[go: up one dir, main page]

CN117600467A - 一种高承温、耐冲刷抗氧化钨基合金及其制备方法 - Google Patents

一种高承温、耐冲刷抗氧化钨基合金及其制备方法 Download PDF

Info

Publication number
CN117600467A
CN117600467A CN202311720033.9A CN202311720033A CN117600467A CN 117600467 A CN117600467 A CN 117600467A CN 202311720033 A CN202311720033 A CN 202311720033A CN 117600467 A CN117600467 A CN 117600467A
Authority
CN
China
Prior art keywords
tungsten
based alloy
resistant
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311720033.9A
Other languages
English (en)
Inventor
谭敦强
钟建辉
侯肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202311720033.9A priority Critical patent/CN117600467A/zh
Publication of CN117600467A publication Critical patent/CN117600467A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F3/172Continuous compaction, e.g. rotary hammering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高承温、耐冲刷抗氧化钨基合金及其制备方法,涉及高温抗氧化材料制备领域,具体包括钨基合金的制备、表面处理、过渡铼涂层制备和抗氧化铱复合涂层制备,钨基合金选用纯度>99.99%金属原料,添加氧化物或碳化物颗粒增强相,表面处理时先进行表面刻蚀再进行表面稳定化处理,过渡铼涂层选用熔盐电沉积或化学气相沉积方法制备,抗氧化铱复合涂层选用电沉积方法制备铱‑铪或铱‑钍复合涂层。本发明能够提高钨基合金的高温强度,并解决其不能在高温氧化氛围中使用的限制,拓展了其应用温度范围,所制备的涂层与基体结合力良好,能够应用于高承温、耐冲刷抗氧化等多种场景,进一步扩大了钨基合金的应用领域。

Description

一种高承温、耐冲刷抗氧化钨基合金及其制备方法
技术领域
本发明涉及高温抗氧化材料制备领域,具体涉及一种高承温、耐冲刷抗氧化钨基合金及其制备方法。
背景技术
钨基合金熔点高达3000℃,具有良好的高温性能、再结晶后塑性好和焊接性能好等优点,被广泛应用于有色金属冶金、航天、航空及核能等领域,但在使用过程中钨基合金不具备抗氧化性能,在500℃以上会发生剧烈氧化,故而无法在极端环境下服役。改善钨基合金2000℃以上抗氧化性能可用的方法之一是表面改性,即在钨基合金表面制备厚度适中,满足使用要求的抗氧化表面涂层。常见的有陶瓷及金属抗氧化层,在钨基合金表面制备陶瓷抗氧化涂层是目前较为常见的方法,但由于陶瓷的热膨胀系数较钨基合金大,抗热震性能差,使用过程中界面易分离,会失去保护作用;选择热膨胀系数相匹配的金属抗氧化层,可以有望提升钨基合金在高温氧化环境的使用性能。目前,在钨基合金表面制备金属抗氧化层的报道较少,CN201510925325.5在制备的钨基合金中添加抗氧化元素来提高基材抗氧化性能,但仅仅是减小了氧化速率,并不能很好的解决基材氧化问题;CN202111059137.0在钨或钨合金表面制备了耐高温抗冲刷的表面涂层,涂层体系较为简单,但没有从钨基体优化角度出发协同提高整体钨合金性能,在高温环境下易因晶界合并长大、强度降低等原因导致钨合金失效。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种高承温、耐冲刷抗氧化钨基合金及其制备方法。
本发明的技术解决方案如下:
一种高承温、耐冲刷抗氧化钨基合金的制备方法,将钨粉、铼粉或钼粉或钽粉和增强相进行混合,混匀后得到钨基合金粉末,将钨基合金粉末依序经成型压制、烧结、旋锻、退火以及表面处理,然后将表面处理后的钨基合金依序进行沉积过渡涂层和沉积抗氧化涂层。
优选地,包括以下步骤:
S1:将钨粉、铼粉或钼粉或钽粉和增强相进行混合,得到混合粉末,其中混合后增强相占钨基合金粉末重量的1.0~4.0%;
S2:将混合粉末放入双锥混料机中进行混料,得到钨基合金粉末;
S3:将钨基合金粉末压制成坯条;
S4:将坯条在氢气保护氛围进行中频感应烧结,烧结温度2200~2400℃,得到钨基合金坯体;
S5:将钨基合金坯体、进行旋锻,旋锻加热温度1400~1500℃,得到钨基合金;
S6:将钨基合金清洗后进行去应力退火,退火温度900~1050℃,退火过程使用氩气或氢气作为保护气氛;
S7:对退火后的钨基合金进行表面刻蚀和表面稳定化处理;
S8:将表面处理后的钨基合金表面通过熔盐电沉积或化学气相沉积制备金属过渡涂层,过渡涂层为铼涂层;
S9:将制备金属过渡涂层的钨基合金表面通过电沉积制备抗氧化复合涂层,抗氧化涂层为铱复合涂层,包括铱-铪、铱-钍涂层。
优选地,步骤S1中,钨粉、铼粉或钼粉或钽粉纯度均不低于99.99%;
增强相为氧化钍、氧化镧、氧化铪、碳化钛、碳化铪、碳化锆和碳化铌中的至少一种。
优选地,步骤S2中,双锥混料机的变频转速10~50r/min,混料时间60~180min。
优选地,步骤S3中,使用冷等静压法进行压制,具体为:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力120~180MPa,保压时间15~120s,成型坯条致密度大于60%;
和/或,步骤S4中,在还原气氛中烧结。
优选地,步骤S5中,旋锻时保温时间8~12min,道次变形量为8~15%。
优选地,步骤S7中,表面处理时,先采用刻蚀液进行表面刻蚀,再采用处理液进行表面稳定化处理;
其中,刻蚀液包括氢氧化钠、铁氰化钾、重铬酸钾、钨酸钠和水,刻蚀处理在超声环境下进行,刻蚀时间20~100s;
表面稳定化处理液包括氢氧化钠、无水乙醇、2-甲基-1-已稀、硫酸钠和水,直流稳压电源的电流密度范围为1.0~4.0A/cm2,稳定化处理时间不低于30s。
优选地,步骤S8中,熔盐电沉积用的熔盐包括氯化钠、氯化钾、氯化铯和六氯铼酸钾,电沉积过程在盐浴电解炉中进行,通入氩气进行保护,铼丝做阳极,电解抛光后的钨基合金做阴极,电流密度范围3~300mA/cm2,电沉积温度750~950℃,电沉积时间5~200min;
或通过化学气相沉积制备铼过渡层,化学气相沉积的蒸发源为五氯化铼,蒸发温度范围350~450℃,装载量为0.5~20g,输送气体为氩氢混合气体,沉积温度范围为1000~1250℃,沉积时间30~300min;制备完铼过渡涂层后将样品依次置于无水乙醇、异丙醇、去离子水中超声清洗,烘干后备用。
优选地,步骤S8中,电沉积用熔盐包括铱盐、铪盐、钍盐中的一种或两种以上的主盐以及导电盐;
所述铱盐包括氟化铱、氯化铱、溴化铱、碘化铱中的一种或两种以上,
所述铪盐包括氟化铪、氯化铪、溴化铪中的一种或两种以上,
所述钍盐包括氯化钍、氯化钍中的一种或两种以上,其中,铱的质量分数为5~10wt.%,铪的质量分数为0.05~0.2wt.%,钍的质量分数为0.05~0.2wt.%,导电盐包括氯化钠、氯化钾、氯化锂、氟化钠、氟化钾、氰化钠、氰化钾、氯化铯中的两种或两种以上,导电盐的质量分数为15~60wt.%;含铼过渡层的钨基合金作为阴极,铱丝或铪丝或钍丝作为阳极,电沉积时熔盐温度升至550~650℃,并保温;电流密度1.0~5.0A/dm2;电沉积时间0.1~10h;制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗,干燥备用。
本发明还公开了一种高承温、耐冲刷抗氧化钨基合金,采用如上任一所述的制备方法制得
本发明的有益效果是:本发明通过甄选钨基合金中的杂质元素和添加增强相,可有效提高合金本身的高温强度等性能,为解决钨基钨基不能在氧化氛围中使用的限制,本发明采用了表面改性及抗氧化复合涂层制备技术。通过此方法,所制备的涂层与基体结合力良好能够应用于高承温、耐冲刷抗氧化等多种场景,如钨铼合金用于温度测量领域,钨钍合金用于高温冲刷结构件领域等,进一步扩大了钨基合金的应用领域。
附图说明
图1为本发明中复合涂层结构示意图,图中:1-钨基合金基体,2-铼过渡层,3-抗氧化铱复合层。
图2为本发明实施例1高承温、耐冲刷抗氧化钨基合金抗氧化铱复合涂层微观形貌。
图3为本发明实施例2高承温、耐冲刷抗氧化钨基合金抗氧化铱复合涂层氧乙炔焰考核后的微观形貌。
图4为本发明实施例3高承温、耐冲刷抗氧化钨基合金抗氧化铱复合涂层氧乙炔焰考核后的微观形貌。
具体实施方式
一种高承温、耐冲刷抗氧化钨基合金的制备方法,将钨粉、铼粉或钼粉或钽粉和增强相进行混合,混匀后得到钨基合金粉末,将钨基合金粉末依序经成型压制、烧结、旋锻、退火以及表面处理,然后将表面处理后的钨基合金依序进行沉积过渡涂层和沉积抗氧化涂层。具体的,一种高承温、耐冲刷抗氧化钨基合金,参考图1,从下至上依序包括钨基合金基体1、铼过渡层2以及抗氧化铱复合层3。
具体地,包括以下步骤:
S1:将钨粉、铼粉或钼粉或钽粉和增强相进行混合,得到混合粉末,其中混合后增强相占钨基合金粉末重量的1.0~4.0%;
S2:将混合粉末放入双锥混料机中进行混料,得到钨基合金粉末;
S3:将钨基合金粉末压制成坯条;
S4:将坯条在氢气保护氛围进行中频感应烧结,烧结温度2200~2400℃,优选2300℃,得到钨基合金坯体;
S5:将钨基合金坯体、进行旋锻,旋锻加热温度1400~1500℃,优选1450℃,得到钨基合金;
S6:将钨基合金清洗后进行去应力退火,退火温度900~1050℃,优选1000℃,退火过程使用氩气或氢气作为保护气氛;
S7:对退火后的钨基合金进行表面刻蚀和表面稳定化处理;
S8:将表面处理后的钨基合金表面通过熔盐电沉积或化学气相沉积制备金属过渡涂层,过渡涂层为铼涂层;
S9:将制备金属过渡涂层的钨基合金表面通过电沉积制备抗氧化复合涂层,抗氧化涂层为铱复合涂层,包括铱-铪、铱-钍涂层。
优选地,步骤S1中,钨粉、铼粉或钼粉或钽粉纯度均不低于99.99%;
增强相为氧化钍、氧化镧、氧化铪、碳化钛、碳化铪、碳化锆和碳化铌中的至少一种。
优选地,步骤S2中,双锥混料机的变频转速10~50r/min,混料时间60~180min。
优选地,步骤S3中,使用冷等静压法进行压制,具体为:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力120~180MPa,保压时间15~120s,成型坯条致密度大于60%;
和/或,步骤S4中,在还原气氛中烧结。
优选地,其特征在于,步骤S5中,旋锻时保温时间8~12min,优选10min,道次变形量为8~15%。
优选地,步骤S7中,表面处理时,先采用刻蚀液进行表面刻蚀,再采用处理液进行表面稳定化处理;
其中,刻蚀液包括氢氧化钠、铁氰化钾、重铬酸钾、钨酸钠和水,所述氢氧化钠浓度范围在20~60g/L,铁氰化钾浓度范围在10~30g/L,重铬酸钾浓度范围在20~60g/L,钨酸钠浓度范围在1~10g/L,刻蚀处理在频率为2840KHz的超声环境下进行,刻蚀时间20~100s;
表面稳定化处理液包括氢氧化钠、无水乙醇、2-甲基-1-已稀、硫酸钠和水,其中氢氧化钠的浓度为20~40g/L,无水乙醇的浓度为10~50g/L,2-甲基-1-己烯的浓度为1~5g/L,硫酸钠的浓度为50~100g/L,直流稳压电源的电流密度范围为1.0~4.0A/cm2,稳定化处理时间不低于30s。
优选地,步骤S8中,熔盐电沉积用的熔盐包括氯化钠、氯化钾、氯化铯和六氯铼酸钾,所述氯化钠质量分数在10~20wt.%,氯化钾质量分数10~20wt.%,氯化铯质量分数在40~80wt.%,六氯铼酸钾质量分数在2~15wt.%,电沉积过程在盐浴电解炉中进行,通入氩气进行保护,铼丝做阳极,电解抛光后的钨基合金做阴极,电流密度范围3~300mA/cm2,电沉积温度750~950℃,电沉积时间5~200min;
或通过化学气相沉积制备铼过渡层,化学气相沉积的蒸发源为五氯化铼,蒸发温度范围350~450℃,装载量为0.5~20g,输送气体为氩氢混合气体,沉积温度范围为1000~1250℃,沉积时间30~300min;制备完铼过渡涂层后将样品依次置于无水乙醇、异丙醇、去离子水中超声清洗10~30min,在50~80℃烘干24h后备用。
优选地,步骤S8中,电沉积用熔盐包括铱盐、铪盐、钍盐中的一种或两种以上的主盐以及导电盐;
所述铱盐包括氟化铱、氯化铱、溴化铱、碘化铱中的一种或两种以上,
所述铪盐包括氟化铪、氯化铪、溴化铪中的一种或两种以上,
所述钍盐包括氯化钍、氯化钍中的一种或两种以上,其中,铱的质量分数为5~10wt.%,铪的质量分数为0.05~0.2wt.%,钍的质量分数为0.05~0.2wt.%,导电盐包括氯化钠、氯化钾、氯化锂、氟化钠、氟化钾、氰化钠、氰化钾、氯化铯中的两种或两种以上,导电盐的质量分数为15~60wt.%;含铼过渡层的钨基合金作为阴极,铱丝或铪丝或钍丝作为阳极,电沉积时熔盐温度升至550~650℃,并保温;电流密度1.0~5.0A/dm2;电沉积时间0.1~10h;制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗备用。
以下为具体实施对本发明的技术方案作进一步说明。
实施例1
(1)配料:采用纯度为99.99%的钨粉及纯度为99.99%的铼粉进行配料,添加的增强相氧化钍重量百分比为2.2%;
(2)合批混料:将称取的钨粉、铼粉及氧化钍放入双锥混料机中进行混料,所用变频转速为45r/min,混料时间120min,得到均匀的钨基混合粉末;
(3)成型、烧结:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力140MPa,保压时间60s,得到成型坯条,相对致密度为61.72%,将成型后的坯条在氢气保护氛围下在中频感应炉中进行烧结,烧结温度2300℃,保温时间180min;
(4)旋锻:将烧结后的钨基合金棒进行多次旋锻,旋锻加热在氢气保护气氛炉中进行,旋锻加热温度1450℃,得到钨基合金基材;将钨基合金清洗后进行去应力退火,退火温度1000℃,退火过程使用氩气或氢气作为保护气氛;
(5)对退火后的钨基合金进行表面刻蚀和表面稳定化处理:表面刻蚀液氢氧化钠浓度40g/L,铁氰化钾浓度20g/L,重铬酸钾浓度40g/L,钨酸钠浓度5g/L,刻蚀处理时间60s;表面稳定化处理液氢氧化钠的浓度为30g/L,无水乙醇的浓度为30g/L,2-甲基-1-己烯的浓度为4g/L,硫酸钠的浓度为70g/L,直流稳压电源的电流密度范围为3.0A/cm2,抛光时间120s;
(6)过渡铼涂层制备:熔盐电沉积盐中氯化钠质量分数15wt.%,氯化钾质量分数15wt.%,氯化铯质量分数在60wt.%,六氯铼酸钾质量分数在8wt.%,电沉积过程在盐浴电解炉中进行,通入氩气进行保护,铼丝做阳极,电解抛光后的钨基合金做阴极,电流密度范围120mA/cm2,电沉积温度800℃,电沉积时间60min;
(7)抗氧化铱复合涂层制备:称取三氯化铱(以铱计)5wt.%,称量氯化钠、氯化钾、氯化铯共计95wt.%,配制成混合盐,加热至150℃真空干燥24h,含铼过渡层的钨基合金作为阴极,铱丝作为阳极,熔盐升温至580℃保温0.5h,电流密度2.0A/dm2,电沉积时间1h,制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗备用;
(8)强度测试:高温抗拉强度测试按照GB/T 228.2-2015进行,将制备的钨基合金在温度1600℃、应变速率0.06min-1条件下测试,所测得高温抗拉强度为190MPa;
(9)考核:将制备了抗氧化涂层的钨基合金置于氧乙炔焰中进行3000K热烧蚀考核10s,考核后样品表面形貌未见破损,参考图2。
实施例2
(1)配料:采用纯度为99.99%的钨粉及纯度为99.99%的钽粉进行配料,添加的碳化钛重量百分比为1.6%;
(2)合批混料:将称取的钨粉、钽粉及碳化钛放入双锥混料机中进行混料,所用变频转速为50r/min,混料时间160min,得到均匀的钨基混合粉末;
(3)成型、烧结:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力140MPa,保压时间100s,得到成型坯条,相对致密度为62.16%,将成型后的坯条在氢气保护氛围下在中频感应炉中进行烧结,烧结温度2300℃,保温时间180min;
(4)旋锻:将烧结后的钨基合金棒进行多次旋锻,旋锻加热在氢气保护气氛炉中进行,旋锻加热温度1450℃,得到钨基合金基材;将钨基合金清洗后进行去应力退火,退火温度1000℃,退火过程使用氩气或氢气作为保护气氛;
(5)对退火后的钨基合金进行表面刻蚀和表面稳定化处理:表面刻蚀液氢氧化钠浓度35g/L,铁氰化钾浓度25g/L,重铬酸钾浓度35g/L,钨酸钠浓度8g/L,绒化处理时间80s;表面稳定化处理液氢氧化钠的浓度为35g/L,无水乙醇的浓度为35g/L,2-甲基-1-己烯的浓度为3g/L,硫酸钠的浓度为80g/L,直流稳压电源的电流密度范围为2.0A/cm2,抛光时间180s;
(6)过渡铼涂层制备:采用化学气相沉积技术制备铼过渡层的蒸发源为五氯化铼,蒸发温度范围400℃,装载量为2g,输送气体为氩氢混合气体,沉积温度范围为1200℃,沉积时间60min;
(7)抗氧化铱复合涂层制备:称取三氯化铱(以铱计)5wt.%,四氯化铪(以铪计)0.05wt.%,称量氯化钠、氯化钾、氯化铯共计94.95wt.%,配制成混合盐,加热至150℃真空干燥24h,含铼过渡层的钨基合金作为阴极,铱丝作为阳极,熔盐升温至600℃保温0.5h,电流密度2.5A/dm2,电沉积时间1h,制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗备用;
(8)强度测试:高温抗拉强度测试按照GB/T 228.2-2015进行,将制备的钨基合金在温度1600℃、应变速率0.06min-1条件下测试,所测得高温抗拉强度为255MPa;
(9)考核:将制备了抗氧化涂层的钨基合金置于氧乙炔焰中进行3000K热烧蚀考核10s,考核后样品表面形貌未见破损,参考图3。
实施例3
(1)配料:采用纯度为99.99%的钨粉及纯度为99.99%的铼粉进行配料,添加的氧化镧重量百分比为1.2%;
(2)合批混料:将称取的钨粉、铼粉基氧化镧放入双锥混料机中进行混料,所用变频转速为50r/min,混料时间160min,得到均匀的钨基混合粉末;
(3)成型、烧结:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力140MPa,保压时间100s,得到成型坯条,相对致密度为62.16%,将成型后的坯条在氢气保护氛围下在中频感应炉中进行烧结,烧结温度2300℃,保温时间180min;
(4)旋锻:将烧结后的钨基合金棒进行多次旋锻,旋锻加热在氢气保护气氛炉中进行,得到钨基合金基材;将钨基合金清洗后进行去应力退火,退火温度1000℃,退火过程使用氩气或氢气作为保护气氛;
(5)对退火后的钨基合金进行表面刻蚀和表面稳定化处理:表面刻蚀液氢氧化钠浓度30g/L,铁氰化钾浓度25g/L,重铬酸钾浓度30g/L,钨酸钠浓度5g/L,绒化处理时间80s;表面稳定化处理液氢氧化钠的浓度为30g/L,无水乙醇的浓度为40g/L,2-甲基-1-己烯的浓度为5g/L,硫酸钠的浓度为85g/L,直流稳压电源的电流密度范围为2.0A/cm2,抛光时间150s;
(6)过渡铼涂层制备:采用化学气相沉积技术制备铼过渡层的蒸发源为五氯化铼,蒸发温度范围400℃,装载量为2g,输送气体为氩氢混合气体,沉积温度范围为1150℃,沉积时间60min;
(7)抗氧化铱复合涂层制备:称取三氯化铱(以铱计)5wt.%,四氯化铪(以铪计)0.25wt.%,称量氯化钠、氯化钾、氯化铯共计94.75wt.%,配制成混合盐,加热至150℃真空干燥24h,含铼过渡层的钨基合金作为阴极,铱丝作为阳极,熔盐升温至600℃保温0.5h,电流密度2.5A/dm2,电沉积时间1h,制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗备用;
(8)强度测试:高温抗拉强度测试按照GB/T 228.2-2015进行,将制备的钨基合金在温度1600℃、应变速率0.06min-1条件下测试,所测得高温抗拉强度为230MPa;
(9)考核:将制备了抗氧化涂层的钨基合金置于氧乙炔焰中进行3000K热烧蚀考核10s,考核后样品表面形貌未见破损,参考图4。
综上可知,在氧化氛围同时3000k的高温下,本发明实施例1-3制备的涂层与基体未见破损,表明涂层和基体的结合力良好,可有效提高合金本身的高温强度的性能,克服了钨基不能在氧化氛围中使用的限制,且能够很好地应用于高承温、耐冲刷抗氧化等多种场景,如钨铼合金用于温度测量领域,钨钍合金用于高温冲刷结构件领域等,进一步扩大了钨基合金的应用领域。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,可根据以上描述的技术方案以及构思,还可以做出其他各种相应的改变以及变形,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

1.一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,将钨粉、铼粉或钼粉或钽粉和增强相进行混合,混匀后得到钨基合金粉末,将钨基合金粉末依序经成型压制、烧结、旋锻、退火以及表面处理,然后将表面处理后的钨基合金依序进行沉积过渡涂层和沉积抗氧化涂层。
2.根据权利要求1所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,包括以下步骤:
S1:将钨粉、铼粉或钼粉或钽粉和增强相进行混合,得到混合粉末,其中混合后增强相占钨基合金粉末重量的1.0~4.0%;
S2:将混合粉末放入双锥混料机中进行混料,得到钨基合金粉末;
S3:将钨基合金粉末压制成坯条;
S4:将坯条在氢气保护氛围进行中频感应烧结,烧结温度2200~2400℃,得到钨基合金坯体;
S5:将钨基合金坯体、进行旋锻,旋锻加热温度1400~1500℃,得到钨基合金;
S6:将钨基合金清洗后进行去应力退火,退火温度900~1050℃,退火过程使用氩气或氢气作为保护气氛;
S7:对退火后的钨基合金进行表面刻蚀和表面稳定化处理;
S8:将表面处理后的钨基合金表面通过熔盐电沉积或化学气相沉积制备金属过渡涂层,过渡涂层为铼涂层;
S9:将制备金属过渡涂层的钨基合金表面通过电沉积制备抗氧化复合涂层,抗氧化涂层为铱复合涂层,包括铱-铪、铱-钍涂层。
3.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S1中,钨粉、铼粉或钼粉或钽粉纯度均不低于99.99%;
增强相为氧化钍、氧化镧、氧化铪、碳化钛、碳化铪、碳化锆和碳化铌中的至少一种。
4.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S2中,双锥混料机的变频转速10~50r/min,混料时间60~180min。
5.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S3中,使用冷等静压法进行压制,具体为:将混合后的钨基合金粉装入聚氨酯包套中进行冷等静压,压制压力120~180MPa,保压时间15~120s,成型坯条致密度大于60%;
和/或,步骤S4中,在还原气氛中烧结。
6.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S5中,旋锻时保温时间8~12min,道次变形量为8~15%。
7.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S7中,表面处理时,先采用刻蚀液进行表面刻蚀,再采用处理液进行表面稳定化处理;
其中,刻蚀液包括氢氧化钠、铁氰化钾、重铬酸钾、钨酸钠和水,刻蚀处理在超声环境下进行,刻蚀时间20~100s;
表面稳定化处理液包括氢氧化钠、无水乙醇、2-甲基-1-已稀、硫酸钠和水,直流稳压电源的电流密度范围为1.0~4.0A/cm2,稳定化处理时间不低于30s。
8.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S8中,熔盐电沉积用的熔盐包括氯化钠、氯化钾、氯化铯和六氯铼酸钾,电沉积过程在盐浴电解炉中进行,通入氩气进行保护,铼丝做阳极,电解抛光后的钨基合金做阴极,电流密度范围3~300mA/cm2,电沉积温度750~950℃,电沉积时间5~200min;
或通过化学气相沉积制备铼过渡层,化学气相沉积的蒸发源为五氯化铼,蒸发温度范围350~450℃,装载量为0.5~20g,输送气体为氩氢混合气体,沉积温度范围为1000~1250℃,沉积时间30~300min;制备完铼过渡涂层后将样品依次置于无水乙醇、异丙醇、去离子水中超声清洗,烘干后备用。
9.根据权利要求2所述的一种高承温、耐冲刷抗氧化钨基合金的制备方法,其特征在于,步骤S8中,电沉积用熔盐包括铱盐、铪盐、钍盐中的一种或两种以上的主盐以及导电盐;
所述铱盐包括氟化铱、氯化铱、溴化铱、碘化铱中的一种或两种以上,
所述铪盐包括氟化铪、氯化铪、溴化铪中的一种或两种以上,
所述钍盐包括氯化钍、氯化钍中的一种或两种以上,其中,铱的质量分数为5~10wt.%,铪的质量分数为0.05~0.2wt.%,钍的质量分数为0.05~0.2wt.%,导电盐包括氯化钠、氯化钾、氯化锂、氟化钠、氟化钾、氰化钠、氰化钾、氯化铯中的两种或两种以上,导电盐的质量分数为15~60wt.%;含铼过渡层的钨基合金作为阴极,铱丝或铪丝或钍丝作为阳极,电沉积时熔盐温度升至550~650℃,并保温;电流密度1.0~5.0A/dm2;电沉积时间0.1~10h;制备完成后将样件置于沸水中清洗表面残盐,用无水乙醇超声清洗,干燥备用。
10.一种高承温、耐冲刷抗氧化钨基合金,其特征在于,采用如权利要求1-9任一所述的制备方法制得。
CN202311720033.9A 2023-12-14 2023-12-14 一种高承温、耐冲刷抗氧化钨基合金及其制备方法 Pending CN117600467A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311720033.9A CN117600467A (zh) 2023-12-14 2023-12-14 一种高承温、耐冲刷抗氧化钨基合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311720033.9A CN117600467A (zh) 2023-12-14 2023-12-14 一种高承温、耐冲刷抗氧化钨基合金及其制备方法

Publications (1)

Publication Number Publication Date
CN117600467A true CN117600467A (zh) 2024-02-27

Family

ID=89959723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311720033.9A Pending CN117600467A (zh) 2023-12-14 2023-12-14 一种高承温、耐冲刷抗氧化钨基合金及其制备方法

Country Status (1)

Country Link
CN (1) CN117600467A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024680A (en) * 1988-11-07 1991-06-18 Norton Company Multiple metal coated superabrasive grit and methods for their manufacture
CN103805995A (zh) * 2014-01-24 2014-05-21 中国人民解放军国防科学技术大学 碳/碳复合材料抗氧化用铼/铱涂层表面缺陷的修复方法
CN108034939A (zh) * 2017-12-07 2018-05-15 华中科技大学 一种钨铼热电偶高温抗氧化涂层的致密化方法
CN110863167A (zh) * 2019-12-06 2020-03-06 华中科技大学 一种铌钨合金超高温抗氧化涂层结构及其制备方法
CN113622003A (zh) * 2021-09-10 2021-11-09 南昌大学 一种氧化氛围下用耐高温抗冲刷钨或钨合金表面涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024680A (en) * 1988-11-07 1991-06-18 Norton Company Multiple metal coated superabrasive grit and methods for their manufacture
CN103805995A (zh) * 2014-01-24 2014-05-21 中国人民解放军国防科学技术大学 碳/碳复合材料抗氧化用铼/铱涂层表面缺陷的修复方法
CN108034939A (zh) * 2017-12-07 2018-05-15 华中科技大学 一种钨铼热电偶高温抗氧化涂层的致密化方法
CN110863167A (zh) * 2019-12-06 2020-03-06 华中科技大学 一种铌钨合金超高温抗氧化涂层结构及其制备方法
CN113622003A (zh) * 2021-09-10 2021-11-09 南昌大学 一种氧化氛围下用耐高温抗冲刷钨或钨合金表面涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN106191525B (zh) 一种高强度耐腐蚀钛合金及制备方法
CN107175398A (zh) 一种钼合金与钨合金的sps扩散焊接方法
CN110551918B (zh) 一种钛合金高温钎料及其制备方法
CN105950944B (zh) 一种高熔点高熵合金NbMoTaWVTi及其制备方法
CN115572858B (zh) 一种细小全片层变形TiAl合金及其制备方法
CN113403555B (zh) 通过热变形工艺改善硅化物增强难熔高熵合金性能的方法
CN107486619A (zh) 一种TZM与WRe异种难熔合金的SPS扩散焊接方法
CN105018793B (zh) 一种耐热钛合金
CN105779821A (zh) 一种高强高韧损伤容限型结构钛合金
CN101457331A (zh) 一种TiAl合金棒材的制备方法
CN105603258B (zh) 一种高强度锆合金及制备方法
CN106244884A (zh) 一种高强低密度铌合金棒材及其制备方法
CN113862499B (zh) 一种双态组织钛基复合材料的加工制造方法
CN117600467A (zh) 一种高承温、耐冲刷抗氧化钨基合金及其制备方法
CN112899525B (zh) 一种钛基多主元合金
CN113249755B (zh) 一种惰性阳极材料及其制备方法和应用
CN109550077B (zh) 一种医用Ti6Al4V人工植入物的制备方法
CN115178914A (zh) 一种用于Ti2AlNb金属间化合物扩散焊高熵中间层及制备方法
CN114107733A (zh) 一种稀土微合金化高温钛合金材料及其制备方法
CN104313392B (zh) 一种高强阻燃钛合金
CN103614590B (zh) 一种低温高强耐疲劳钛铝铌合金
CN116288092B (zh) 一种改善铌合金铸锭热加工性能的热处理方法
CN111926208A (zh) 一种制备具有超细氧化物弥散相的铌基合金的方法
CN110257665A (zh) 一种软/硬丝状结构纯铜-黄铜复合线材的制备方法
CN110257664A (zh) 一种铜基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination