本文使用的,“天然存在的”和“野生型”是指自然界中存在的形式。例如,天然存在的或野生型多肽或多核苷酸序列是存在于生物体中、可以从自然来源分离并且未被通过人为操作有意修饰的序列。
如本文使用的,当在本公开内容中关于(例如,细胞、核酸或多肽)使用时,“非天然存在的”、“工程化”和“重组”是指材料或对应于该材料的自然或天然形式的材料,其已经被以自然中原本不存在的方式修饰。在一些实施方案中,材料与天然存在的材料相同,但却是从合成材料和/或通过使用重组技术操作而产生或获得的。非限制性实例包括,特别是表达天然(非重组)形式的细胞中不存在的基因或表达原本以不同水平表达的天然基因的重组细胞。
如本文使用的,“序列同一性百分比”、“同一性百分比”和“百分比相同”是指多核苷酸序列或多肽序列之间的比较,并通过在比较窗上比较两个最佳比对的序列来确定,其中与用于两个序列的最佳比对的参考序列相比,多核苷酸或多肽序列在比较窗中的部分可以包括添加或缺失(即,空位)。百分比通过如下计算:确定两个序列中出现的相同的核酸碱基或氨基酸残基的位置的数目,或在具有空位的情况下比对核酸碱基或氨基酸残基以产生匹配位置的数目,将匹配位置的数目除以比较窗中位置的总数,并将结果乘以100以产生序列同一性的百分比。对最佳比对和序列同一性百分比的确定使用BLAST和BLAST 2.0算法来进行(参见例如,Altschul等人,J.Mol.Biol.215:403-410[1990];和Altschul等人,Nucl.Acids Res.,25:3389-3402[1977])。用于进行BLAST分析的软件可通过美国国家生物技术信息中心(National Center for Biotechnology Information)网站公开获得。
简言之,BLAST分析包括首先通过识别查询序列中长度W的短字(short words)来识别高评分序列对(HSP),所述长度W的短字在与数据库序列中相同长度的字比对时,匹配或满足一定的正值阈值评分T。T被称为相邻字评分阈值(Altschul等人,同上)。这些初始的相邻字击中(word hit)充当种子,用于启始检索以发现包含它们的更长的HSP。然后,字击中沿每个序列在两个方向上延伸,直至累积比对评分不能增加。对于核苷酸序列,累积评分使用参数M(对于匹配残基对的奖励评分;永远>0)和N(对于错配残基的惩罚评分;永远<0)来计算。对于氨基酸序列,使用评分矩阵来计算累积评分。当以下情况时,字击中在每个方向上的延伸停止:累积比对评分从其达到的最大值下降了量X;由于一个或更多个负评分的残基比对的累积,累积评分达到零或以下;或到达任一序列的末端。BLAST算法参数W、T和X决定比对的敏感性和速度。BLASTN程序(对于核苷酸序列)使用以下作为默认值:字长(W)为11、期望值(E)为10、M=5、N=-4,以及两个链的比较。对于氨基酸序列,BLASTP程序使用以下作为默认值:字长(W)为3、期望值(E)为10,以及BLOSUM62评分矩阵(参见例如,Henikoff和Henikoff,Proc.Natl.Acad.Sci.USA 89:10915[1989])。
许多其他算法是可获得及本领域已知的,这些算法在提供两个序列的同一性百分比方面与BLAST功能相似。用于比较的序列的最佳比对可以使用本领域已知的任何合适的方法进行(例如,通过Smith和Waterman,Adv.Appl.Math.2:482[1981]的局部同源性算法;通过Needleman和Wunsch,J.Mol.Biol.48:443[1970]的同源性比对算法;通过Pearson和Lipman,Proc.Natl.Acad.Sci.USA 85:2444[1988]的搜索相似性的方法;和/或通过这些算法的计算机化实现[GCG Wisconsin软件包中的GAP、BESTFIT、FASTA和TFASTA]),或通过使用本领域通常已知的方法进行目视检查。此外,序列比对和序列同一性百分比的确定可以使用所提供的默认参数,利用GCG Wisconsin软件包(Accelrys,Madison WI)中的BESTFIT或GAP程序。
如本文使用的,“基本同一性(substantial identity)”是指,多核苷酸或多肽序列与参考序列相比在至少20个残基位置的比较窗中、通常在至少30个-50个残基的窗中具有至少80%序列同一性、至少85%同一性和89%至95%序列同一性,更通常至少99%序列同一性,其中序列同一性的百分比通过在比较窗中比较参考序列和包含总计为参考序列的20%或更少的缺失或添加的序列来计算。在应用于多肽的具体实施方案中,术语“基本同一性”是指,当诸如通过程序GAP或BESTFIT使用默认空位权重进行最佳比对时,两个多肽序列共有至少80%序列同一性,优选地至少89%序列同一性、至少95%序列同一性或更高的序列同一性(例如,99%序列同一性)。在一些优选的实施方案中,不相同的残基位置因保守氨基酸取代而不同。
如本文使用的,“参考序列”指另一序列被与其比较的特定序列。参考序列可以是更大序列的子集,例如,全长基因或多肽序列的区段。通常,参考序列为至少20个核苷酸或氨基酸残基的长度、至少25个残基的长度、至少50个残基的长度,或者为核酸或多肽的全长。由于两个多核苷酸或多肽可以各自(1)包含两个序列之间相似的序列(即,完整序列的一部分),和(2)还可以包含两个序列之间不同的序列,因此两个(或更多个)多核苷酸或多肽之间的序列比较通常通过在比较窗中比较两个多核苷酸的序列来鉴定和比较局部区域的序列相似性来进行。术语“参考序列”意图不受限于野生型序列,并且可以包括工程化序列或改变的序列。例如,在一些实施方案中,“参考序列”可以是先前工程化或改变的氨基酸序列。
如本文使用的,“比较窗”是指至少约20个连续核苷酸位置或氨基酸残基的概念性区段,其中序列可以与至少20个连续核苷酸或氨基酸的参考序列比较,并且其中序列在比较窗中与参考序列(其不包含添加或缺失)相比的部分可以包含20%或更少的添加或缺失(即,空位),以获得两个序列的最佳比对。比较窗可以比20个连续残基长,并且任选地包括30个、40个、50个、100个或更长的窗。
如本文使用的,当在特定氨基酸或多核苷酸序列的编号的上下文中使用时,“对应于”、“关于”和“相对于”是指,当将特定氨基酸或多核苷酸序列与指定参考序列相比时,该参考序列的残基的编号。换言之,特定聚合物的残基编号或残基位置相对于参考序列来指定,而不是由残基在特定氨基酸或多核苷酸序列内的实际数字定位指定。例如,可以通过引入空位将特定氨基酸序列诸如工程化PGA的氨基酸序列与参考序列比对,以优化两个序列之间的残基匹配。在这些情况下,尽管存在空位,但是残基在特定氨基酸或多核苷酸序列中的编号相对于与其比对的参考序列来布置。如本文使用的,对残基位置的指代,诸如以下进一步描述的“Xn”,应被理解为是指“对应于……的残基”,除非另外明确说明。因此,例如,“X94”是指多肽序列中位置94处的任何氨基酸。
如本文使用的,“改进的酶特性”指与参考PGA相比表现出任何酶特性的改进的PGA。对于本文描述的工程化PGA多肽,通常针对野生型PGA酶进行比较,但是在一些实施方案中,参考PGA可以是另一种改进的工程化PGA。期望改进的酶特性包括但不限于酶活性(其可以依据使用指定量的PGA在指定反应时间的底物转化百分比表示)、化学选择性、热稳定性、溶剂稳定性、pH活性谱、辅因子需求、对抑制物的耐受性(例如,产物抑制)、立体特异性和立体选择性(包括对映异构体选择性)。
如本文使用的,“增加的酶活性”是指工程化PGA多肽的改进的特性,其可以通过与参考PGA酶相比的比活性(例如,产生的产物/时间/重量蛋白)的增加或底物转化为产物的百分比(例如,使用指定量的PGA,在指定时间段内,起始量的底物向产物的转化百分比)的增加来表示。确定酶活性的示例性方法在实施例中提供。与酶活性相关的任何特性都可以被影响,包括经典的酶特性Km、Vmax或kcat,其改变可以导致酶活性的增加。酶活性的改进可以从对应的野生型PGA酶的酶活性的约1.5倍至天然存在的PGA或从其衍生PGA多肽的另一种工程化PGA的酶活性的多达2倍、5倍、10倍、20倍、25倍、50倍、75倍、100倍或更多倍。在具体实施方案中,工程化PGA酶表现出为亲本PGA酶的酶活性的1.5至50倍、1.5至100倍高的范围内的改进。技术人员应理解,任何酶的活性都是受扩散限制的,使得催化周转速率不能超过底物,包括任何需要的辅因子的扩散速率。扩散极限(diffusion limit)或kcat/Km的理论最大值通常为约108至109(M-1s-1)。因此,PGA的酶活性的任何改进将具有与被该PGA酶作用的底物的扩散速率相关的上限。PGA活性可以通过用于测量青霉素G裂解后的乙酸苯酯释放的任何一种标准测定来测量,诸如通过滴定法(参见例如,Simons和Gibson,Biotechnol.Tech.,13:365-367[1999])。在一些实施方案中,PGA活性可以通过使用6-硝基苯基乙酰氨基苯甲酸(NIPAB)来测量,其裂解产物5-氨基-2-硝基-苯甲酸是分光光度法可检测的(λmax=405nm)。酶活性的比较使用限定的酶制品、设定条件下的限定的测定和一种或更多种限定的底物来进行,如本文进一步详细描述的。通常,当比较裂解物时,确定细胞的数目和被测定的蛋白的量,并使用相同表达系统和相同宿主细胞以使由宿主细胞产生并且存在于裂解物中的酶的量的变化最小化。
如本文使用的,“增加的酶活性”和“增加的活性”是指工程化酶的改进的特性,其可以通过与如本文描述的参考酶相比,比活性(例如,产生的产物/时间/重量蛋白)的增加或底物向产物的转化百分比(例如,使用指定量的PGA,在指定时间段内,起始量的底物向产物的转化百分比)的增加来表示。与酶活性相关的任何特性都可以被影响,包括经典的酶特性Km、Vmax或kcat,其改变可以导致酶活性的增加。在一些实施方案中,本文提供的PGA酶通过从胰岛素的特定残基去除三-乙酸苯酯保护基团来释放胰岛素。酶活性的比较使用限定的酶制品、设定条件下的限定的测定和一种或更多种限定的底物来进行,如本文进一步详细描述的。通常,当比较细胞裂解物中的酶时,确定细胞的数目和被测定的蛋白的量,并使用相同表达系统和相同宿主细胞以使由宿主细胞产生并且存在于裂解物中的酶的量的变化最小化。
如本文使用的,“转化”是指底物向对应产物的酶促转化。
如本文使用的,“转化百分比”是指在指定条件下在一定时间段内转化为产物的底物的百分比。因此,例如,PGA多肽的“酶活性”或“活性”可以表示为底物向产物的“转化百分比”。
如本文使用的,“化学选择性”是指一种产物相对于另一种产物在化学反应或酶促反应中优先形成。
如本文使用的,“热稳定的(thermostable)”和“热稳定的(thermal stable)”可互换使用以指这样的多肽,其与未处理的酶相比,当暴露于一组温度条件(例如,40℃-80℃)一定时间段(例如,0.5hr-24hr)时抵制失活,因此在暴露于升高的温度后,保持一定水平的剩余活性(例如,多于60%至80%)。
如本文使用的,“溶剂稳定的”是指多肽在暴露于不同浓度(例如,5%-99%)的溶剂(例如,异丙醇、四氢呋喃、2-甲基四氢呋喃、丙酮、甲苯、乙酸丁酯、甲基叔丁基醚等)持续一定时间段(例如,0.5hr-24hr)后,维持与未处理的酶相比相似的活性(例如,多于例如60%至80%)的能力。
如本文使用的,“pH稳定的”是指在暴露于高pH或低pH(例如,4.5-6或8至12)持续一定时间段(例如,0.5hr-24hr)后维持与未处理的酶相比相似的活性(例如,多于60%至80%)的PGA多肽。
如本文使用的,“热稳定且溶剂稳定的”是指既热稳定也溶剂稳定的PGA多肽。
如本文使用的,“亲水性氨基酸或残基”是指具有根据Eisenberg等人的归一化共识疏水性量表(normalized consensus hydrophobicity scale)表现出小于零的疏水性的侧链的氨基酸或残基(Eisenberg等人,J.Mol.Biol.,179:125-142[1984])。遗传编码的亲水性氨基酸包括L-Thr(T)、L-Ser(S)、L-His(H)、L-Glu(E)、L-Asn(N)、L-Gln(Q)、L-Asp(D)、L-Lys(K)和L-Arg(R)。
如本文使用的,“酸性氨基酸或残基”是指当氨基酸被包含于肽或多肽中时,具有表现出小于约6的pK值的侧链的亲水性氨基酸或残基。由于失去氢离子,酸性氨基酸在生理pH通常具有带负电荷的侧链。遗传编码的酸性氨基酸包括L-Glu(E)和L-Asp(D)。
如本文使用的,“碱性氨基酸或残基”是指当氨基酸被包含于肽或多肽中时,具有表现出大于约6的pK值的侧链的亲水性氨基酸或残基。由于与水合离子的缔合,碱性氨基酸通常在生理pH具有带正电荷的侧链。遗传编码的碱性氨基酸包括L-Arg(R)和L-Lys(K)。
如本文使用的,“极性氨基酸或残基”是指具有在生理pH不带电荷的侧链的亲水性氨基酸或残基,但所述侧链具有至少一个这样的键,该键中两个原子共有的电子对被原子之一更紧密地持有。遗传编码的极性氨基酸包括L-Asn(N)、L-Gln(Q)、L-Ser(S)和L-Thr(T)。
如本文使用的,“疏水性氨基酸或残基”是指具有根据Eisenberg等人的归一化共识疏水性量表表现出大于零的疏水性的侧链的氨基酸或残基(Eisenberg等人,J.Mol.Biol.,179:125-142[1984])。遗传编码的疏水性氨基酸包括L-Pro(P)、L-Ile(I)、L-Phe(F)、L-Val(V)、L-Leu(L)、L-Trp(W)、L-Met(M)、L-Ala(A)和L-Tyr(Y)。
如本文使用的,“芳香族氨基酸或残基”是指具有包括至少一个芳香族环或杂芳香族环的侧链的亲水性或疏水性氨基酸或残基。遗传编码的芳香族氨基酸包括L-Phe(F)、L-Tyr(Y)和L-Trp(W)。尽管由于L-His(H)的杂芳香族氮原子的pKa,它有时被归类为碱性残基,或者因为它的侧链包含杂芳香族环而被归类为芳香族残基,但在本文中将组氨酸归类为亲水性残基或“受限残基(constrained residue)”(参见下文)。
如本文使用的,“受限氨基酸或残基”是指具有受限的几何结构(geometry)的氨基酸或残基。本文中,受限残基包括L-Pro(P)和L-His(H)。组氨酸具有受限的几何结构,因为它具有相对较小的咪唑环。脯氨酸具有受限的几何结构,因为它也具有一个五元环。
如本文使用的,“非极性氨基酸或残基”是指具有在生理pH不带电荷的侧链的疏水性氨基酸或残基,并且所述侧链具有其中两个原子共有的电子对通常被两个原子的每一个等同地持有的键(即,侧链不是极性的)。遗传编码的非极性氨基酸包括L-Gly(G)、L-Leu(L)、L-Val(V)、L-Ile(I)、L-Met(M)和L-Ala(A)。
如本文使用的,“脂肪族氨基酸或残基”是指具有脂肪族烃侧链的疏水性氨基酸或残基。遗传编码的脂肪族氨基酸包括L-Ala(A)、L-Val(V)、L-Leu(L)和L-Ile(I)。应注意,半胱氨酸(或“L-Cys”或“[C]”)之所以与众不同,是因为它可以与其他L-Cys(C)氨基酸或其他含巯基(sulfanyl)或硫氢基(sulfhydryl)的氨基酸形成二硫桥。“半胱氨酸样残基”包括半胱氨酸和含有可用于形成二硫桥的硫氢基部分的其他氨基酸。L-Cys(C)(和具有含-SH侧链的其他氨基酸)以还原的游离-SH或氧化的二硫桥的形式存在于肽中的能力影响L-Cys(C)是否向肽贡献净的疏水特征或亲水特征。虽然根据Eisenberg的归一化共识量表(Eisenberg等人,1984,同上),L-Cys(C)表现出0.29的疏水性,但应理解,为了本公开内容的目的,将L-Cys(C)归入它自己特有的组。
如本文使用的,“小氨基酸或残基”是指具有包括总计三个或更少的碳和/或杂原子(不包括α-碳和氢)的侧链的氨基酸或残基。根据上文定义,小氨基酸或残基可以进一步分类为脂肪族、非极性、极性或酸性小氨基酸或残基。遗传编码的小氨基酸包括L-Ala(A)、L-Val(V)、L-Cys(C)、L-Asn(N)、L-Ser(S)、L-Thr(T)和L-Asp(D)。
如本文使用的,“含羟基的氨基酸或残基”是指含有羟基(-OH)部分的氨基酸。遗传编码的含羟基的氨基酸包括L-Ser(S)、L-Thr(T)和L-Tyr(Y)。
如本文使用的,“氨基酸差异”和“残基差异”是指多肽序列的一个位置处的氨基酸残基相对于参考序列中对应位置处的氨基酸残基的差异。本文中氨基酸差异的位置通常被称为“Xn”,其中n是指残基差异在所基于的参考序列中的对应位置。例如,“与SEQ ID NO:2相比在位置X40处的残基差异”是指在对应于SEQ ID NO:2的位置40的多肽位置处的氨基酸残基的差异。因此,如果参考多肽SEQ ID NO:2在位置40处具有组氨酸,则“与SEQ ID NO:2相比在位置X40处的残基差异”是指除组氨酸以外的任何残基在对应于SEQ ID NO:2的位置40的多肽位置处的氨基酸取代。在本文的大多数情况下,在一个位置处的特定氨基酸残基差异被指示为“XnY”,其中“Xn”指定如上文描述的对应位置,并且“Y”是存在于工程化多肽中的氨基酸(即,与参考多肽中不同的残基)的单字母标识符。在一些情况下,本公开内容还提供由常规符号“AnB”表示的特定氨基酸差异,其中A是参考序列中的残基的单字母标识符,“n”是参考序列中的残基位置的编号,并且B是工程化多肽序列中残基取代的单字母标识符。在一些情况下,本公开内容的多肽相对于参考序列可以包含一个或更多个氨基酸残基差异,其由相对于参考序列存在残基差异的一列指定位置指示。在一些实施方案中,当多于一个氨基酸可以在多肽的特定残基位置中使用时,可以使用的不同氨基酸残基由“/”隔开(例如,X192A/G)。本公开内容包括包含一个或更多个氨基酸差异的工程化多肽序列,所述一个或更多个氨基酸差异包括保守氨基酸取代和非保守氨基酸取代的任一种/或两者。本公开内容的序列表中包括的特定青霉素G酰化酶多肽的氨基酸序列包括起始甲硫氨酸(M)残基(即,M代表残基位置1)。然而,本领域技术人员理解,该起始甲硫氨酸残基可以通过生物加工机制而诸如在宿主细胞或体外翻译系统中被去除,以产生缺少起始甲硫氨酸残基但在其他方面保留酶特性的成熟蛋白。因此,如本文使用的术语“相对于SEQ ID NO:2在位置Xn处的氨基酸残基差异”可以指位置“Xn”或已经被加工使得缺少起始甲硫氨酸的参考序列中的对应位置(例如,位置(X-1)n)。
如本文使用的,措辞“保守氨基酸取代”是指具有相似侧链的残基的可互换性,并且因此通常包括用相同或相似的特定氨基酸类别中的氨基酸取代多肽中的氨基酸。通过实例而非限制的方式,在一些实施方案中,具有脂肪族侧链的氨基酸被另一种脂肪族氨基酸(例如,丙氨酸、缬氨酸、亮氨酸和异亮氨酸)取代;具有羟基侧链的氨基酸被另一种具有羟基侧链的氨基酸(例如,丝氨酸和苏氨酸)取代;具有芳香族侧链的氨基酸被另一种具有芳香族侧链的氨基酸(例如,苯丙氨酸、酪氨酸、色氨酸和组氨酸)取代;具有碱性侧链的氨基酸被另一种具有碱性侧链的氨基酸(例如,赖氨酸和精氨酸)取代;具有酸性侧链的氨基酸被另一种具有酸性侧链的氨基酸(例如,天冬氨酸或谷氨酸)取代;和/或疏水性或亲水性氨基酸分别被另一种疏水性或亲水性氨基酸取代。示例性保守取代在表1中提供。
如本文使用的,措辞“非保守取代”是指多肽中的氨基酸被具有显著不同的侧链特性的氨基酸取代。非保守取代可以使用在特定组之间而不是特定组之内的氨基酸,并且影响:(a)取代区域中的肽骨架的结构(例如,脯氨酸取代甘氨酸),(b)电荷或疏水性,或(c)侧链堆积。例如但不限于,示例性非保守取代可以是用碱性或脂肪族氨基酸取代酸性氨基酸;用小氨基酸取代芳香族氨基酸;和用疏水性氨基酸取代亲水性氨基酸。
如本文使用的,“缺失”是指通过从参考多肽去除一个或更多个氨基酸来修饰多肽。缺失可以包括去除1个或更多个氨基酸、2个或更多个氨基酸、5个或更多个氨基酸、10个或更多个氨基酸、15个或更多个氨基酸或20个或更多个氨基酸、多达构成多肽的氨基酸总数的10%、或多达构成多肽的氨基酸总数的20%,同时保留酶活性和/或保留工程化酶的改进的特性。缺失可以涉及多肽的内部部分和/或末端部分。在各种实施方案中,缺失可以包括连续的区段,或者可以是不连续的。
如本文使用的,“插入”是指通过向参考多肽添加一个或更多个氨基酸来修饰多肽。在一些实施方案中,改进的工程化PGA酶包括一个或更多个氨基酸插入天然存在的PGA多肽,以及一个或更多个氨基酸插入工程化PGA多肽。插入可以在多肽的内部部分,或在羧基或氨基末端。如本文使用的插入包括如本领域已知的融合蛋白。插入可以是氨基酸的连续区段,或由天然存在的多肽中的一个或更多个氨基酸隔开。
术语“氨基酸取代集”或“取代集”是指与参考序列相比,多肽序列中的一组氨基酸取代。取代集可以具有1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个或更多氨基酸取代。在一些实施方案中,取代集是指在实施例中提供的表格中列出的变体PGA中的任一种中存在的一组氨基酸取代。
如本文使用的,“片段”是指具有氨基末端缺失和/或羧基末端缺失,但其余氨基酸序列与序列中的对应位置相同的多肽。片段通常可以具有全长PGA多肽例如多肽SEQ IDNO:2的约80%、约90%、约95%、约98%或约99%。在一些实施方案中,片段是“有生物活性的”(即,它表现出与全长序列相同的酶活性)。
如本文使用的,“分离的多肽”是指与天然伴随多肽的其他污染物(例如,蛋白、脂质和多核苷酸)基本上分离的多肽。该术语包括已经从其天然存在的环境或表达系统(例如,宿主细胞或体外合成)中取出或纯化的多肽。改进的PGA酶可以存在于细胞内、存在于细胞培养基中,或以各种形式来制备,诸如裂解物或分离的制备物。因此,在一些实施方案中,本公开内容的工程化PGA多肽可以是分离的多肽。
如本文使用的,“基本上纯的多肽”是指其中多肽物质是存在的主要物质(即,以摩尔或重量计,其比组合物中的任何其他单独的大分子物质更丰富)的组合物,并且当目标物质以摩尔或%重量计构成存在的大分子物质的至少约50%时,该组合物通常为基本上纯的组合物。通常,基本上纯的工程化PGA多肽组合物按摩尔或%重量计包含组合物中存在的所有大分子物质的约60%或更多、约70%或更多、约80%或更多、约90%或更多、约91%或更多、约92%或更多、约93%或更多、约94%或更多、约95%或更多、约96%或更多、约97%或更多、约98%或更多、或约99%。溶剂物质、小分子(<500道尔顿)和元素离子物质不被认为是大分子物质。在一些实施方案中,分离的改进的PGA多肽是基本上纯的多肽组合物。
如本文使用的,当述及核酸或多肽使用时,术语“异源的”是指正常情况下生物体(例如,野生型生物体)不表达及分泌的序列。在一些实施方案中,该术语包括包含两个或更多个子序列的序列,发现所述子序列彼此之间关系与在自然界中正常存在的关系不同,或所述序列被重组工程化,使得其表达水平或与细胞中的其他核酸或其他分子的物理关系或结构不是正常存在于自然界中的。例如,异源核酸通常通过重组产生,具有以自然界中未发现的方式排列的来自不相关的基因的两个或更多个序列(例如,本发明的核酸开放阅读框(ORF)可操作地连接至被插入到表达盒诸如载体中的启动子序列)。在一些实施方案中,“异源多核苷酸”是指通过实验室技术被引入宿主细胞中的任何多核苷酸,并且包括从宿主细胞中取出、经受实验室操作、并且然后重新引入到宿主细胞中的多核苷酸。
如本文使用的,“合适的反应条件”是指生物催化反应溶液中的那些条件(例如,酶载量、底物载量、辅因子载量、温度、pH、缓冲剂、共溶剂等的范围),在该条件下本公开内容的PGA多肽能够通过去除三-乙酸苯酯保护基团来释放游离胰岛素。在本公开内容中提供并通过实施例示出了示例性的“合适的反应条件”。
如本文使用的,诸如“化合物载量”、“酶载量”或“辅因子载量”中的“载量”是指在反应开始时反应混合物中的组分的浓度或量。
如本文使用的,在生物催化剂介导的方法的上下文中,“底物”是指被生物催化剂作用的化合物或分子。
如本文使用的,在生物催化剂介导的方法的上下文中,“产物”是指由生物催化剂的作用产生的化合物或分子。
如本文使用的,“平衡”是指在化学或酶促反应中产生稳定状态浓度的化学物质的过程(例如,两种物质A和B的相互转化),包括立体异构体的相互转化,如通过该化学或酶促反应的正向速率常数和逆向速率常数确定的。
如本文使用的,“酰化酶”和“酰基转移酶”可互换地使用以指能够从供体转移酰基基团至受体以形成酯或酰胺的酶。酰化酶介导的逆反应导致酯或酰胺的水解。
如本文使用的,“青霉素G”和“苄基青霉素”是指也被称为(2S,5R,6R)-3,3-二甲基-7-氧代-6-(2-苯基乙酰氨基)-4-硫杂-1-氮杂双环[3.2.0]庚烷-2-羧酸(C16H18N2O4S)的抗生素。它主要有效针对革兰氏阳性生物体,但是一些革兰氏阴性生物体也对它易感。
如本文使用的,“青霉素G酰化酶”和“PGA”可互换地使用以指具有介导青霉素G(苄基青霉素)裂解成苯乙酸(PHA)和6-氨基青霉烷酸(6-APA)的能力的酶。在一些实施方案中,PGA活性可以基于对模式底物的裂解,例如将6-硝基-3-(苯基乙酰氨基)苯甲酸裂解成苯乙酸和5-氨基-2-硝基-苯甲酸。PGA还能够进行将酰基供体的酰基基团转移至酰基受体的逆反应。如本文使用的PGA包括天然存在的(野生型)PGA以及包括通过人为操作产生的一种或更多种工程化多肽的非天然存在的PGA酶。野生型PGA基因是由通过54个氨基酸的间隔区连接的α亚基(23.8KDa)和β亚基(62.2KDa)组成的异二聚体。由于存在间隔区,需要自加工步骤以形成活性蛋白。
如本文使用的,“酰基供体”是指酰化酶底物中将酰基基团贡献给酰基受体以形成酯或酰胺的部分。
如本文使用的,“酰基受体”是指酰化酶底物中接受酰基供体的酰基基团以形成酯或酰胺的部分。
如本文使用的,“α-链序列”是指对应于SEQ ID NO:2的位置27至235处的残基的氨基酸序列(例如,与这些残基具有至少85%同一性)。如本文使用的,单链多肽可以包含“α-链序列”和另外的序列。
如本文使用的,“β-链序列”是指对应于SEQ ID NO:2的位置290至846处的残基的氨基酸序列(例如,与这些残基具有至少85%同一性)。如本文使用的,单链多肽可以包含“β-链序列”和另外的序列。
如本文使用的,当在工程化PGA酶的上下文中使用时,“源自”表明工程化所基于的原始PGA酶、和/或编码这样的PGA酶的基因。例如,工程化PGA酶SEQ ID NO:88是通过对编码SEQ ID NO:6的K.citrophila PGAα-链和β-链序列的基因进行多代人工演化获得的。因此,该工程化PGA酶“源自”SEQ ID NO:6的天然存在的或野生型PGA。
如本文使用的,“胰岛素”是指由正常个体的胰腺的β细胞产生的多肽激素。胰岛素是通过降低血糖水平来调控碳水化合物代谢所必需的。胰岛素的全身性缺乏导致糖尿病。胰岛素包含51个氨基酸并且具有约5800道尔顿的分子量。胰岛素包含两条肽链(被指定为“A”和“B”),含有一个亚基内二硫键和两个亚基间二硫键。A链包含21个氨基酸,并且B链包含30个氨基酸。两条链形成高度有序的结构,在A链和B链中都具有若干个α-螺旋区。分离的链是无活性的。在溶液中,胰岛素是单体、二聚体或六聚体。它在用于皮下注射的高度浓缩的制品中是六聚体的,但当它被稀释在体液中时变成单体的。该定义意图涵盖胰岛素原和具有部分或全部结构构象和天然存在的胰岛素的至少一种生物学特性的任何纯化的分离的多肽。它还意图涵盖天然和合成来源的胰岛素,包括糖型以及类似物(例如,具有缺失、插入和/或取代的多肽)。
胰岛素包含可以潜在地与乙酸苯酯供体反应并可以被PGA去保护的3个亲核胺。这些残基包括在B链上位置29(B29)处的Lys和两个N-末端游离胺:A链上位置1(A1)处的Gly和B链上位置1(B1)处的Phe。胰岛素二聚体包含通过胰岛素B链上的位置29(B29)处的Lys处的接头连接的两个胰岛素分子。在一些实施方案中,胰岛素二聚体包含通过共价键、氢键、静电作用和/或疏水作用连接的两个胰岛素分子。意图本发明不受限于任何特定的二聚化方式或任何特定的二聚化位置。先前已经报道了PGA以对乙酸苯酯酰胺键的排他选择性催化N-乙酸苯酯保护的肽和胰岛素的水解,使蛋白的剩余肽键不受影响(Brtnik等人,Coll.Czech.Chem.Commun.,46(8),1983-1989[1981];和Wang等人,Biopolym.25(增刊),S109-S114[1986])。
如本文使用的,“四-乙酸苯酯保护基团”是指其中在A1/A1'和B1/B1'位置处的四个伯胺被苯基酰基基团保护的胰岛素二聚体分子。
如本文使用的,“二-乙酸苯酯保护基团”是指其中在A1和A1'位置处的两个伯胺被苯基酰基基团保护的胰岛素二聚体分子。
青霉素G酰化酶
青霉素酰化酶首先被Sakaguchi和Murao描述为来自产黄青霉(Penicilliumchrysogenum)Wisc.Q176(Sakaguchi和Murao,J.Agr.Chem.Soc.Jpn.,23:411[1950])。青霉素G酰化酶是作用于青霉素G、头孢菌素G和相关抗生素的侧链以产生β-内酰胺抗生素中间体6-氨基青霉烷酸和7-氨基脱乙酰氧基头孢菌素酸(cephalosporanic acid)的水解酶,以苯乙酸作为共同副产物。这些抗生素中间体是半合成的抗生素,诸如氨苄青霉素、阿莫西林、氯唑西林、头孢氨苄和cefatoxime的潜在构成单元。
如上文指示的,青霉素G酰化酶(PGA)的特征在于催化具有结构式(I)的共轭碱的青霉素G水解裂解为具有结构式(II)的共轭碱的6-氨基青霉烷酸和结构式(III)的苯乙酸的能力,如方案1中示出的:
虽然不被理论束缚,但是底物特异性表现为与识别疏水性苯基基团相关,而亲核体充当β-内酰胺和多种其他基团,诸如β-氨基酸的受体,该亲核体在一些PGA中是β-链的N-末端的丝氨酸残基。PGA的特征还可以在于裂解类似于青霉素G的模式底物的能力,例如,如方案2中示出的,将结构式(IV)的6-硝基-3-(苯基乙酰氨基)苯甲酸(NIPAB)裂解为结构式(III)的苯乙酸和结构式(V)的5-氨基-2-硝基苯甲酸(参见例如,Alkema等人,Anal.Biochem.,275:47-53[1999]):
因为5-氨基-2-硝基-苯甲酸是显色的,式(IV)的底物提供了测量PGA活性的方便途径。除了上述反应以外,PGA还可以在DL-叔亮氨酸的动力学拆分中使用,用于制备光学纯的叔亮氨酸(参见例如,Liu等人,Prep.Biochem.Biotechnol.,36:235-41[2006])。
本发明的变体PGA源自基于从生物体Kluyvera citrophila(K.citrophila)获得的酶。如同来自其他生物体的PGA,K.citrophila的PGA是通过原PGA前体多肽的蛋白水解加工产生的包含α亚基和β亚基的异二聚体酶。去除信号肽和间隔肽产生成熟的异二聚体(参见例如,Barbero等人,Gene49:69-80[1986])。天然存在的K.citrophila的原PGA前体多肽的氨基酸序列是公开可得的(参见例如,Genbank登录号P07941,[gi:129551])并且在本文中作为SEQ ID NO:2提供。天然存在的K.citrophila PGA的α-链序列对应于SEQ ID NO:2的残基27至235。天然存在的K.citrophila PGA的β-链序列对应于SEQ ID NO:2的残基290至846。SEQ ID NO:2的残基1至26对应于信号肽,并且SEQ ID NO:2的残基236-289对应于连接前肽,信号肽和连接前肽都被去除以产生天然存在的成熟PGA酶,成熟PGA酶是包含α-链亚基和β-链亚基的异二聚体。
在一些实施方案中,本发明提供了具有的氨基酸序列与SEQ ID NO:4、6、8、34、46、54、74和/或88具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%或更多的序列同一性的工程化PGA多肽。
在一些实施方案中,本发明提供了适用于商业用途的胰岛素特异性脱酰基生物催化剂。使用定向演化来开发能够使胰岛素二聚体上的A1/A1'/B1/B1'-四-乙酸苯酯保护基团和A1/A1'-二-乙酸苯酯保护基团去保护并产生大于99%的游离胰岛素二聚体的高效酰化酶变体。如实施例中所示,在六轮演化之后产生了这样的变体,该变体以0.15g/L酶和30g/LA1/A1'-二-乙酸苯酯保护的二聚体载量在小于5hr内产生了多于99%的游离胰岛素。示出了一种变体(SEQ ID NO:88)的活性比测试的初始骨架提高了~300倍。实际上,与野生型PGA相比,本文提供的PGA变体能够接受各种各样的酰基基团、表现出增加的溶剂稳定性和提高的热稳定性。在一些实施方案中,本文提供的变体PGA缺少间隔区。因此,不需要自加工步骤来产生有活性的感兴趣的酶。
本发明还提供了编码工程化PGA多肽的多核苷酸。在一些实施方案中,多核苷酸被可操作地连接至控制基因表达的一个或更多个异源调控序列,以产生能够表达多肽的重组多核苷酸。包含编码工程化PGA多肽的异源多核苷酸的表达构建体可以被引入到适当的宿主细胞中以表达对应的PGA多肽。
因为知晓对应于各种氨基酸的密码子,蛋白序列的可得性提供了对能够编码目标的所有多核苷酸的描述。遗传密码的简并性,其中相同的氨基酸由可替代的密码子或同义密码子编码,允许制备极大数目的核酸,所有这些核酸都编码本文公开的改进的PGA酶。因此,已经鉴定了特定的氨基酸序列,本领域技术人员可以通过以不改变蛋白的氨基酸序列的方式简单修改序列的一个或更多个密码子来制备任何数目的不同核酸。在此方面,本公开内容特别设想了通过选择基于可能的密码子选择的组合可以进行的每个和每一个可能的多核苷酸变异,并且所有这样的变异应被认为针对本文公开的任何多肽(包括实施例6-11中的表格中呈现的氨基酸序列)被具体公开。
在多种实施方案中,密码子被优选地选择为适应在其中产生蛋白的宿主细胞。例如,在细菌中使用的优选的密码子被用于在细菌中表达基因;在酵母中使用的优选的密码子被用于在酵母中的表达;并且在哺乳动物中使用的优选的密码子被用于在哺乳动物细胞中表达。
在一些实施方案中,不是所有密码子都需要被替换以优化PGA多肽的密码子使用,因为天然序列将包含优选的密码子,并且因为可能不需要对所有氨基酸残基使用优选的密码子。因此,编码PGA酶的密码子优化的多核苷酸可以在全长编码区的约40%、50%、60%、70%、80%或大于90%的密码子位置包含优选的密码子。
在一些实施方案中,多核苷酸包含编码PGA多肽的核苷酸序列,所述PGA多肽具有与本文描述的任何参考工程化PGA多肽的α-链和/或β-链具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%或更多序列同一性的氨基酸序列。相应地,在一些实施方案中,多核苷酸编码与至少一种参考α-链和β-链序列(例如,SEQ ID NO:4、6、8、34、46、54、74和/或88)至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同的氨基酸序列。在一些实施方案中,多核苷酸编码SEQ ID NO:4、6、8、34、46、54、74和/或88的α-链和/或β-链氨基酸序列。
在一些实施方案中,多核苷酸包含编码PGA多肽的核苷酸序列,所述PGA多肽具有与SEQ ID NO:4、6、8、34、46、54、74和/或88具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%或更多序列同一性的氨基酸序列。相应地,在一些实施方案中,多核苷酸编码与SEQ ID NO:4、6、8、34、46、54、74和/或88至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同的氨基酸序列。
在一些实施方案中,编码改进的PGA多肽的分离的多核苷酸被以多种方式操作,以提供改进的多肽的活性和/或表达。取决于表达载体,在将分离的多核苷酸插入载体前对分离的多核苷酸的操作可能是期望的或必要的。利用重组DNA方法修饰多核苷酸和核酸序列的技术是本领域熟知的。
例如,诱变和定向演化方法可以容易地应用于多核苷酸,以生成可以被表达、筛选和测定的变体文库。诱变和定向演化方法是本领域熟知的(参见例如,美国专利号5,605,793、5,811,238、5,830,721、5,834,252、5,837,458、5,928,905、6,096,548、6,117,679、6,132,970、6,165,793、6,180,406、6,251,674、6,265,201、6,277,638、6,287,861、6,287,862、6,291,242、6,297,053、6,303,344、6,309,883、6,319,713、6,319,714、6,323,030、6,326,204、6,335,160、6,335,198、6,344,356、6,352,859、6,355,484、6,358,740、6,358,742、6,365,377、6,365,408、6,368,861、6,372,497、6,337,186、6,376,246、6,379,964、6,387,702、6,391,552、6,391,640、6,395,547、6,406,855、6,406,910、6,413,745、6,413,774、6,420,175、6,423,542、6,426,224、6,436,675、6,444,468、6,455,253、6,479,652、6,482,647、6,483,011、6,484,105、6,489,146、6,500,617、6,500,639、6,506,602、6,506,603、6,518,065、6,519,065、6,521,453、6,528,311、6,537,746、6,573,098、6,576,467、6,579,678、6,586,182、6,602,986、6,605,430、6,613,514、6,653,072、6,686,515、6,703,240、6,716,631、6,825,001、6,902,922、6,917,882、6,946,296、6,961,664、6,995,017、7,024,312、7,058,515、7,105,297、7,148,054、7,220,566、7,288,375、7,384,387、7,421,347、7,430,477、7,462,469、7,534,564、7,620,500、7,620,502、7,629,170、7,702,464、7,747,391、7,747,393、7,751,986、7,776,598、7,783,428、7,795,030、7,853,410、7,868,138、7,783,428、7,873,477、7,873,499、7,904,249、7,957,912、7,981,614、8,014,961、8,029,988、8,048,674、8,058,001、8,076,138、8,108,150、8,170,806、8,224,580、8,377,681、8,383,346、8,457,903、8,504,498、8,589,085、8,762,066、8,768,871、9,593,326和所有相关的非美国的对应专利;Ling等人,Anal.Biochem.,254(2):157-78[1997];Dale等人,Meth.Mol.Biol.,57:369-74[1996];Smith,Ann.Rev.Genet.,19:423-462[1985];Botstein等人,Science,229:1193-1201[1985];Carter,Biochem.J.,237:1-7[1986];Kramer等人,Cell,38:879-887[1984];Wells等人,Gene,34:315-323[1985];Minshull等人,Curr.Op.Chem.Biol.,3:284-290[1999];Christians等人,Nat.Biotechnol.,17:259-264[1999];Crameri等人,Nature,391:288-291[1998];Crameri等人,Nat.Biotechnol.,15:436-438[1997];Zhang等人,Proc.Nat.Acad.Sci.U.S.A.,94:4504-4509[1997];Crameri等人,Nat.Biotechnol.,14:315-319[1996];Stemmer,Nature,370:389-391[1994];Stemmer,Proc.Nat.Acad.Sci.USA,91:10747-10751[1994];WO 95/22625;WO 97/0078;WO 97/35966;WO 98/27230;WO 00/42651;WO 01/75767和WO 2009/152336,其全部通过引用并入本文)。
在一些实施方案中,本发明的变体PGA酰化酶还包含不改变酶被编码的活性的另外的序列。例如,在一些实施方案中,变体PGA酰化酶被连接至可用于纯化的表位标签或另一个序列。
在一些实施方案中,本发明的变体PGA酰化酶多肽从它们在其中被表达的宿主细胞(例如,酵母宿主细胞或丝状真菌宿主细胞)分泌,并且被表达为包括信号肽(即,连接至多肽的氨基末端并指导所编码的多肽进入细胞分泌途径的氨基酸序列)的前蛋白。
在一些实施方案中,信号肽是内源性K.citrophila PGA酰化酶信号肽。在一些另外的实施方案中,使用来自其他K.citrophila分泌蛋白的信号肽。在一些实施方案中,根据宿主细胞和其他因素可使用其他信号肽。用于丝状真菌宿主细胞的有效的信号肽编码区包括但不限于从以下获得的信号肽编码区:米曲霉(Aspergillus oryzae)TAKA淀粉酶、黑曲霉(Aspergillus niger)中性淀粉酶、黑曲霉葡糖淀粉酶、米黑根毛霉(Rhizomucormiehei)天冬氨酸蛋白酶、特异腐质霉(Humicola insolens)纤维素酶、绵毛状腐质霉(Humicola lanuginosa)脂肪酶和里氏木霉(T.reesei)纤维二糖水解酶II。用于细菌宿主细胞的信号肽编码区包括但不限于从以下的基因获得的信号肽编码区:芽孢杆菌(Bacillus)NClB 11837麦芽糖淀粉酶、嗜热脂肪芽孢杆菌(Bacillusstearothermophilus)α-淀粉酶、地衣芽孢杆菌(Bacillus licheniformis)枯草杆菌蛋白酶、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)和枯草芽孢杆菌(Bacillus subtilis)prsA。在一些另外的实施方案中,在本发明中可使用其他信号肽(参见例如,Simonen和Palva,Microbiol.Rev.,57:109-137[1993],通过引用并入本文)。另外的可用于酵母宿主细胞的信号肽包括来自酿酒酵母(Saccharomyces cerevisiae)α-因子、酿酒酵母SUC2转化酶的基因的那些(参见例如,Taussig和Carlson,Nucl.AcidsRes.,11:1943-54[1983];SwissProt登录号P00724;和Romanos等人,Yeast 8:423-488[1992])。在一些实施方案中,可使用这些信号肽和其他信号肽的变体。实际上,本发明意图不受限于任何具体的信号肽,因为本领域已知的任何合适的信号肽可在本发明中使用。
在一些实施方案中,本发明提供了编码如本文描述的变体PGA酰化酶多肽的多核苷酸和/或其生物活性片段。在一些实施方案中,多核苷酸被可操作地连接至控制基因表达的一个或更多个异源调控序列或控制序列,以产生能够表达多肽的重组多核苷酸。在一些实施方案中,包含编码变体PGA酰化酶的异源多核苷酸的表达构建体被引入到适当的宿主细胞中以表达变体PGA酰化酶。
本领域普通技术人员理解,由于遗传密码的简并性,存在编码本发明的变体PGA酰化酶多肽的多种核苷酸序列。例如,密码子AGA、AGG、CGA、CGC、CGG和CGU都编码氨基酸精氨酸。因此,在其中精氨酸被密码子指定的本发明的核酸的每个位置处,该密码子可以被改变为以上描述的对应密码子中的任一个,而不改变所编码的多肽。应理解,RNA序列中的“U”对应于DNA序列中的“T”。本发明设想并提供了可以通过选择基于可能的密码子选择的组合制备的编码本发明的多肽的核酸序列的每种和每一种可能的变异。
如上文指示的,编码PGA的DNA序列还可以被设计为高密码子使用偏好密码子(在蛋白编码区以比编码相同氨基酸的其他密码子更高的频率使用的密码子)。优选的密码子可以根据单个基因、共同功能或来源的一组基因、高表达基因中的密码子使用、整个生物体的聚集蛋白编码区中的密码子频率、相关生物体的聚集蛋白编码区中的密码子频率或其组合来确定。其频率随基因表达的水平而增加的密码子通常是用于表达的最佳密码子。特别地,DNA序列可以被优化以便在特定宿主生物体中表达。用于确定特定生物体中的密码子频率(例如,密码子使用、相对同义密码子使用)和密码子偏好的多种方法是本领域熟知的,包括对基因中使用的密码子的多变量分析(例如,使用聚类分析或相关性分析)和有效数目。用于获得密码子使用的数据源可以依赖于能够编码蛋白的任何可得的核苷酸序列。如本领域熟知的,这些数据集包括实际已知编码表达蛋白(例如,完整的蛋白编码序列-CDS)、表达序列标签(EST)或基因组序列的预测编码区的核酸序列。编码变体PGA的多核苷酸可以使用本领域已知的任何合适的方法来制备。通常,寡核苷酸被单独地合成,然后连接(例如,通过酶促连接方法或化学连接方法或聚合酶介导的方法),以形成基本上任何期望的连续序列。在一些实施方案中,本发明的多核苷酸使用本领域已知的任何合适的方法通过化学合成来制备,包括但不限于自动化合成方法。例如,在亚磷酰胺方法中,寡核苷酸被合成(例如,在自动DNA合成仪中)、纯化、退火、连接并克隆到适当的载体中。在一些实施方案中,双链DNA片段然后通过合成互补链和将链在适当条件下退火到一起,或通过用适当引物序列使用DNA聚合酶添加互补链来获得。存在多种常规和标准教科书,提供可在本发明中使用的本领域技术人员熟知的方法。
如上文讨论的,可以通过使编码天然存在的PGA的多核苷酸经受诱变和/或定向演化方法来获得工程化PGA。诱变可以根据本领域已知的任何技术来进行,包括随机诱变和定点诱变。定向演化可以用本领域已知的任何技术包括重排来进行,以筛选改进的变体。其他可使用的定向演化程序包括但不限于交错延伸程序(StEP)、体外重组、诱变PCR、盒式诱变、通过重叠延伸剪接(SOEing)、ProSARTM定向演化方法等,以及任何其他合适的方法。在一些实施方案中,变体PGA多肽或多核苷酸是环状排列的序列,所述环状排列的序列可以包含或可以不包含接头序列。这种环状排列的变体使用本领域已知的任何合适的方法来产生(参见例如,美国专利号8,034,579、8,338,138和9,428,563,通过引用并入本文)。
对诱变处理后获得的克隆筛选具有期望的改进的酶特性的工程化PGA。可以使用监测产物形成速率的标准生物化学技术对来自表达文库的酶活性进行测量。当期望的改进的酶特性是热稳定性时,可以在使酶制品经受指定的温度并测量热处理后剩余的酶活性的量后测量酶活性。然后对包含编码PGA的多核苷酸的克隆进行分离、测序以鉴定核苷酸序列的改变(如果有的话)、并且用于在宿主细胞中表达酶。
当已知工程化多肽的序列时,编码该酶的多核苷酸可以根据已知的合成方法通过标准固相方法来制备。在一些实施方案中,多达约100个碱基的片段可以被单独合成、然后连接(例如,通过酶促连接方法或化学连接方法或聚合酶介导的方法)以形成任何期望的连续序列。例如,本发明的多核苷酸和寡核苷酸可以通过化学合成来制备(例如,使用由Beaucage等人,Tet.Lett.,22:1859-69[1981]描述的经典亚磷酰胺方法,或由Matthes等人,EMBO J.,3:801-05[1984]描述的方法,因为它通常以自动化合成方法来实践)。根据亚磷酰胺方法,寡核苷酸被合成(例如,在自动DNA合成仪中)、纯化、退火、连接并克隆入适当的载体。此外,基本上任何核酸可以从多种商业来源中的任一种获得(例如,The MidlandCertified Reagent Company,Midland,TX,The Great American Gene Company,Ramona,CA,ExpressGen Inc.Chicago,IL,Operon Technologies Inc.,Alameda,CA,以及许多其他商业来源)。
本发明还提供了包含编码如本文提供的至少一种变体PGA的序列的重组构建体。在一些实施方案中,本发明提供了一种表达载体,所述表达载体包含可操作地连接至异源启动子的变体PGA多核苷酸。在一些实施方案中,本发明的表达载体被用于转化适当的宿主细胞,以允许该宿主细胞表达变体PGA蛋白。用于在真菌和其他生物体中重组表达蛋白的方法是本领域熟知的,并且多种表达载体是可得的或可以使用常规方法构建。在一些实施方案中,本发明的核酸构建体包含本发明的核酸序列插入其中的载体,诸如质粒、黏粒、噬菌体、病毒、细菌人工染色体(BAC)、酵母人工染色体(YAC)等。在一些实施方案中,本发明的多核苷酸被整合到适用于表达变体PGA多肽的多种表达载体中的任一种中。合适的载体包括但不限于染色体、非染色体和合成的DNA序列(例如,SV40的衍生物),以及细菌质粒、噬菌体DNA、杆状病毒(baculovirus)、酵母质粒、源自质粒和噬菌体DNA的组合的载体、病毒DNA诸如牛痘、腺病毒、禽痘病毒、假狂犬病、腺病毒、腺相关病毒、反转录病毒以及许多其他载体。本发明可使用将遗传材料转导到细胞中的任何合适的载体,并且如果期望复制,该载体在相关宿主中是可复制并且可生存的。
在一些实施方案中,构建体还包含调控序列,包括但不限于可操作地连接至蛋白编码序列的启动子。大量合适的载体和启动子是本领域技术人员已知的。实际上,在一些实施方案中,为了在特定宿主中获得高表达水平,在异源启动子的控制下表达本发明的变体PGA经常是有用的。在一些实施方案中,使用本领域已知的任何合适的方法将启动子序列可操作地连接至变体PGA编码序列的5'区域。用于表达变体PGA的有用的启动子的实例包括但不限于来自真菌的启动子。在一些实施方案中,可使用驱动真菌菌株中除PGA基因以外的基因表达的启动子序列。作为非限制性实例,可以使用来自编码内切葡聚糖酶的基因的真菌启动子。在一些实施方案中,可使用在除PGA源自的真菌菌株以外的真菌菌株中驱动PGA基因表达的启动子序列。可用于指导本发明的核苷酸构建体在丝状真菌宿主细胞中的转录的其他合适的启动子的实例包括但不限于从以下的基因获得的启动子:米曲霉TAKA淀粉酶、米黑根毛霉天冬氨酸蛋白酶、黑曲霉中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉或泡盛曲霉(Aspergillus awamori)葡糖淀粉酶(glaA)、米黑根毛霉脂肪酶、米曲霉碱性蛋白酶、米曲霉磷酸丙糖异构酶、构巢曲霉(Aspergillus nidulans)乙酰胺酶和尖孢镰孢菌(Fusarium oxysporum)胰蛋白酶样蛋白酶(参见例如,WO 96/00787,通过引用并入本文),以及NA2-tpi启动子(来自黑曲霉中性α-淀粉酶和米曲霉磷酸丙糖异构酶的基因的启动子的杂合体)、启动子诸如cbh1、cbh2、egl1、egl2、pepA、hfb1、hfb2、xyn1、amy和glaA(参见例如,Nunberg等人,Mol.Cell Biol.,4:2306-2315[1984];Boel等人,EMBO J.,3:1581-85[1984];和欧洲专利申请137280,这些全部通过引用并入本文),以及它们的突变的、截短的和杂合的启动子。
在酵母宿主细胞中,有用的启动子包括但不限于来自以下基因的那些:酿酒酵母(Saccharomyces cerevisiae)烯醇化酶(eno-1)、酿酒酵母半乳糖激酶(gal1)、酿酒酵母乙醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)和酿酒酵母(S.cerevisiae)3-磷酸甘油酸激酶。可用于酵母宿主细胞的另外的有用的启动子是本领域已知的(参见例如,Romanos等人,Yeast 8:423-488[1992],通过引用并入本文)。另外,与真菌中壳多糖酶产生相关的启动子可用于本发明(参见例如,Blaiseau和Lafay,Gene 120243-248[1992];和Limon等人,Curr.Genet.28:478-83[1995],这两者均通过引用并入本文)。
对于细菌宿主细胞,用于指导本公开内容的核酸构建体的转录的合适的启动子包括但不限于从以下获得的启动子:大肠杆菌(E.coli)lac操纵子、大肠杆菌trp操纵子、噬菌体λ、天蓝色链霉菌(Streptomyces coelicolor)琼脂糖酶基因(dagA)、枯草芽孢杆菌果聚糖蔗糖酶基因(sacB)、地衣芽孢杆菌α-淀粉酶基因(amyL)、嗜热脂肪芽孢杆菌麦芽糖淀粉酶基因(amyM)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)α-淀粉酶基因(amyQ)、地衣芽孢杆菌青霉素酶基因(penP)、枯草芽孢杆菌xylA和xylB基因、和原核生物β-内酰胺酶基因(参见例如,Villa-Kamaroff等人,Proc.Natl.Acad.Sci.USA 75:3727-3731[1978])、以及tac启动子(参见例如DeBoer等人,Proc.Natl.Acad.Sci.USA 80:21-25[1983])。
在一些实施方案中,本发明的克隆的变体PGA还具有合适的转录终止子序列,转录终止子序列是由宿主细胞识别以终止转录的序列。终止子序列被可操作地连接至编码多肽的核酸序列的3'末端。在所选择的宿主细胞中有功能的任何终止子可用于本发明中。用于丝状真菌宿主细胞的示例性转录终止子包括但不限于从以下的基因获得的那些:米曲霉TAKA淀粉酶、黑曲霉葡糖淀粉酶、构巢曲霉邻氨基苯甲酸合酶、黑曲霉α-葡萄糖苷酶和尖孢镰刀菌胰蛋白酶样蛋白酶(参见例如,美国专利第7,399,627号,通过引用并入本文)。在一些实施方案中,用于酵母宿主细胞的示例性终止子包括从以下的基因获得的那些:酿酒酵母烯醇化酶、酿酒酵母细胞色素C(CYC1)和酿酒酵母甘油醛-3-磷酸脱氢酶。用于酵母宿主细胞的其他有用的终止子是本领域技术人员熟知的(参见例如,Romanos等人,Yeast8:423-88[1992])。
在一些实施方案中,合适的前导序列是克隆的变体PGA序列的一部分,前导序列是mRNA的对被宿主细胞翻译重要的非翻译区。前导序列被可操作地连接至编码多肽的核酸序列的5'末端。在所选择的宿主细胞中有功能的任何前导序列可用于本发明中。用于丝状真菌宿主细胞的示例性前导序列包括但不限于从以下的基因获得的那些:米曲霉TAKA淀粉酶和构巢曲霉磷酸丙糖异构酶。用于酵母宿主细胞的合适的前导序列包括但不限于从以下的基因获得的那些:酿酒酵母烯醇化酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α-因子和酿酒酵母乙醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
在一些实施方案中,本发明的序列还包括多腺苷酸化序列,它是可操作地连接至核酸序列的3'末端的序列,并且它在转录时被宿主细胞识别为向转录的mRNA添加多腺苷酸残基的信号。在所选择的宿主细胞中有功能的任何多腺苷酸化序列可用于本发明中。用于丝状真菌宿主细胞的示例性多腺苷酸化序列包括但不限于从以下的基因获得的那些:米曲霉TAKA淀粉酶、黑曲霉葡糖淀粉酶、构巢曲霉邻氨基苯甲酸合酶、尖孢镰刀菌胰蛋白酶样蛋白酶和黑曲霉α-葡糖苷酶。用于酵母宿主细胞的有用的多腺苷酸化序列是本领域已知的(参见例如,Guo和Sherman,Mol.Cell.Biol.,l5:5983-5990[1995])。
在一些实施方案中,控制序列包括编码连接至多肽的氨基末端的氨基酸序列的信号肽编码区,并指导编码的多肽进入细胞的分泌途径中。核酸序列的编码序列的5'末端可以固有地包含信号肽编码区,所述信号肽编码区符合翻译阅读框地(in translationreading frame)与编码分泌多肽的编码区的区段天然地连接。可选择地,编码序列的5'末端可以包含对编码序列是外源的信号肽编码区。当编码序列不天然包含信号肽编码区时可能需要外源信号肽编码区。
可选择地,外源信号肽编码区可以简单替换天然信号肽编码区以增加多肽的分泌。然而,指导所表达的多肽进入所选择的宿主细胞的分泌途径的任何信号肽编码区都可以在本发明中使用。
用于细菌宿主细胞的有效信号肽编码区包括但不限于从以下的基因获得的信号肽编码区:芽孢杆菌NClB 11837麦芽糖淀粉酶、嗜热脂肪芽孢杆菌α-淀粉酶、地衣芽孢杆菌枯草杆菌蛋白酶、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)和枯草芽孢杆菌prsA。另外的信号肽是本领域已知的(参见例如,Simonen和Palva,Microbiol.Rev.,57:109-137[1993])。
用于丝状真菌宿主细胞的有效的信号肽编码区包括但不限于从以下的基因获得的信号肽编码区:米曲霉TAKA淀粉酶、黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米黑根毛霉天冬氨酸蛋白酶、特异腐质霉(Humicola insolens)纤维素酶和绵毛状腐质霉(Humicolalanuginosa)脂肪酶。
用于酵母宿主细胞的有用的信号肽包括但不限于酿酒酵母α因子和酿酒酵母转化酶的基因。其他有用的信号肽编码区是本领域已知的(参见例如,Romanos等人,[1992],同上)。
在一些实施方案中,控制序列包含前肽编码区,该前肽编码区编码位于多肽的氨基末端的氨基酸序列。所得多肽被称为酶原(proenzyme)或多肽原(或在某些情况下为酶原(zymogen))。多肽原通常是无活性的并且可以通过前肽从多肽原的催化裂解或自动催化裂解转化为成熟的有活性的PGA多肽。前肽编码区可以从以下的基因获得:枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌中性蛋白酶(nprT)、酿酒酵母α-因子、米黑根毛霉天冬氨酸蛋白酶和嗜热毁丝霉(Myceliophthora thermophila)乳糖酶(参见例如,WO 95/33836)。
当信号肽区域和前肽区域两者存在于多肽的氨基末端时,前肽区域紧邻多肽的氨基末端定位,并且信号肽区域紧邻前肽区域的氨基末端定位。
在一些实施方案中,还使用调控序列以允许相对于宿主细胞的生长调控多肽的表达。调控系统的实例是引起基因表达响应于化学或物理刺激(包括调控化合物的存在)而开启或关闭的那些。在原核宿主细胞中,合适的调控序列包括但不限于lac、tac和trp操纵子系统。在酵母宿主细胞中,合适的调控系统包括例如ADH2系统或GAL1系统。在丝状真菌中,合适的调控序列包括TAKA α-淀粉酶启动子、黑曲霉葡糖淀粉酶启动子和米曲霉葡糖淀粉酶启动子。
调控序列的其他实例是允许基因扩增的那些。在真核系统中,这些包括在氨甲蝶呤存在下扩增的二氢叶酸还原酶基因以及用重金属扩增的金属硫蛋白基因。在这些情况下,编码本发明的PGA多肽的核酸序列将与调控序列可操作地连接。
因此,在另外的实施方案中,本发明提供了包含编码工程化PGA多肽或其变体的多核苷酸,以及根据它们将被引入的宿主的类型,一个或更多个表达调控区诸如启动子和终止子、复制起点等的重组表达载体。在一些实施方案中,上文描述的各种核酸和控制序列被连接在一起以产生重组表达载体,所述重组表达载体可以包括一个或更多个方便的限制性位点以允许在这样的位点插入或取代编码多肽的核酸序列。可选择地,在一些实施方案中,核酸序列通过将该核酸序列或包含该序列的核酸构建体插入到用于表达的适当的载体中来表达。在产生表达载体时,编码序列位于载体中,使得编码序列与用于表达的适当的控制序列可操作地连接。
重组表达载体包括任何合适的载体(例如,质粒或病毒),其可以方便地经受重组DNA程序并且可以引起多核苷酸序列的表达。载体的选择通常取决于载体与待引入该载体的宿主细胞的相容性。在一些实施方案中,载体是线性质粒或闭合的环状质粒。
在一些实施方案中,表达载体是自主复制载体(即,作为染色体外实体存在的载体,其复制独立于染色体复制,诸如质粒、染色体外元件、微型染色体或人工染色体)。在一些实施方案中,载体包含用于确保自我复制的任何工具(means)。可选择地,在一些其他实施方案中,当被引入到宿主细胞后,载体被整合到基因组中并与其整合的染色体一起复制。此外,在另外的实施方案中,可使用单个载体或质粒,或共同包含待引入到宿主细胞的基因组的总DNA的两个或更多个载体或质粒。
在一些实施方案中,本发明的表达载体包含一个或更多个可选择的标志物,其允许容易地选择转化的细胞。“可选择的标志物”是基因,其产物提供杀生物剂或病毒耐受性、对抗微生物剂或重金属的耐受性、对营养缺陷型的原养型等。本发明中可使用用于在丝状真菌宿主细胞中使用的任何合适的可选择的标志物,包括但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(膦丝菌素乙酰转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)、pyrG(乳清酸核苷-5'-磷酸脱羧酶)、sC(硫酸腺苷酰转移酶(sulfateadenyltransferase))和trpC(邻氨基苯甲酸合酶)以及其等同物。在宿主细胞诸如曲霉属(Aspergillus)中可用的另外的标志物包括但不限于构巢曲霉或米曲霉的amdS和pyrG基因,以及吸水链霉菌(Streptomyces hygroscopicus)的bar基因。用于酵母宿主细胞的合适的标志物包括但不限于ADE2、HIS3、LEU2、LYS2、MET3、TRP1和URA3。细菌的可选择标志物的实例包括但不限于来自枯草芽孢杆菌或地衣芽孢杆菌的dal基因,或赋予抗生素耐受性诸如氨苄青霉素、卡那霉素、氯霉素和/或四环素耐受性的标志物。
在一些实施方案中,本发明的表达载体包含允许载体整合到宿主细胞的基因组中或允许载体在细胞中独立于基因组自主复制的元件。在一些涉及整合到宿主细胞基因组中的实施方案中,载体依赖于编码多肽的核酸序列或用于通过同源或非同源重组将载体整合到基因组的载体的任何其他元件。
在一些可选择的实施方案中,表达载体包含用于指导通过同源重组整合到宿主细胞的基因组中的另外的核酸序列。另外的核酸序列能够使载体在染色体的准确位置整合到宿主细胞基因组中。为了增加在准确位置整合的可能性,整合元件优选地含有足够数目的核苷酸,诸如100至10,000个碱基对,优选地400至10,000个碱基对,并且最优选地800至10,000个碱基对,所述足够数目的核苷酸与对应的靶序列高度同源以增加同源重组的可能性。整合元件可以是与宿主细胞的基因组中的靶序列同源的任何序列。此外,整合元件可以是非编码的或编码的核酸序列。在另一方面,载体可以通过非同源重组整合到宿主细胞的基因组中。
对于自主复制,载体还可以包含能够使载体在所讨论的宿主细胞中自主复制的复制起点。细菌复制起点的实例是允许在大肠杆菌中复制的P15Aori或质粒pBR322、pUC19、pACYCl77(该质粒具有P15A ori)、或pACYC184的复制起点,和允许在芽孢杆菌中复制的pUB110、pE194、pTA1060或pAMβ1的复制起点。用于在酵母宿主细胞中使用的复制起点的实例是2微米(2micron)复制起点、ARS1、ARS4、ARS1和CEN3的组合、以及ARS4和CEN6的组合。复制起点可以是具有使其在宿主细胞中的功能对温度敏感的突变的复制起点(参见例如,Ehrlich,Proc.Natl.Acad.Sci.USA 75:1433[1978])。
在一些实施方案中,多于一个拷贝的本发明的核酸序列被插入到宿主细胞中以增加基因产物的产生。核酸序列的拷贝数的增加可以通过将至少一个另外拷贝的序列整合到宿主细胞基因组中,或通过包括具有核酸序列的可扩增的可选择标志物基因来获得,其中包含可选择标志物基因的扩增拷贝并从而包含核酸序列的另外拷贝的细胞可以通过在适当的选择剂的存在下培养细胞来选择。
用于在本发明中使用的许多表达载体是商业上可得的。合适的商业表达载体包括但不限于p3xFLAGTMTM表达载体(Sigma-Aldrich Chemicals),其包括CMV启动子和用于在哺乳动物宿主细胞中表达的hGH多腺苷酸化位点以及用于在大肠杆菌中扩增的pBR322复制起点和氨苄青霉素耐受性标志物。其他合适的表达载体包括但不限于pBluescriptII SK(-)和pBK-CMV(Stratagene),以及源自pBR322(Gibco BRL)、pUC(Gibco BRL)、pREP4、pCEP4(Invitrogen)或pPoly的质粒(参见例如,Lathe等人,Gene57:193-201[1987])。
因此,在一些实施方案中,包含编码至少一种变体PGA的序列的载体被转化到宿主细胞中以允许载体繁殖和表达变体PGA。在一些实施方案中,变体PGA被翻译后修饰以去除信号肽,并且在一些情况下可以在分泌后被裂解。在一些实施方案中,上文描述的转化的宿主细胞在允许表达变体PGA的条件下在合适的营养培养基中培养。可用于培养宿主细胞的任何合适的培养基可用于本发明中,包括但不限于基本培养基或包含适当补充剂的复合培养基。在一些实施方案中,宿主细胞在HTP培养基中生长。合适的培养基可从各种商业供应商获得,或者可以根据公开的配方(例如,在美国典型培养物保藏中心(American TypeCulture Collection)的目录中)制备。
在另一方面中,本发明提供了包含编码本文提供的改进的PGA多肽的多核苷酸的宿主细胞,该多核苷酸被可操作地连接至用于在宿主细胞中表达PGA酶的一个或更多个控制序列。用于在表达由本发明的表达载体编码的PGA多肽中使用的宿主细胞是本领域熟知的,并且包括但不限于细菌细胞诸如大肠杆菌、巨大芽孢杆菌(Bacillus megaterium)、开菲尔乳杆菌(Lactobacillus kefir)、链霉菌属(Streptomyces)和鼠伤寒沙门氏菌(Salmonella typhimurium)细胞;真菌细胞,诸如酵母细胞(例如,酿酒酵母或巴斯德毕赤酵母(Pichia pastoris)(ATCC登录号201178));昆虫细胞诸如果蝇属(Drosophila)S2和夜蛾属(Spodoptera)Sf9细胞;动物细胞诸如CHO、COS、BHK、293和Bowes黑素瘤细胞;以及植物细胞。用于上文描述的宿主细胞的适当的培养基和生长条件是本领域熟知的。
用于表达PGA的多核苷酸可以通过本领域已知的各种方法引入到细胞中。技术包括尤其是电穿孔、生物弹射微粒轰击、脂质体介导的转染、氯化钙转染和原生质体融合。用于将多核苷酸引入到细胞中的各种方法是本领域技术人员已知的。
在一些实施方案中,宿主细胞是真核细胞。合适的真核宿主细胞包括但不限于真菌细胞、藻类细胞、昆虫细胞和植物细胞。合适的真菌宿主细胞包括但不限于子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、半知菌门(Deuteromycota)、接合菌门(Zygomycota)、半知菌(Fungiimperfecti)。在一些实施方案中,真菌宿主细胞是酵母细胞和丝状真菌细胞。本发明的丝状真菌宿主细胞包括亚门真菌亚门(Eumycotina)和卵菌门(Oomycota)的所有丝状形式。丝状真菌的特征在于具有包含壳多糖、纤维素和其他复杂多糖的细胞壁的营养菌丝体。本发明的丝状真菌宿主细胞在形态学上与酵母不同。
在本发明的一些实施方案中,丝状真菌宿主细胞是任何合适的属和种的,包括但不限于绵霉属(Achlya)、枝顶孢属(Acremonium)、曲霉属(Aspergillus)、短梗霉属(Aureobasidium)、烟管菌属(Bjerkandera)、拟蜡菌属(Ceriporiopsis)、头孢霉属(Cephalosporium)、金孢子菌属(Chrysosporium)、旋孢腔菌属(Cochliobolus)、棒囊壳属(Corynascus)、丛赤壳属(Cryphonectria)、隐球菌属(Cryptococcus)、鬼伞属(Coprinus)、革盖菌属(Coriolus)、色二孢属(Diplodia)、内座壳属(Endothia)、镰孢属(Fusarium)、赤霉菌属(Gibberella)、胶枝霉属(Gliocladium)、腐质霉属(Humicola)、肉座菌属(Hypocrea)、毁丝霉属(Myceliophthora)、毛霉属(Mucor)、脉孢菌属(Neurospora)、青霉菌属(Penicillium)、柄孢壳菌属(Podospora)、白腐菌属(Phlebia)、瘤胃壶菌属(Piromyces)、梨形孢属(Pyricularia)、根毛霉属(Rhizomucor)、根霉属(Rhizopus)、裂褶菌属(Schizophyllum)、柱顶孢霉属(Scytalidium)、孢子丝菌属(Sporotrichum)、踝节菌属(Talaromyces)、热子囊菌属(Thermoascus)、梭孢壳属(Thielavia)、栓菌属(Trametes)、弯颈霉属(Tolypocladium)、木霉属(Trichoderma)、轮枝孢属(Verticillium)和/或小包脚菇属(Volvariella)、和/或它们的有性型或无性型、及同义型、基原异名或分类学等同物。
在本发明的一些实施方案中,宿主细胞是酵母细胞,包括但不限于假丝酵母属(Candida)、汉逊酵母属(Hansenula)、酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)、毕赤酵母属(Pichia)、克鲁维酵母属(Kluyveromyces)或耶氏酵母属(Yarrowia)的种的细胞。在本发明的一些实施方案中,酵母细胞是多形汉逊酵母(Hansenula polymorpha)、酿酒酵母、卡氏酵母(Saccharomyces carlsbergensis)、糖化酵母(Saccharomyces diastaticus)、诺地酵母(Saccharomyces norbensis)、克氏酵母(Saccharomyces kluyveri)、粟酒裂殖酵母(Schizosaccharomyces pombe)、巴斯德毕赤酵母(Pichia pastoris)、芬兰毕赤酵母(Pichia finlandica)、Pichia trehalophila、Pichia kodamae、膜醭毕赤酵母(Pichia membranaefaciens)、Pichia opuntiae、Pichiathermotolerans、Pichia salictaria、Pichia quercuum、Pichia pijperi、树干毕赤酵母(Pichia stipitis)、甲醇毕赤酵母(Pichia methanolica)、安格斯毕赤酵母(Pichiaangusta)、乳酸克鲁维酵母(Kluyveromyces lactis)、白假丝酵母(Candida albicans)或解脂耶氏酵母(Yarrowia lipolytica)。
在本发明的一些实施方案中,宿主细胞是藻类细胞,诸如衣藻属(Chlamydomonas)(例如,莱茵衣藻(C.reinhardtii))和席藻属(Phormidium)(席藻属种(P.sp.)ATCC29409)。
在一些其他实施方案中,宿主细胞是原核细胞。合适的原核细胞包括但不限于革兰氏阳性、革兰氏阴性和革兰氏不定的细菌细胞。在本发明中可使用任何合适的细菌生物体,包括但不限于土壤杆菌属(Agrobacterium)、脂环酸芽孢杆菌属(Alicyclobacillus)、鱼腥藻属(Anabaena)、倒囊藻属(Anacystis)、不动杆菌属(Acinetobacter)、嗜酸菌属(Acidothermus)、节杆菌属(Arthrobacter)、固氮菌属(Azobacter)、芽孢杆菌属(Bacillus)、双歧杆菌属(Bifidobacterium)、短杆菌属(Brevibacterium)、丁酸弧菌属(Butyrivibrio)、布赫纳氏菌属(Buchnera)、Campestris、弯曲杆菌属(Campylobacter)、梭菌属(Clostridium)、棒杆菌属(Corynebacterium)、着色菌属(Chromatium)、粪球菌属(Coprococcus)、埃希氏菌属(Escherichia)、肠球菌属(Enterococcus)、肠杆菌属(Enterobacter)、欧文氏菌属(Erwinia)、梭杆菌属(Fusobacterium)、粪杆菌属(Faecalibacterium)、弗朗西斯菌属(Francisella)、黄杆菌属(Flavobacterium)、地芽孢杆菌属(Geobacillus)、嗜血杆菌属(Haemophilus)、螺杆菌属(Helicobacter)、克雷伯菌属(Klebsiella)、乳杆菌属(Lactobacillus)、乳球菌属(Lactococcus)、泥杆菌属(Ilyobacter)、微球菌属(Micrococcus)、细杆菌属(Microbacterium)、生根瘤菌属(Mesorhizobium)、甲基杆菌属(Methylobacterium)、甲基杆菌属(Methylobacterium)、分枝杆菌属(Mycobacterium)、奈瑟菌属(Neisseria)、泛菌属(Pantoea)、假单胞菌属(Pseudomonas)、原绿球藻属(Prochlorococcus)、红细菌属(Rhodobacter)、红假单胞菌属(Rhodopseudomonas)、红假单胞菌属(Rhodopseudomonas)、罗氏菌属(Roseburia)、红螺菌属(Rhodospirillum)、红球菌属(Rhodococcus)、栅藻属(Scenedesmus)、链霉菌属(Streptomyces)、链球菌属(Streptococcus)、Synecoccus、糖单孢菌属(Saccharomonospora)、葡萄球菌属(Staphylococcus)、沙雷氏菌属(Serratia)、沙门氏菌属(Salmonella)、志贺氏菌属(Shigella)、嗜热厌氧杆菌属(Thermoanaerobacterium)、Tropheryma、Tularensis、Temecula、热聚球藻属(Thermosynechococcus)、高温球菌属(Thermococcus)、脲原体属(Ureaplasma)、黄单胞菌属(Xanthomonas)、木杆菌属(Xylella)、耶尔森氏菌属(Yersinia)和发酵单胞菌属(Zymomonas)。在一些实施方案中,宿主细胞是以下物种:土壤杆菌属、不动杆菌属、固氮菌属、芽孢杆菌属、双歧杆菌属、布赫纳氏菌属、地芽孢杆菌属、弯曲杆菌属、梭菌属、棒杆菌属、埃希氏菌属、肠球菌属、欧文氏菌属、黄杆菌属、乳杆菌属、乳球菌属、泛菌属、假单胞菌属、葡萄球菌属、沙门氏菌属、链球菌属、链霉菌属或发酵单胞菌属。在一些实施方案中,细菌宿主菌株是对人类非致病性的。在一些实施方案中,细菌宿主菌株是工业菌株。许多细菌工业菌株是已知的,并且在本发明中是合适的。在本发明的一些实施方案中,细菌宿主细胞是土壤杆菌属种(例如,放射型土壤杆菌(A.radiobacter)、发根土壤杆菌(A.rhizogenes)和悬钩土壤杆菌(A.rubi))。在本发明的一些实施方案中,细菌宿主细胞是节杆菌属种(例如,金黄节杆菌(A.aurescens)、柠檬色节杆菌(A.citreus)、球形节杆菌(A.globiformis)、裂烃谷氨酸节杆菌(A.hydrocarboglutamicus)、迈索尔节杆菌(A.mysorens)、烟草节杆菌(A.nicotianae)、石蜡节杆菌(A.paraffineus)、原玻璃蝇节杆菌(A.protophormiae)、A.roseoparqffinus、硫磺节杆菌(A.sulfureus)和产脲节杆菌(A.ureafaciens))。在本发明的一些实施方案中,细菌宿主细胞是芽孢杆菌属种(例如,苏云金芽孢杆菌(B.thuringensis)、炭疽芽孢杆菌(B.anthracis)、巨大芽孢杆菌(B.megaterium)、枯草芽孢杆菌(B.subtilis)、迟缓芽孢杆菌(B.lentus)、环状芽孢杆菌(B.circulans)、短小芽孢杆菌(B.pumilus)、灿烂芽孢杆菌(B.lautus)、凝结芽孢杆菌(B.coagulans)、短芽孢杆菌(B.brevis)、坚强芽孢杆菌(B.firmus)、嗜碱芽孢杆菌(B.alcalophius)、地衣芽孢杆菌(B.licheniformis)、克劳氏芽孢杆菌(B.clausii)、嗜热脂肪芽孢杆菌(B.stearothermophilus)、耐盐芽孢杆菌(B.halodurans)和解淀粉芽孢杆菌(B.amyloliquefaciens))。在一些实施方案中,宿主细胞是工业芽孢杆菌菌株,包括但不限于枯草芽孢杆菌、短小芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、克劳氏芽孢杆菌、嗜热脂肪芽杆菌或解淀粉芽孢杆菌。在一些实施方案中,芽孢杆菌宿主细胞是枯草芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、嗜热脂肪芽孢杆菌和/或解淀粉芽孢杆菌。在一些实施方案中,细菌宿主细胞是梭菌属种(例如,丙酮丁醇梭菌(C.acetobutylicum)、破伤风梭菌(C.tetani)E88、C.lituseburense、糖丁酸梭菌(C.saccharobutyricum)、产气荚膜梭菌(C.perfringens)和C.beijerinckii)。在一些实施方案中,细菌宿主细胞是棒杆菌属种(例如,谷氨酸棒杆菌(C.glutamicum)和嗜乙酸棒杆菌(C.acetoacidophilum))。在一些实施方案中,细菌宿主细胞是埃希氏菌属种(例如,大肠杆菌)。在一些实施方案中,宿主细胞是大肠杆菌W3110。在一些实施方案中,细菌宿主细胞是欧文氏菌属种(例如,噬夏孢欧文氏菌(E.uredovora)、胡萝卜欧文氏菌(E.carotovora)、菠萝欧文氏菌(E.ananas)、草生欧文氏菌(E.herbicola)、斑点欧文氏菌(E.punctata)和土欧文氏菌(E.terreus))。在一些实施方案中,细菌宿主细胞是泛菌属种(例如,柠檬泛菌(P.citrea)和成团泛菌(P.agglomerans))。在一些实施方案中,细菌宿主细胞是假单胞菌属种(例如,恶臭假单胞菌(P.putida)、铜绿假单胞菌(P.aeruginosa)、P.mevalonii和假单胞菌属种(P.sp)D-01 10)。在一些实施方案中,细菌宿主细胞是链球菌属种(例如,似马链球菌(S.equisimilis)、酿脓链球菌(S.pyogenes)和乳房链球菌(S.uberis))。在一些实施方案中,细菌宿主细胞是链霉菌属种(例如,生二素链霉菌(S.ambofaciens)、不发色链霉菌(S.achromogenes)、阿维链霉菌(S.avermitilis)、天蓝色链霉菌、金黄色链霉菌(S.aureofaciens)、金色链霉菌(S.aureus)、杀真菌素链霉菌(S.fungicidicus)、灰色链霉菌(S.griseus)和变铅青链霉菌(S.lividans))。在一些实施方案中,细菌宿主细胞是发酵单胞菌属种(例如,运动发酵单胞菌(Z.mobilis)和Z.lipolytica)。
在本发明中可用的许多原核和真核菌株是公众从多个培养物保藏中心可容易地获得的,诸如美国典型培养物保藏中心(ATCC)、德国微生物保藏中心(Deutsche Sammlungvon Mikroorganismen und Zellkulturen GmbH,DSM)、真菌菌种保藏中心(Centraalbureau Voor Schimmelcultures,CBS)和农业研究机构专利培养物保藏中心,北方区域研究中心(Agricultural Research Service Patent Culture Collection,Northern Regional Research Center(NRRL))。
在一些实施方案中,宿主细胞被遗传修饰以具有改进蛋白分泌、蛋白稳定性和/或蛋白表达和/或分泌所期望的其他特性的特征。遗传修饰可以通过遗传工程技术和/或经典微生物技术(例如,化学或UV诱变和随后的选择)来实现。实际上,在一些实施方案中,使用重组修饰和经典选择技术的组合产生宿主细胞。使用重组技术,核酸分子可以被引入、缺失、抑制或修饰,以在宿主细胞中和/或在培养基中导致PGA变体的收率增加的方式。例如,敲除Alp1功能导致蛋白酶缺陷型细胞,而敲除pyr5功能导致具有嘧啶缺陷表型的细胞。在一种遗传工程方法中,同源重组被用于通过体内特异性靶向基因引起靶向基因修饰,以抑制编码的蛋白的表达。在可选择的方法中,siRNA、反义和/或核酶技术可用于抑制基因表达。本领域已知多种方法用于降低蛋白在细胞中的表达,包括但不限于缺失掉编码该蛋白的全部或部分基因以及定点诱变(site-specific mutagenesis)以破坏基因产物的表达或活性。(参见例如,Chaveroche等人,Nucl.Acids Res.,28:22e97[2000];Cho等人,Molec.Plant Microbe Interact.,19:7-15[2006];Maruyama和Kitamoto,BiotechnolLett.,30:1811-1817[2008];Takahashi等人,Mol.Gen.Genom.,272:344-352[2004];和You等人,Arch.Micriobiol.,191:615-622[2009],这些全部通过引用并入本文)。也可使用随机诱变,随后筛选期望的突变(参见例如,Combier等人,FEMS Microbiol.Lett.,220:141-8[2003];和Firon等人,Eukary.Cell 2:247-55[2003],两者通过引用并入)。
将载体或DNA构建体引入宿主细胞可以使用本领域已知的任何合适的方法来实现,包括但不限于磷酸钙转染、DEAE-右旋糖酐介导的转染、PEG介导的转化、电穿孔或本领域已知的其他常用技术。在一些实施方案中,可使用大肠杆菌表达载体pCK100900i(参见美国专利申请公布2006/0195947,其在此被通过引用并入本文)。
在一些实施方案中,本发明的工程化宿主细胞(即“重组宿主细胞”)在常规营养培养基中培养,所述常规营养培养基被修饰为适合于活化启动子、选择转化体或扩增PGA多核苷酸。培养条件,诸如温度、pH等,是先前对所选择的用于表达的宿主细胞使用的那些,并且是本领域技术人员熟知的。如所提及的,许多标准参考文献和教科书可用于培养和产生许多细胞,包括细菌、植物、动物(特别是哺乳动物)和古细菌来源的细胞。
在一些实施方案中,表达本发明的变体PGA多肽的细胞在分批或连续发酵条件下生长。经典的“分批发酵”是封闭的系统,其中培养基的组成是发酵开始时设置的并且在发酵期间不进行人工调整。分批系统的变化形式是也可在本发明中使用的“补料-分批发酵”。在此变化形式中,随发酵进展增量地添加底物。当分解代谢物阻遏可能抑制细胞的新陈代谢时以及当期望培养基中具有有限量的底物时,可使用补料-分批系统。分批发酵和补料-分批发酵在本领域中是常见的和熟知的。“连续发酵”是一种开放系统,其中向生物反应器连续添加指定的发酵培养基,并且同时取出等量的条件培养基用于加工。连续发酵通常使培养物维持在恒定的高密度,其中细胞主要处于对数生长期。连续发酵系统力求维持稳态生长条件。调节用于连续发酵过程的营养物和生长因子的方法以及用于使产物形成的速率最大化的技术是工业微生物学领域熟知的。
在本发明的一些实施方案中,可使用无细胞转录/翻译系统产生变体PGA。若干系统是商业上可得的并且方法是本领域技术人员熟知的。
本发明提供了制备变体PGA多肽或其生物活性片段的方法。在一些实施方案中,该方法包括:提供用以下多核苷酸转化的宿主细胞,所述多核苷酸编码包含与SEQ ID NO:4、6、8、34、46、54、74和/或88具有至少约70%(或至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%)序列同一性的氨基酸序列并包含如本文提供的至少一种突变;在宿主细胞表达编码的变体PGA多肽的条件下在培养基中培养转化的宿主细胞;以及任选地回收或分离所表达的变体PGA多肽,和/或回收或分离包含所表达的变体PGA多肽的培养基。在一些实施方案中,所述方法还提供了任选地在表达编码的PGA多肽后裂解转化的宿主细胞,以及任选地从细胞裂解物回收和/或分离所表达的变体PGA多肽。本发明还提供了制备变体PGA多肽的方法,所述方法包括在适合于产生变体PGA多肽的条件下培养用变体PGA多肽转化的宿主细胞,以及回收变体PGA多肽。通常,使用本领域熟知的蛋白回收技术,包括本文描述的那些,从宿主细胞培养基、宿主细胞或两者回收或分离PGA多肽。在一些实施方案中,将宿主细胞通过离心收获,通过物理或化学手段破碎,并将所得粗提取物保留以便进一步纯化。在蛋白的表达中使用的微生物细胞可以通过任何常规方法破碎,包括但不限于冻融循环、超声、机械破碎和/或使用细胞裂解剂,以及本领域技术人员熟知的许多其他合适的方法。
在宿主细胞中表达的工程化PGA酶可以从细胞和/或培养基回收,使用蛋白纯化领域中的已知技术中的任一种或更多种,包括尤其是溶菌酶处理、超声、过滤、盐析、超速离心和层析。用于裂解和从细菌诸如大肠杆菌高效提取蛋白的合适的溶液是以商标名CelLyticBTM(Sigma-Aldrich)商业上可得的。因此,在一些实施方案中,所得多肽被回收/分离,并任选地通过本领域已知的多种方法中的任一种来纯化。例如,在一些实施方案中,多肽通过常规程序从营养培养基分离,包括但不限于离心、过滤、提取、喷雾干燥、蒸发、层析(例如,离子交换、亲和性、疏水相互作用、聚焦层析和尺寸排阻)或沉淀。在一些实施方案中,按需要使用蛋白重折叠步骤完成成熟蛋白的构型。此外,在一些实施方案中,在最后纯化步骤中使用高效液相层析(HPLC)。例如,在一些实施方案中,本发明可使用本领域已知的方法(参见例如,Parry等人,Biochem.J.,353:117[2001];和Hong等人,Appl.Microbiol.Biotechnol.,73:1331[2007],这两者均通过引用并入本文)。实际上,本领域已知的任何合适的纯化方法均可用于本发明。
用于分离PGA多肽的层析技术包括但不限于反相层析、高效液相层析、离子交换层析、凝胶电泳和亲和层析。用于纯化特定酶的条件将部分地取决于诸如净电荷、疏水性、亲水性、分子量、分子形状等因素,是本领域技术人员已知的。
在一些实施方案中,亲和技术可用于分离改进的PGA酶。对于亲和层析纯化,可以使用特异性结合PGA多肽的任何抗体。为了产生抗体,可以通过注射PGA来免疫各种宿主动物,包括但不限于兔、小鼠、大鼠等。PGA多肽可以通过侧链官能团或附接至侧链官能团的接头的方式被附接至合适的载体,诸如BSA。取决于宿主物种,多种佐剂可以被用来增加免疫应答,包括但不限于弗氏佐剂(完全和不完全)、矿物凝胶诸如氢氧化铝、表面活性物质诸如溶血卵磷脂、pluronic多元醇、聚阴离子、肽、油乳剂、钥孔虫戚血兰素、二硝基酚和可能有用的人类佐剂诸如BCG(卡介苗)和短棒杆菌(Corynebacterium parvum)。
在一些实施方案中,PGA变体以表达酶的细胞的形式、作为粗提取物、或作为分离的或纯化的制品来制备和使用。在一些实施方案中,PGA变体被制备为呈粉末形式(例如,丙酮粉末)的冻干物或被制备为酶溶液。在一些实施方案中,PGA变体呈基本上纯的制品的形式。
在一些实施方案中,PGA多肽被附接至任何合适的固体基底。固体基底包括但不限于固相、表面和/或膜。固体支持物包括但不限于有机聚合物诸如聚苯乙烯、聚乙烯、聚丙烯、聚氟乙烯、聚氧乙烯(polyethyleneoxy)和聚丙烯酰胺以及它们的共聚物和接枝物。固体支持物还可以是无机的,诸如玻璃、二氧化硅、可控孔隙玻璃(CPG)、反相二氧化硅或金属诸如金或铂。基底的构型可以呈珠、球、微粒、颗粒、凝胶、膜或表面的形式。表面可以是平面的、基本上平面的或非平面的。固体支持物可以是多孔的或无孔的,并且可以具有溶胀或非溶胀特征。固体支持物可以被配置为孔、凹陷或其他容器、器皿、特征或位置的形式。多于一种支持物可以被配置在阵列的多个位置上,所述多个位置是试剂的自动递送或通过检测方法和/或仪器可寻址的。
在一些实施方案中,使用免疫学方法来纯化PGA变体。在一种方法中,将使用常规方法针对变体PGA多肽(例如,针对包含SEQ ID NO:4、6、8、34、46、54、74和/或88中的任一种的多肽、和/或其免疫原性片段)产生的抗体固定在珠上,在其中变体PGA被结合的条件下与细胞培养基混合,并沉淀。在相关方法中,可使用免疫层析。
在一些实施方案中,变体PGA被表达为包括非酶部分的融合蛋白。在一些实施方案中,变体PGA序列被融合至纯化辅助结构域。如本文使用的,术语“纯化辅助结构域”是指介导与其融合的多肽的纯化的结构域。合适的纯化结构域包括但不限于金属螯合肽、允许在固定化金属上纯化的组氨酸-色氨酸模块、结合谷胱甘肽的序列(例如,GST)、血球凝集素(HA)标签(对应于源自流感血球凝集素蛋白的表位;参见例如,Wilson等人,Cell 37:767[1984])、麦芽糖结合蛋白序列、在FLAGS延伸/亲和纯化系统(例如,从Immunex Corp可获得的系统)中使用的FLAG表位等。设想用于在本文描述的组合物和方法中使用的一种表达载体提供包含本发明的多肽的融合蛋白的表达,本发明的多肽被融合至多组氨酸区,由肠激酶裂解位点隔开。组氨酸残基有助于在IMIAC(固定化金属离子亲和层析;参见例如,Porath等人,Prot.Exp.Purif.,3:263-281[1992])上的纯化,同时肠激酶裂解位点提供用于从融合蛋白分离变体PGA多肽的手段。pGEX载体(Promega)还可以被用于以与谷胱甘肽S-转移酶(GST)融合的融合蛋白表达外源多肽。一般而言,这样的融合蛋白是可溶的,并且通过吸附至配体-琼脂糖珠(例如,在GST-融合的情况下是谷胱甘肽-琼脂糖),随后在游离配体的存在下洗脱,可以被容易地从裂解的细胞纯化。
实验
本公开内容的多种特征和实施方案在以下代表性实施例中进行了说明,这些实施例意图是说明性而非限制性的。
在以下实验的公开内容中,应用了以下缩写:ppm(百万分率(parts permillion));M(摩尔/升);mM(毫摩尔/升);uM和μΜ(微摩尔/升);nM(纳摩尔/升);mol(摩尔);gm和g(克);mg(毫克);ug和μg(微克);L和l(升);ml和mL(毫升);cm(厘米);mm(毫米);um和μm(微米);sec.(秒);min(s)(分钟);h(s)和hr(s)(小时);U(单位);MW(分子量);rpm(每分钟转数);℃(摄氏度);RT(室温);CDS(编码序列);DNA(脱氧核糖核酸);RNA(核糖核酸);aa(氨基酸);TB(Terrific肉汤;12g/L细菌用胰蛋白胨、24g/L酵母提取物、4mL/L甘油、65mM磷酸钾、pH 7.0、1mM MgSO4);LB(Luria肉汤);CAM(氯霉素);PMBS(硫酸多粘菌素B);IPTG(异丙基硫代半乳糖苷);TFA(三氟乙酸);CHES(2-环己基氨基)乙磺酸;乙腈(MeCN);二甲基亚砜(DMSO);二甲基乙酰胺(DMAc);HPLC(高效液相层析);UPLC(超高效液相层析);FIOPC(相对于阳性对照的改进倍数);HTP(高通量);MWD(多波长检测器);UV(紫外线);Codexis(Codexis,Inc.,Redwood City,CA);Sigma-Aldrich(Sigma-Aldrich,St.Louis,MO);Millipore(Millipore,Corp.,Billerica MA);Difco(Difco Laboratories,BDDiagnostic Systems,Detroit,MI);Daicel(Daicel,West Chester,PA);Genetix(GenetixUSA,Inc.,Beaverton,OR);Molecular Devices(Molecular Devices,LLC,Sunnyvale,CA);Applied Biosystems(Applied Biosystems,Life Technologies,Corp.的一部分,GrandIsland,NY),Agilent(Agilent Technologies,Inc.,Santa Clara,CA);ThermoScientific(Thermo Fisher Scientific的一部分,Waltham,MA);(Infors;Infors-HT,Bottmingen/Basel,Switzerland);Corning(Corning,Inc.,Palo Alto,CA);和Bio-Rad(Bio-Rad Laboratories,Hercules,CA);Microfluidics(Microfluidics Corp.,Newton,MA);Waters(Waters Corp.,Milford,MA)。
实施例1
包含重组PGA基因的大肠杆菌表达宿主
用于产生本发明的变体酶的初始PGA酶从共同拥有的美国专利申请公布第2016/0326508号中公开的变体获得,该专利申请公布被通过引用以其整体并入本文并用于所有目的。PGA组板(panel plate)包括与野生型Khuyvera citrophila PGA相比具有改进的特性的工程化PGA多肽的集合。野生型PGA基因是由通过54aa间隔区连接的α亚基(23.8KDa)和β亚基(62.2KDa)组成的异二聚体。由于存在间隔区,需要自加工步骤以形成活性蛋白。在本发明的开发期间,对野生型基因修饰以消除间隔区,因此消除自加工步骤。PGA组板(Codexis)包含缺少间隔区的PGA变体(参见例如,美国专利申请公布2010/0143968,其被通过引用以其整体并入本文并用于所有目的)。向基因添加C-末端组氨酸,并将PGA编码基因克隆到表达载体pCK110900(参见美国专利申请公布号2006/0195947和2016/0244787,这两个专利在此通过引用以其整体并入并用于所有目的)中,可操作地连接至lacI阻遏子控制下的lac启动子。该表达载体还包含P15a复制起点和氯霉素抗性基因。使用本领域已知的标准方法将所得质粒转化到大肠杆菌W3110中。如本领域已知的,通过使细胞经受氯霉素选择来分离转化体(参见例如,美国专利第8,383,346号和WO2010/144103,其每一个均通过引用以其整体并入本文并用于所有目的)。
实施例2
制备含有HTP PGA的湿细胞沉淀物
将来自单克隆菌落的含有重组PGA编码基因的大肠杆菌细胞接种到96孔浅孔微量滴定板的孔的含有1%葡萄糖和30μg/mL氯霉素的180μlLB中。将板用O2可渗透密封物密封,并且使培养物在30℃、200rpm和85%湿度生长过夜。然后,将10μl的每种细胞培养物转移到含有390μL TB和30μg/mL CAM的96孔深孔板的孔中。将深孔板用O2可渗透密封物密封,并且在30℃、250rpm和85%湿度孵育直至达到OD600 0.6-0.8。然后将细胞培养物用达到1mM终浓度的IPTG诱导,并且在与最初使用的相同条件下孵育过夜。然后使用在4000rpm持续10min的离心使细胞沉淀。弃去上清液并在裂解前将沉淀物冷冻在-80℃。
实施例3
制备含有HTP PGA的细胞裂解物
首先,向如实施例2中描述产生的每个孔中的细胞体(cell paste)添加含有50mMTris-HCl缓冲液、pH 7.5、1mg/mL溶菌酶和0.5mg/mL PMBS的200μl裂解缓冲液。伴随在台式振荡器(bench top shaker)上振荡,使细胞在室温裂解2小时。然后将板在4000rpm和4℃离心15min。然后将澄清的上清液用于生物催化反应以确定它们的活性水平。
实施例4
从摇瓶(SF)培养物制备冻干的裂解物
将选择的如上文描述生长的HTP培养物铺在具有1%葡萄糖和30μg/ml CAM的LB琼脂板上,并且在37℃生长过夜。将来自每种培养物的单个菌落转移到6ml具有1%葡萄糖和30μg/ml CAM的LB中。使培养物在30℃、250rpm生长18h,并且以约1:50传代培养至250ml含有30μg/ml CAM的TB中,至最终OD600为0.05。使培养物在30℃、250rpm生长约195分钟,至OD600在0.6-0.8之间,并且用1mM IPTG诱导。然后使培养物在30℃、250rpm生长20h。4000rpmx 20min离心培养物。弃去上清液,并将沉淀物重悬在30ml的pH 7.5的20mM TRIS-HCl中。使细胞沉淀(4000rpm x 20min)并在-80℃冷冻120分钟。将冷冻的沉淀物重悬于30ml的pH7.5的20mM TRIS-HCl中,并使用处理器系统(Microfluidics)以18,000psi裂解。使裂解物沉淀(10,000rpm x 60min)并且将上清液冷冻并冻干以产生摇瓶(SF)酶。
所选择的摇瓶PGA变体的活性基于该变体去除化学上附接至胰岛素二聚体的残基A1/A1'(甘氨酸)和B1/B1'(苯丙氨酸)的四个/两个乙酸苯酯基团的效率来评估。使用摇瓶粉末的反应在2mL 96孔板中进行。在该测定中,制备了200μL反应溶液,其由10g/L-30g/L四保护的胰岛素二聚体(A1,A1',B1,B1'-四苯基乙酰亚氨基-胰岛素二聚体)或二保护的胰岛素二聚体(A1,A1'-二苯基乙酰亚氨基-胰岛素二聚体)、0.15g/L-3g/L摇瓶粉末、0.2M三乙醇胺(TEoA)缓冲液、pH 8.5和20%-30%(v/v)DMSO组成。将反应板用热密封物密封,并且在30℃孵育并在振荡器(2mm摆幅,模式#AJ185,Infors)中以300RPM搅拌25h。取每个反应在45min、4.75h和25h时的三份20μL的等分试样,并且用MeCN以1:1猝灭,然后用去离子水以1:5稀释。使用表12.1、12.2和12.3中的参数通过UPLC分析样品。
实施例5
对四保护的胰岛素拴系二聚体(tethered-dimer)评估SEQ ID NO:4和SEQ ID NO:6的摇瓶粉末
为了评估SEQ ID NO:4和包含C-末端多组氨酸亲和标签(His标签,HT)的工程化变体SEQ ID NO:6之间的活性差异,使用摇瓶粉末的反应(参见实施例4)在具有2mL孔的96孔板中进行。在这些测定中,制备了200μL反应溶液,其由14.5g/L四保护的胰岛素二聚体底物(A1,A1',B1,B1'-四苯基乙酰亚氨基-胰岛素拴系二聚体)、2.5g/L摇瓶粉末、0.2M三乙醇胺(TEoA)缓冲液、pH 8.5、和20%(v/v)DMSO组成。将含有反应溶液的板用热密封物密封,并且在30℃孵育并在振荡器(2mm摆幅,模式#AJ185,Infors)中以300RPM搅拌25h。取每个反应在45min、4.75h和25h时的三份20μL的等分试样,并且用MeCN以1:1猝灭,然后用去离子水以1:5稀释。使用WatersC18柱和表12.1中描述的方法通过UPLC分析样品。活性通过比较向胰岛素二聚体(产物)的转化百分比来确定(n=3)。结果在表5.1中示出。
实施例6
在高通量筛选中与SEQ ID NO:6相比对胰岛素脱酰基的改进
基于实施例5中描述的结果,选择SEQ ID NO:6作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的10g/L四保护的胰岛素二聚体底物、200mM TEoA缓冲液,pH 8.5、20% DMSO和10μL HTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育18小时。反应用200μL MeCN猝灭并使用台式振荡器混合5分钟。然后将板以4000rpm离心5分钟,24x稀释至水中,并注入到UPLC上以使用表12.1中的参数进行分析。
相对于SEQ ID NO:6的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:6产生的转化百分比。结果在表6.1中示出。转化百分比通过将通过UPLC分析确定的产物峰的面积除以底物和产物的面积之和来定量。
实施例7
在高通量筛选中与SEQ ID NO:8相比对胰岛素脱酰基的改进
基于实施例6中描述的结果,选择SEQ ID NO:8作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的10g/L四保护的胰岛素二聚体底物、200mM TEoA缓冲液、pH 8.5、30% DMSO和10μL HTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育18小时。反应用200μL MeCN猝灭并使用台式振荡器混合5分钟。然后将板以4000rpm离心5分钟,24x稀释至水中,并注入到UPLC上以使用表12.1中的参数进行分析。
相对于SEQ ID NO:8的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:8产生的转化百分比。结果在表7.1中示出。转化百分比通过将通过UPLC分析确定的产物峰的面积除以底物和产物的峰面积之和来定量。
实施例8
在30% DMSO的高通量筛选中与SEQ ID NO:34相比对胰岛素脱酰基的改进
基于实施例7中描述的结果,选择SEQ ID NO:34作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
对于表8.1,HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的20g/L二保护的胰岛素二聚体底物(A1,A1'-二苯基乙酰亚氨基-胰岛素拴系二聚体)、200mM TEoA缓冲液、pH 8.5、30% DMSO和2.5μLHTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育3.5小时。反应用1:5DMAc猝灭并使用台式振荡器混合5min。然后将板以4000rpm离心5min,并注入到UPLC上以使用12.2中的参数进行分析。
对于表8.2,HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的20g/L二保护的胰岛素二聚体底物、200mM TEoA缓冲液、pH 8.5、20% DMSO和2.5μL HTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育5小时。反应用1:5DMAc猝灭并使用台式振荡器混合5min。然后将板以4000rpm离心5min,并注入到UPLC上以使用表12.2中的参数进行分析。
相对于SEQ ID NO:34的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:34产生的转化百分比。结果在表8.1和8.2中示出。转化百分比通过将通过UPLC分析确定的产物峰的面积除以底物和产物的峰面积之和来定量。
实施例9
在高通量筛选中与SEQ ID NO:46相比对胰岛素脱酰基的改进
基于实施例8中描述的结果,选择SEQ ID NO:46作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的30g/L二保护的胰岛素二聚体底物、200mM TEoA缓冲液、pH 8.5、30% DMSO和10μL HTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育5小时。反应用1:5DMAc猝灭并使用台式振荡器混合5min。然后将板以4000rpm离心5min,并注入到UPLC上以使用表12.2或12.3中的参数进行分析。
相对于SEQ ID NO:46的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:46产生的转化百分比。结果在表9.1中示出。转化百分比通过将通过UPLC分析确定的产物峰的面积除以底物和产物的峰面积之和来定量。
实施例10
在高通量筛选中与SEQ ID NO:54相比对胰岛素脱酰基的改进
基于实施例9中描述的结果,选择SEQ ID NO:54作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的30g/L二保护的胰岛素二聚体底物、200mM TEoA缓冲液、pH 8.5、30% DMSO和2.5μL HTP裂解物。将HTP板热密封并在振荡器中在30℃、300rpm孵育5小时。反应用1:5DMAc猝灭并使用台式振荡器混合5min。然后将板以4000rpm离心5min,并注入到UPLC上以使用表12.3中的参数进行分析。
相对于SEQ ID NO:54的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:54产生的转化百分比。结果在表10.1中示出。转化百分比通过将通过UPLC分析确定的产物峰的面积除以底物和产物的峰面积之和来定量。
实施例11
在高通量筛选中与SEQ ID NO:74相比对胰岛素脱酰基的改进
基于实施例10中描述的结果,选择SEQ ID NO:74作为下一亲本酶。使用成熟技术(例如,饱和诱变以及重组先前鉴定的有益突变)产生工程化基因的文库。由每种基因编码的多肽如实施例2中描述的在HTP中产生,并且可溶性裂解物如实施例3中描述的产生。
HTP反应在96孔深孔板中进行,所述96孔深孔板含有200μL的30g/L二保护的胰岛素二聚体底物、200mM TEoA缓冲液、pH 9、30% DMSO和1.25μL HTP裂解物。
将HTP板热密封并在振荡器中在35℃、300rpm孵育5小时。反应用1:5DMAc猝灭并使用台式振荡器混合5min。然后将板以4000rpm离心5min,并注入到UPLC上以使用表12.3中的参数进行分析。
相对于SEQ ID NO:74的转化百分比(转化百分比FIOP)被计算为由变体形成的产物的转化百分比相对于由SEQ ID NO:74产生的转化百分比。结果在表11.1中示出。转化百分比通过将通过UPLC分析观察到的产物峰的面积除以底物、产物和杂质/副产物峰的面积之和来定量。
实施例12
胰岛素二聚体及其脱酰基产物的分析检测
实施例5-11中描述的数据使用表12.1、12.2、12.3中的分析方法收集。本文提供的方法都可用于分析使用本发明产生的变体。然而,意图本文描述的方法不是适用于分析本文提供和/或使用本文提供的方法产生的变体的唯一方法。
为了所有目的,本申请中引用的所有出版物、专利、专利申请和其他文件在此通过引用以其整体并入,其程度如同每个单独的出版物、专利、专利申请或其他文件被单独地指出为了所有目的通过引用并入一样。
虽然已经说明及描述了多种具体实施方案,但是应当理解,可以进行多种改变而不偏离本发明的精神和范围。
本发明还提供以下项目:
1.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:6具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代:54、62、115、125、127、127、185、253、254、254/255、254/255/370、255、256、257、257、260、268、322、325、348、369、370、372、373、377、378、384、384/513/536、388、389、391、435、461、517、530、554、556、557、559、560、600/623、623、624、626、627、705、706、707、723、740、748和752,其中所述位置参考SEQ IDNO:6来编号。
2.如项目1所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素酰化酶变体与SEQ ID NO:6具有85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下的至少一个取代:54C、62G、115A/P、125L/T、127S/V、185V、253K/V、254T、254W/255G、254W/255G/370I、255L、255M/Q/T/Y、256Q、257I、257V、260A/P、268S/V、322P、325G、348C、348Q、369L、369P、369V、369W、370F/G/S、372A/H/L、373F/M、377P、378H、384A、384F/513Q/536M、384G/L、388T、389L、391P/S、435R、461A、517L/P、530C/Y、554A/E/P/V、556G、557G/S、559P/S、560I、600T/623V、623A/G/R/W、624A、626G、627G/H、705G/P、706G、707S、723A/G、740L、748G和752E。
3.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:8具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的至少一个取代集:103/370/444/706/766、103/369/370/442/444/536/556/766、103/369/370/444、103/369/370/444/556/706/766、103/369/370/444/765/766、103/369/370/765/766、257/362/384/451、257/362/384/451/723、362/451/705、369/370、369/370/444/706/766、369/370/556/766、369/370/388/444/556/766、369/370/444、369/370/444/556/766、369/370/556、369/370/556/765、369/370/556/766、369/370/766、369/370/444/556、369/370/444/556/612/766、369/370/444/556/706/765、369/370/444/706/765/766、372/373/384/513/560、372/384/451/705、372/384/560/705、384/451/560/705/723、384/451/705/723、451/560/705/723和451/705/723,其中所述位置参考SEQ ID NO:8来编号。
4.如项目3所述的工程化青霉素G酰化酶变体,其中所述取代集选自103V/370F/444S/706G/766G、103V/369W/370F/442I/444S/536M/556G/766G、103V/369W/370F/444S、103V/369W/370F/444S/556G/706G/766G、103V/369W/370F/444S/765P/766G、103V/369W/370F/765P/766G、257V/362V/384A/451R、257V/362V/384L/451R/723L、362V/451R/705D、369P/370F、369P/370F/444S/706G/766G、369P/370F/556G/766G、369V/370F/388T/444S/556G/766G、369V/370F/444S、369V/370F/444S/556G/766G、369V/370F/556G、369V/370F/556G/765P、369V/370F/556G/766G、369V/370F/766G、369W/370F/444S/556G、369W/370F/444S/556G/612A/766G、369W/370F/444S/556G/706G/765P、369W/370F/444S/706G/765P/766G、372A/373M/384L/513Q/560G、372A/384L/451R/705D 、 372A/384L/560G/705D 、384A/451R/560G/705D/723L 、 384L/451R/705D/723L 、451R/560G/705D/723L和451R/705D/723L。
5.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:34具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:55、275、403、482、496、541、616、619/664、622、639、664、747和759,其中所述位置参考SEQ ID NO:34来编号。
6.如项目5所述的工程化青霉素G酰化酶变体,其中所述至少一个取代或取代集选自55V、275E、403T、482A/S、496K、541A、616G、619N/664G、622R、639G、664G、747G和759N。
7.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:34具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下的至少一个取代集:103/372/373/557、253/322/369/623、253/254/322/369/623、253/254/369/391/623/723、253/254/369/619/623/723、253/254/369/623/723、253/254/373/623/723、253/254/255/369/623/723、253/254/369、253/322/369/373/723、253/369/623/723、253/373/623、253/254/255/322/369/619/723、260/372/373/556、260/372/373/556/557/559、322/369、322/369/373/723、322/369/623/723和369/373/556,其中所述位置参考SEQ ID NO:34来编号。
8.如项目7所述的工程化青霉素G酰化酶变体,其中所述取代集选自103V/372S/373F/557G、253H/322T/369W/623G、253H/254Q/322T/369W/623G、253H/254Q/369W/391A/623G/723A、253H/254Q/369W/619R/623G/723A、253H/254Q/369W/623G/723A、253H/254Q/373L/623G/723A、253H/254S/255V/369W/623S/723A、253H/254S/369W、253H/322T/369W/373W/723A、253H/369W/623G/723A、253H/373L/623S、253S/254S/255V/322T/369W/619R/723A、260S/372S/373F/556G、260S/372S/373F/556G/557V/559S、322T/369W、322T/369W/373W/723A、322T/369W/623G/723A和369W/373F/556G。
9.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:46具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:9/25/103/253/348/444/557/623、9/103/322/391/444/557/623、9/103/253/322/348/444/556/557/623、25/103/241/253/322/348/444/556/557/623、28、71、77、103/257/260/322/348/384/444/556/623、103/257/260/322/348/444/557、103/322/348/373/444/556/557、103/260/322/348/444/556/557/623、103/260/322/348/444/623、103/260/322/348/373/391/444/556/557/623、111、128、129、131、146/309/556/619/748、176/233/373/619/664、176/373/482/569、176/373/482/622/664、176/373/482/622、176/373/482/569/622/623/764、176/482、225/304/309/556/557/619/748、225/304/322/494/496/616/619/664/747/756、225/304/494/616/619/664/747/759、233/275/482/569/664、233/275/482/619、233/373/482/622/664、304/496/616/619/664/747/756/759、322/348/373/391/444/556/623、322/348/444/557、369、369/764、370、373/482/569/619/764S、373、379D、380、389、451、471、482/623、494/496/616/619/664、616、617、619、622、626和705,其中所述位置参考SEQ ID NO:46来编号。
10.如项目9所述的工程化青霉素G酰化酶,其中所述至少一个取代或取代集选自9K/25V/103V/253S/348A/444S/557G/623D、9K/103V/322T/391A/444S/557G/623D 、9K/103V/253S/322T/348A/444S/556G/557G/623D 、25V/103V/241K/253S/322T/348A/444S/556G/557G/623D、28A/C/Q/S、A71C/F/G/L、77T/V、103V/257V/260S/322T/348A/384T/444S/556G/623D、103V/257V/260S/322T/348A/444S/557G 、103V/322T/348A/373A/444S/556G/557G 、 103V/260S 、322T/348A/444S/556G/557G/623D、103V/260S/322T/348A/444S/623D、103V/260S/322T/348A/373A/391A/444S/556G/557G/623D、111S、128H、129E、131D、146M/309D/556N/619S/748A、176S/233E/373A/619N/664R、176S/373F/482A/569W、176S/373F/482A/622F/664G、176S/373F/482A/622V、176S/373F/482C/569W/622C/623D/764S 、176S/482A 、225K/304C/309V/556N/557R/619S/748A 、225T/304I/322T/494E/496N/616G/619N/664G/747S/756P 、225T/304I/494E/616G/619N/664G/747P/759E、233E/275E/482A/569W/664G、233E/275E/482C/619N 、 233E/373F/482A/622V/664G 、304I/496K/616S/619N/664E/747P/756P/759E 、322T/348A/373A/391A/444S/556G/623D、322T/348A/444S/557G、369A/E/L、369、369L/764G、369V、I370M/Q、373A/482C/569W/619N/764S、373G、379D/S、380D、389V、451H、471V、482S/623D、494E/496K/616S/619N/664E、616D/E/G/N/Q/T、617W、619A/H/L/P/S/V、622I/V、626D/E和705N。
11.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ IDNO:54具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:28/71/128/176/619/664、28/71/128/176/626/753、71、71/176/233/260/275/482/619/759、71/176/233/482、71/176/260/451/619、71/176/275/482、71/176/275/664、71、71/128/176/373/482/496/619、71/128/176/373/482/496/569、71/128/176/482/496、71/128/176/496/664、71/128/373/482/664/753、71/176/233/260/451/482/664/759、71/176/233/373/482/569/753、71/176/260/275/482/557/759、71/176/260/482、71/176/260/482/557/619/664、71/176/373/626/664/753、71/176/451/482/619/759、71/176/482、71/176/482/619/664/759、71/233/260/482/557/759、71/260/451/482/664/759、71/373/756、82、122、126、128/176/233/373/482/626/753、128/176/233/496/664/753、128/176/373/482/664、128/176/373/496/753、176/233/260/275/482/664/759、176/233/451/482/619/664/759、180、184、472、496、658、679、686和739,其中所述位置参考SEQ ID NO:54来编号。
12.如项目11所述的工程化青霉素G酰化酶变体,其中所述至少一个取代或取代集选自28A/71L/128H/176S/619N/664E、28A/71L/128H/176S/626D/753C、71F/176S/233E/260G/275C/482S/619N/759D、71F/176S/233E/482A、71F/176S/260G/451H/619V、71F/176S/275C/482S、71F/176S/275E/664D、71F/G/I/L、71L/128H/176S/373A/482C/496K/619S、71L/128H/176S/373A/482S/496K/569C、71L/128H/176S/482S/496K、71L/128H/176S/496K/664E、 71L/128H/373A/482S/664E/753C、71L/176S/233E/260G/451H/482S/664C/759E 、71L/176S/233E/373A/482C/569C/753C 、71L/176S/260G/275C/482A/557G/759E、 71L/176S/260G/482A、71L/176S/260G/482A/557G/619P/664D、71L/176S/373A/626E/664E/753C、71L/176S/451H/482A/619V/759E、71L/176S/482A、71L/176S/482A/619P/664D/759E、71L/233E/260G/482A/557G/759E、71L/260G/451H/482A/664D/759E、71L/373A/756C、71M/V、82V、122M、126L、128H/176S/233E/373A/482S/626E/753C、128H/176S/233E/496K/664E/753C、128H/176S/373A/482S/664E、128H/176S/373A/496K/753C、176S/233E/260G/275E/482C/664E/759D、176S/233E/451H/482S/619N/664C/759D、180F、184A/F、472F/V、496K、658C、679L、686A和P739D/S。
13.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ IDNO:74具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:71/352、71/451/748、71/353/357/451/705/748、71/451/556/705/748、77/176/712、111/176/352、176、176/233、176/233/352、176/233/557/619/759、176/233/759、176/275/348/557/759、176/275/569/759、176/275/557/759、176/275、176/348/557/569/616、176/352、176/361、176/482/616/759、176/557/616、176/557/708、176/557/569/616/708、176/557/569/616、176/557/619、176/569/616/619/759、176/616、176/616/619、176/616和176/Q759,其中所述位置参考SEQ ID NO:74来编号。
14.如项目13所述的工程化青霉素G酰化酶,其中所述至少一个取代或取代集选自71C/352S、71C/451H/748A、71F/353A/357A/451H/705N/748A、71F/451H/556N/705N/748A、77T/176S/712V、111S/176S/352S、176S、176S/233E、176S/233E/352S、176S/233E/557G/619G/759D、176S/233E/759E、176S/275C/348M/557G/759D、176S/275C/569W/759D、176S/275E/557G/759E、176S/275E、176S/348M/557G/569W/616G、176S/352S、176S/361T、176S/482C/616G/759E、176S/557G/616N、176S/557G/708L、176S/557G/569W/616G/708L、176S/557G/569W/616T、176S/557G/619G、176S/569W/616G/619S/759D、176S/616G、176S/616S、176S/616G/619R、176S/616T和176S/759D。
15.如项目1-14中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体包含组氨酸标签。
16.如项目15所述的工程化青霉素G酰化酶变体,其中所述组氨酸标签存在于所述工程化青霉素G酰化酶变体的C-末端。
17.如项目1-16中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体包含变体编号1-308中列出的多肽序列。
18.如项目1-17中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体包含选自SEQ ID NO:4和SEQ ID NO:90之间的偶数编号序列的多肽序列。
19.一种工程化多核苷酸序列,所述工程化多核苷酸序列编码如项目1-18中任一项所述的工程化青霉素G酰化酶变体。
20.如项目19所述的工程化多核苷酸序列,其中所述序列包含与选自SEQ ID NO:5和SEQ ID NO:89之间的奇数编号序列的序列至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多地相同的多核苷酸序列。
21.一种载体,所述载体包含如项目19和/或20所述的工程化多核苷酸序列。
22.如项目21所述的载体,所述载体还包含至少一种控制序列。
23.一种宿主细胞,所述宿主细胞包含如项目21和/或22所述的载体。
24.一种用于产生如项目1-18中任一项所述的工程化青霉素G酰化酶变体的方法,所述方法包括在使如项目23所述的宿主细胞产生所述工程化青霉素G酰化酶变体的条件下培养所述宿主细胞。
25.如项目24所述的方法,所述方法还包括回收所述宿主细胞产生的所述工程化青霉素G酰化酶变体的步骤。
26.如项目1-18、24和/或25中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体能够脱去受保护的胰岛素的酰基。
27.如项目26所述的工程化青霉素G酰化酶变体,其中所述受保护的胰岛素包括二保护的胰岛素或四保护的胰岛素。
28.如项目1-18、24-27中任一项所述的工程化青霉素G酰化酶变体,其中所述受保护的胰岛素是二聚体或四聚体。
29.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种如项目1-18、24-28所述的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/B1/A1'/B1'-四-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶暴露于包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团的所述胰岛素二聚体。
30.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种如项目1-18、24-28所述的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的所述胰岛素二聚体。
31.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种如项目1-18、24-28所述的工程化青霉素G酰化酶变体和包含胰岛素的组合物,所述胰岛素包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的所述胰岛素。
Claims (23)
1.一种工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体与SEQ ID NO:74之间的氨基酸差异为T176S和选自以下的1-6个取代:L71C/F、I77T、G111S、Q233E、P275C/E、A348M、T352S、R357A、A361T、A451H、S482C、Q556N、L557G、Y569W、A616T/G、K619G/S、T705N、I708L、A712V、R748A、Q759D/E,并且其中所述工程化青霉素G酰化酶变体的氨基酸位置参考SEQ ID NO:74来编号。
2.根据权利要求1所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体与SEQ ID NO:74之间的氨基酸差异为T176S和选自以下的1-3个取代:P275C、Y569W和Q759D。
3.根据权利要求1所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体与SEQ ID NO:74之间的氨基酸差异为T176S和选自以下的1-2个取代:G111S和T532S。
4.根据权利要求1所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体与SEQ ID NO:74之间的氨基酸差异为T176S和选自以下的1-3个取代:L557G、Y569W和A616T。
5.根据权利要求1所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体的氨基酸序列在SEQ ID NO:78、82或88中列出。
6.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:6具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代:54、62、115、125、127、127、185、253、254、254/255、254/255/370、255、256、257、257、260、268、322、325、348、369、370、372、373、377、378、384、384/513/536、388、389、391、435、461、517、530、554、556、557、559、560、600/623、623、624、626、627、705、706、707、723、740、748和752,其中所述位置参考SEQ ID NO:6来编号。
7.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:8具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的至少一个取代集:103/370/444/706/766、103/369/370/442/444/536/556/766、103/369/370/444、103/369/370/444/556/706/766、103/369/370/444/765/766、103/369/370/765/766、257/362/384/451、257/362/384/451/723、362/451/705、369/370、369/370/444/706/766、369/370/556/766、369/370/388/444/556/766、369/370/444、369/370/444/556/766、369/370/556、369/370/556/765、369/370/556/766、369/370/766、369/370/444/556、369/370/444/556/612/766、369/370/444/556/706/765、369/370/444/706/765/766、372/373/384/513/560、372/384/451/705、372/384/560/705、384/451/560/705/723、384/451/705/723、451/560/705/723和451/705/723,其中所述位置参考SEQID NO:8来编号。
8.一种工程化青霉素G酰化酶变体,所述工程化青霉素G酰化酶变体与SEQ ID NO:34具有至少85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更多的序列同一性,并且具有选自以下位置的位置处的至少一个取代或取代集:55、275、403、482、496、541、616、619/664、622、639、664、747和759,其中所述位置参考SEQ ID NO:34来编号。
9.根据权利要求1-5中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体包含组氨酸标签。
10.根据权利要求9所述的工程化青霉素G酰化酶变体,其中所述组氨酸标签存在于所述工程化青霉素G酰化酶变体的C-末端。
11.一种工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体的多肽序列在说明书表11.1中的变体编号279-308中列出。
12.根据权利要求1-4和10-11中任一项所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体的多肽序列选自SEQ ID NO:78和SEQ ID NO:90之间的偶数编号序列。
13.根据权利要求9所述的工程化青霉素G酰化酶变体,其中所述工程化青霉素G酰化酶变体的多肽序列选自SEQ ID NO:78和SEQ ID NO:90之间的偶数编号序列。
14.一种工程化多核苷酸序列,所述工程化多核苷酸序列编码根据权利要求1-13中任一项所述的工程化青霉素G酰化酶变体。
15.根据权利要求14所述的工程化多核苷酸序列,其中所述工程化多核苷酸序列选自SEQ ID NO:77和SEQ ID NO:89之间的奇数编号序列。
16.一种载体,所述载体包含根据权利要求14或15所述的工程化多核苷酸序列。
17.根据权利要求16所述的载体,所述载体还包含至少一种控制序列。
18.一种宿主细胞,所述宿主细胞包含根据权利要求16或17所述的载体。
19.一种用于产生根据权利要求1-13中任一项所述的工程化青霉素G酰化酶变体的方法,所述方法包括在使根据权利要求18所述的宿主细胞产生所述工程化青霉素G酰化酶变体的条件下培养所述宿主细胞。
20.根据权利要求19所述的方法,所述方法还包括回收所述宿主细胞产生的所述工程化青霉素G酰化酶变体的步骤。
21.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种根据权利要求1-13中任一项所述的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/B1/A1'/B1'-四-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶变体暴露于包含A1/B1/A1'/B1'-四-乙酸苯酯保护基团的所述胰岛素二聚体。
22.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种根据权利要求1-13中任一项所述的工程化青霉素G酰化酶变体和包含胰岛素二聚体的组合物,所述胰岛素二聚体包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的所述胰岛素二聚体。
23.一种用于产生游离胰岛素的方法,所述方法包括i)提供至少一种根据权利要求1-13中任一项所述的工程化青霉素G酰化酶变体和包含胰岛素的组合物,所述胰岛素包含A1/A1'-二-乙酸苯酯保护基团;以及ii)在使得所述工程化青霉素G酰化酶变体去除所述A1/A1'-二-乙酸苯酯保护基团并产生游离胰岛素的条件下,将所述工程化青霉素G酰化酶变体暴露于包含A1/A1'-二-乙酸苯酯保护基团的所述胰岛素。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762525404P | 2017-06-27 | 2017-06-27 | |
US62/525,404 | 2017-06-27 | ||
US201762527199P | 2017-06-30 | 2017-06-30 | |
US62/527,199 | 2017-06-30 | ||
PCT/US2018/034073 WO2019005337A1 (en) | 2017-06-27 | 2018-05-23 | PENICILLIN G ACYLASES |
CN201880056032.XA CN111051506B (zh) | 2017-06-27 | 2018-05-23 | 青霉素g酰化酶 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880056032.XA Division CN111051506B (zh) | 2017-06-27 | 2018-05-23 | 青霉素g酰化酶 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117737045A true CN117737045A (zh) | 2024-03-22 |
Family
ID=64742643
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311728239.6A Pending CN117737045A (zh) | 2017-06-27 | 2018-05-23 | 青霉素g酰化酶 |
CN201880056032.XA Active CN111051506B (zh) | 2017-06-27 | 2018-05-23 | 青霉素g酰化酶 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880056032.XA Active CN111051506B (zh) | 2017-06-27 | 2018-05-23 | 青霉素g酰化酶 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11643642B2 (zh) |
EP (1) | EP3645713A4 (zh) |
JP (1) | JP7244089B2 (zh) |
CN (2) | CN117737045A (zh) |
CA (1) | CA3064577A1 (zh) |
IL (1) | IL271505A (zh) |
WO (1) | WO2019005337A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1338400C (en) | 1983-08-31 | 1996-06-18 | David H. Gelfand | Recombinant fungal cellulases |
US6117679A (en) | 1994-02-17 | 2000-09-12 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6395547B1 (en) | 1994-02-17 | 2002-05-28 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6309883B1 (en) | 1994-02-17 | 2001-10-30 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US6406855B1 (en) | 1994-02-17 | 2002-06-18 | Maxygen, Inc. | Methods and compositions for polypeptide engineering |
US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5605793A (en) | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
US5834252A (en) | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
US20060257890A1 (en) | 1996-05-20 | 2006-11-16 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5928905A (en) | 1995-04-18 | 1999-07-27 | Glaxo Group Limited | End-complementary polymerase reaction |
US6165793A (en) | 1996-03-25 | 2000-12-26 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6995017B1 (en) | 1994-02-17 | 2006-02-07 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6335160B1 (en) | 1995-02-17 | 2002-01-01 | Maxygen, Inc. | Methods and compositions for polypeptide engineering |
PT765394E (pt) | 1994-06-03 | 2002-03-28 | Novozymes Biotech Inc | Lacases myceliophthora purificadas e acidos nucleicos que as codificam |
AU2705895A (en) | 1994-06-30 | 1996-01-25 | Novo Nordisk Biotech, Inc. | Non-toxic, non-toxigenic, non-pathogenic fusarium expression system and promoters and terminators for use therein |
ES2144139T3 (es) * | 1994-08-12 | 2000-06-01 | Dsm Nv | Genes de la penicilina g-acilasa mutados. |
FI104465B (fi) | 1995-06-14 | 2000-02-15 | Valio Oy | Proteiinihydrolysaatteja allergioiden hoitamiseksi tai estämiseksi, niiden valmistus ja käyttö |
US6096548A (en) | 1996-03-25 | 2000-08-01 | Maxygen, Inc. | Method for directing evolution of a virus |
US6506602B1 (en) | 1996-03-25 | 2003-01-14 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US7148054B2 (en) | 1997-01-17 | 2006-12-12 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
DE69835360T2 (de) | 1997-01-17 | 2007-08-16 | Maxygen, Inc., Redwood City | EVOLUTION Prokaryotischer GANZER ZELLEN DURCH REKURSIVE SEQUENZREKOMBINATION |
US6265201B1 (en) | 1997-01-17 | 2001-07-24 | Regents Of The University Of Minnesota | DNA molecules and protein displaying improved triazine compound degrading ability |
US6326204B1 (en) | 1997-01-17 | 2001-12-04 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
EP1036198B1 (en) | 1997-12-08 | 2012-09-26 | California Institute Of Technology | Method for creating polynucleotide and polypeptide sequences |
WO1999051774A2 (en) | 1998-04-02 | 1999-10-14 | Tellus Genetic Resources, Inc. | A method for obtaining a plant with a genetic lesion in a gene sequence |
NZ507591A (en) | 1998-05-01 | 2002-03-28 | Maxygen Inc | Optimization of pest resistance genes using DNA shuffling |
EP1090024A2 (en) | 1998-06-17 | 2001-04-11 | Maxygen, Inc. | Method for producing polynucleotides with desired properties |
US6365408B1 (en) | 1998-06-19 | 2002-04-02 | Maxygen, Inc. | Methods of evolving a polynucleotides by mutagenesis and recombination |
EP1104459A1 (en) | 1998-08-12 | 2001-06-06 | Maxygen, Inc. | Dna shuffling of monooxygenase genes for production of industrial chemicals |
EP1105521A1 (en) * | 1998-08-19 | 2001-06-13 | Novozymes A/S | Enzyme activity screen with substrate replacement |
EA005682B1 (ru) | 1998-10-06 | 2005-04-28 | Марк Аарон Эмалфарб | Трансформированные грибы, в частности рода chrysosporium, способные к синтезу гетерологичных полипептидов |
CA2345203A1 (en) | 1998-10-07 | 2000-04-13 | Maxygen Inc. | Dna shuffling to produce nucleic acids for mycotoxin detoxification |
EP1129184A1 (en) | 1998-11-10 | 2001-09-05 | Maxygen, Inc. | Modified adp-glucose pyrophosphorylase for improvement and optimation of plant phenotypes |
JP4221100B2 (ja) | 1999-01-13 | 2009-02-12 | エルピーダメモリ株式会社 | 半導体装置 |
US6436675B1 (en) | 1999-09-28 | 2002-08-20 | Maxygen, Inc. | Use of codon-varied oligonucleotide synthesis for synthetic shuffling |
US6368861B1 (en) | 1999-01-19 | 2002-04-09 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
US6917882B2 (en) | 1999-01-19 | 2005-07-12 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
EP1072010B1 (en) | 1999-01-19 | 2010-04-21 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
US7702464B1 (en) | 2001-08-21 | 2010-04-20 | Maxygen, Inc. | Method and apparatus for codon determining |
US7873477B1 (en) | 2001-08-21 | 2011-01-18 | Codexis Mayflower Holdings, Llc | Method and system using systematically varied data libraries |
US8457903B1 (en) | 1999-01-19 | 2013-06-04 | Codexis Mayflower Holdings, Llc | Method and/or apparatus for determining codons |
US7024312B1 (en) | 1999-01-19 | 2006-04-04 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
US20070065838A1 (en) | 1999-01-19 | 2007-03-22 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
US6961664B2 (en) | 1999-01-19 | 2005-11-01 | Maxygen | Methods of populating data structures for use in evolutionary simulations |
JP2003524394A (ja) | 1999-02-11 | 2003-08-19 | マキシジェン, インコーポレイテッド | ハイスループット質量分析法 |
EP1165757A1 (en) | 1999-03-05 | 2002-01-02 | Maxygen, Inc. | Encryption of traits using split gene sequences |
US6703240B1 (en) | 1999-04-13 | 2004-03-09 | Maxygar, Inc. | Modified starch metabolism enzymes and encoding genes for improvement and optimization of plant phenotypes |
US7430477B2 (en) | 1999-10-12 | 2008-09-30 | Maxygen, Inc. | Methods of populating data structures for use in evolutionary simulations |
US6519065B1 (en) | 1999-11-05 | 2003-02-11 | Jds Fitel Inc. | Chromatic dispersion compensation device |
US6686515B1 (en) | 1999-11-23 | 2004-02-03 | Maxygen, Inc. | Homologous recombination in plants |
SG121902A1 (en) | 2000-01-11 | 2006-05-26 | Maxygen Inc | Integrated systems for diversity generation and screening |
WO2001075767A2 (en) | 2000-03-30 | 2001-10-11 | Maxygen, Inc. | In silico cross-over site selection |
CA2405063C (en) | 2000-04-03 | 2013-06-04 | Maxygen, Inc. | Subtilisin variants |
CN1608130A (zh) * | 2001-12-27 | 2005-04-20 | Dsmip资产有限公司 | β-内酰胺抗生素的制备方法 |
US7747391B2 (en) | 2002-03-01 | 2010-06-29 | Maxygen, Inc. | Methods, systems, and software for identifying functional biomolecules |
US20050084907A1 (en) | 2002-03-01 | 2005-04-21 | Maxygen, Inc. | Methods, systems, and software for identifying functional biomolecules |
US7783428B2 (en) | 2002-03-01 | 2010-08-24 | Maxygen, Inc. | Methods, systems, and software for identifying functional biomolecules |
WO2003078583A2 (en) | 2002-03-09 | 2003-09-25 | Maxygen, Inc. | Optimization of crossover points for directed evolution |
WO2004111241A1 (en) | 2003-06-12 | 2004-12-23 | Stichting Voor De Technische Wetenschappen | Penicillin acylase |
EP1654354A1 (en) | 2003-08-11 | 2006-05-10 | Codexis, Inc. | Improved ketoreductase polypeptides and related polynucleotides |
WO2005072392A2 (en) | 2004-01-28 | 2005-08-11 | John Hopkins University | Methods for making and using molecular switches involving circular permutation |
JP2008529530A (ja) | 2005-02-10 | 2008-08-07 | エモリー・ユニバーシティ | 向上した機能を有する新規な蛋白質及び円順列変異を使用した新規な蛋白質を生成する方法 |
HUE034642T2 (en) | 2008-02-12 | 2018-02-28 | Codexis Inc | A method for selecting an optimized diverse population of variants |
WO2009102901A1 (en) | 2008-02-12 | 2009-08-20 | Codexis, Inc. | Method of generating an optimized, diverse population of variants |
CA2726850C (en) | 2008-06-13 | 2015-06-02 | Codexis, Inc. | Method of synthesizing polynucleotide variants |
US20090312196A1 (en) | 2008-06-13 | 2009-12-17 | Codexis, Inc. | Method of synthesizing polynucleotide variants |
US8383346B2 (en) | 2008-06-13 | 2013-02-26 | Codexis, Inc. | Combined automated parallel synthesis of polynucleotide variants |
US8247192B2 (en) | 2008-11-10 | 2012-08-21 | Codexis, Inc. | Penicillin-G acylases |
HUE042817T2 (hu) | 2011-06-28 | 2019-07-29 | Codexis Inc | Fehérjevariánsok elõállítása régiókeveréssel |
WO2013159055A1 (en) | 2012-04-20 | 2013-10-24 | Codexis, Inc. | Production of fatty alcohols from engineered microorganisms |
JP6388408B2 (ja) | 2012-06-08 | 2018-09-12 | アルカーメス ファーマ アイルランド リミテッド | アゴニストおよびアンタゴニストとしての循環置換により修飾されるリガンド |
AU2013323669B2 (en) * | 2012-09-26 | 2018-03-01 | Indiana University Research And Technology Corporation | Insulin analog dimers |
US20160194680A1 (en) * | 2012-12-21 | 2016-07-07 | Lek Pharmaceuticals D.D. | Enzymatic Route For The Preparation Of Chiral Gamma-Aryl-Beta-Aminobutyric Acid Derivatives |
AU2016258091B2 (en) * | 2015-05-07 | 2020-10-01 | Codexis, Inc. | Penicillin-G acylases |
WO2017193022A1 (en) * | 2016-05-05 | 2017-11-09 | Codexis, Inc. | Penicillin-g acylases |
-
2018
- 2018-05-23 CN CN202311728239.6A patent/CN117737045A/zh active Pending
- 2018-05-23 CN CN201880056032.XA patent/CN111051506B/zh active Active
- 2018-05-23 EP EP18823160.9A patent/EP3645713A4/en active Pending
- 2018-05-23 CA CA3064577A patent/CA3064577A1/en active Pending
- 2018-05-23 WO PCT/US2018/034073 patent/WO2019005337A1/en unknown
- 2018-05-23 JP JP2019571689A patent/JP7244089B2/ja active Active
- 2018-05-23 US US16/616,041 patent/US11643642B2/en active Active
-
2019
- 2019-12-17 IL IL271505A patent/IL271505A/en unknown
-
2023
- 2023-03-23 US US18/189,091 patent/US20230272363A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
IL271505A (en) | 2020-02-27 |
CA3064577A1 (en) | 2019-01-03 |
US11643642B2 (en) | 2023-05-09 |
CN111051506B (zh) | 2023-11-24 |
JP2020530268A (ja) | 2020-10-22 |
US20200115696A1 (en) | 2020-04-16 |
CN111051506A (zh) | 2020-04-21 |
EP3645713A1 (en) | 2020-05-06 |
US20230272363A1 (en) | 2023-08-31 |
JP7244089B2 (ja) | 2023-03-22 |
WO2019005337A1 (en) | 2019-01-03 |
EP3645713A4 (en) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11180747B2 (en) | Variant penicillin-G acylases | |
US12084697B2 (en) | Penicillin-G acylases | |
US11965192B2 (en) | Penicillin-G acylases | |
US20230272363A1 (en) | Penicillin-g acylases | |
EA043748B1 (ru) | Ацилазы пенициллина g |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |