CN117614547A - Delayed serial cascade pulse position modulation system and method and deep space optical communication system - Google Patents
Delayed serial cascade pulse position modulation system and method and deep space optical communication system Download PDFInfo
- Publication number
- CN117614547A CN117614547A CN202311047900.7A CN202311047900A CN117614547A CN 117614547 A CN117614547 A CN 117614547A CN 202311047900 A CN202311047900 A CN 202311047900A CN 117614547 A CN117614547 A CN 117614547A
- Authority
- CN
- China
- Prior art keywords
- symbol
- sub
- sequence
- module
- delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/524—Pulse modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0054—Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0059—Convolutional codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0067—Rate matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Artificial Intelligence (AREA)
- Optics & Photonics (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及适用于深空光通信的编译码技术领域,尤其涉及一种延迟串行级联脉冲位置调制系统、方法及深空光通信系统。The present invention relates to the field of coding technology applicable to deep space optical communication, and in particular to a delayed serial cascade pulse position modulation system, method and deep space optical communication system.
背景技术Background Art
串行级联脉冲位置调制(Serial-Concatenated-Pulse-Position-Modulation,简称为SCPPM)是NASA在2005年为了支持火星演示系统(MLCD)提出的用于深空光通信的编译码系统。SCPPM编码是一种串行级联结构,外码为卷积码编码,内码由一个累加器和一个PPM编码器联合组成,该部分也称之为APPM码。外码和内码之间使用比特交织器连接。SCPPM的特点是在PPM调制下使用较为简单的编译码方法实现高可靠度的深空光通信。Serial-Concatenated-Pulse-Position-Modulation (SCPPM) is a coding system for deep space optical communication proposed by NASA in 2005 to support the Mars Demonstration System (MLCD). SCPPM coding is a serial cascade structure. The outer code is a convolutional code, and the inner code is composed of an accumulator and a PPM encoder. This part is also called APPM code. The outer code and the inner code are connected by a bit interleaver. The characteristic of SCPPM is that it uses a relatively simple coding method under PPM modulation to achieve high-reliability deep space optical communication.
当使用M=2m位的PPM编码器时,该SCPPM将累加器连续m时刻的运算合并,并将其视为一个等效的M位的APPM编码器,简称为M-APPM。发明人发现,M-APPM译码的复杂度与调制阶数正相关。具体来说,计算复杂度和网格图边数呈线性关系O(2.2m)。例如,16-APPM的网格图边数为2*16=32、4-APPM网格图边数为2*4=8、累加器网格图边数为4,此时,16-APPM译码的计算复杂度约为4-APPM译码的4倍、累加器译码的8倍。When using an M=2 m- bit PPM encoder, the SCPPM combines the operations of the accumulator at m consecutive moments and regards it as an equivalent M-bit APPM encoder, referred to as M-APPM. The inventors found that the complexity of M-APPM decoding is positively correlated with the modulation order. Specifically, the computational complexity and the number of grid edges are linearly related to O(2.2 m ). For example, the number of grid edges of 16-APPM is 2*16=32, the number of grid edges of 4-APPM is 2*4=8, and the number of accumulator grid edges is 4. At this time, the computational complexity of 16-APPM decoding is about 4 times that of 4-APPM decoding and 8 times that of accumulator decoding.
为了解决M-APPM译码存在的计算复杂度高的问题,现有技术还提供一种基于单次比特解调译码方法,属于低复杂度的译码方法。该译码方法具体是将接收到的PPM符号进行解调,得到校验比特流对应的比特作为译码器输入。之后,译码器进行累加器和卷积码之间的迭代译码。单次比特解调译码方法的缺点在于差错性能较差。对于高阶调制,将接收到的PPM符号解调得到比特LLR不可避免的会带来信息损失,从而导致译码差错性能损失。In order to solve the problem of high computational complexity in M-APPM decoding, the prior art also provides a decoding method based on single bit demodulation, which is a low-complexity decoding method. The decoding method specifically demodulates the received PPM symbol to obtain the bit corresponding to the check bit stream. As the decoder input. After that, the decoder performs iterative decoding between the accumulator and the convolutional code. The disadvantage of the single bit demodulation decoding method is that the error performance is poor. For high-order modulation, demodulating the received PPM symbol to obtain the bit LLR will inevitably bring information loss, resulting in a loss of decoding error performance.
为了解决基于单次比特解调译码方法应用于高阶调制存在的译码差值性能损失的问题,现有技术还提供一种基于延迟的比特交织编码调制(Bit-Interleaved CodedModulation,简称为BICM),可以定义为DBICM。DBICM是一种针对高阶调制的通用编码调制方法。DBICM在接收端引入了从译码器输出到解调器的反馈信息,因此可以一定程度上减小将接收符号解调得到比特LLR时的信息损失。In order to solve the problem of decoding difference performance loss when the single bit demodulation and decoding method is applied to high-order modulation, the prior art also provides a delay-based bit-interleaved coded modulation (BICM), which can be defined as DBICM. DBICM is a general coding modulation method for high-order modulation. DBICM introduces feedback information from the decoder output to the demodulator at the receiving end, so it can reduce the information loss when demodulating the received symbol to obtain the bit LLR to a certain extent.
但是,DBICM缺点在于如果直接把SCPPM的编码部分(卷积码+累加器)带入DBICM发送端的编码器中,内码就不存在APPM结构,因此译码器只能使用比特层面的译码方案而不能使用APPM译码方案。因此,DBICM相对于基于单次比特解调译码方法虽有提升,但是与M-APPM编码器仍有一定的差距。However, the disadvantage of DBICM is that if the coding part of SCPPM (convolutional code + accumulator) is directly brought into the encoder of the DBICM transmitter, the inner code does not have the APPM structure, so the decoder can only use the bit-level decoding scheme instead of the APPM decoding scheme. Therefore, although DBICM is improved compared with the single-bit demodulation decoding method, it still has a certain gap with the M-APPM encoder.
鉴于此,亟待基于SCPPM提出一种调制系统,该调制系统应当具有较低的计算复杂度以及较优的差错性能。In view of this, it is urgent to propose a modulation system based on SCPPM, which should have lower computational complexity and better error performance.
发明内容Summary of the invention
本发明的目的在于提供一种延迟串行级联脉冲位置调制系统、方法及深空光通信系统,具有较低的计算复杂度以及较优的差错性能。The object of the present invention is to provide a delayed serial cascade pulse position modulation system, method and deep space optical communication system, which have lower computational complexity and better error performance.
第一方面,本发明提供一种延迟串行级联脉冲位置调制系统,包括发送端和接收端。其中,发送端包括顺序连接的编码模块、发送端子符号序列分割模块、子符号交织模块、延迟模块、子符号序列合并模块和PPM调制模块。接收端包括顺序连接的PPM子符号解调模块、接收端子符号序列分割模块、逆向延迟模块、子符号解交织模块和译码模块,以及连接译码模块和PPM子符号解调模块的反馈模块。In the first aspect, the present invention provides a delayed serial cascade pulse position modulation system, including a transmitting end and a receiving end. The transmitting end includes a sequentially connected encoding module, a transmitting terminal symbol sequence segmentation module, a sub-symbol interleaving module, a delay module, a sub-symbol sequence merging module and a PPM modulation module. The receiving end includes a sequentially connected PPM sub-symbol demodulation module, a receiving terminal symbol sequence segmentation module, a reverse delay module, a sub-symbol deinterleaving module and a decoding module, and a feedback module connecting the decoding module and the PPM sub-symbol demodulation module.
编码模块接收原始数据序列,经编码后输出码字序列。发送端子符号序列分割模块基于码字序列输出子符号序列。子符号交织模块接收每一码字所对应的子符号序列,并对子符号序列中的比特序列进行交织,输出交织子符号序列。延迟模块中配置有延迟参数,交织子符号序列在预设时刻输入延迟模块,并在达到延迟参数后输出延迟交织子符号序列。子符号序列合并模块接收预设时刻的延迟交织子符号序列,并将所有延迟交织子符号序列合并为延迟码字序列。PPM调制模块接收延迟码字序列并进行M-PPM调制,输出PPM符号序列。The encoding module receives the original data sequence and outputs the codeword sequence after encoding. The transmitting terminal symbol sequence segmentation module outputs the sub-symbol sequence based on the codeword sequence. The sub-symbol interleaving module receives the sub-symbol sequence corresponding to each codeword, interleaves the bit sequence in the sub-symbol sequence, and outputs the interleaved sub-symbol sequence. The delay module is configured with a delay parameter, and the interleaved sub-symbol sequence is input into the delay module at a preset time, and a delayed interleaved sub-symbol sequence is output after the delay parameter is reached. The sub-symbol sequence merging module receives the delayed interleaved sub-symbol sequence at a preset time, and merges all delayed interleaved sub-symbol sequences into a delayed codeword sequence. The PPM modulation module receives the delayed codeword sequence and performs M-PPM modulation, and outputs a PPM symbol sequence.
PPM子符号解调模块中配置有先验信息,PPM子符号解调模块接收到与PPM符号序列对应的接收信号,PPM子符号解调模块利用先验信息和接收信号确定子符号对数似然比。接收端子符号序列分割模块接收子符号对数似然比,并先分割后合并为子符号对数似然比序列。逆向延迟模块缓存子符号对数似然比,当集齐所有的子符号对数似然比后输出至子符号解交织模块。子符号解交织模块对子符号对数似然比序列分别进行解交织,输出解交织子符号对数似然比。译码模块基于解交织子符号对数似然比输出译码结果和子符号反馈序列。子符号反馈序列通过反馈模块发送至PPM子符号解调模块,在下一解调译码周期内,子符号反馈序列与接收信号共同参与至解调译码过程。The PPM sub-symbol demodulation module is configured with prior information. The PPM sub-symbol demodulation module receives a received signal corresponding to the PPM symbol sequence. The PPM sub-symbol demodulation module determines the sub-symbol log-likelihood ratio using the prior information and the received signal. The receiving terminal symbol sequence segmentation module receives the sub-symbol log-likelihood ratio, and first segments and then merges it into a sub-symbol log-likelihood ratio sequence. The reverse delay module caches the sub-symbol log-likelihood ratio, and outputs it to the sub-symbol deinterleaving module after all the sub-symbol log-likelihood ratios are collected. The sub-symbol deinterleaving module deinterleaves the sub-symbol log-likelihood ratio sequence separately and outputs the deinterleaved sub-symbol log-likelihood ratio. The decoding module outputs the decoding result and the sub-symbol feedback sequence based on the deinterleaved sub-symbol log-likelihood ratio. The sub-symbol feedback sequence is sent to the PPM sub-symbol demodulation module through the feedback module. In the next demodulation and decoding cycle, the sub-symbol feedback sequence and the received signal participate in the demodulation and decoding process together.
与现有技术相比,本发明提供的延迟串行级联脉冲位置调制系统,将码字序列中的每个码字利用发送端子符号序列分割模块分割形成多个子符号序列,并进一步的将子符号序列中的比特序列进行交织,以获得交织子符号序列。基于此,对部分交织子符号序列进行延迟,与后续的码字对应的子符号序列一起参与调制。此时,每个PPM符号序列将包含多个来自不同码字的子符号序列。Compared with the prior art, the delayed serial cascade pulse position modulation system provided by the present invention divides each codeword in the codeword sequence into multiple sub-symbol sequences using a transmitting terminal symbol sequence division module, and further interleaves the bit sequence in the sub-symbol sequence to obtain an interleaved sub-symbol sequence. Based on this, part of the interleaved sub-symbol sequence is delayed and modulated together with the sub-symbol sequence corresponding to the subsequent codeword. At this time, each PPM symbol sequence will contain multiple sub-symbol sequences from different codewords.
而且,在接收端,每个时刻接收到的接收信号会利用上一时刻译码成功的子符号反馈序列辅助解调,得到子符号对数似然比。当所有码字所对应的所有子符号序列的对数似然比被完整接收到后,接收端对该码块进行译码、并把软判决或硬判决译码结果反馈回PPM子符号解调模块以辅助其后的接收信号的解调。鉴于此,本发明提供的延迟串行级联脉冲位置调制系统具有较优的差错性能。Moreover, at the receiving end, the received signal received at each moment will use the sub-symbol feedback sequence successfully decoded at the previous moment to assist in demodulation, and obtain the sub-symbol log-likelihood ratio. When the log-likelihood ratios of all sub-symbol sequences corresponding to all codewords are completely received, the receiving end decodes the code block and feeds back the soft decision or hard decision decoding results to the PPM sub-symbol demodulation module to assist in the demodulation of the subsequent received signal. In view of this, the delayed serial cascade pulse position modulation system provided by the present invention has better error performance.
再者,本发明的关键点在于采用将码字拆分为子符号序列、交织后进行延迟调制以及对子符号进行APPM译码的联合方法,该联合方法通过延迟将一个高阶的APPM等效拆分成低阶APPM。在不改变现有串行级联脉冲位置调制系统(SCPPM)原有编码模块且使用APPM译码的情况下,相对于现有的SCPPM显著减小了内码的译码复杂度。Furthermore, the key point of the present invention is to adopt a joint method of splitting the codeword into sub-symbol sequences, performing delay modulation after interleaving, and performing APPM decoding on the sub-symbols, and the joint method splits a high-order APPM equivalent into low-order APPMs by delay. Without changing the original encoding module of the existing serial cascade pulse position modulation system (SCPPM) and using APPM decoding, the decoding complexity of the inner code is significantly reduced compared with the existing SCPPM.
第二方面,本发明还提供一种迟串行级联脉冲位置调制方法,第一方面提供的延迟串行级联脉冲位置调制系统执行延迟串行级联脉冲位置调制方法,包括如下步骤:In a second aspect, the present invention further provides a delayed serial cascade pulse position modulation method. The delayed serial cascade pulse position modulation system provided in the first aspect performs the delayed serial cascade pulse position modulation method, comprising the following steps:
S10.发送端基于原始数据序列输出PPM符号序列;S10. The transmitter outputs a PPM symbol sequence based on the original data sequence;
S20.接收端基于PPM符号序列输出译码结果和子符号反馈序列,其中,子符号反馈序列反馈至发送端,并在下一解调译码周期内,与接收信号共同参与至解调译码过程。S20. The receiving end outputs a decoding result and a sub-symbol feedback sequence based on the PPM symbol sequence, wherein the sub-symbol feedback sequence is fed back to the transmitting end and participates in the demodulation and decoding process together with the received signal in the next demodulation and decoding cycle.
与现有技术相比,本发明提供的迟串行级联脉冲位置调制方法的有益效果与第一方面和/或第一方面任一种实现方式提供的迟串行级联脉冲位置调制系统的有益效果相同,在此不做赘述。Compared with the prior art, the beneficial effects of the delayed serial cascade pulse position modulation method provided by the present invention are the same as the beneficial effects of the delayed serial cascade pulse position modulation system provided by the first aspect and/or any implementation of the first aspect, and will not be elaborated here.
第三方面,本发明还提供一种深空光通信系统,所述深空光通信系统所采用的编译码系统为第一方面提供的延迟串行级联脉冲位置调制系统。In a third aspect, the present invention further provides a deep space optical communication system, wherein the encoding and decoding system adopted by the deep space optical communication system is the delayed serial cascade pulse position modulation system provided in the first aspect.
与现有技术相比,本发明提供的深空光通信系统的有益效果与第一方面和/或第一方面任一种实现方式提供的迟串行级联脉冲位置调制系统的有益效果相同,在此不做赘述。Compared with the prior art, the beneficial effects of the deep space optical communication system provided by the present invention are the same as the beneficial effects of the delayed serial cascade pulse position modulation system provided by the first aspect and/or any implementation method of the first aspect, and will not be elaborated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings described herein are used to provide a further understanding of the present invention and constitute a part of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the drawings:
图1为点对点激光通信系统模型框图;Figure 1 is a block diagram of a point-to-point laser communication system model;
图2为(5,7)卷积码的网格图;Figure 2 is a trellis diagram of a (5, 7) convolutional code;
图3为SCPPM编码器结构示意图;Fig. 3 is a schematic diagram of the structure of the SCPPM encoder;
图4为(5,7)卷积码编码器示意图;FIG4 is a schematic diagram of a (5, 7) convolutional code encoder;
图5为累加器编码器示意图;Fig. 5 is a schematic diagram of an accumulator encoder;
图6为累加器网格图;Fig. 6 is a grid diagram of the accumulator;
图7为等效4-APPM网格图;Figure 7 is an equivalent 4-APPM grid diagram;
图8为SCPPM中APPM译码和单次解调译码性能对比图;FIG8 is a comparison chart of the performance of APPM decoding and single demodulation decoding in SCPPM;
图9为延迟BICM编码器结构示意图;FIG9 is a schematic diagram of the delayed BICM encoder structure;
图10为延迟BICM译码器结构示意图;FIG10 is a schematic diagram of the delayed BICM decoder structure;
图11为DSCPPM编码调制流程示意图;FIG11 is a schematic diagram of a DSCPPM coding and modulation process;
图12为DSCPPM解调译码流程示意图;FIG12 is a schematic diagram of a DSCPPM demodulation and decoding process;
图13为{d=(2|2|2),δ=[0,1,2]}的DSCPPM示意图;FIG13 is a schematic diagram of DSCPPM of {d=(2|2|2), δ=[0, 1, 2]};
图14为累加器网格图;Fig. 14 is a grid diagram of an accumulator;
图15为累加器加2比特子符号网格图;Fig. 15 is a trellis diagram of an accumulator adding 2-bit sub-symbols;
图16为累加器网格图;Fig. 16 is a grid diagram of an accumulator;
图17为累加器加2、3比特子符号网格图;Fig. 17 is a grid diagram of an accumulator adding 2 and 3 bit sub-symbols;
图18为SCPPM与DSCPPM性能对比图;FIG18 is a performance comparison chart of SCPPM and DSCPPM;
图19为SCPPM与DSCPPM性能对比图。Figure 19 is a performance comparison chart of SCPPM and DSCPPM.
具体实施方式DETAILED DESCRIPTION
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "multiple" is two or more, unless otherwise clearly and specifically defined. The meaning of "several" is one or more, unless otherwise clearly and specifically defined.
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it is necessary to understand that the directions or positional relationships indicated by terms such as “upper”, “lower”, “front”, “backward”, “left” and “right” are based on the directions or positional relationships shown in the accompanying drawings and are only for the convenience of describing the present invention and simplifying the description. They do not indicate or imply that the device or element referred to must have a specific direction, be constructed and operated in a specific direction. Therefore, they cannot be understood as limitations on the present invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that, unless otherwise clearly specified and limited, the terms "installed", "connected", and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements. For ordinary technicians in this field, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
图1为点对点激光通信系统模型框图,参见图1,激光通信系统中的编译码原理可以概括为:FIG1 is a block diagram of a point-to-point laser communication system model. Referring to FIG1 , the coding principle in the laser communication system can be summarized as follows:
原始数据u经过信道编码后生成编码序列c,c经过PPM调制得到光脉冲x。其中,信道编码和PPM调制可以概括为发送端。光脉冲经过信道(具体可以是泊松信道,但是不仅限于此)后,以光子形式到达接收端。接收端所包括的光子探测器对到达的光子进行计数,得到对应光脉冲x的光子计数y。接收端利用y进行软判决或硬判决,计算对数似然比(LLR),得到符号LLR,再将符号LLRΓ(y)进行PPM解调和信道译码,最终得到原始数据的预测值需要进一步解释的是,PPM解调也可以称为PPM译码。在实际应用中,可以根据具体的编译码方案选择相互独立的PPM解调器和信道译码器分别进行PPM解调,也可以选择一体的译码器同时进行PPM解调和信道译码。The original data u is channel-coded to generate a coding sequence c, which is then PPM-modulated to obtain an optical pulse x. Channel coding and PPM modulation can be summarized as the transmitter. After the optical pulse passes through the channel (specifically, it can be a Poisson channel, but is not limited to this), it reaches the receiver in the form of a photon. The photon detector included in the receiver counts the arriving photons to obtain the photon count y corresponding to the optical pulse x. The receiver uses y to make a soft decision or a hard decision, calculates the log-likelihood ratio (LLR), obtains the symbol LLR, and then performs PPM demodulation and channel decoding on the symbol LLRΓ(y), and finally obtains the predicted value of the original data. It needs to be further explained that PPM demodulation can also be called PPM decoding. In practical applications, independent PPM demodulators and channel decoders can be selected to perform PPM demodulation respectively according to a specific coding scheme, or an integrated decoder can be selected to perform PPM demodulation and channel decoding simultaneously.
图1所示的点对点激光通信系统模型中,脉冲位置调制即PPM调制以及PPM解调是影响编译码计算复杂度和差错性能的关键单元。In the point-to-point laser communication system model shown in FIG1 , pulse position modulation (PPM) modulation and PPM demodulation are key units that affect the computational complexity and error performance of coding.
其中,PPM调制是利用单个脉冲在一段时间内的相对位置来传递信息。在M位PPM(M-PPM,也称为m阶PPM,m=log2M>1)调制系统中,每m个比特信息c=[c1,c2,...,cm]被映射到一个PPM符号x上。一个PPM符号的发送需要占用M个时隙(单位时间),每个符号的时隙中只有一个时隙发送光脉冲,该光脉冲出现的位置代表c的数值。因此x可写为一个M比特的脉冲序列x=[x1,x2,...,xM],其中xi={0,1}代表该符号的第i个时隙无/有光信号。c的数值到光脉位置的一对一映射关系可以使用多种映射方案,比如自然顺序映射、格雷(Gray)映射、反格雷(anti-Gray)映射。在本发明实施例中,无特别说明的情况下,PPM调制使用自然顺序映射。Among them, PPM modulation uses the relative position of a single pulse within a period of time to transmit information. In an M-bit PPM (M-PPM, also known as m-order PPM, m=log 2 M>1) modulation system, each m-bit information c=[c 1 , c 2 , ..., cm ] is mapped to a PPM symbol x. The transmission of a PPM symbol requires M time slots (unit time), and only one time slot in each symbol transmits an optical pulse, and the position where the optical pulse appears represents the value of c. Therefore, x can be written as an M-bit pulse sequence x=[x 1 , x 2 , ..., x M ], where x i ={0,1} represents that the i-th time slot of the symbol has/has no optical signal. The one-to-one mapping relationship between the value of c and the position of the optical pulse can use a variety of mapping schemes, such as natural order mapping, Gray mapping, and anti-Gray mapping. In the embodiment of the present invention, unless otherwise specified, PPM modulation uses natural order mapping.
自然顺序映射PPM:给定比特信息c=[c1,c2,...,cm],进行比特转十进制计算(c1为最高有效位)得到符号值0≤C≤M-1。C对应的PPM符号的脉冲序列为x=[x1,x2,...,xM],xC+1=1,x1≤i≤M,i≠C+1=0,即一个PPM符号的第1至第M时隙中,第C+1个时隙发送光脉冲,其余时隙不发送脉冲。Natural order mapping PPM: Given bit information c = [c 1 , c 2 , ..., cm ], perform bit-to-decimal conversion (c 1 is the most significant bit) to obtain the symbol value 0≤C≤M-1. The pulse sequence of the PPM symbol corresponding to C is x=[ x1 , x2 , ..., xM ], xC+1 =1, x1≤i≤M, i≠C+1 =0, that is, in the 1st to Mth time slots of a PPM symbol, the C+1th time slot sends an optical pulse, and the remaining time slots do not send pulses.
考虑一个PPM符号,接收端在每个时隙探测到的光子数序列记为y=[y1,y2,...,yM]。接收端首先利用y进行软判决计算,得到时隙转移概率Pr{yi|xi},然后计算当发送符号C分别为0,2,...,M-1时的符号转移概率Pr{y|C}及符号对数似然比(LLR,),其中如果无额外标注底数,则log代表自然对数。符号LLR Γ(y)={ΓC(y):0≤C≤M-1}将作为译码器的输入。对于理想泊松信道,准确的符号LLR可用ΓC(y)=yC+1·log(1+ns/nb)计算,注意实际系统中符号LLR计算公式可能不同,但对于符号LLR的定义是不变的。例如,符号LLR计算公式可以是ΓC(y)=yC+1,也可以是ΓC(y)=(yC+1-y0)·log(1+ns/nb)。Consider a PPM symbol. The sequence of photon numbers detected by the receiver in each time slot is recorded as y = [y 1 , y 2 , ..., y M ]. The receiver first uses y to perform soft decision calculation to obtain the time slot transfer probability Pr{y i | xi }, and then calculates the symbol transfer probability Pr{y|C} and the symbol log-likelihood ratio (LLR, ), where log represents the natural logarithm if no additional base is specified. The symbol LLR Γ(y)={Γ C (y): 0≤C≤M-1} will be used as the input of the decoder. For an ideal Poisson channel, the accurate symbol LLR can be calculated using Γ C (y)=y C+1 ·log(1+ ns / nb ). Note that the symbol LLR calculation formula may be different in an actual system, but the definition of the symbol LLR remains unchanged. For example, the symbol LLR calculation formula can be Γ C (y)=y C+1 or Γ C (y)=(y C+1 -y 0 )·log(1+ ns / nb ).
另外,针对PPM解调,本发明实施例阐述的是只依靠信道信息(即接收信号y)进行PPM解调或PPM译码的计算。应理解,以下阐述仅作为解释,不作为限定。In addition, for PPM demodulation, the embodiment of the present invention describes the calculation of PPM demodulation or PPM decoding based only on channel information (ie, received signal y). It should be understood that the following description is only for explanation and not for limitation.
符号集定义:令代表所有PPM符号的合集。以下定义几个的子集:令代表满足第i个比特位置的数值为0的符号的合集,代表满足第i个比特位置的数值为1的符号的合集,例:对于8-PPM, Symbol set definition: Let Represents the collection of all PPM symbols. The following defines several Subset of: Let represents the set of symbols whose value at the i-th bit position is 0, represents the set of symbols whose value at the i-th bit position is 1, Example: For 8-PPM,
利用符号转移概率Pr{y|C}计算比特ci(i=1,2,...,m)分别为0、1时的比特转移概率Pr{y|ci=0}、Pr{y|ci=1}和比特LLR详细定义如下:The symbol transition probability Pr{y|C} is used to calculate the bit transition probability Pr{y|c i = 0}, Pr{y|c i = 1} and the bit LLR when the bit c i (i = 1, 2, ..., m) is 0 and 1 respectively. The detailed definitions are as follows:
运算符max*定义:max*代表在自然对数域(后简称对数域)的加法计算。即a+b=c在对数域的相对应计算为max*(log(a),log(b))=log(c)。则代表对满足条件的x的连加。Definition of operator max * : max * represents addition calculation in the natural logarithm domain (hereinafter referred to as logarithm domain). That is, the corresponding calculation of a+b=c in the logarithm domain is max * (log(a), log(b))=log(c). It represents the continuous addition of x that meets the conditions.
卷积码是一种被广泛使用的编码方案。它的主要特点是而连续输入的信息序列u得到连续输出的已编码序列v。对于一个输入长度k比特,输出长度n比特,约束长度α的卷积码来说,编码器中的寄存器可以保留α-1个相连时刻的编码过程中的部分数值。编码器在t时刻顺序输入信息序列u中的k比特,根据t时刻的输入以及寄存器中储存的与t-α+1时刻至t-1时刻相关的数据(寄存器储存的数值称为编码器状态)共同决定n个输出比特的数值,同时更新寄存器的数值。换句话说,t时刻的输出由t-α+1时刻至t时刻的输入信息相关。Convolutional code is a widely used coding scheme. Its main feature is that the continuous input information sequence u obtains the continuous output encoded sequence v. For a convolutional code with an input length of k bits, an output length of n bits, and a constraint length of α, the register in the encoder can retain some values of the encoding process of α-1 consecutive moments. The encoder sequentially inputs k bits of the information sequence u at time t, and jointly determines the values of the n output bits based on the input at time t and the data stored in the register related to time t-α+1 to time t-1 (the value stored in the register is called the encoder state), and updates the value of the register at the same time. In other words, the output at time t is related to the input information from time t-α+1 to time t.
卷积码的编码过程可以用网格图表示。在网格图中每一列点表示一个时刻的编码器状态,状态之间的连线表示状态转移,连线上的数字标注表示该状态转移对应的输入/输出。一个常见的(5,7)卷积码的网格图如图2所示。The encoding process of a convolutional code can be represented by a grid diagram. In the grid diagram, each column of points represents the encoder state at a certain moment, the lines between states represent state transitions, and the numbers on the lines represent the input/output corresponding to the state transition. A common (5, 7) convolutional code grid diagram is shown in Figure 2.
卷积码通常使用基于网格图的译码算法,其中最具有代表性的是Viterbi算法和BCJR算法。这两种译码算法的计算过程与网格图结构紧密关联,因此其计算复杂度也与网格图的边数(两个时刻的状态之间的连线总数)线性正相关,即译码复杂度为O(2α-1·2k)。Convolutional codes usually use decoding algorithms based on trellis graphs, among which the most representative ones are the Viterbi algorithm and the BCJR algorithm. The calculation process of these two decoding algorithms is closely related to the trellis graph structure, so their computational complexity is also linearly positively correlated with the number of edges in the trellis graph (the total number of connections between the states at two moments), that is, the decoding complexity is O(2 α-1 ·2 k ).
SCPPM编码是一种针对PPM编码的方案,SCPPM编码器的结构示意如图3所示。首先,SCPPM编码器输入长度为K的数据u,使用码率为R的卷积码编码器,生成长度为N=K/R的比特序列v。之后,比特交织器将v中的比特重新将排列得到v′。累加器输入v′,生成相同长度的比特序列c。最后,c通过PPM编码器,得到K/(mR)个PPM符号序列C,以及对应的MK/(mR)个时隙的脉冲序列x。SCPPM coding is a scheme for PPM coding. The structure of the SCPPM encoder is shown in Figure 3. First, the SCPPM encoder inputs data u of length K, and uses a convolutional code encoder with a code rate of R to generate a bit sequence v of length N = K/R. After that, the bit interleaver rearranges the bits in v to obtain v'. The accumulator inputs v' to generate a bit sequence c of the same length. Finally, c passes through the PPM encoder to obtain a PPM symbol sequence C of K/(mR) pieces and a corresponding pulse sequence x of MK/(mR) time slots.
SCPPM的外码编码器为卷积码。通常来说,该卷积码可使用任意码率小于1的卷积码。本发明实施例中考虑使用常见的码率为1/2、生成式为(5,7)的卷积码。该卷积码结构框图如图4所示,其中D表示寄存器,表示二进制加法(模2加法)运算。给定(5,7)卷积码的输入比特序列u=[u1,u2,...,uK],在t时刻,编码器输入ut,输出两比特和最终,卷积码编码器的总输出比特流为v=[v1,1,v1,2,v2,1,v2,2,...,vK,1,vK,2]。The outer code encoder of SCPPM is a convolutional code. Generally speaking, the convolutional code can use any convolutional code with a code rate less than 1. In the embodiment of the present invention, a common convolutional code with a code rate of 1/2 and a generating formula of (5, 7) is considered to be used. The structure block diagram of the convolutional code is shown in Figure 4, where D represents a register, represents binary addition (modulo 2 addition) operation. Given the input bit sequence u = [u 1 , u 2 , ..., u K ] of the (5, 7) convolutional code, at time t, the encoder inputs ut and outputs two bits and Finally, the total output bit stream of the convolutional code encoder is v = [v 1,1 ,v 1,2 ,v 2,1 ,v 2,2 , ...,v K,1 ,v K,2 ].
累加器的编码结构框图如图5所示。累加器可视为一种特殊的码率为1(每时刻输入1比特、输出1比特)的归递卷积码,其生成式可以写为1/(1+D)。给定输入序列v′=[v1,v2,...,vN],输出序列为c′=[c1,c2,...,cN],其中c1=u1, The coding structure block diagram of the accumulator is shown in Figure 5. The accumulator can be regarded as a special recursive convolutional code with a code rate of 1 (1 bit input and 1 bit output at each time), and its generator can be written as 1/(1+D). Given an input sequence v′=[v 1 ,v 2 ,...,v N ], the output sequence is c′=[c 1 ,c 2, ...,c N ], where c 1 =u 1 ,
对于M=2m位的PPM(M-PPM),PPM编码器在t时刻输入c(m-1)t+1,c(m-1)t+2,...,cmt,输出Ct=bi2de([c(m-1)t+1,c(m-1)t+2,...,cmt])。For M= 2m- bit PPM (M-PPM), the PPM encoder inputs c (m-1)t+1 , c (m-1)t+2 , ..., cmt at time t and outputs Ct =bi2de([c (m-1)t+1 , c (m-1)t+2 , ..., cmt ]).
SCPPM结构的特殊性在于其内码部分的累加器和PPM编码器也可以视为一个整体,称为APPM编码器。通过将内码部分视为两个单独的结构或一个整体,可以相对应的实现不同的译码方案。The SCPPM structure is special in that the accumulator and PPM encoder of the inner code part can also be regarded as a whole, called APPM encoder. By regarding the inner code part as two separate structures or a whole, different decoding schemes can be implemented accordingly.
当使用M=2m位的PPM编码器时,APPM编码器将累加器连续m时刻的运算合并,并将其视为一个等效的M位的APPM编码器(M-APPM),即M-APPM编码器在t时刻输入v(m-1)t+1,v(m-1)t+2,...,vmt,随即直接输出PPM符号Ct。相对应的,接收端将基于使用M-APPM的网格图直接使用PPM符号LLR ΓC(y)进行译码。When using an M=2 m- bit PPM encoder, the APPM encoder combines the operations of the accumulator at m consecutive moments and regards it as an equivalent M-bit APPM encoder (M-APPM), that is, the M-APPM encoder inputs v (m-1)t+1 , v (m-1)t+2 , ..., v mt at time t, and then directly outputs the PPM symbol C t . Correspondingly, the receiving end will directly use the PPM symbol LLR Γ C (y) for decoding based on the grid diagram using M-APPM.
在M-APPM网格图中,给定当前时刻的编码器状态s1=a,有2m个输出可以使编码器在下个时刻状转换到同一个状态s2=b。换句话说,每对状态转移(a→b)包含2m个平行边。In the M-APPM grid graph, given the encoder state s 1 = a at the current moment, there are 2m outputs that can make the encoder transition to the same state s 2 = b at the next moment. In other words, each pair of state transitions (a→b) contains 2m parallel edges.
作为一种示例,累加器网格图和4-APPM网格图如图6和图7所示。跨越m=2个时刻(t=1到t=3)的累加器网格被合并为跨越1个时刻(t=1到t=2)的4-APPM网格,即累加器网格中的状态转移a→b→c被合并为4-APPM网格中的状态转移a→c。注意累加器网格中的a→0→c和a→1→c虽然所对应的输入/输出不同,但都能合并为4-APPM网格中的a→c,这两者被称为a→c的平行边。As an example, the accumulator grid diagram and the 4-APPM grid diagram are shown in Figures 6 and 7. The accumulator grid spanning m = 2 time points (t = 1 to t = 3) is merged into a 4-APPM grid spanning 1 time point (t = 1 to t = 2), that is, the state transition a→b→c in the accumulator grid is merged into the state transition a→c in the 4-APPM grid. Note that although a→0→c and a→1→c in the accumulator grid correspond to different inputs/outputs, they can both be merged into a→c in the 4-APPM grid, and these two are called parallel edges of a→c.
发明人发现APPM译码方案存在缺点,即M-APPM译码的复杂度与调制阶数正相关。具体来说,计算复杂度和网格图的边数呈线性关系O(2·2m)。举个例子,16-APPM的网格图边数为2*16=32、4-APPM网格图的边数为2*4=8、累加器网格图的边数为4,因此16-APPM译码的计算复杂度约为4-APPM译码的4倍、累加器译码的8倍。The inventors found that the APPM decoding scheme has a disadvantage, that is, the complexity of M-APPM decoding is positively correlated with the modulation order. Specifically, the computational complexity is linearly related to the number of edges of the trellis graph, O(2·2 m ). For example, the number of edges of the 16-APPM trellis graph is 2*16=32, the number of edges of the 4-APPM trellis graph is 2*4=8, and the number of edges of the accumulator trellis graph is 4. Therefore, the computational complexity of 16-APPM decoding is about 4 times that of 4-APPM decoding and 8 times that of accumulator decoding.
鉴于此,发明人试图开发一种低复杂度的译码方案,即单次比特解调方案。该方案将接收到的PPM符号进行解调,得到校验比特流c对应的比特LLR作为译码器输入。之后,译码器进行累加器和卷积码之间的迭代译码。In view of this, the inventors tried to develop a low-complexity decoding scheme, namely a single bit demodulation scheme. This scheme demodulates the received PPM symbol to obtain the bit LLR corresponding to the check bit stream c As the decoder input. After that, the decoder performs iterative decoding between the accumulator and the convolutional code.
单次比特解调方案的缺点在于差错性能较差。对于高阶调制,将接收符号解调得到比特LLR不可避免的会带来信息损失,从而导致译码差错性能损失。The disadvantage of the single bit demodulation scheme is that the error performance is poor. For high-order modulation, demodulating the received symbol to obtain the bit LLR will inevitably lead to information loss, resulting in a loss of decoding error performance.
参见图8,当M=16、nb=0.1下,单次比特解调方案相对APPM译码方案有1dB的性能损失。Referring to FIG8 , when M=16 and nb=0.1, the single bit demodulation scheme has a 1 dB performance loss relative to the APPM decoding scheme.
延迟BICM(DBICM)是一种针对高阶调制的通用编码调制方案,不指定具体的编码和调制格式。该方案在接收端引入了从译码器输出到解调器的反馈信息,因此可以一定程度上减小将接收符号解调得到比特LLR时的信息损失。Delayed BICM (DBICM) is a general coding modulation scheme for high-order modulation that does not specify a specific coding and modulation format. This scheme introduces feedback information from the decoder output to the demodulator at the receiving end, thereby reducing the information loss when demodulating the received symbol to obtain the bit LLR to a certain extent.
DBICM的发送端如图9所示。此处的编码可以是任意一种信道编码,调制也可以是任意种类高阶调制。在t时刻,第t个码块c(t)的比特序列(经过交织)被分为m个等长度的子序列c(t,1),...,c(t,m),其中最多m-1个子序列被延迟,在随后的时刻发送。没有被延迟的子序列则和此前码字中被延迟模块保留到当前时刻的子序列一同进行调制并发送。具体来说,第t个时刻发送的子序列为c(t-δ1,1),...,c(t-δm,m),延迟位数δ={δ1,...,δm}中必定有至少一个等于0的值(即c(t)中没有延迟的子序列),其余值则大于0(即此前码字中被延迟的序列)。在调制时,每个子序列将会映射到调制符号中的一个固定比特位上。The transmitter of DBICM is shown in FIG9 . The coding here can be any channel coding, and the modulation can also be any type of high-order modulation. At time t, the bit sequence (after interleaving) of the t-th code block c(t) is divided into m subsequences of equal length c(t, 1), ..., c(t, m), of which at most m-1 subsequences are delayed and sent at a subsequent time. The subsequences that are not delayed are modulated and sent together with the subsequences in the previous codeword that are retained to the current time by the delay module. Specifically, the subsequence sent at the t-th time is c(t-δ 1 , 1), ..., c(t-δ m , m), and the number of delayed bits δ = {δ 1 , ..., δ m } must have at least one value equal to 0 (i.e., the subsequence in c(t) that is not delayed), and the rest of the values are greater than 0 (i.e., the sequence that was delayed in the previous codeword). During modulation, each subsequence will be mapped to a fixed bit position in the modulation symbol.
DBICM接收端的处理流程如图10所示。每个时刻接收到的信号y(t)会利用此前译码成功的码块的反馈信息辅助解调,得到子序列的对数似然比(LLR)结果Γ(c(t-δ1,1)),...,Γ(c(t-δm,m))。当c(t)的所有有子序列的LLR结果Γ(c(t))被完整接收到后,接收端对该码块进行译码、并把软判决或硬判决译码结果反馈回解调器以辅助其后的信号的解调。因此,每个码块的译码信息可以通过其与其他码块在符号层面的耦合,利用对解调器的反馈信息辅助其他码块的解调,进而提升整体的译码差错性能。The processing flow of the DBICM receiver is shown in Figure 10. The signal y(t) received at each moment will use the feedback information of the previously successfully decoded code block to assist in demodulation, and obtain the log-likelihood ratio (LLR) results of the subsequence Γ(c(t-δ 1 ,1)),...,Γ(c(t-δ m ,m)). When all the LLR results Γ(c(t)) with subsequences of c(t) are completely received, the receiver decodes the code block and converts the soft decision or hard decision decoding results into Feedback to the demodulator to assist in the subsequent demodulation of the signal. Therefore, the decoding information of each code block can be coupled with other code blocks at the symbol level, and the feedback information to the demodulator can be used to assist the demodulation of other code blocks, thereby improving the overall decoding error performance.
DBICM中,延迟子符号和延迟时间的选择对译码差错性能有影响。同时,接收端解调时采用硬判决或软判决反馈信息、是否进行迭代解调也会对整体的译码差错性能产生影响。In DBICM, the selection of delayed sub-symbols and delay time has an impact on the decoding error performance. At the same time, the use of hard decision or soft decision feedback information during demodulation at the receiving end and whether iterative demodulation is performed will also affect the overall decoding error performance.
该方案的缺点在于如果直接把SCPPM的编码部分(卷积码+累加器)带入DBICM发送端的编码器中,内码就不存在APPM结构,因此译码器只能使用比特层面的译码方案而不能使用APPM译码方案。因此DBICM性能虽然较单次比特解调方案有提升,但仍然与SCPPM编码有差距。The disadvantage of this scheme is that if the coding part of SCPPM (convolutional code + accumulator) is directly brought into the encoder of the DBICM transmitter, the inner code does not have the APPM structure, so the decoder can only use the bit-level decoding scheme instead of the APPM decoding scheme. Therefore, although the performance of DBICM is improved compared with the single-bit demodulation scheme, it still lags behind SCPPM coding.
综合以上,在高阶调制时,将解调和译码作为两个步骤完全独立处理不可避免的会导致差错性能损失,而(解调+译码)一体处理的复杂度高。对于SCPPM,高差错性能的APPM译码方案复杂度高,但低复杂度的单次比特解调方案差错性能损失过大。In summary, in high-order modulation, treating demodulation and decoding as two completely independent steps will inevitably lead to error performance loss, and the complexity of (demodulation + decoding) integrated processing is high. For SCPPM, the APPM decoding scheme with high error performance is highly complex, but the low-complexity single-bit demodulation scheme has too large an error performance loss.
针对上述问题,本发明实施例提出一种基于SCPPM的改进编码调制方案,称为延迟SCPPM(后简写为DSCPPM),及其对应的解调译码方案。总体来说,所DSCPPM在内码译码复杂度明显小于SCPPM的APPM译码的情况下取得优于SCPPM单次比特解调方案的差错性能,部分情况下能达到接近SCPPM的APPM译码的差错性能。In view of the above problems, the embodiment of the present invention proposes an improved coding modulation scheme based on SCPPM, called delayed SCPPM (hereinafter abbreviated as DSCPPM), and its corresponding demodulation and decoding scheme. In general, the DSCPPM achieves an error performance that is better than the SCPPM single bit demodulation scheme when the inner code decoding complexity is significantly smaller than the APPM decoding of SCPPM, and in some cases can achieve an error performance close to that of the APPM decoding of SCPPM.
考虑需要连续发送多个码字{c(t)|t=1,2,...,T}的情况。对于SCPPM,c(t)直接进行PPM调制得到符号序列x(t)。对于DSCPPM,我们将每个码字c(t)分割为多个子符号序列{S(t,i)|i=1,2,...,m′},并将部分子序列进行延迟,和后续的码字的子序列一起调制。因此,每个符号序列x(t)将包含多个来自不同码字的子符号序列。Consider the case where multiple codewords {c(t)|t=1,2,...,T} need to be sent continuously. For SCPPM, c(t) is directly PPM modulated to obtain the symbol sequence x(t). For DSCPPM, we divide each codeword c(t) into multiple sub-symbol sequences {S(t,i)|i=1,2,...,m′}, and delay some of the sub-sequences and modulate them together with the subsequent sub-sequences of the codewords. Therefore, each symbol sequence x(t) will contain multiple sub-symbol sequences from different codewords.
在接收端,每个时刻接收到的信号y(t)会利用此前译码成功的码块的反馈信息辅助解调,得到子序列的对数似然比(LLR)结果。当c(t)的所有有子序列的LLR被完整接收到后,接收端对该码块进行译码、并把软判决或硬判决译码结果反馈回解调器以辅助其后的信号的解调。At the receiving end, the signal y(t) received at each moment will use the feedback information of the previously successfully decoded code block to assist in demodulation and obtain the log-likelihood ratio (LLR) result of the subsequence. When all the LLRs with subsequences of c(t) are completely received, the receiving end decodes the code block and feeds back the soft decision or hard decision decoding results to the demodulator to assist in the demodulation of subsequent signals.
参见图11和图12,本发明提供一种延迟串行级联脉冲位置调制系统,包括发送端和接收端。其中,发送端包括顺序连接的编码模块、发送端子符号序列分割模块、子符号交织模块、延迟模块、子符号序列合并模块和PPM调制模块。接收端包括顺序连接的PPM子符号解调模块、接收端子符号序列分割模块、逆向延迟模块、子符号解交织模块和译码模块,以及连接译码模块和PPM子符号解调模块的反馈模块。Referring to FIG. 11 and FIG. 12 , the present invention provides a delayed serial cascade pulse position modulation system, including a transmitting end and a receiving end. The transmitting end includes a sequentially connected encoding module, a transmitting terminal symbol sequence segmentation module, a sub-symbol interleaving module, a delay module, a sub-symbol sequence merging module and a PPM modulation module. The receiving end includes a sequentially connected PPM sub-symbol demodulation module, a receiving terminal symbol sequence segmentation module, a reverse delay module, a sub-symbol deinterleaving module and a decoding module, and a feedback module connecting the decoding module and the PPM sub-symbol demodulation module.
编码模块接收原始数据序列,经编码后输出码字序列。发送端子符号序列分割模块基于码字序列输出子符号序列。子符号交织模块接收每一码字所对应的子符号序列,并对子符号序列中的比特序列进行交织,输出交织子符号序列。延迟模块中配置有延迟参数,交织子符号序列在预设时刻输入延迟模块,并在达到延迟参数后输出延迟交织子符号序列。子符号序列合并模块接收预设时刻的延迟交织子符号序列,并将所有延迟交织子符号序列合并为延迟码字序列。PPM调制模块接收延迟码字序列并进行M-PPM调制,输出PPM符号序列。The encoding module receives the original data sequence and outputs the codeword sequence after encoding. The transmitting terminal symbol sequence segmentation module outputs the sub-symbol sequence based on the codeword sequence. The sub-symbol interleaving module receives the sub-symbol sequence corresponding to each codeword, interleaves the bit sequence in the sub-symbol sequence, and outputs the interleaved sub-symbol sequence. The delay module is configured with a delay parameter, and the interleaved sub-symbol sequence is input into the delay module at a preset time, and a delayed interleaved sub-symbol sequence is output after the delay parameter is reached. The sub-symbol sequence merging module receives the delayed interleaved sub-symbol sequence at a preset time, and merges all delayed interleaved sub-symbol sequences into a delayed codeword sequence. The PPM modulation module receives the delayed codeword sequence and performs M-PPM modulation, and outputs a PPM symbol sequence.
PPM子符号解调模块中配置有先验信息,PPM子符号解调模块接收到与PPM符号序列对应的接收信号,PPM子符号解调模块利用先验信息和接收信号确定子符号对数似然比。接收端子符号序列分割模块接收子符号对数似然比,并先分割后合并为子符号对数似然比序列。逆向延迟模块缓存子符号对数似然比,当集齐所有的子符号对数似然比后输出至子符号解交织模块。子符号解交织模块对子符号对数似然比序列分别进行解交织,输出解交织子符号对数似然比。译码模块基于解交织子符号对数似然比输出译码结果和子符号反馈序列。子符号反馈序列通过反馈模块发送至PPM子符号解调模块,在下一解调译码周期内,子符号反馈序列与接收信号共同参与至解调译码过程。The PPM sub-symbol demodulation module is configured with prior information. The PPM sub-symbol demodulation module receives a received signal corresponding to the PPM symbol sequence. The PPM sub-symbol demodulation module determines the sub-symbol log-likelihood ratio using the prior information and the received signal. The receiving terminal symbol sequence segmentation module receives the sub-symbol log-likelihood ratio, and first segments and then merges it into a sub-symbol log-likelihood ratio sequence. The reverse delay module caches the sub-symbol log-likelihood ratio, and outputs it to the sub-symbol deinterleaving module after all the sub-symbol log-likelihood ratios are collected. The sub-symbol deinterleaving module deinterleaves the sub-symbol log-likelihood ratio sequence separately and outputs the deinterleaved sub-symbol log-likelihood ratio. The decoding module outputs the decoding result and the sub-symbol feedback sequence based on the deinterleaved sub-symbol log-likelihood ratio. The sub-symbol feedback sequence is sent to the PPM sub-symbol demodulation module through the feedback module. In the next demodulation and decoding cycle, the sub-symbol feedback sequence and the received signal participate in the demodulation and decoding process together.
作为一种可能的实现方式,本实施例中的编码模块具体可以包括图3所示的卷积码编码、比特交织和累加器。编码模块接收原始数据序列,经编码后输出码字序列具体执行如下:分别对所有数据u(1),u(2),...,u(T)进行编码,分别得到码字c(1),c(2),...,c(T)。As a possible implementation, the encoding module in this embodiment may specifically include the convolutional code encoding, bit interleaving and accumulator shown in Figure 3. The encoding module receives the original data sequence and outputs the codeword sequence after encoding. The specific execution is as follows: all data u(1), u(2), ..., u(T) are encoded respectively to obtain codewords c(1), c(2), ..., c(T) respectively.
作为一种可能的实现方式,发送端子符号序列分割模块基于码字序列输出子符号序列具体包括:发送端子符号序列分割模块接收码字序列,并先将码字序列中的每一码字分割为比特序列,而后将比特序列合并为子符号序列。As a possible implementation method, the sending terminal symbol sequence segmentation module outputs a sub-symbol sequence based on the codeword sequence, specifically including: the sending terminal symbol sequence segmentation module receives the codeword sequence, and first segments each codeword in the codeword sequence into a bit sequence, and then merges the bit sequence into a sub-symbol sequence.
作为一种示例,发送端子符号序列分割模块(简称为S/P),对于码字c(t),1≤t≤T,先将c(t)分割为m个比特序列c(t,1),...,c(t,m),再合并为子符号序列S(t,1),...,S(t,m′)。比特序列分割方式为:假设c(t)=[c1,c2,...,cN],则N为m的整数倍。子符号序列合并方式为:给定子符号分割方案d,第i个子符号序列为S(t,i)=[c(t,di-1,sum+1);...;c(t,di,sum)]。As an example, the transmitting terminal symbol sequence segmentation module (abbreviated as S/P), for a codeword c(t), 1≤t≤T, first segments c(t) into m bit sequences c(t, 1), ..., c(t, m), and then merges them into sub-symbol sequences S(t, 1), ..., S(t, m′). The bit sequence segmentation method is: Assuming c(t) = [c 1 , c 2 , ..., c N ], then N is an integer multiple of m. The sub-symbol sequence merging method is: given the sub-symbol segmentation scheme d, the i-th sub-symbol sequence is S(t, i) = [c(t, di-1, sum +1); ...; c(t, di , sum )].
例如,对于16-PPM、d=(2|2),c(t)=[c1,c2,...,cN]首先被分割为4个比特序列c(t,1)=[c1,c5,...,cN-3],c(t,2)=[c2,c6,...,cN-2],c(t,3)=[c3,c7,...,cN-1],c(t,4)=[c4,c8,...,cN]。子符号序列为:For example, for 16-PPM, d=(2|2), c(t)=[ c1 , c2 , ..., cN ] is first segmented into 4 bit sequences c(t, 1)=[ c1 , c5 , ..., cN -3 ], c(t, 2)=[ c2 , c6 , ..., cN-2 ], c(t, 3)=[ c3 , c7 , ..., cN -1 ], c(t, 4)=[ c4 , c8 , ..., cN ]. The sub-symbol sequence is:
即c(t,1)中的第i个比特和c(t,2)中的第i个比特对应S(t,1)中的第i个子符号,即c(t,3)中的第i个比特和c(t,4)中的第i个比特对应S(t,2)中的第i个子符号。That is, the i-th bit in c(t, 1) and the i-th bit in c(t, 2) correspond to the i-th sub-symbol in S(t, 1), that is, the i-th bit in c(t, 3) and the i-th bit in c(t, 4) correspond to the i-th sub-symbol in S(t, 2).
作为一种可能的实现方式,子符号交织模块依据下述交织原则对子符号序列中的比特序列进行交织,以输出交织子符号序列:As a possible implementation, the sub-symbol interleaving module interleaves the bit sequence in the sub-symbol sequence according to the following interleaving principle to output an interleaved sub-symbol sequence:
属于不同子符号序列中的比特序列所使用的交织系数不同;The interleaving coefficients used for the bit sequences belonging to different sub-symbol sequences are different;
属于相同子符号序列中的比特序列使用同样的交织系数。Bit sequences belonging to the same sub-symbol sequence use the same interleaving coefficient.
作为一种示例,给定子符号分割方案d,对比特序列分别进行交织。属于不同子符号序列的比特序列所使用的交织序列不同,属于同一个子符号序列的比特序列使用同样的交织序列。对c(t,i)经过交织后的得到的序列记为cπ(t,i),Sπ(t,i)=[cπ(t,di-1,sum+1);...;cπ(t,di,sum)]。As an example, given a sub-symbol segmentation scheme d, the bit sequences are interleaved respectively. The bit sequences belonging to different sub-symbol sequences use different interleaving sequences, and the bit sequences belonging to the same sub-symbol sequence use the same interleaving sequence. The sequence obtained after interleaving c(t, i) is recorded as c π (t, i), S π (t, i) = [c π (t, di -1, sum +1); ...; c π (t, di , sum )].
例如,对于16-PPM、d=(2|2)。对c(t,1)、c(t,2)分别使用交织系数1进行比特交织得到cπ(t,1)、cπ(t,2);对c(t,3)、c(t,4)分别使用交织系数2进行比特交织,得到cπ(t,3)、cπ(t,4)(交织系数1、交织系数2不同)。等同于对S(t,1)使用交织序列1以子符号为单位进行交织,得到Sπ(t,1);对S(t,2)用交织序列2以子符号为单位进行交织,得到Sπ(t,2)。For example, for 16-PPM, d = (2|2). Use interleaving coefficient 1 to perform bit interleaving on c(t, 1) and c(t, 2) to obtain cπ (t, 1) and cπ (t, 2); use interleaving coefficient 2 to perform bit interleaving on c(t, 3) and c(t, 4) to obtain cπ (t, 3) and cπ (t, 4) (interleaving coefficient 1 and interleaving coefficient 2 are different). This is equivalent to using interleaving sequence 1 to interleave S(t, 1) in units of sub-symbols to obtain Sπ (t, 1); and using interleaving sequence 2 to interleave S(t, 2) in units of sub-symbols to obtain Sπ (t, 2).
作为一种可能的实现方式,基于如下原则为延迟模块配置延迟参数:As a possible implementation method, the delay parameters are configured for the delay module based on the following principles:
在确定PPM调制模块和码字所包含的子符号序列个数后,延迟参数满足如下条件:After determining the number of sub-symbol sequences contained in the PPM modulation module and the codeword, the delay parameter satisfies the following conditions:
对于第i个子符号序列所对应的延迟参数为非负整数,且所有子符号序列对应的所有延迟参数中最小延迟参数为零,最大延迟参数大于零且小于码字的子符号序列的个数,其中,1≤i≤子符号序列个数。例如,一个码字包含3个子符号序列,则延迟参数的取值可以是0、1、2,最大不超过2。The delay parameter corresponding to the i-th sub-symbol sequence is a non-negative integer, and the minimum delay parameter among all delay parameters corresponding to all sub-symbol sequences is zero, and the maximum delay parameter is greater than zero and less than the number of sub-symbol sequences of the codeword, where 1≤i≤the number of sub-symbol sequences. For example, if a codeword contains 3 sub-symbol sequences, the value of the delay parameter can be 0, 1, 2, and the maximum value does not exceed 2.
延迟参数的个数等于码字所包含的子符号序列个数,即一个所述子符号序列对应一个所述延迟参数。The number of delay parameters is equal to the number of sub-symbol sequences included in the codeword, that is, one sub-symbol sequence corresponds to one delay parameter.
作为一种示例,给定延迟模块的延迟参数δ=[δ1,δ2,...,δm′]。在t时刻,延迟模块将子符号序列Sπ(t,1),...,Sπ(t,m′)进行缓存,此后,延迟模块输出子序列Sπ(t-δ1,1),...,Sπ(t-δm′,m′)。换句话说,Sπ(t,i)会在第t个时刻输入延迟模块,并第t+δi时刻被延迟模块输出。As an example, given a delay parameter δ of the delay module = [δ 1 , δ 2 , ..., δ m′ ]. At time t, the delay module caches the sub-symbol sequence S π (t, 1), ..., S π (t, m′), and thereafter, the delay module outputs the sub-sequence S π (t-δ 1 , 1), ..., S π (t-δ m′ , m′). In other words, S π (t, i) is input into the delay module at time t and is output by the delay module at time t+δ i .
作为一种示例,延迟参数δ数值的确定方法如下:As an example, the method for determining the value of the delay parameter δ is as follows:
给定M-PPM和子符号分割方案d=(d1|d2|...|dm′)。延迟参数δ=[δ1,δ2,...,δm]需满足如下条件。Given M-PPM and a sub-symbol partitioning scheme d=(d 1 |d 2 | ... |d m′ ), the delay parameter δ=[δ 1 , δ 2 , ..., δ m ] needs to satisfy the following conditions.
对于1≤i≤m,δi为非负整数,且δ1,δ2,...,δm中必须有至少一个为0(min(δ)=0),但不能所有数值都为零(max(δ)>0)。For 1≤i≤m, δ i is a non-negative integer, and at least one of δ 1 , δ 2 , ..., δ m must be 0 (min(δ)=0), but not all values can be zero (max(δ)>0).
最大延迟参数须大于零且小于子符号序列个数,0<max(δ)<m′。The maximum delay parameter must be greater than zero and less than the number of sub-symbol sequences, 0<max(δ)<m′.
例:对于16-PPM、d=(2|2),延迟参数δ可以是[0,1]或[1,0],但不能是[0,2](不满足条件2,消耗缓存更多但不会对差错性能带来额外提升)。对于64-PPM,可以使用{d=(2|2|2),δ=[0,1,2]}、{d=(2|2|2),δ=[0,1,1]}、{d=(3|3),δ=[0,1]}、{d=(2|4),δ=[0,1]}等方案。For example, for 16-PPM, d = (2|2), the delay parameter δ can be [0, 1] or [1, 0], but cannot be [0, 2] (it does not meet condition 2, consumes more cache but does not bring additional improvement to error performance). For 64-PPM, you can use {d = (2|2|2), δ = [0, 1, 2]}, {d = (2|2|2), δ = [0, 1, 1]}, {d = (3|3), δ = [0, 1]}, {d = (2|4), δ = [0, 1]} and other solutions.
为了方便表述,给定一对子符号+延迟参数{d,δ},可以将发送序列简写为其中Di代表在延迟值为i的子序列的序列号,如Di包含分属于不同子符号的子序列,这用方括号[]分割子符号。例:{(2|2),[0,1]}可写为例:{(2|2|2),[0,1,1]}可写为 For the convenience of expression, given a pair of sub-symbols + delay parameters {d, δ}, the transmission sequence can be abbreviated as Where D i represents the sequence number of the subsequence with delay value i. If D i contains subsequences belonging to different sub-symbols, square brackets [] are used to separate the sub-symbols. For example: {(2|2), [0, 1]} can be written as Example: {(2|2|2), [0, 1, 1]} can be written as
作为一种可能的实现方式,子符号序列合并模块将第t个时刻的延迟模块输出cπ(t-δ1,1),...,cπ(t-δm,m)合并为一个序列cδ(t)。分割方式为:假设cπ(t-δi,i)=[ci,1,ci,2,...],合并后的序列为cδ(t)=[c1,1,c2,1,...,cm,1,c1,2,c2,2,...,cm,2,...]。As a possible implementation method, the sub-symbol sequence merging module merges the delay module outputs c π (t-δ 1 , 1), ..., c π (t-δ m , m) at the t-th moment into a sequence c δ (t). The segmentation method is: assuming c π (t-δ i , i) = [c i, 1 , c i, 2 , ...], the merged sequence is c δ (t) = [c 1 , 1 , c 2 , 1 , ..., cm, 1 , c 1, 2 , c 2, 2 , ..., cm, 2 , ...].
作为一种可能的实现方式,PPM调制模块对序列cδ(t)进行M-PPM调制,生成PPM符号序列x(t)。As a possible implementation manner, the PPM modulation module performs M-PPM modulation on the sequence c δ (t) to generate a PPM symbol sequence x(t).
需要进一步解释的是,当发送端需要传输T组数据u(1),u(2),...,u(T),实际需要发送T+δmax组符号序列x(1),x(2)...,x(T+δmax)。δmax=max(δ)。It needs to be further explained that when the transmitter needs to transmit T groups of data u(1), u(2), ..., u(T), it actually needs to transmit T+δ max groups of symbol sequences x(1), x(2) ..., x(T+δ max ). δ max =max(δ).
作为一种可能的实现方式,PPM子符号解调模块利用先验信息和接收信号确定子符号对数似然比,具体包括:As a possible implementation, the PPM sub-symbol demodulation module determines the sub-symbol log-likelihood ratio using prior information and the received signal, specifically including:
对于满足延迟参数等于最大延迟参数的子符号序列,子符号对数似然比利用接收信号确定;For a sub-symbol sequence satisfying that a delay parameter is equal to a maximum delay parameter, a sub-symbol log-likelihood ratio is determined using a received signal;
对于满足延迟参数小于最大延迟参数的子符号序列,子符号对数似然比利用接收信号和先验信息共同确定。For a sub-symbol sequence satisfying that the delay parameter is less than the maximum delay parameter, the sub-symbol log-likelihood ratio is determined jointly by using the received signal and the prior information.
例如,接收端需要传输T组数据u(1),u(2),...,u(T),调制位数为M的DSCPPM的详细编码方案如下:For example, the receiving end needs to transmit T groups of data u(1), u(2), ..., u(T), and the detailed coding scheme of DSCPPM with a modulation bit number of M is as follows:
PPM子符号解调模块:当发送端传输x(t),接收端收到的对应的信号y(t)。给定延迟参数δ=[δ1,δ2,...,δm],δmax=max(δ)。PPM子符号解调器利用y(t)和先验信息Γa(Sπ(t-δi,i))计算子符号LLR Γ(Sπ(t-δi,i)),i=1,2,...,m′。PPM sub-symbol demodulation module: When the transmitter transmits x(t), the receiver receives the corresponding signal y(t). Given the delay parameter δ = [δ 1 , δ 2 , ..., δ m ], δ max = max(δ). The PPM sub-symbol demodulator uses y(t) and prior information Γ a (S π (t-δ i , i)) to calculate the sub-symbol LLR Γ(S π (t-δ i , i)), i = 1, 2, ..., m′.
对于满足δi=δmax的子符号序列Sπ(t-δi,i),其子符号LLR Γ(Sπ(t-δi,i))只利用接收信号y(t)进行计算(无先验信息)。For a sub-symbol sequence S π (t-δ i , i) satisfying δ i =δ max , its sub-symbol LLR Γ(S π (t-δ i , i)) is calculated using only the received signal y(t) (without prior information).
对于满足δi<δmax的子符号序列Sπ(t-δi,i),其子符号LLR Γ(Sπ(t-δi,i))利用接收信号y(t)和先验信息{Γa(Sπ(t-δj,j))|δj>δi}进行计算。For a subsymbol sequence S π (t-δ i , i) satisfying δ i <δ max , its subsymbol LLR Γ(S π (t-δ i , i)) is calculated using the received signal y(t) and prior information {Γ a (S π (t-δ j , j))|δ j >δ i }.
作为一种可能的实现方式,逆向延迟模块将所收到的所有子符号LLR存入缓存,当缓存中集齐{Γ(Sπ(t,i))|i=1,2,...,m′}后,将其输出到解交织器。As a possible implementation, the reverse delay module stores all received sub-symbol LLRs in a buffer, and when {Γ(S π (t, i))|i=1, 2, ..., m′} is collected in the buffer, it is output to the deinterleaver.
作为一种可能的实现方式,子符号解交织模块对Γ(Sπ(t,1)),...,Γπ(S(t,m′))分别进行解交织,得到Γ(S(t,1)),...,Γ(S(t,m′))。As a possible implementation manner, the sub-symbol deinterleaving module deinterleaves Γ(S π (t, 1)), ..., Γ π (S(t, m′)) respectively to obtain Γ(S(t, 1)), ..., Γ(S(t, m′)).
作为一种可能的实现方式,译码模块输入Γ(S(t,1)),...,Γ(S(t,m′)),输出硬判决译码结果及子符号反馈Γa(S(t,1)),...,Γa(S(t,m′))。注意:可以有多种反馈方式,以下列出几个例子:As a possible implementation, the decoding module inputs Γ(S(t, 1)), ..., Γ(S(t, m′)) and outputs a hard decision decoding result And sub-symbol feedback Γ a (S(t, 1)), ..., Γ a (S(t, m′)). Note: There can be many feedback methods, and several examples are listed below:
反馈子符号软判决LLR(译码器外信息LLR)。Feedback sub-symbol soft decision LLR (decoder external information LLR).
反馈子符号硬判决 Feedback sub-symbol hard decision
在u(t)包含CRC校验比特的情况下:通过CRC检查(系统判定译码成功)则发送子符号硬判决,未通过则发送软判决LLR。In the case where u(t) includes CRC check bits: if the CRC check is passed (the system determines that the decoding is successful), a sub-symbol hard decision is sent; if it is not passed, a soft decision LLR is sent.
在u(t)包含CRC校验比特的情况下:通过CRC检查则发送子符号硬判决,未通过则所有反馈值都取0(无有效反馈)。In the case where u(t) includes CRC check bits: if the CRC check is passed, a sub-symbol hard decision is sent; if it is not passed, all feedback values are set to 0 (no valid feedback).
反馈LLR经过交织,得到Γa(Sπ(t,1)),...,Γa(Sπ(t,m′)),在延迟模块缓存。The feedback LLRs are interleaved to obtain Γ a (S π (t, 1)), ..., Γ a (S π (t, m′)), which are buffered in the delay module.
作为一种可能的实现方式,PPM子符号解调的方法如下:As a possible implementation, the method for PPM sub-symbol demodulation is as follows:
无反馈信息(只利用接收符号y进行子符号解调):No feedback information (only sub-symbol demodulation using received symbol y):
子符号集定义:令代表所有PPM符号的合集。代表所有PPM符号中,满足第i个子符号(Si)的值为j的符号的合集,即:Sub-symbol set definition: Let Represents the collection of all PPM symbols. represents the set of symbols in all PPM symbols that satisfy the value of the i-th sub-symbol (S i ) is j, that is:
假设PPM子符号解调器只有来自信道的符号LLR ΓC(y),子符号LLR的计算公式为:子符号对应的LLR的数量为2d(d是子符号比特长度),即子符号的取值范围为j∈{0,1,...,2d-1}。例:假设子符号Si包含2比特,则Si有4个LLR值:Γ(Si)={ΓS(i),0,ΓS(i),1,ΓS(i),2,ΓS(i),3}。Assuming that the PPM sub-symbol demodulator only has the symbol LLR Γ C (y) from the channel, the calculation formula of the sub-symbol LLR is: The number of LLRs corresponding to a sub-symbol is 2 d (d is the sub-symbol bit length), that is, the value range of the sub-symbol is j∈{0, 1, ..., 2 d -1}. Example: Assume that the sub-symbol S i contains 2 bits, then S i has 4 LLR values: Γ(S i ) = {Γ S(i), 0 , Γ S(i), 1 , Γ S(i), 2 , Γ S(i), 3 }.
软判决反馈信息,假设PPM子符号解调器同时有信道LLR ΓC(y)以及先验子符号 子符号LLR(后验)的计算公式为:其中 子符号LLR(外信息)的计算公式为: Soft decision feedback information, assuming that the PPM sub-symbol demodulator has both the channel LLR Γ C (y) and the prior sub-symbol The calculation formula of sub-symbol LLR (posterior) is: in The calculation formula of sub-symbol LLR (external information) is:
例:对于16-PPM、d=(2|2),给定C=13,则 Example: For 16-PPM, d = (2|2), given C = 13, then
硬判决反馈信息,假设PPM子符号解调器同时有信道LLR Pr{y|C}以及子符号Si的硬判决子符号LLR(后验)的计算公式为:注意:当子符号解调器已知则译码器不再重新计算ΓS(i),j,即k≠i。Hard decision feedback information, assuming that the PPM sub-symbol demodulator has both the channel LLR Pr{y|C} and the hard decision of the sub-symbol S i The calculation formula of sub-symbol LLR (posterior) is: Note: When the sub-symbol demodulator is known Then the decoder no longer recalculates Γ S(i),j , that is, k≠i.
作为一种可能的实现方式,反馈模块包括顺序连接的反馈子符号交织单元和反馈延迟单元;反馈子符号交织单元接收子符号反馈序列后进行交织,输出交织子符号反馈序列;反馈延迟单元中配置延迟参数,交织子符号反馈序列在预设时刻输入至反馈延迟单元,并在达到延迟参数后输出延迟交织子符号反馈序列;在下一解码译码周期内,延迟交织子符号反馈序列与接收信号共同参与至解调译码过程。As a possible implementation method, the feedback module includes a feedback sub-symbol interleaving unit and a feedback delay unit connected in sequence; the feedback sub-symbol interleaving unit interleaves the sub-symbol feedback sequence after receiving it, and outputs the interleaved sub-symbol feedback sequence; the delay parameter is configured in the feedback delay unit, the interleaved sub-symbol feedback sequence is input into the feedback delay unit at a preset time, and the delayed interleaved sub-symbol feedback sequence is output after the delay parameter is reached; in the next decoding cycle, the delayed interleaved sub-symbol feedback sequence and the received signal participate in the demodulation and decoding process together.
下面以具体的示例详细阐述接收端的执行过程,应理解,以下举例仅作为示例,不作为限定。The following is a detailed description of the execution process of the receiving end with specific examples. It should be understood that the following examples are only examples and are not intended to be limiting.
参见图13,考虑{d=(2|2|2),δ=[0,1,2]}。如图13所示,对应c(t)的三个子符号序列S(t,1)、S(t,2)、S(t,3)分别在x(t)、x(t+1)、x(t+2)中发送。换句话说,x(t)包含S(t,1)、S(t-1,2)、S(t-2,3)。因此,在收到x(t+2)时可以直接解调得到S(t,3)的LLR;在收到x(t+1),且对c(t-1)译码得到S(t-1,3)的反馈LLR后,才能解调得到S(t,2)的LLR;在收到x(t),且对c(t-1)、c(t-2)译码得到S(t-1,2)、S(t-2,3)的反馈LLR后才能解调得到S(t,1)的LLR。以下为更详细的计算步骤:Referring to FIG13, consider {d = (2|2|2), δ = [0, 1, 2]}. As shown in FIG13, the three sub-symbol sequences S(t, 1), S(t, 2), and S(t, 3) corresponding to c(t) are sent in x(t), x(t+1), and x(t+2), respectively. In other words, x(t) contains S(t, 1), S(t-1, 2), and S(t-2, 3). Therefore, when x(t+2) is received, the LLR of S(t, 3) can be directly demodulated; after x(t+1) is received and c(t-1) is decoded to obtain the feedback LLR of S(t-1, 3), the LLR of S(t, 2) can be demodulated; after x(t) is received and c(t-1) and c(t-2) are decoded to obtain the feedback LLR of S(t-1, 2) and S(t-2, 3), the LLR of S(t, 1) can be demodulated. The following are more detailed calculation steps:
t时刻:此时逆向延迟模块已有{Γ(Sπ(t-2,i))|i=1,2};反馈延迟模块已有Γa(Sπ(t-3,3))。接收到y(t)。利用y(t)计算Γ(Sπ(t-2,3))。逆向延迟模块集齐{Γ(Sπ(t-2,i))|i=1,2,3}。译码得到{Γa(S(t-2,i))|i=2,3}。注意:Γa(S(t-2,1))并不会参与其他子符号的译码,因此译码器不对其进行计算。利用y(t)和Γa(S(t-2,3))计算Γ(Sπ(t-1,2));利用y(t-1)和Γa(S(t-2,2))计算Γ(Sπ(t-1,1))。Time t: At this time, the reverse delay module already has {Γ(S π (t-2, i))|i=1,2}; the feedback delay module already has Γ a (S π (t-3,3)). Receive y(t). Calculate Γ(S π (t-2,3)) using y(t). The reverse delay module collects {Γ(S π (t-2, i))|i=1,2,3}. Decoding yields {Γ a (S(t-2, i))|i=2, 3}. Note: Γ a (S(t-2, 1)) does not participate in the decoding of other sub-symbols, so the decoder does not calculate it. Calculate Γ(S π (t-1, 2)) using y(t) and Γ a (S(t-2, 3)); calculate Γ(S π (t-1, 1)) using y(t-1) and Γ a (S(t-2, 2)).
t+1时刻:接收到y(t+1)。利用y(t+1)计算Γ(Sπ(t-1,3))。逆向延迟模块已有{Γ(Sπ(t-1,i))|t=1,2,3}。译码得到{Γa(S(t-1,i))|i=2,3}。利用y(t)、Γa(Sπ(t-1,2))、Γa(Sπ(t-2,3))计算Γ(Sπ(t,1));利用y(t+1)和Γa(Sπ(t-1,3))计算Γ(Sπ(t,2))。Time t+1: Receive y(t+1). Use y(t+1) to calculate Γ(S π (t-1, 3)). The reverse delay module already has {Γ(S π (t-1, i))|t=1,2,3}. Decoding yields {Γ a (S(t-1,i))|i=2,3}. Use y(t), Γ a (S π (t-1, 2)), Γ a (S π (t-2, 3)) to calculate Γ (S π (t, 1)); use y (t+1) and Γ a (S π (t-1, 3)) to calculate Γ (S π (t, 2)).
t+2时刻:接收到y(t+2)。利用y(t+2)计算Γ(Sπ(t,3))。逆向延迟模块已有{Γ(Sπ(t,i))|t=1,2,3}。译码得到{Γa(S(t,i))|i=2,3}。利用y(t+1)、Γa(Sπ(t,2))、Γa(Sπ(t-1,3))计算Γ(Sπ(t+1,1));利用y(t+2)和Γa(Sπ(t,3))计算Γ(Sπ(t+1,2))。At time t+2: y(t+2) is received. Calculate Γ(S π (t, 3)) using y(t+2). The reverse delay module already has {Γ(S π (t, i))|t=1, 2, 3}. Decoding yields {Γ a (S(t,i))|i=2,3}. Use y(t+1), Γ a (S π (t, 2)), Γ a (S π (t-1, 3)) to calculate Γ (S π (t+1, 1)); use y (t+2) and Γ a (S π (t, 3)) to calculate Γ (S π (t+1, 2)).
作为一种示例,:PPM符号被分为等比特长度的子符号,如:d=(2|2)、d=(3|3)、d=(2|2|2)等。此情况下,(累加器+比特长度为d的子符号)的网格图和2d-APPM的网格一致,因此(卷积码+累加器+比特长度为d的子符号)的译码过程等同于2d-SCPPM的译码过程。例:对于16-PPM、d=(2|2)。码字c(t)的长度为N比特,等同于N/4个符号、N/2个子符号。译码器将子符号LLR Γ(S(t,1))=[Γ(S1,1),Γ(S1,2),...,Γ(S1,N/2)]和Γ(S(t,2))=[Γ(S2,1),Γ(S2,2),...,Γ(S2,N/2)]合并为Γ(S(t))=[Γ(S1,1),Γ(S2,1),Γ(S1,2),Γ(S2,2),...,Γ(S1,N/2),Γ(S2,N/2)]。其中S1,i=bi2de([c1+4(i-1),c2+4(i-1)]),S2,i=bi2de([c3+4(i-1),c4+4(i-1)])。之后将Γ(S(t))作为输入进行(4-APPM+卷积码)的迭代译码(网格图见图14和图15所示)。As an example, a PPM symbol is divided into sub-symbols of equal bit length, such as d = (2|2), d = (3|3), d = (2|2|2), etc. In this case, the grid diagram of (accumulator + sub-symbol with bit length d) is consistent with the grid of 2d- APPM, so the decoding process of (convolutional code + accumulator + sub-symbol with bit length d) is equivalent to the decoding process of 2d- SCPPM. Example: For 16-PPM, d = (2|2). The length of the codeword c(t) is N bits, which is equivalent to N/4 symbols and N/2 sub-symbols. The decoder combines the sub-symbols LLR Γ(S(t,1))=[Γ(S 1,1 ), Γ(S 1,2 ),..., Γ(S 1,N/2 )] and Γ(S(t,2))=[Γ(S 2,1 ), Γ(S 2,2 ),..., Γ(S 2,N/2 )] into Γ(S(t))=[Γ(S 1,1 ), Γ(S 2,1 ), Γ(S 1,2 ), Γ(S 2,2 ),..., Γ(S 1,N/2 ), Γ(S 2,N/2 )]. Where S 1,i = bi2de([c 1+4(i-1) , c 2+4(i-1) ]), S 2,i = bi2de([c 3+4(i-1) , c 4+4(i-1) ]). Then Γ(S(t)) is used as input for iterative decoding of (4-APPM+convolutional code) (see the grid diagrams in Figures 14 and 15).
考虑较复杂的情况:PPM符号被分为不等比特长度的子符号。此情况下,译码器则需要使用不同的APPM网格图。例:对于32-PPM、d=(2|3)。码字c(t)的长度为N比特,等同于N/5个符号、2N/5个子符号。译码器将子符号LLRΓ(S(t,1))=[Γ(S1,1),Γ(S1,2),...,Γ(S1,2N/5)]和Γ(S(t,2))=[Γ(S2,1),Γ(S2,2),...,Γ(S2,2N/5)]合并为Γ(S(t))=[Γ(S1,1),Γ(S2,1),Γ(S1,2),Γ(S2,2),...,Γ(S1,2N/5),Γ(S2,2N/5)],其中S1,i=bi2de([c1+5(i-1),c2+5(i-1)]),S2,i=bi2de([c3+5(i-1),c4+5(i-1),c5+5(i-1)])。之后将Γ(S(t))作为输入进行(4/8-APPM+卷积码)的迭代译码。4/8-APPM指APPM译码器使用混合网格图,在对奇数子符号S1,i使用4-APPM网格图,对偶数子符号S2,i使用8-APPM网格图(参见图16和图17)。Consider a more complex case: the PPM symbol is divided into sub-symbols of unequal bit lengths. In this case, the decoder needs to use a different APPM grid diagram. Example: for 32-PPM, d = (2|3). The length of the codeword c(t) is N bits, which is equivalent to N/5 symbols and 2N/5 sub-symbols. The decoder combines the sub-symbol LLRs Γ(S(t,1))=[Γ( S1,1 ),Γ( S1,2 ), ...,Γ( S1,2N/5 )] and Γ(S(t,2))=[Γ( S2,1 ),Γ( S2,2 ), ...,Γ( S2,2N/5 )] into Γ(S(t))=[Γ( S1,1 ),Γ( S2,1 ),Γ( S1,2 ),Γ( S2,2 ), ...,Γ( S1,2N/5 ),Γ( S2,2N/5 )], where S1 ,i =bi2de([ c1+5(i-1) , c2+5(i-1) ]), S2 ,i =bi2de([ c3+5(i-1) ,c 4+5(i-1) , c 5+5(i-1) ]). Then, Γ(S(t)) is used as input for iterative decoding of (4/8-APPM+convolutional code). 4/8-APPM refers to that the APPM decoder uses a hybrid trellis diagram, using a 4-APPM trellis diagram for odd sub-symbols S 1,i and an 8-APPM trellis diagram for even sub-symbols S 2,i (see Figures 16 and 17).
与现有技术相比,本发明提供的延迟串行级联脉冲位置调制系统,将码字序列中的每个码字利用发送端子符号序列分割模块分割形成多个子符号序列,并进一步的将子符号序列中的比特序列进行交织,以获得交织子符号序列。基于此,对部分交织子符号序列进行延迟,与后续的码字对应的子符号序列一起参与调制。此时,每个PPM符号序列将包含多个来自不同码字的子符号序列。Compared with the prior art, the delayed serial cascade pulse position modulation system provided by the present invention divides each codeword in the codeword sequence into multiple sub-symbol sequences using a transmitting terminal symbol sequence division module, and further interleaves the bit sequence in the sub-symbol sequence to obtain an interleaved sub-symbol sequence. Based on this, part of the interleaved sub-symbol sequence is delayed and modulated together with the sub-symbol sequence corresponding to the subsequent codeword. At this time, each PPM symbol sequence will contain multiple sub-symbol sequences from different codewords.
而且,在接收端,每个时刻接收到的接收信号会利用上一时刻译码成功的子符号反馈序列辅助解调,得到子符号对数似然比。当所有码字所对应的所有子符号序列的对数似然比被完整接收到后,接收端对该码块进行译码、并把软判决或硬判决译码结果反馈回PPM子符号解调模块以辅助其后的接收信号的解调。鉴于此,本发明提供的延迟串行级联脉冲位置调制系统具有较优的差错性能。Moreover, at the receiving end, the received signal received at each moment will use the sub-symbol feedback sequence successfully decoded at the previous moment to assist in demodulation, and obtain the sub-symbol log-likelihood ratio. When the log-likelihood ratios of all sub-symbol sequences corresponding to all codewords are completely received, the receiving end decodes the code block and feeds back the soft decision or hard decision decoding results to the PPM sub-symbol demodulation module to assist in the demodulation of the subsequent received signal. In view of this, the delayed serial cascade pulse position modulation system provided by the present invention has better error performance.
DSCPPM的译码差错性能明显优于SCPPM+单次解调译码方案,最好情况下可以逼近SCPPM+APPM译码方案。可靠性性能仿真结果参见图18和19。参见图18,当M=16、nb=0.1下,SCPPM,APPM译码为理想情况。nb是背景噪声,nb=0.1表明每个时隙收到0.1个光子;M=16表明调制方式为16PPM;每个符号中4个比特,此4个比特经d(2,2)被分为2组2比特的数据流;delta[0,1]代表延迟,0表明无延迟;1表明延迟为1。The decoding error performance of DSCPPM is significantly better than that of SCPPM+single demodulation decoding scheme, and in the best case it can approach that of SCPPM+APPM decoding scheme. See Figures 18 and 19 for the reliability performance simulation results. See Figure 18, when M=16 and nb=0.1, SCPPM and APPM decoding are ideal. nb is the background noise, nb=0.1 indicates that 0.1 photons are received in each time slot; M=16 indicates that the modulation mode is 16PPM; there are 4 bits in each symbol, and these 4 bits are divided into 2 groups of 2-bit data streams by d(2,2); delta[0,1] represents the delay, 0 indicates no delay; 1 indicates that the delay is 1.
参见图19,当M=64、nb=0.1下,nb是背景噪声,nb=0.1表明每个时隙收到O.1个光子;M=64表明调制方式为64PPM;每个符号中6个比特,此6个比特经d(3,3)被分为2组3比特的数据流;delta[0,1]代表延迟,0表明无延迟;1表明延迟为1,此6个比特经d(2,2,2)被分为3组2比特的数据流;delta[0,0,1]代表延迟,0表明无延迟;1表明延迟为1。Referring to Figure 19, when M=64 and nb=0.1, nb is the background noise, and nb=0.1 indicates that O.1 photons are received in each time slot; M=64 indicates that the modulation mode is 64PPM; there are 6 bits in each symbol, and these 6 bits are divided into 2 groups of 3-bit data streams through d(3,3); delta[0,1] represents delay, 0 indicates no delay; 1 indicates that the delay is 1, and these 6 bits are divided into 3 groups of 2-bit data streams through d(2,2,2); delta[0,0,1] represents delay, 0 indicates no delay; 1 indicates that the delay is 1.
再者,本发明的关键点在于采用将码字拆分为子符号序列、交织后进行延迟调制以及对子符号进行APPM译码的联合方法,该联合方法通过延迟将一个高阶的APPM等效拆分成低阶APPM。在不改变现有串行级联脉冲位置调制系统(SCPPM)原有编码模块且使用APPM译码的情况下,相对于现有的SCPPM显著减小了内码的译码复杂度。Furthermore, the key point of the present invention is to adopt a joint method of splitting the codeword into sub-symbol sequences, performing delay modulation after interleaving, and performing APPM decoding on the sub-symbols, and the joint method splits a high-order APPM equivalent into low-order APPMs by delay. Without changing the original encoding module of the existing serial cascade pulse position modulation system (SCPPM) and using APPM decoding, the decoding complexity of the inner code is significantly reduced compared with the existing SCPPM.
需要进一步解释说明的是,DSCPPM的方案核心思想是将一个码字的符号序列分割为子符号序列,并将子符号序列分散在不同时段进行PPM调制,使每个时段发送的PPM信号同时包含多个码字的子符号序列。该结构下,接收端利用一个码字的译码结果辅助其后的码字的子符号解调。It needs to be further explained that the core idea of the DSCPPM scheme is to divide the symbol sequence of a codeword into sub-symbol sequences, and disperse the sub-symbol sequences in different time periods for PPM modulation, so that the PPM signal sent in each time period contains sub-symbol sequences of multiple codewords at the same time. Under this structure, the receiving end uses the decoding result of a codeword to assist in the demodulation of the sub-symbols of the subsequent codewords.
本发明实施例旨在提出一种编码调制结构及其对应的发送接收流程。其中一些设计可做改动,如:交织模块的交织系数、子符号的分割方案、延迟方案。其中的一些计算细节可以替换不同算法:如译码器内部(从输入子符号LLR到给出和译码结果)具体使用的译码算法及其硬件实现,反馈信息的计算,子符号解调的具体计算。The embodiment of the present invention aims to propose a coding modulation structure and its corresponding sending and receiving process. Some of the designs can be modified, such as: the interleaving coefficient of the interleaving module, the sub-symbol segmentation scheme, and the delay scheme. Some of the calculation details can be replaced by different algorithms: such as the specific decoding algorithm used inside the decoder (from inputting sub-symbol LLR to giving and decoding results) and its hardware implementation, the calculation of feedback information, and the specific calculation of sub-symbol demodulation.
在想进一步减少接收端计算复杂度的情况下,也可以直接对PPM信号解调(直接计算比特LLR),译码器使用比特LLR直接译码。DSCPPM+单次比特解调译码比起子符号译码差错性能有损失,但还是会优于SCPPM+单次比特解调译码。对于多个比特序列有相同延迟的情况也可以使用SCPPM+多次比特解调译码,即使用c(t)的PPM比特解调LLR进行译码后,利用c(t)的反馈LLR重新进行PPM比特解调、更新c(t)的PPM比特解调LLR并再次对c(t)译码,重复多次c(t)PPM比特解调+c(t)译码的过程。If you want to further reduce the computational complexity of the receiving end, you can also directly demodulate the PPM signal (directly calculate the bit LLR), and the decoder uses the bit LLR for direct decoding. DSCPPM + single bit demodulation and decoding has a loss in error performance compared to sub-symbol decoding, but it is still better than SCPPM + single bit demodulation and decoding. For multiple bit sequences with the same delay, SCPPM + multiple bit demodulation and decoding can also be used, that is, after using the PPM bit demodulation LLR of c(t) for decoding, use the feedback LLR of c(t) to re-demodulate the PPM bit, update the PPM bit demodulation LLR of c(t) and decode c(t) again, and repeat the process of c(t) PPM bit demodulation + c(t) decoding multiple times.
差错性大体上可以这样排序:SCPPM+APPM>DSCPPM+子符号APPM>DBICM+SCPPM+单次比特解调译码。对于DSCPPM,拆分越少、差错性能越好;子符号数相同时,延迟的时刻越多则性能越好。例:对于64PPM,d=(3|3)优于d=(2|2|2)。对于d=(2|2|2),δ=[0,1,2]优于δ=[0,1,1]。The error performance can be roughly ranked as follows: SCPPM+APPM>DSCPPM+subsymbol APPM>DBICM+SCPPM+single bit demodulation and decoding. For DSCPPM, the fewer splits, the better the error performance; when the number of subsymbols is the same, the more delayed moments, the better the performance. Example: For 64PPM, d=(3|3) is better than d=(2|2|2). For d=(2|2|2), δ=[0,1,2] is better than δ=[0,1,1].
对于理想泊松信道,子序列的延迟顺序不会影响差错性能。(例:对于16-PPM、d=(2|2),δ=[0,1]或δ=[1,0]差错性能一致)。但实际系统可能不是理想泊松信道,子序列的延迟顺序可能会影响差错性能,因此本发明实施例不对延迟顺序做具体规定。For an ideal Poisson channel, the delay order of the subsequences does not affect the error performance. (For example, for 16-PPM, d = (2|2), δ = [0, 1] or δ = [1, 0], the error performance is consistent.) However, the actual system may not be an ideal Poisson channel, and the delay order of the subsequences may affect the error performance. Therefore, the embodiment of the present invention does not make specific provisions for the delay order.
第二方面,本发明还提供一种迟串行级联脉冲位置调制方法,第一方面提供的延迟串行级联脉冲位置调制系统执行延迟串行级联脉冲位置调制方法,包括如下步骤:In a second aspect, the present invention further provides a delayed serial cascade pulse position modulation method. The delayed serial cascade pulse position modulation system provided in the first aspect performs the delayed serial cascade pulse position modulation method, comprising the following steps:
S10.发送端基于原始数据序列输出PPM符号序列;S10. The transmitter outputs a PPM symbol sequence based on the original data sequence;
S20.接收端基于PPM符号序列输出译码结果和子符号反馈序列,其中,子符号反馈序列反馈至发送端,并在下一解调译码周期内,与接收信号共同参与至解调译码过程。S20. The receiving end outputs a decoding result and a sub-symbol feedback sequence based on the PPM symbol sequence, wherein the sub-symbol feedback sequence is fed back to the transmitting end and participates in the demodulation and decoding process together with the received signal in the next demodulation and decoding cycle.
作为一种可能的实现方式,发送端基于原始数据序列输出PPM符号序列包括:As a possible implementation manner, the transmitting end outputs a PPM symbol sequence based on the original data sequence, including:
S100.编码模块接收原始数据序列,经编码后输出码字序列;S100. The encoding module receives the original data sequence and outputs a codeword sequence after encoding;
S101.发送端子符号序列分割模块基于码字序列输出子符号序列;S101. The sending terminal symbol sequence segmentation module outputs a sub-symbol sequence based on the codeword sequence;
S102.子符号交织模块接收每一码字所对应的子符号序列,并对子符号序列中的比特序列进行交织,输出交织子符号序列;S102. The sub-symbol interleaving module receives the sub-symbol sequence corresponding to each codeword, interleaves the bit sequence in the sub-symbol sequence, and outputs the interleaved sub-symbol sequence;
S103.延迟模块中配置有延迟参数,交织子符号序列在预设时刻输入延迟模块,并在达到延迟参数后输出延迟交织子符号序列;S103. The delay module is configured with a delay parameter, the interleaved sub-symbol sequence is input into the delay module at a preset time, and the delayed interleaved sub-symbol sequence is output after the delay parameter is reached;
S104.子符号序列合并模块接收预设时刻的延迟交织子符号序列,并将所有延迟交织子符号序列合并为延迟码字序列;S104. The sub-symbol sequence merging module receives the delayed interleaved sub-symbol sequence at a preset time, and merges all the delayed interleaved sub-symbol sequences into a delayed codeword sequence;
S105.PPM调制模块接收延迟码字序列并进行M-PPM调制,输出PPM符号序列。S105. The PPM modulation module receives the delayed codeword sequence and performs M-PPM modulation, and outputs a PPM symbol sequence.
作为一种可能的实现方式,接收端基于PPM符号序列输出译码结果和子符号反馈序列包括:As a possible implementation manner, the receiving end outputs a decoding result and a sub-symbol feedback sequence based on the PPM symbol sequence, including:
S200.PPM子符号解调模块中配置有先验信息,PPM子符号解调模块接收到与PPM符号序列对应的接收信号,PPM子符号解调模块利用先验信息和接收信号确定子符号对数似然比;S200. The PPM sub-symbol demodulation module is configured with prior information, the PPM sub-symbol demodulation module receives a received signal corresponding to the PPM symbol sequence, and the PPM sub-symbol demodulation module determines a sub-symbol log-likelihood ratio using the prior information and the received signal;
S201.接收端子符号序列分割模块接收子符号对数似然比,并先分割后合并为子符号对数似然比序列;逆向延迟模块缓存子符号对数似然比,当集齐所有的子符号对数似然比后输出至子符号解交织模块;S201. The receiving terminal symbol sequence segmentation module receives the sub-symbol log-likelihood ratios, and first segments and then merges them into a sub-symbol log-likelihood ratio sequence; the reverse delay module caches the sub-symbol log-likelihood ratios, and when all the sub-symbol log-likelihood ratios are collected, they are output to the sub-symbol deinterleaving module;
S202.子符号解交织模块对子符号对数似然比序列分别进行解交织,输出解交织子符号对数似然比;S202. The sub-symbol deinterleaving module deinterleaves the sub-symbol log-likelihood ratio sequences respectively, and outputs the deinterleaved sub-symbol log-likelihood ratios;
S203.译码模块基于解交织子符号对数似然比输出译码结果和子符号反馈序列;S203. The decoding module outputs a decoding result and a sub-symbol feedback sequence based on the deinterleaved sub-symbol log-likelihood ratio;
S204.子符号反馈序列通过反馈模块发送至PPM子符号解调模块,在下一解调译码周期内,子符号反馈序列与接收信号共同参与至解调译码过程。S204. The sub-symbol feedback sequence is sent to the PPM sub-symbol demodulation module through the feedback module. In the next demodulation and decoding cycle, the sub-symbol feedback sequence and the received signal participate in the demodulation and decoding process together.
与现有技术相比,本发明提供的迟串行级联脉冲位置调制方法的有益效果与第一方面和/或第一方面任一种实现方式提供的迟串行级联脉冲位置调制系统的有益效果相同,在此不做赘述。Compared with the prior art, the beneficial effects of the delayed serial cascade pulse position modulation method provided by the present invention are the same as the beneficial effects of the delayed serial cascade pulse position modulation system provided by the first aspect and/or any implementation of the first aspect, and will not be elaborated here.
第三方面,本发明还提供一种深空光通信系统,所述深空光通信系统所采用的编译码系统为第一方面提供的延迟串行级联脉冲位置调制系统。In a third aspect, the present invention further provides a deep space optical communication system, wherein the encoding and decoding system adopted by the deep space optical communication system is the delayed serial cascade pulse position modulation system provided in the first aspect.
与现有技术相比,本发明提供的深空光通信系统的有益效果与第一方面和/或第一方面任一种实现方式提供的迟串行级联脉冲位置调制系统的有益效果相同,在此不做赘述。Compared with the prior art, the beneficial effects of the deep space optical communication system provided by the present invention are the same as the beneficial effects of the delayed serial cascade pulse position modulation system provided by the first aspect and/or any implementation method of the first aspect, and will not be elaborated here.
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of the above embodiments, specific features, structures, materials or characteristics may be combined in a suitable manner in any one or more embodiments or examples.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention, which should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311047900.7A CN117614547B (en) | 2023-08-18 | 2023-08-18 | Delayed serial cascade pulse position modulation system, method and deep space optical communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311047900.7A CN117614547B (en) | 2023-08-18 | 2023-08-18 | Delayed serial cascade pulse position modulation system, method and deep space optical communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117614547A true CN117614547A (en) | 2024-02-27 |
CN117614547B CN117614547B (en) | 2024-11-12 |
Family
ID=89943042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311047900.7A Active CN117614547B (en) | 2023-08-18 | 2023-08-18 | Delayed serial cascade pulse position modulation system, method and deep space optical communication system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117614547B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080187322A1 (en) * | 2007-02-06 | 2008-08-07 | Oerlikon Space Ag | Optical high-rate pulse position modulation scheme and optical communications system based thereon |
US20110176406A1 (en) * | 2008-08-22 | 2011-07-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Efficient Zadoff-Chu Sequence Generation |
US20150147069A1 (en) * | 2013-11-26 | 2015-05-28 | Maite Brandt-Pearce | Expurgated pulse position modulation for communication |
US20200015177A1 (en) * | 2017-03-04 | 2020-01-09 | Lg Electronics Inc. | Method for transmitting synchronization signal in wireless communication system and apparatus therefor |
CN115567138A (en) * | 2022-09-13 | 2023-01-03 | 重庆邮电大学 | Frame synchronization method based on optical pulse position modulation signal |
-
2023
- 2023-08-18 CN CN202311047900.7A patent/CN117614547B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080187322A1 (en) * | 2007-02-06 | 2008-08-07 | Oerlikon Space Ag | Optical high-rate pulse position modulation scheme and optical communications system based thereon |
US20110176406A1 (en) * | 2008-08-22 | 2011-07-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Efficient Zadoff-Chu Sequence Generation |
US20150147069A1 (en) * | 2013-11-26 | 2015-05-28 | Maite Brandt-Pearce | Expurgated pulse position modulation for communication |
US20200015177A1 (en) * | 2017-03-04 | 2020-01-09 | Lg Electronics Inc. | Method for transmitting synchronization signal in wireless communication system and apparatus therefor |
CN115567138A (en) * | 2022-09-13 | 2023-01-03 | 重庆邮电大学 | Frame synchronization method based on optical pulse position modulation signal |
Non-Patent Citations (7)
Title |
---|
CHENG, MICHAEL K.: "Optimizations of a hardware decoder for deep-space optical communications", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, vol. 55, no. 2, 1 March 2008 (2008-03-01), pages 644 - 658 * |
TAN YING: "Iterative Coded Multipulse Pulse Position Modulation for High Data Rate Optical Space Communication", CHINESE JOURNAL OF ELECTRONICS, vol. 20, no. 1, 14 June 2011 (2011-06-14), pages 121 - 124 * |
李皓: "深空光通信中的SCPPM编码性能研究", 中国优秀硕士学位论文全文数据库 (信息科技辑), 15 April 2014 (2014-04-15), pages 136 - 311 * |
王岩;张化勋;张猛;孙海欣;: "深空通信中新型脉冲位置调制技术研究", 中国激光, no. 05, 10 May 2016 (2016-05-10), pages 167 - 175 * |
祁权: "深空光通信中光子探测器阵列时延对准及合成技术的研究", 中国优秀硕士学位论文全文数据库 (基础科学辑), 15 February 2020 (2020-02-15), pages 005 - 709 * |
胡昊;王红星;徐建武;孙晓明;刘敏;: "无线光通信中一种迭代解调的比特交织乘积编码脉冲位置调制", 光学学报, no. 08, 10 August 2011 (2011-08-10), pages 50 - 56 * |
闻冠华: "深空光通信调制编码及探测技术研究", 中国博士学位论文全文数据库 (信息科技辑), 15 January 2022 (2022-01-15), pages 136 - 142 * |
Also Published As
Publication number | Publication date |
---|---|
CN117614547B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5354979B2 (en) | Low density parity check convolutional code (LDPC-CC) encoder and LDPC-CC decoder | |
US7310768B2 (en) | Iterative decoder employing multiple external code error checks to lower the error floor | |
US7516389B2 (en) | Concatenated iterative and algebraic coding | |
EP1783916B1 (en) | Apparatus and method for stopping iterative decoding in a mobile communication system | |
KR100491910B1 (en) | Method and apparatus for detecting communication signals having unequal error protection | |
US6606724B1 (en) | Method and apparatus for decoding of a serially concatenated block and convolutional code | |
US7331012B2 (en) | System and method for iterative decoding of Reed-Muller codes | |
CN100517984C (en) | Viterbi/turbo joint decoder for mobile communication system | |
JP2001237809A (en) | Error correction coding type digital transmission method | |
EP2418796B1 (en) | Bitwise reliability indicators from survivor bits in Viterbi decoders | |
Chen | Iterative soft decoding of Reed-Solomon convolutional concatenated codes | |
WO2007068554A1 (en) | Serial concatenation scheme and its iterative decoding using an inner ldpc and an outer bch code | |
JP2001257601A (en) | Method for digital signal transmission of error correction coding type | |
WO2008034287A1 (en) | An interleaving scheme for an ldpc coded 32apsk system | |
CN108134612B (en) | An Iterative Decoding Method of Concatenated Codes for Correcting Synchronization and Substitution Errors | |
Xu | Soft decoding algorithm for RS-CC concatenated codes in WIMAX system | |
CN117614547B (en) | Delayed serial cascade pulse position modulation system, method and deep space optical communication system | |
WO2007037713A1 (en) | Modified turbo-decoding message-passing algorithm for low-density parity check codes | |
CN101150551A (en) | Interleaving Scheme for QPSK/8PSK System with Low Density Parity Check Code | |
Deng et al. | Reliability and throughput analysis of a concatenated coding scheme | |
Jassim et al. | A study of forward error-correction techniques in digital communication systems | |
CN108400788A (en) | The hardware implementation method of Turbo decodings | |
KR101562220B1 (en) | Decoding method and apparatus for non-binary low density parity check code | |
CN101150550A (en) | Interleaving scheme of LDPC coded 16APSK system | |
JP2001257602A (en) | Data error correction method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |