CN117500611B - 用于致动器参数的系统内估计的方法和系统 - Google Patents
用于致动器参数的系统内估计的方法和系统 Download PDFInfo
- Publication number
- CN117500611B CN117500611B CN202280043376.3A CN202280043376A CN117500611B CN 117500611 B CN117500611 B CN 117500611B CN 202280043376 A CN202280043376 A CN 202280043376A CN 117500611 B CN117500611 B CN 117500611B
- Authority
- CN
- China
- Prior art keywords
- actuator
- parameters
- test signal
- imperceptible
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000012360 testing method Methods 0.000 claims abstract description 28
- 238000011065 in-situ storage Methods 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims description 7
- 238000012512 characterization method Methods 0.000 claims description 4
- 238000002847 impedance measurement Methods 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/032—Reciprocating, oscillating or vibrating motors
- H02P25/034—Voice coil motors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0046—Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H15/00—Measuring mechanical or acoustic impedance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2829—Testing of circuits in sensor or actuator systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B6/00—Tactile signalling systems, e.g. personal calling systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/02—Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type
- H02P7/025—Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type the DC motors being of the moving coil type, e.g. voice coil motors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- User Interface Of Digital Computer (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
一种用于原位和实时地估计致动器的致动器参数的方法,可以包括:在设备的实时操作期间,用包括致动器的设备的用户不可感知的测试信号来驱动致动器,测量与致动器相关联并且由测试信号引起的电压和电流,基于电压和电流确定致动器的一个或多个参数,基于一个或多个参数确定致动器的致动器类型,以及基于致动器类型控制到致动器的回放信号。
Description
技术领域
本公开总体上涉及与电磁致动器(诸如线性谐振致动器或触觉换能器)相关联的参数的系统内检测。
背景技术
振动触觉换能器,例如线性谐振致动器(LRA),被广泛用于诸如移动电话的便携式设备中,以向用户生成振动反馈。各种形式的振动触觉反馈对用户的皮肤产生不同的触感,并且可以在现代设备的人机交互中发挥越来越大的作用。
LRA可以被建模为质量弹簧机电振动系统。当用适当设计或控制的驱动信号驱动时,LRA可以生成某些期望形式的振动。例如,用户手指上清晰且明显的振动模式可以被用于产生模仿机械按钮点击的感觉。然后,这种明显的振动可以用作虚拟开关来代替机械按钮。
图1示出了设备100中的振动触觉系统的示例。设备100可以包括控制器101,其被配置为控制施加到放大器102的信号。放大器102然后可以基于该信号来驱动触觉换能器103。控制器101可以由触发器触发以输出到信号。触发器可以例如包括设备100的屏幕或虚拟按钮上的压力传感器或力传感器。
在各种形式的振动触觉反馈中,持续时间的音调振动可以在向设备的用户通知某些预定义事件(诸如来电或消息、紧急警报和定时器警告等)方面发挥重要作用。为了有效地生成音调振动通知,可能期望以其谐振频率操作触觉致动器。
触觉换能器的谐振频率f0可以被近似地估计为:
其中,C是弹簧系统的柔量,并且M是等效移动质量,其可以基于触觉换能器中的实际移动部分和持有触觉换能器的便携式设备的质量来确定。
由于单个触觉换能器的样本间变化、移动设备组件变化、由老化引起的时间部件变化、由自加热引起的部件变化以及诸如用户抓握设备的各种不同强度的使用条件,触觉换能器的振动谐振可能随时间变化。
图2A示出了被建模为包括质量弹簧系统201的线性系统的线性谐振致动器(LRA)的示例。LRA是非线性部件,根据例如施加的电压电平、操作温度和操作频率,其行为可能不同。然而,在某些条件下,这些部件可以被建模为线性部件。
图2B示出了LRA建模为线性系统的示例,包括LRA的质量弹簧系统201的电气等效模型。在该示例中,LRA被建模为具有电气和机械元件的三阶系统。特别地,Re和Le分别是线圈-磁体系统的DC电阻和线圈电感;以及Bl是线圈的磁力因子。驱动放大器输出具有输出阻抗Ro的电压波形V(t)。可以在触觉换能器的端子两端感测端子电压VT(t)。质量弹簧系统201以速度u(t)移动。
诸如LRA的电磁负载可以通过其阻抗ZLRA来表征,如线圈阻抗Zcoil和机械阻抗Zmech之和所示:
ZLRA=Zcoil+ Zmech (2)
线圈阻抗Zcoil继而可以包括与电感Le串联的直流(DC)电阻Re:
Zcoil=Re+s*Le (3)
机械阻抗Zmech可以由三个参数来定义,这三个参数包括:谐振处的电阻Res,其表示代表触觉换能器的质量弹簧系统的机械摩擦的电阻,电容Cmes,其表示代表触觉换能器的质量弹簧系统的等效移动质量M的电容,以及电感Lces,其代表触觉换能器的质量弹簧系统的柔量C。总机械阻抗的电气等效是Res、Cmes、Lces的并联连接。这种并联连接的拉普拉斯变换被描述为:
触觉换能器的谐振频率f0可以被表示为:
LRA的质量因子Q可以被表示为:
参考公式(6),该表达式涉及描述电阻Re和Res的并联连接的子表达式(即,),而在图2B中,这些电阻被示为串联连接,这似乎并不直观。然而,这可能是这样的情况,其中驱动电压Ve正在振荡,但随后突然关断并变为零。图2B中所示的电压放大器可以被认为具有低源阻抗,理想情况下为零源阻抗。在这些条件下,当驱动电压Ve变为零时,电压放大器实际上从电路中消失。此时,图2B中电阻Re的最顶部端子和电阻Res的最底部端子接地,并且因此电阻Re和Res实际上被并联连接,如公式(6)所反映的。
电磁换能器,诸如LRA或微型扬声器,可能响应时间较慢。图3是LRA的示例响应的图,描绘了LRA的示例驱动信号、通过LRA的电流和LRA的反电动势(反EMF),其中这种反EMF可以与换能器的移动元件(例如,线圈或磁体)的速度成比例。如图3所示,当能量转移到LRA时,反EMF的上升时间可能较慢,并且当存储在LRA中的机械能被释放时,在驱动信号结束之后,反EMF的一些“振铃”可能发生。在触觉LRA情境下,这种行为特征可能会导致“糊状(mushy)”的点击或脉冲感,而不是“清脆”的触觉响应。因此,可能希望LRA改为具有类似于图4所示的响应,其中在驱动信号已经结束之后存在最小的振铃,并且可以在触觉情境中提供更“清脆”的触觉响应。因此,可能希望对驱动信号进行处理,使得当将处理后的驱动信号施加到换能器时,换能器的速度或反EMF更接近图4的速度或反EMF。注意,通过将图4包括在背景技术部分中,申请人并不旨在承认图4的优化波形为现有技术。
为了优化LRA或其他致动器的性能以生成更期望的响应,换能器驱动系统可能需要为给定的致动器模型应用优化的调谐参数,这在传统上可能要求实施昂贵的工厂校准程序。因此,可能希望通过在系统通电期间或在致动器使用期间无缝地执行致动器参数测量来减少工厂校准,而不影响用户体验。
人类触觉系统对100-400Hz范围内的频率特别敏感。因此,LRA通常被设计为具有150Hz-250Hz范围内的谐振频率。在大多数情况下,这种谐振特性意味着相对较大的加速度上升时间。此外,在LRA的质量被设置为运动之后,减小输入电压的幅度可能不会瞬间减小质量的运动幅度。相反,质量的运动会慢慢衰减。通过使用优化的调谐参数,LRA算法可以实现跨多个LRA样本的一致加速,减少上升/制动时间,和/或增强终端用户的触觉效果体验。
发明内容
根据本公开的教导,可以减少或消除与确定与电磁致动器有关的参数相关联的缺点和问题。
根据本公开的实施例,一种用于原位和实时地估计致动器的致动器参数的方法,可以包括:在设备的实时操作期间,用包括致动器的设备的用户不可感知的测试信号来驱动致动器,测量与致动器相关联并且由测试信号引起的电压和电流,基于电压和电流确定致动器的一个或多个参数,基于一个或多个参数确定致动器的致动器类型,以及基于致动器类型控制到致动器的回放信号。
根据本公开的实施例,一种用于原位和实时地估计致动器的致动器参数的系统,可以包括:测试信号发生器,其被配置为生成包括致动器的设备的用户不可感知的测试信号,以便在设备的实时操作期间驱动致动器;以及测量子系统,其被配置为测量与致动器相关联并且由测试信号引起的电压和电流,基于电压和电流确定致动器的一个或多个参数,基于一个或多个参数确定致动器的致动器类型,以及基于致动器类型控制到致动器的回放信号。
本公开的技术优点对于本领域的普通技术人员来说可以从本文包括的附图、说明书和权利要求中显而易见。实施例的目的和优点将至少通过权利要求中特别指出的元件、特征和组合来实现和达到。
应当理解,前面的一般描述和以下详细描述都是示例和解释性的,而不是对本公开中阐述的权利要求的限制。
附图说明
通过参考以下结合附图的描述,可以获得对本实施例及其优点的更完整的理解,其中相同的附图标记指示相同的特征件,并且其中:
图1示出了本领域已知的设备中的振动触觉系统的示例;
图2A和图2B各自示出了本领域已知的被建模为线性系统的线性谐振致动器(LRA)的示例;
图3示出了本领域已知的电磁负载的示例波形的曲线图;
图4示出了根据本公开的实施例的电磁负载的期望示例波形的曲线图;
图5示出了根据本公开的实施例的示例移动设备的选定部件的框图;
图6示出了根据本公开的实施例的示例集成触觉系统的选定部件的框图;
图7示出了根据本公开的实施例的包括电磁负载的示例系统的选定部件;
图8示出了根据本公开的实施例的用于测量电流的感测电阻器的示例实施方式的电路图;以及
图9示出了根据本公开的实施例的致动器参数的系统内估计及其补偿的示例方法的流程图。
具体实施方式
以下描述阐述了根据本公开的示例实施例。进一步的示例实施例和实施方式对于本领域的普通技术人员将是显而易见的。此外,本领域的一般技术人员将认识到,可以应用各种等效技术来代替或结合以下讨论的实施例,并且所有这些等效物应被视为包含在本公开中。
各种电子设备或智能设备可以具有换能器、扬声器和声输出换能器,例如用于将合适的电驱动信号转换成声输出(诸如声压波或机械振动)的任何换能器。例如,许多电子设备可以包括用于声音生成的一个或多个扬声器或扩音器,例如用于音频内容的回放、语音通信和/或用于提供可听通知。
这种扬声器或扩音器可以包括电磁致动器,例如音圈电机,其机械地耦合到柔性隔膜,例如传统的扩音器锥体,或者其机械地耦合到设备的表面,例如移动设备的玻璃屏幕。一些电子设备还可以包括能够生成超声波的声输出换能器,例如用于接近检测型应用和/或机器对机器通信。
许多电子设备可以附加地或可替选地包括更专业的声学输出换能器,例如触觉换能器,其被定制用于为向用户的触觉控制反馈或通知生成振动。附加地或可替选地,电子设备可以具有连接器,例如插座,用于与附件装置的对应连接器进行可移除的匹配连接,并且可以被布置为向连接器提供驱动信号,以便在连接时驱动附件装置的上述一种或多种类型的换能器。这种电子设备将因此包括驱动电路,用于用合适的驱动信号驱动主机设备或连接的附件的换能器。对于声学或触觉换能器,驱动信号通常是模拟时变电压信号,例如,时变波形。
图5示出了根据本公开的实施例的示例主机设备502的选定部件的框图。如图5所示,主机设备502可以包括外壳501、控制器503、存储器504、力传感器505、麦克风506、线性谐振致动器507、无线电发射机/接收机508、扬声器510和集成触觉系统512。
外壳501可以包括用于容纳主机设备502的各种部件的任何合适的壳体、壳或其他外壳。外壳501可以由塑料、金属和/或任何其他合适的材料构成。此外,外壳501可以被适配(例如,被设置大小和形状)为使得主机设备502易于在主机设备502的用户的身上运输。因此,主机设备502可以包括但不限于智能电话、平板计算设备、手持计算设备、个人数字助理、笔记本电脑、视频游戏控制器或可以容易地在主机设备502的用户的身上运输的任何其他设备。
控制器503可以被容纳在外壳501内,并且可以包括被配置为解释和/或执行程序指令和/或处理数据的任何系统、设备或装置,并且可以包括但不限于微处理器、微控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、或被配置为解释和/或执行程序指令和/或处理数据的任何其他数字或模拟电路。在一些实施例中,控制器503解释和/或执行程序指令和/或处理存储在控制器503可访问的存储器504和/或其他计算机可读介质中的数据。
存储器504可以被容纳在外壳501内,可以被通信地耦合到控制器503,并且可以包括被配置为将程序指令和/或数据保留一段时间的任何系统、设备或装置(例如,计算机可读介质)。存储器504可以包括随机存取存储器(RAM)、电可擦除可编程只读存储器(EEPROM)、个人计算机存储卡国际协会(PCMCIA)卡、闪存、磁存储装置、光磁存储装置,或者在主机设备502的电源关断之后保留数据的易失性或非易失性存储器的任何合适的选择和/或阵列。
麦克风506可以至少部分地被容纳在外壳501内,可以被通信地耦合到控制器503,并且可以包括被配置为将在麦克风506处传入的声音转换成可以由控制器503处理的电信号的任何系统、设备或装置,其中使用具有电容的隔膜或膜片将这种声音转换为电信号,该电容基于在隔膜或膜片处接收到的声振动而变化。麦克风506可以包括静电麦克风、电容式麦克风、驻极体麦克风、微机电系统(MEMS)麦克风或任何其他合适的电容麦克风。
无线电发射机/接收机508可以被容纳在外壳501内,可以被通信地耦合到控制器503,并且可以包括被配置为借助于天线而生成和发射射频信号以及接收射频信号并将由这种接收信号携带的信息转换成控制器503可用的形式的任何系统、设备或装置。无线电发射机/接收机508可以被配置为发射和/或接收各种类型的射频信号,包括但不限于蜂窝通信(例如,2G、3G、4G、LTE等)、短程无线通信(例如蓝牙)、商业无线电信号、电视信号、卫星无线电信号(例如,GPS)、无线保真等。
扬声器510可以至少部分地被容纳在外壳501内,或者可以在外壳501外部,可以被通信地耦合到控制器503,并且可以包括被配置为响应于电音频信号输入而产生声音的任何系统、设备或装置。在一些实施例中,扬声器可以包括动态扩音器,该动态扩音器采用经由柔性悬架机械耦合到刚性框架的轻质隔膜,该柔性悬架约束了音圈轴向地移动通过圆柱形磁隙。当电信号施加到音圈时,音圈中的电流会产生磁场,使其成为可变电磁铁。线圈和驱动器的磁系统相互作用,生成机械力,致使线圈(以及由此附接的锥体)来回移动,从而在来自放大器的施加电信号的控制下再现声音。
力传感器505可以被容纳在外壳501内,并且可以包括用于感测力、压力或触摸(例如,与人的手指的交互)并且响应于这种力、压力或触摸而生成电信号或电子信号的任何合适的系统、设备或装置。在一些实施例中,这种电信号或电子信号可以是施加到力传感器的力、压力或触摸的大小的函数。在这些实施例和其他实施例中,这种电子信号或电信号可以包括与被给予触觉反馈的输入信号相关联的通用输入/输出信号(GPIO)。力传感器505可以包括但不限于电容位移传感器、电感力传感器(例如,电阻-电感-电容式传感器)、应变仪、压电力传感器、力感测电阻器、压电力传感器、薄膜力传感器或基于量子隧穿复合材料的力传感器。为了在本公开中清楚和说明的目的,本文中使用的术语“力”不仅可以指代力,还指代指示力或类似于力的物理量,诸如但不限于压力和触摸。
线性谐振致动器507可以被容纳在外壳501内,并且可以包括用于产生跨越单个轴的振荡机械力的任何合适的系统、设备或装置。例如,在一些实施例中,线性谐振致动器507可以依靠交流电压来驱动压靠连接到弹簧的移动质量的音圈。当音圈以弹簧的谐振频率被驱动时,线性谐振致动器507可以以可感知的力振动。因此,线性谐振致动器507在特定频率范围内的触觉应用中可能是有用的。虽然,为了清楚和说明的目的,本公开关于线性谐振致动器507的使用进行描述,但是应当理解,可以使用任何其他类型或多种类型的振动致动器(例如,偏心旋转质量致动器)来代替线性谐振致动器507或除了线性谐振致动器507之外还可以使用任何其他类型或多种类型的振动致动器。此外,还应理解,可以使用被布置为产生跨越多个轴的振荡机械力的致动器来代替线性谐振致动器507或除了线性谐振致动器507之外还可以使用被布置为产生跨越多个轴的振荡机械力的致动器。如本公开的其他地方所述,基于从集成触觉系统512接收到的信号,线性谐振致动器507可以向主机设备502的用户提供触觉反馈,用于机械按钮替换和电容传感器反馈中的至少一个。
集成触觉系统512可以被容纳在外壳501内,可以被通信地耦合到力传感器505和线性谐振致动器507,或者可以包括被配置为从力传感器505接收指示施加到主机设备502的力(例如,由人手指施加到主机设备502的虚拟按钮的力)的信号并且响应于施加到主机设备502的力而生成用于驱动线性谐振致动器507的电子信号的任何系统、设备或装置。图6中描绘了根据本公开实施例的示例集成触觉系统的细节。
尽管特定的示例部件在上面的图5中被描绘为集成到主机设备502(例如,控制器503、存储器504、力传感器505、麦克风506、无线电发射机/接收机508、(一个或多个)扬声器510),但是根据本公开的主机设备502可以包括上面没有具体列举的一个或多个部件。例如,尽管图5描绘了某些用户界面部件,但是主机设备502除了图5所描绘的那些之外还可以包括一个或多个其他用户界面部件(包括但不限于键盘、触摸屏和显示器),从而允许用户与主机设备502及其相关联的部件进行交互和/或以其他方式操纵主机设备502及其相关联的部件。
图6示出了根据本公开的实施例的示例集成触觉系统512A的选定部件的框图。在一些实施例中,集成触觉系统512A可被用于实施图5的集成触觉系统512。如图6所示,集成触觉系统512A可以包括数字信号处理器(DSP)602、存储器604和放大器606。
DSP 602可以包括被配置为解释和/或执行程序指令和/或处理数据的任何系统、设备或装置。在一些实施例中,DSP 602可以解释和/或执行程序指令和/或处理存储在存储器604和/或DSP 602可访问的其他计算机可读介质中的数据。
存储器604可以被通信地耦合到DSP 602,并且可以包括被配置为将程序指令和/或数据保留一段时间的任何系统、设备或装置(例如,计算机可读介质)。存储器604可以包括随机存取存储器(RAM)、电可擦除可编程只读存储器(EEPROM)、个人计算机存储卡国际协会(PCMCIA)卡、闪存、磁存储装置、光磁存储装置,或者在主机设备502的电源关断之后保留数据的易失性或非易失性存储器的任何合适的选择和/或阵列。
放大器606可以被电耦合到DSP 602,并且可以包括被配置为增加输入信号VIN(例如,时变电压或电流)的功率以生成输出信号VOUT的任何合适的电子系统、设备或装置。例如,放大器606可以使用来自电源(未明确示出)的电功率来增加信号的幅度。放大器606可以包括任何合适的放大器类别,包括但不限于D类放大器。
在操作中,存储器604可以存储一个或多个触觉回放波形。在一些实施例中,一个或多个触觉回放波形中的每一个可以将触觉响应a(t)定义为线性谐振致动器(例如,线性谐振致动器507)的作为时间的函数的期望加速度。DSP 602可以被配置为接收指示施加到力传感器505的力的力信号VSENSE。响应于指示感测到的力的力信号VSENSE的接收或者独立于这样的接收,DSP 602可以从存储器604检索触觉回放波形,并且处理这种触觉回放波形以确定经处理的触觉回放信号VIN。在放大器606是D类放大器的实施例中,经处理的触觉回放信号VIN可以包括脉宽调制信号。响应于接收到指示所感测的力的力信号VSENSE,DSP 602可以致使经处理的触觉回放信号VIN输出到放大器606,并且放大器606可以放大经处理的触感回放信号VIN,以生成用于驱动线性谐振致动器507的触觉输出信号VOUT。
在一些实施例中,集成触觉系统512A可以形成在单个集成电路上,从而实现比触觉反馈控制的现有方法更低的延迟。通过提供集成触觉系统512A作为单个单片集成电路的一部分,可以减少或消除集成触觉系统512的各种接口和系统部件之间的延迟。
图7示出了根据本公开的实施例的包括电磁负载701的示例系统700的选定部件。系统700可以包括或被集成到但不限于移动设备、家庭应用、车辆和/或包括人机接口的任何其他系统、设备或装置。电磁负载701可以包括具有复阻抗的任何合适的负载,包括但不限于触觉换能器、扩音器、微型扬声器、压电换能器、音圈致动器、螺线管或其他合适的换能器。
在操作中,系统700的换能器驱动子系统705的信号发生器724可以生成原始换能器驱动信号x′(t)(在一些实施例中,其可以是波形信号,诸如触觉波形信号或音频信号)。原始换能器驱动信号x′(t)可以基于由信号发生器724接收到的期望回放波形来生成。
原始换能器驱动信号x′(t)可以由波形预处理器726接收,波形预处理器726可以基于由阻抗测量子系统708生成的一个或多个参数来修改原始换能器驱动信号x′(t),其中这样的一个或多个参数可以与电磁负载701相关联。
经处理的换能器驱动信号x(t)继而可以由放大器706放大以生成用于驱动电磁负载701的驱动信号V(t)。响应于驱动信号V(t),电磁负载701的感测端子电压VT(t)可以由端子电压感测块707(例如电压表)感测,并且由第一模数转换器(ADC)703转换为数字表示。类似地,感测到的电流I(t)可以由第二ADC 704转换为数字表示。电流I(t)可以在具有耦合到电磁负载701的端子的电阻Rs的分流电阻器702两端被感测。
如图7所示,换能器驱动子系统705可以包括阻抗测量子系统708,其可以估计电磁负载701的阻抗,包括但不限于电磁负载701中的DC电阻Re和线圈电感Le。基于这样的测量,阻抗测量子系统708可以将这种参数和/或任何其他合适的参数(例如,机械阻抗参数Res、Cmes和Lces)传送到波形预处理器726。基于这种参数,波形预处理器726可以以旨在优化电磁负载701的性能的方式修改原始换能器驱动信号x′(t)(例如,修改电磁负载的驱动或制动以增强人类对触觉效果的清脆感(crispness)的感知)。
用于估计电磁负载701的电阻抗和/或机械阻抗的一个或多个分量的方法的示例被描述在但不限于以下申请:2020年3月12日提交的并且题为“Methods and Systems forImproving Transducer Dynamics”的美国专利申请序列号16/816,790;2020年3月12日提交的并且题为“Methods and Systems for Estimating Transducer Parameters”的美国专利申请序列号16/816,833;2020年4月7日提交的并且题为“Thermal Model ofTransducer for Thermal Protection and Resistance Estimation”的美国专利申请序列号16/842,482;2019年3月29日提交的并且题为“Driver Circuitry”的美国专利申请序列号16/369,556;以及2021年10月8日提交的并且题为“Systems and Methods forSensing Displacement of an Electromechanical Transducer”的美国专利申请序列号17/497,110;所有这些申请通过引用整体并入本文。
例如,参考图2B,致动器的移动质量的速度和位置可以分别由反EMF Vbemf(向前,称为VB)和IL捕获(例如,反EMF VB与速度成比例,并且电流IL与移动质量的位置成比例)。图2B中所示的换能器模型的线性状态空间模型由以下等式表示:
其中图2B中所示的换能器模型的电压Ve可以由感测端子电压VT(t)给出。因此,阻抗测量子系统708可以提供对致动器的一个或多个内部参数的估计,包括DC电阻Re、线圈电感Le、并联机械电阻Res、并联电容Cmes和/或并联电感Lces,如果激励感兴趣的频率区域的电流和输入电压的测量是可用的话。
为了原位估计这样的阻抗参数,在操作中,阻抗测量子系统708可以生成测试信号(例如,导频音调信号),并且波形预处理器726可以将这种测试信号与原始换能器驱动信号x′(t)组合以生成经处理的换能器驱动信号x(t),或者可以将原始换能器驱动信号x′(t)消音,并生成测试信号作为经处理的换能器驱动信号x(t)。这种测试信号可以具有换能器驱动信号,该换能器驱动信号具有人类不可感知的持续时间、人类不可感知的幅度和/或电磁负载701的最终应用通常不用于激励电磁负载701的频率(例如,与电磁负载701的谐振频率大不相同的频率)。因此,当系统700被实时操作和使用时,测试信号对系统700的用户可能是不可感知的。例如,不可感知的持续时间可以是大约5毫秒。作为另一个示例,不可感知的幅度可以在大约170毫伏和大约330毫伏之间。电磁负载701的最终应用通常不用于激励电磁负载701的频率可以取决于电磁负载701的类型,并且可以基于电磁负载701的类型而变化。
此外,阻抗测量子系统708可以测量通过将测试信号驱动到电磁负载701而引起的感测端子电压VT(t)和感测电流I(t)。此外,阻抗测量子系统708可以估计电磁负载701的参数(例如,DC电阻Re、线圈电感Le、并联机械电阻Res、并联电容Cmes和/或并联电感Lces),并将这些参数传送到波形预处理器726。
继而,波形预处理器726可以确定系统700中存在的电磁负载701的类型,并基于此,执行对原始换能器驱动信号x′(t)的优化控制,以生成经处理的换能器驱动信号x(t)。
图8示出了根据本公开的实施例的感测电阻器702的示例实施方式的电路图。如图8所示,感测电阻器702可以使用两个可选电阻器802和803来实施,其中开关801用于在电阻器802和电阻器803的使用之间进行选择。电阻器802的电阻可以明显高于电阻器803的电阻。
在由阻抗测量子系统708和波形预处理器726回放测试信号期间,对感测电阻器702两端的电压降的容限可以更高,这意味着电阻值RS可能仅在播放测试信号以增加使用被耦合到感测电阻器702的端子的相同电压测量设备(例如,第二ADC 704)而引起的感测电流I(t)的测量的信噪比时才是期望的。因此,系统700可以在两种不同的模式下操作:a)表征模式,其中,较大的电阻器802被选择并且阻抗测量子系统708测量感测电流I(t);以及b)激活模式,其中,较小的电阻器803被选择(例如,对电磁负载701的期望触觉操作具有较小的影响)并且预期的人类可感知的波形被驱动到电磁负载701。尽管在图中没有详细示出,但是阻抗测量子系统708和/或换能器驱动子系统705的另一部分可以生成控制信号,用于操作开关801以在电阻器802和电阻器803之间进行选择。
图9示出了根据本公开的实施例的致动器参数的系统内估计及其补偿的示例方法的流程图。根据某些实施例,方法900可以开始于步骤902。如上所述,本公开的教导可以在系统700的各种配置中被实施。因此,方法900的优选初始化点和包括方法900的步骤的顺序可以取决于所选择的实施方式。
在步骤902处,系统700可以通电或复位。在步骤904处,在加载用于实施换能器驱动子系统705的全部或部分的固件之后,系统700可以进入表征模式,并且阻抗测量子系统708可以致使测试信号被驱动为用于驱动电磁负载701的驱动信号V(t)。在步骤906处,阻抗测量子系统708可以测量通过将测试信号驱动到电磁负载701而引起的感测端子电压VT(t)和感测电流I(t)。在步骤908处,阻抗测量子系统708可以估计电磁致动器701的参数(例如,DC电阻Re、线圈电感Le、并联机械电阻Res、并联电容Cmes和/或并联电感Lces),并将这些参数传送到波形预处理器726。
在步骤910处,波形预处理器726可以确定系统700中存在的电磁负载701的类型。在步骤912处,系统700可以进入激活模式,其中波形预处理器726可以执行对原始换能器驱动信号x′(t)的优化控制,以生成经处理的换能器驱动信号x(t)。
尽管图9公开了关于方法900要采取的特定数量的步骤,但是它可以用比图9中描绘的步骤更多或更少的步骤来执行。此外,尽管图9公开了关于方法900要采取的步骤的特定顺序,但是包括方法900的步骤可以以任何合适的顺序完成。
方法900可以使用换能器驱动子系统705、其部件或可操作用于实施方法900的任何其他系统来实施。在某些实施例中,方法900可以部分地或完全地以体现在计算机可读介质中的软件和/或固件来实施。
尽管前面讨论了对线性电磁负载的应用,但是应当理解,与所公开的系统和方法相似或相同的系统和系统和方法可以应用于其他线性或非线性系统。
如本文所使用的,当两个或更多个元件被称为彼此“耦合”时,该术语表示这两个或更多个元件处于电子通信或机械通信中(视情况而定),无论是间接连接还是直接连接,有还是没有中间元件。
本公开包含本领域普通技术人员将理解的对本文的示例实施例的所有改变、替换、变化、变更和修改。类似地,在适当的情况下,所附权利要求包含本领域普通技术人员将理解的对本文的示例实施例的所有改变、替换、变化、变更和修改。此外,在所附权利要求中,对适应于、被布置为、能够、被配置为、启用为、可操作为或可操作以执行特定功能的装置或系统或者装置或系统的部件的引用包含该装置、系统或部件,无论其或该特定功能是否被激活、开启或解锁,只要该装置、系统或部件被如此适应、布置、能够、配置、启用、可操作或操作。因此,在不脱离本公开的范围的情况下,可以对本文描述的系统、装置和方法进行修改、添加或省略。例如,系统和装置的部件可以被集成或分离。此外,本文公开的系统和装置的操作可以由更多、更少或其他部件来执行,并且所描述的方法可以包括更多、更少或其他步骤。此外,步骤可以以任何合适的顺序执行。如在本文件中所使用的,“每个”是指集合的每个成员或集合的子集的每个成员。
尽管示例性实施例在附图中示出并在下面描述,但是本公开的原理可以使用任何数量的技术来实施,无论当前是否已知。本公开不应以任何方式局限于附图中所示和上文所述的示例性实施方式和技术。
除非另有特别说明,否则附图中描绘的物品不一定按比例绘制。
本文叙述的所有示例和条件语言旨在用于教学目的,以帮助读者理解本公开和发明人对促进本领域所贡献的概念,并且被解释为不限于这些具体叙述的示例和条件。尽管已经详细描述了本公开的实施例,但是应当理解,在不脱离本公开的精神和范围的情况下,可以对其进行各种改变、替换和变更。
尽管上面已经列举了特定的优点,但是各种实施例可以包括列举的优点中的一些、没有或全部。此外,在回顾了前面的附图和描述之后,其他技术优点对于本领域的普通技术人员来说可能变得显而易见。
为了帮助专利局和根据本申请发布的任何专利的任何读者解释所附的权利要求,申请人希望注意,除非在特定权利要求中明确使用了“用于…的装置”或“用于…的步骤”,否则他们无意将任何所附的权利要求或权利要求要素援引35U.S.C.§112(f)。
Claims (20)
1.一种用于原位和实时地估计致动器的致动器参数的方法,所述方法包括:
在包括所述致动器的设备的实时操作期间,用所述设备的用户不可感知的测试信号来驱动所述致动器;
测量与所述致动器相关联的并且由所述测试信号引起的电压和电流;
基于所述电压和所述电流来确定所述致动器的一个或多个参数;
基于所述一个或多个参数来确定所述致动器的致动器类型;以及
基于所述致动器类型来控制到所述致动器的回放信号。
2.根据权利要求1所述的方法,其中,所述一个或多个参数包括所述致动器的机械阻抗参数。
3.根据权利要求1所述的方法,其中,所述一个或多个参数包括所述致动器的电阻抗参数。
4.根据权利要求1所述的方法,其中,所述测试信号具有不可感知的持续时间。
5.根据权利要求4所述的方法,其中,所述不可感知的持续时间少于5毫秒。
6.根据权利要求1所述的方法,其中,所述测试信号具有不可感知的幅度。
7.根据权利要求6所述的方法,其中,所述不可感知的幅度在170毫伏和130毫伏之间。
8.根据权利要求1所述的方法,其中,所述测试信号的频率明显不同于所述致动器的谐振频率。
9.根据权利要求1所述的方法,其中,测量所述电流包括测量与所述致动器串联的感测电阻器的端子两端的感测电压。
10.根据权利要求9所述的方法,还包括以多种模式操作所述设备,所述多种模式包括:
表征模式,其中所述感测电阻器具有第一电阻,并且其中所述电流被测量;和
激活模式,其中所述感测电阻器具有明显小于所述第一电阻的第二电阻。
11.一种用于原位和实时地估计致动器的致动器参数的系统,所述系统包括:
测试信号发生器,其被配置为生成包括所述致动器的设备的用户不可感知的测试信号,以便在所述设备的实时操作期间驱动所述致动器;和
测量子系统,其被配置为:
测量与所述致动器相关联的并且由所述测试信号引起的电压和电流;
基于所述电压和所述电流来确定所述致动器的一个或多个参数;
基于所述一个或多个参数来确定所述致动器的致动器类型;并且
基于所述致动器类型来控制到所述致动器的回放信号。
12.根据权利要求11所述的系统,其中,所述一个或多个参数包括所述致动器的机械阻抗参数。
13.根据权利要求11所述的系统,其中,所述一个或多个参数包括所述致动器的电阻抗参数。
14.根据权利要求11所述的系统,其中,所述测试信号具有不可感知的持续时间。
15.根据权利要求14所述的系统,其中,所述不可感知的持续时间少于5毫秒。
16.根据权利要求11所述的系统,其中,所述测试信号具有不可感知的幅度。
17.根据权利要求16所述的系统,其中,所述不可感知的幅度在170毫伏和130毫伏之间。
18.根据权利要求11所述的系统,其中,所述测试信号的频率明显不同于所述致动器的谐振频率。
19.根据权利要求11所述的系统,其中,测量所述电流包括测量与所述致动器串联的感测电阻器的端子两端的感测电压。
20.根据权利要求19所述的系统,测量系统还被配置为以多种模式操作所述设备,包括:
表征模式,其中所述感测电阻器具有第一电阻,并且其中所述电流被测量;和
激活模式,其中所述感测电阻器具有明显小于所述第一电阻的第二电阻。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163211128P | 2021-06-16 | 2021-06-16 | |
US63/211,128 | 2021-06-16 | ||
US17/574,188 US11933822B2 (en) | 2021-06-16 | 2022-01-12 | Methods and systems for in-system estimation of actuator parameters |
US17/574,188 | 2022-01-12 | ||
PCT/US2022/030541 WO2022265825A1 (en) | 2021-06-16 | 2022-05-23 | Methods and systems for in-system estimation of actuator parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117500611A CN117500611A (zh) | 2024-02-02 |
CN117500611B true CN117500611B (zh) | 2025-02-25 |
Family
ID=84489089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280043376.3A Active CN117500611B (zh) | 2021-06-16 | 2022-05-23 | 用于致动器参数的系统内估计的方法和系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11933822B2 (zh) |
EP (1) | EP4355500A1 (zh) |
JP (1) | JP2024522679A (zh) |
KR (1) | KR20240021907A (zh) |
CN (1) | CN117500611B (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10732714B2 (en) | 2017-05-08 | 2020-08-04 | Cirrus Logic, Inc. | Integrated haptic system |
US10832537B2 (en) * | 2018-04-04 | 2020-11-10 | Cirrus Logic, Inc. | Methods and apparatus for outputting a haptic signal to a haptic transducer |
US11269415B2 (en) | 2018-08-14 | 2022-03-08 | Cirrus Logic, Inc. | Haptic output systems |
GB201817495D0 (en) | 2018-10-26 | 2018-12-12 | Cirrus Logic Int Semiconductor Ltd | A force sensing system and method |
US10955955B2 (en) | 2019-03-29 | 2021-03-23 | Cirrus Logic, Inc. | Controller for use in a device comprising force sensors |
US11509292B2 (en) | 2019-03-29 | 2022-11-22 | Cirrus Logic, Inc. | Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter |
US12035445B2 (en) | 2019-03-29 | 2024-07-09 | Cirrus Logic Inc. | Resonant tracking of an electromagnetic load |
US11283337B2 (en) | 2019-03-29 | 2022-03-22 | Cirrus Logic, Inc. | Methods and systems for improving transducer dynamics |
US10828672B2 (en) | 2019-03-29 | 2020-11-10 | Cirrus Logic, Inc. | Driver circuitry |
US11644370B2 (en) | 2019-03-29 | 2023-05-09 | Cirrus Logic, Inc. | Force sensing with an electromagnetic load |
US10976825B2 (en) | 2019-06-07 | 2021-04-13 | Cirrus Logic, Inc. | Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system |
CN114008569A (zh) | 2019-06-21 | 2022-02-01 | 思睿逻辑国际半导体有限公司 | 用于在装置上配置多个虚拟按钮的方法和设备 |
JP7360282B2 (ja) * | 2019-09-10 | 2023-10-12 | 株式会社東海理化電機製作所 | 制御装置、制御方法、及びプログラム |
US11408787B2 (en) | 2019-10-15 | 2022-08-09 | Cirrus Logic, Inc. | Control methods for a force sensor system |
US11380175B2 (en) | 2019-10-24 | 2022-07-05 | Cirrus Logic, Inc. | Reproducibility of haptic waveform |
US11933822B2 (en) | 2021-06-16 | 2024-03-19 | Cirrus Logic Inc. | Methods and systems for in-system estimation of actuator parameters |
US11765499B2 (en) | 2021-06-22 | 2023-09-19 | Cirrus Logic Inc. | Methods and systems for managing mixed mode electromechanical actuator drive |
US11908310B2 (en) | 2021-06-22 | 2024-02-20 | Cirrus Logic Inc. | Methods and systems for detecting and managing unexpected spectral content in an amplifier system |
KR20230012718A (ko) * | 2021-07-16 | 2023-01-26 | 삼성전자주식회사 | 음성 신호를 생성하는 전자 장치 및 방법 |
Family Cites Families (362)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3686927A (en) | 1967-03-24 | 1972-08-29 | Bolt Beranek & Newman | Vibration testing method and apparatus |
JPS6250985U (zh) | 1985-09-18 | 1987-03-30 | ||
JPH0450752Y2 (zh) | 1986-07-26 | 1992-11-30 | ||
DE3743131A1 (de) | 1987-10-26 | 1989-05-03 | Siemens Ag | Anordnung zur hochaufloesenden spektroskopie |
JPH06196939A (ja) | 1992-12-25 | 1994-07-15 | Sony Corp | 高周波パワーアンプの歪み補償回路 |
US5684722A (en) | 1994-09-21 | 1997-11-04 | Thorner; Craig | Apparatus and method for generating a control signal for a tactile sensation generator |
JP3295564B2 (ja) | 1994-11-24 | 2002-06-24 | 株式会社テラテック | アナログ・ディジタル変換器 |
US5748578A (en) | 1995-01-25 | 1998-05-05 | Discovision Associates | Colpitts type oscillator having reduced ringing and improved optical disc system utilizing same |
KR100419334B1 (ko) | 1995-09-02 | 2004-05-31 | 뉴 트랜스듀서스 리미티드 | 음향장치 |
US5857986A (en) | 1996-05-24 | 1999-01-12 | Moriyasu; Hiro | Interactive vibrator for multimedia |
JP3525015B2 (ja) | 1996-10-14 | 2004-05-10 | 愛三工業株式会社 | 振動体駆動装置及び粉体供給装置 |
JPH10184782A (ja) | 1996-12-26 | 1998-07-14 | Tokimec Inc | 減揺装置 |
US6768779B1 (en) | 1997-04-02 | 2004-07-27 | Bang & Olufsen Powerhouse A/S | Pulse referenced control method for enhanced power amplification of a pulse modulated |
US6002232A (en) | 1997-08-15 | 1999-12-14 | Iowa State University Research Foundation, Inc. | Robust vibration suppression methods and systems |
EP0913808B1 (en) | 1997-10-31 | 2004-09-29 | Yamaha Corporation | Audio signal processor with pitch and effect control |
US6278790B1 (en) | 1997-11-11 | 2001-08-21 | Nct Group, Inc. | Electroacoustic transducers comprising vibrating panels |
CN1547416B (zh) | 1998-01-16 | 2011-07-06 | 索尼公司 | 扬声装置及内部安装了扬声装置的电子设备 |
JP3397116B2 (ja) | 1998-01-27 | 2003-04-14 | ヤマハ株式会社 | 音響効果付与装置 |
US6762745B1 (en) | 1999-05-10 | 2004-07-13 | Immersion Corporation | Actuator control providing linear and continuous force output |
EP1199814B1 (en) | 1999-07-28 | 2006-09-13 | Fujitsu Limited | Radio device with distortion compensation |
DE20080209U1 (de) | 1999-09-28 | 2001-08-09 | Immersion Corp | Steuerung von haptischen Empfindungen für Schnittstellenvorrichtungen mit Vibrotaktiler Rückkopplung |
JP3337669B2 (ja) | 1999-12-27 | 2002-10-21 | 株式会社半導体理工学研究センター | 半導体集積回路 |
US20020018578A1 (en) | 2000-08-03 | 2002-02-14 | Paul Burton | Bending wave loudspeaker |
US6906697B2 (en) | 2000-08-11 | 2005-06-14 | Immersion Corporation | Haptic sensations for tactile feedback interface devices |
US7084854B1 (en) | 2000-09-28 | 2006-08-01 | Immersion Corporation | Actuator for providing tactile sensations and device for directional tactile sensations |
GB2376584B (en) | 2001-06-15 | 2005-02-16 | Wireless Systems Int Ltd | Signal correction techniques |
US7154470B2 (en) | 2001-07-17 | 2006-12-26 | Immersion Corporation | Envelope modulator for haptic feedback devices |
US6661410B2 (en) | 2001-09-07 | 2003-12-09 | Microsoft Corporation | Capacitive sensing and data input device power management |
US7623114B2 (en) | 2001-10-09 | 2009-11-24 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
US6703550B2 (en) | 2001-10-10 | 2004-03-09 | Immersion Corporation | Sound data output and manipulation using haptic feedback |
US6683437B2 (en) | 2001-10-31 | 2004-01-27 | Immersion Corporation | Current controlled motor amplifier system |
US7158122B2 (en) | 2002-05-17 | 2007-01-02 | 3M Innovative Properties Company | Calibration of force based touch panel systems |
US11275405B2 (en) | 2005-03-04 | 2022-03-15 | Apple Inc. | Multi-functional hand-held device |
WO2004038573A2 (en) | 2002-10-20 | 2004-05-06 | Immersion Corporation | System and method for providing rotational haptic feedback |
US7277678B2 (en) | 2002-10-28 | 2007-10-02 | Skyworks Solutions, Inc. | Fast closed-loop power control for non-constant envelope modulation |
US6784740B1 (en) | 2002-12-20 | 2004-08-31 | Atheros Communications, Inc. | Power amplifier |
US20050031140A1 (en) | 2003-08-07 | 2005-02-10 | Tymphany Corporation | Position detection of an actuator using a capacitance measurement |
US7791588B2 (en) | 2003-12-22 | 2010-09-07 | Immersion Corporation | System and method for mapping instructions associated with haptic feedback |
US7742036B2 (en) | 2003-12-22 | 2010-06-22 | Immersion Corporation | System and method for controlling haptic devices having multiple operational modes |
US7336725B2 (en) | 2004-03-03 | 2008-02-26 | Powerwave Technologies, Inc. | Digital predistortion system and method for high efficiency transmitters |
US7392066B2 (en) | 2004-06-17 | 2008-06-24 | Ixi Mobile (R&D), Ltd. | Volume control system and method for a mobile communication device |
US7765333B2 (en) | 2004-07-15 | 2010-07-27 | Immersion Corporation | System and method for ordering haptic effects |
JP2006048302A (ja) | 2004-08-03 | 2006-02-16 | Sony Corp | 圧電複合装置、その製造方法、その取扱方法、その制御方法、入出力装置及び電子機器 |
EP1817121B1 (en) | 2004-11-30 | 2021-01-06 | Immersion Corporation | Systems and methods for controlling a resonant device for generating vibrotactile haptic effects |
EP1819038A4 (en) | 2004-11-30 | 2008-07-09 | Fujitsu Ltd | SIGNAL DETECTOR SWITCHING AND DECOMPOSITION AMPLIFIER FOR THIS |
US7333604B2 (en) | 2005-01-10 | 2008-02-19 | Infone Tech, Ltd. | Adaptive notification of an incoming call in a mobile phone |
US20060277466A1 (en) | 2005-05-13 | 2006-12-07 | Anderson Thomas G | Bimodal user interaction with a simulated object |
DE102006022819A1 (de) | 2005-05-23 | 2007-01-04 | Infineon Technologies Ag | Schaltungsanordnung zum Versorgen einer Last mit einem Ausgangsstrom |
US7199964B2 (en) | 2005-06-29 | 2007-04-03 | Seagate Technology Llc | Adaptive voltage-mode controller for a voice coil motor |
WO2007003984A1 (en) | 2005-06-30 | 2007-01-11 | Freescale Semiconductor, Inc. | Device and method for arbitrating between direct memory access task requests |
US8700791B2 (en) | 2005-10-19 | 2014-04-15 | Immersion Corporation | Synchronization of haptic effect data in a media transport stream |
US7979146B2 (en) | 2006-04-13 | 2011-07-12 | Immersion Corporation | System and method for automatically producing haptic events from a digital audio signal |
JP5364233B2 (ja) | 2006-09-27 | 2013-12-11 | 富士通株式会社 | 電磁界シミュレータおよび電磁界シミュレートプログラム |
US9097639B2 (en) | 2012-12-28 | 2015-08-04 | General Electric Company | Systems for analysis of fluids |
US8150044B2 (en) | 2006-12-31 | 2012-04-03 | Personics Holdings Inc. | Method and device configured for sound signature detection |
US8098234B2 (en) | 2007-02-20 | 2012-01-17 | Immersion Corporation | Haptic feedback system with stored effects |
US8136952B2 (en) | 2007-02-20 | 2012-03-20 | Canon Kabushiki Kaisha | Image capturing apparatus |
JP2008219202A (ja) | 2007-02-28 | 2008-09-18 | National Institute Of Information & Communication Technology | 音響振動再生装置 |
US20080293453A1 (en) | 2007-05-25 | 2008-11-27 | Scott J. Atlas | Method and apparatus for an audio-linked remote indicator for a wireless communication device |
US9070856B1 (en) | 2007-06-14 | 2015-06-30 | Misonix, Incorporated | Waveform generator for driving electromechanical device |
US8659208B1 (en) | 2007-06-14 | 2014-02-25 | Misonix, Inc. | Waveform generator for driving electromechanical device |
US8988359B2 (en) | 2007-06-19 | 2015-03-24 | Nokia Corporation | Moving buttons |
US9654104B2 (en) | 2007-07-17 | 2017-05-16 | Apple Inc. | Resistive force sensor with capacitive discrimination |
US10126942B2 (en) | 2007-09-19 | 2018-11-13 | Apple Inc. | Systems and methods for detecting a press on a touch-sensitive surface |
US20090079690A1 (en) | 2007-09-21 | 2009-03-26 | Sony Computer Entertainment America Inc. | Method and apparatus for enhancing entertainment software through haptic insertion |
US20090088220A1 (en) | 2007-10-01 | 2009-04-02 | Sony Ericsson Mobile Communications Ab | Cellular terminals and other electronic devices and methods using electroactive polymer transducer indicators |
US9019087B2 (en) | 2007-10-16 | 2015-04-28 | Immersion Corporation | Synchronization of haptic effect data in a media stream |
US8325144B1 (en) | 2007-10-17 | 2012-12-04 | Immersion Corporation | Digital envelope modulator for haptic feedback devices |
US20090102805A1 (en) | 2007-10-18 | 2009-04-23 | Microsoft Corporation | Three-dimensional object simulation using audio, visual, and tactile feedback |
US7911328B2 (en) | 2007-11-21 | 2011-03-22 | The Guitammer Company | Capture and remote reproduction of haptic events in synchronous association with the video and audio capture and reproduction of those events |
KR100941638B1 (ko) | 2007-12-18 | 2010-02-11 | 한국전자통신연구원 | 접촉 행동 인식 시스템 및 그 방법 |
US10969917B2 (en) | 2008-01-30 | 2021-04-06 | Apple Inc. | Auto scanning for multiple frequency stimulation multi-touch sensor panels |
US9495013B2 (en) | 2008-04-24 | 2016-11-15 | Oblong Industries, Inc. | Multi-modal gestural interface |
GB2459864A (en) | 2008-05-07 | 2009-11-11 | Wolfson Microelectronics Plc | Filtered bias voltage for a MEMS capacitive transducer circuit |
US9733704B2 (en) | 2008-06-12 | 2017-08-15 | Immersion Corporation | User interface impact actuator |
EP2329339A1 (en) | 2008-07-15 | 2011-06-08 | Immersion Corporation | Systems and methods for shifting haptic feedback function between passive and active modes |
US7825837B1 (en) | 2008-09-05 | 2010-11-02 | National Semiconductor Corporation | Background calibration method for analog-to-digital converters |
KR100987473B1 (ko) | 2008-09-11 | 2010-10-13 | 한국전자통신연구원 | 소프트웨어를 이용한 전자파 생성 방법 |
US20100080331A1 (en) | 2008-09-26 | 2010-04-01 | Qualcomm Incorporated | Method and apparatus for integrated clock mismatch compensation and packet loss concealment |
EP3654141A1 (en) | 2008-10-06 | 2020-05-20 | Samsung Electronics Co., Ltd. | Method and apparatus for displaying graphical user interface depending on a user's contact pattern |
US9400555B2 (en) | 2008-10-10 | 2016-07-26 | Internet Services, Llc | System and method for synchronization of haptic data and media data |
US20100141408A1 (en) | 2008-12-05 | 2010-06-10 | Anthony Stephen Doy | Audio amplifier apparatus to drive a panel to produce both an audio signal and haptic feedback |
KR20100065640A (ko) | 2008-12-08 | 2010-06-17 | 삼성전자주식회사 | 터치스크린의 햅틱 피드백 방법 |
US7843277B2 (en) | 2008-12-16 | 2010-11-30 | Immersion Corporation | Haptic feedback generation based on resonant frequency |
US7777566B1 (en) | 2009-02-05 | 2010-08-17 | Quantance, Inc. | Amplifier compression adjustment circuit |
CN102577434A (zh) | 2009-04-10 | 2012-07-11 | 伊默兹公司 | 用于声-触扬声器的系统和方法 |
US8068025B2 (en) | 2009-05-28 | 2011-11-29 | Simon Paul Devenyi | Personal alerting device and method |
US8421479B2 (en) | 2009-06-30 | 2013-04-16 | Navisense | Pulsed echo propagation device and method for measuring a parameter |
KR20110019144A (ko) | 2009-08-19 | 2011-02-25 | 엘지전자 주식회사 | 진동 패턴 발생 장치 및 방법 |
JP2011057000A (ja) | 2009-09-07 | 2011-03-24 | Yamaha Corp | 音響共鳴装置 |
US8552859B2 (en) | 2009-09-30 | 2013-10-08 | Apple Inc. | Self adapting alert device |
US8487759B2 (en) | 2009-09-30 | 2013-07-16 | Apple Inc. | Self adapting haptic device |
EP2521006A1 (en) | 2009-10-02 | 2012-11-07 | Research In Motion Limited | A method of switching power modes and a portable electronic device configured to perform the same |
US8902050B2 (en) | 2009-10-29 | 2014-12-02 | Immersion Corporation | Systems and methods for haptic augmentation of voice-to-text conversion |
US20120011436A1 (en) | 2009-11-02 | 2012-01-12 | Motorola, Inc. | Devices and Methods of a User Interface for a Small Display Screen |
US8633916B2 (en) | 2009-12-10 | 2014-01-21 | Apple, Inc. | Touch pad with force sensors and actuator feedback |
KR101642149B1 (ko) | 2010-01-05 | 2016-07-25 | 삼성전자주식회사 | 터치스크린을 구비한 휴대용 단말기의 햅틱 피드백 제어 방법 및 장치 |
US8432368B2 (en) * | 2010-01-06 | 2013-04-30 | Qualcomm Incorporated | User interface methods and systems for providing force-sensitive input |
WO2011085985A1 (en) | 2010-01-13 | 2011-07-21 | Tyco Electronics Services Gmbh | Noise reduction in electronic device with touch sensitive surface |
US20110187651A1 (en) | 2010-02-03 | 2011-08-04 | Honeywell International Inc. | Touch screen having adaptive input parameter |
JP5841713B2 (ja) | 2010-07-27 | 2016-01-13 | 京セラ株式会社 | 触感呈示装置及び触感呈示装置の制御方法 |
US9329721B1 (en) * | 2010-08-05 | 2016-05-03 | Amazon Technologies, Inc. | Reduction of touch-sensor interference from stable display |
US20120105367A1 (en) | 2010-11-01 | 2012-05-03 | Impress Inc. | Methods of using tactile force sensing for intuitive user interface |
US9262002B2 (en) | 2010-11-03 | 2016-02-16 | Qualcomm Incorporated | Force sensing touch screen |
US20120112894A1 (en) | 2010-11-08 | 2012-05-10 | Korea Advanced Institute Of Science And Technology | Haptic feedback generator, portable device, haptic feedback providing method using the same and recording medium thereof |
KR101763410B1 (ko) | 2010-12-21 | 2017-08-04 | 한국전자통신연구원 | 디지털 전치 왜곡 전력 증폭 장치 및 그 장치에서의 디지털 방식의 동기 조절 방법 |
US8797830B2 (en) | 2011-02-02 | 2014-08-05 | General Monitors, Inc. | Explosion-proof acoustic source for hazardous locations |
US8717152B2 (en) | 2011-02-11 | 2014-05-06 | Immersion Corporation | Sound to haptic effect conversion system using waveform |
US9448626B2 (en) | 2011-02-11 | 2016-09-20 | Immersion Corporation | Sound to haptic effect conversion system using amplitude value |
EP2487780B1 (en) | 2011-02-14 | 2019-12-25 | Siemens Aktiengesellschaft | Controller for a power converter and method of operating the same |
EP2489442A1 (en) | 2011-02-18 | 2012-08-22 | Aernnova Engineering Solutions Iberica | Integrated phased array transducer, system and methodology for structural health monitoring of aerospace structures |
US20120229264A1 (en) | 2011-03-09 | 2012-09-13 | Analog Devices, Inc. | Smart linear resonant actuator control |
WO2012135378A1 (en) | 2011-04-01 | 2012-10-04 | Analog Devices, Inc. | Method and apparatus for haptic vibration response profiling and feedback |
KR20120126446A (ko) | 2011-05-11 | 2012-11-21 | 엘지전자 주식회사 | 입력된 오디오 신호로부터 진동 피드백을 생성하기 위한 장치 |
US9083821B2 (en) | 2011-06-03 | 2015-07-14 | Apple Inc. | Converting audio to haptic feedback in an electronic device |
US9124961B2 (en) | 2011-07-15 | 2015-09-01 | Mediatek Inc. | Control device for driving multi-function speaker by using digital mixing scheme and related control method thereof |
US9417754B2 (en) | 2011-08-05 | 2016-08-16 | P4tents1, LLC | User interface system, method, and computer program product |
US8723824B2 (en) | 2011-09-27 | 2014-05-13 | Apple Inc. | Electronic devices with sidewall displays |
US20130096849A1 (en) | 2011-10-14 | 2013-04-18 | Nextinput Inc. | Force Sensitive Interface Device and Methods of Using Same |
US20130141382A1 (en) | 2011-12-01 | 2013-06-06 | Martin John Simmons | Touch Sensor With Force Sensing |
GB201200587D0 (en) | 2012-01-13 | 2012-02-29 | Hiwave Technologies Uk Ltd | Haptic feedback and pressure sensing |
EP3232300B1 (en) | 2012-02-01 | 2019-09-04 | Immersion Corporation | Eccentric rotating mass actuator optimization for haptic effects |
US10632040B2 (en) | 2012-02-29 | 2020-04-28 | Frederick Muench | Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient |
US9715276B2 (en) | 2012-04-04 | 2017-07-25 | Immersion Corporation | Sound to haptic effect conversion system using multiple actuators |
US20130275058A1 (en) | 2012-04-13 | 2013-10-17 | Google Inc. | Apparatus and method for a pressure sensitive device interface |
WO2013156819A1 (en) | 2012-04-19 | 2013-10-24 | Nokia Corporation | A display apparatus |
US9117449B2 (en) | 2012-04-26 | 2015-08-25 | Nuance Communications, Inc. | Embedded system for construction of small footprint speech recognition with user-definable constraints |
EP2845191B1 (en) | 2012-05-04 | 2019-03-13 | Xmos Inc. | Systems and methods for source signal separation |
US9977499B2 (en) * | 2012-05-09 | 2018-05-22 | Apple Inc. | Thresholds for determining feedback in computing devices |
US9891709B2 (en) | 2012-05-16 | 2018-02-13 | Immersion Corporation | Systems and methods for content- and context specific haptic effects using predefined haptic effects |
US8847741B2 (en) | 2012-05-16 | 2014-09-30 | Immersion Corporation | System and method for display of multiple data channels on a single haptic display |
WO2013182901A1 (en) | 2012-06-07 | 2013-12-12 | Actiwave Ab | Non-linear control of loudspeakers |
JP5822023B2 (ja) | 2012-06-11 | 2015-11-24 | 富士通株式会社 | 電子機器、振動発生プログラム、及び振動パターン利用システム |
US9063570B2 (en) | 2012-06-27 | 2015-06-23 | Immersion Corporation | Haptic feedback control system |
US9030428B2 (en) | 2012-07-11 | 2015-05-12 | Immersion Corporation | Generating haptic effects for dynamic events |
US9135915B1 (en) | 2012-07-26 | 2015-09-15 | Google Inc. | Augmenting speech segmentation and recognition using head-mounted vibration and/or motion sensors |
WO2014018086A1 (en) | 2012-07-26 | 2014-01-30 | Changello Enterprise Llc | Force correction on multiple sense elements |
US9245428B2 (en) | 2012-08-02 | 2016-01-26 | Immersion Corporation | Systems and methods for haptic remote control gaming |
JP5481608B1 (ja) | 2012-08-16 | 2014-04-23 | 株式会社アクション・リサーチ | 振動処理装置及び方法 |
US20140056461A1 (en) | 2012-08-21 | 2014-02-27 | Immerz, Inc. | Systems and methods for a vibrating input device |
US9368005B2 (en) | 2012-08-31 | 2016-06-14 | Immersion Corporation | Sound to haptic effect conversion system using mapping |
US9355536B2 (en) | 2012-09-27 | 2016-05-31 | Fairchild Semiconductor Corporation | Resonance driver for determining a resonant frequency of a haptic device |
EP2901257A4 (en) | 2012-09-28 | 2016-06-22 | Nokia Technologies Oy | DEVICE FOR DISPLAYING ANIMATED IMAGES IN COMBINATION WITH A TOUCH OUTPUT |
RU2568314C2 (ru) | 2012-10-19 | 2015-11-20 | Александр Яковлевич Богданов | Усилитель и способ коррекции амплитудно-частотной характеристики |
US9092059B2 (en) | 2012-10-26 | 2015-07-28 | Immersion Corporation | Stream-independent sound to haptic effect conversion system |
US9274602B2 (en) | 2012-10-30 | 2016-03-01 | Texas Instruments Incorporated | Haptic actuator controller |
US20140119244A1 (en) | 2012-11-01 | 2014-05-01 | Research In Motion Limited | Cognitive radio rf front end |
US8947216B2 (en) | 2012-11-02 | 2015-02-03 | Immersion Corporation | Encoding dynamic haptic effects |
US9122330B2 (en) | 2012-11-19 | 2015-09-01 | Disney Enterprises, Inc. | Controlling a user's tactile perception in a dynamic physical environment |
KR102141044B1 (ko) | 2012-12-03 | 2020-08-04 | 삼성전자주식회사 | 복수의 터치스크린을 가지는 휴대 장치 및 복수의 터치스크린을 가지는 휴대 장치의 사운드 출력방법 |
KR102091077B1 (ko) | 2012-12-14 | 2020-04-14 | 삼성전자주식회사 | 입력 유닛의 피드백을 제어하는 휴대 단말 및 방법과, 이를 제공하는 상기 입력 유닛 및 방법 |
US9600116B2 (en) | 2012-12-20 | 2017-03-21 | Intel Corporation | Touchscreen including force sensors |
US9128523B2 (en) | 2012-12-20 | 2015-09-08 | Amazon Technologies, Inc. | Dynamically generating haptic effects from audio data |
US9261960B2 (en) | 2013-01-24 | 2016-02-16 | Immersion Corporation | Haptic sensation recording and playback |
US9855110B2 (en) | 2013-02-05 | 2018-01-02 | Q-Core Medical Ltd. | Methods, apparatus and systems for operating a medical device including an accelerometer |
US9117347B2 (en) | 2013-02-25 | 2015-08-25 | Nokia Technologies Oy | Method and apparatus for a flexible housing |
CN103165328B (zh) | 2013-02-25 | 2016-06-08 | 苏州达方电子有限公司 | 力回馈键盘结构 |
US9489047B2 (en) | 2013-03-01 | 2016-11-08 | Immersion Corporation | Haptic device with linear resonant actuator |
EP2962172B1 (en) | 2013-03-01 | 2020-04-29 | Nokia Technologies Oy | Control apparatus for a tactile audio display |
US9715300B2 (en) | 2013-03-04 | 2017-07-25 | Microsoft Technology Licensing, Llc | Touch screen interaction using dynamic haptic feedback |
US8754757B1 (en) | 2013-03-05 | 2014-06-17 | Immersion Corporation | Automatic fitting of haptic effects |
US9202352B2 (en) | 2013-03-11 | 2015-12-01 | Immersion Corporation | Automatic haptic effect adjustment system |
US11393461B2 (en) | 2013-03-12 | 2022-07-19 | Cerence Operating Company | Methods and apparatus for detecting a voice command |
KR101666393B1 (ko) | 2013-03-27 | 2016-10-14 | 한국전자통신연구원 | 음향효과를 이용한 촉각효과 재생 장치 및 방법 |
US9997032B2 (en) | 2013-04-09 | 2018-06-12 | Immersion Corporation | Offline haptic conversion system |
US9448613B1 (en) * | 2013-05-09 | 2016-09-20 | Amazon Technologies, Inc. | Actuator detection |
US9519346B2 (en) | 2013-05-17 | 2016-12-13 | Immersion Corporation | Low-frequency effects haptic conversion system |
US9274603B2 (en) | 2013-05-24 | 2016-03-01 | Immersion Corporation | Method and apparatus to provide haptic feedback based on media content and one or more external parameters |
US9196135B2 (en) | 2013-06-28 | 2015-11-24 | Immersion Corporation | Uniform haptic actuator response with a variable supply voltage |
US9976713B2 (en) | 2013-07-05 | 2018-05-22 | Qualcomm Incorporated | Apparatus and method for providing a frequency response for audio signals |
DE102013012811B4 (de) | 2013-08-01 | 2024-02-22 | Wolfgang Klippel | Anordnung und Verfahren zur Identifikation und Korrektur der nichtlinearen Eigenschaften elektromagnetischer Wandler |
TWI557596B (zh) | 2013-08-19 | 2016-11-11 | 瑞昱半導體股份有限公司 | 具有觸感補償功能之音訊裝置及音訊使用方法 |
US9401079B2 (en) | 2013-09-06 | 2016-07-26 | Immersion Corporation | Method and apparatus of converting control tracks for providing haptic feedback |
US10162416B2 (en) | 2013-09-06 | 2018-12-25 | Immersion Corporation | Dynamic haptic conversion system |
US9158379B2 (en) | 2013-09-06 | 2015-10-13 | Immersion Corporation | Haptic warping system that transforms a haptic signal into a collection of vibrotactile haptic effect patterns |
US9898085B2 (en) | 2013-09-06 | 2018-02-20 | Immersion Corporation | Haptic conversion system using segmenting and combining |
US9245429B2 (en) | 2013-09-06 | 2016-01-26 | Immersion Corporation | Haptic warping system |
US9619980B2 (en) | 2013-09-06 | 2017-04-11 | Immersion Corporation | Systems and methods for generating haptic effects associated with audio signals |
US9520036B1 (en) | 2013-09-18 | 2016-12-13 | Amazon Technologies, Inc. | Haptic output generation with dynamic feedback control |
US9207764B2 (en) | 2013-09-18 | 2015-12-08 | Immersion Corporation | Orientation adjustable multi-channel haptic device |
US9213408B2 (en) | 2013-10-08 | 2015-12-15 | Immersion Corporation | Generating haptic effects while minimizing cascading |
US9164587B2 (en) | 2013-11-14 | 2015-10-20 | Immersion Corporation | Haptic spatialization system |
JP6142928B2 (ja) | 2013-12-06 | 2017-06-07 | 富士通株式会社 | 駆動装置、電子機器、駆動制御プログラム、及び駆動信号の生成方法 |
US9248840B2 (en) | 2013-12-20 | 2016-02-02 | Immersion Corporation | Gesture based input system in a vehicle with haptic feedback |
US10831318B2 (en) | 2013-12-24 | 2020-11-10 | Intel Corporation | Adaptive enclosure for a mobile computing device |
CN104811838B (zh) | 2013-12-30 | 2020-02-18 | 骷髅头有限公司 | 用于立体声触觉振动的耳机以及相关系统和方法 |
US10986454B2 (en) | 2014-01-06 | 2021-04-20 | Alpine Electronics of Silicon Valley, Inc. | Sound normalization and frequency remapping using haptic feedback |
US10054622B2 (en) | 2014-01-21 | 2018-08-21 | Texas Instruments Incorporated | Method and apparatus for LRA real time impedance tracking and BEMF extraction |
TWI535304B (zh) | 2014-01-23 | 2016-05-21 | 立錡科技股份有限公司 | 揚聲器的磁力強度參數的偵測裝置及方法 |
US9959716B2 (en) | 2014-02-13 | 2018-05-01 | Nxp B.V. | Multi-tone haptic pattern generator |
US9338533B2 (en) | 2014-03-11 | 2016-05-10 | Texas Instruments Incorporated | Drivers and methods of driving transducers |
US9158426B1 (en) | 2014-03-19 | 2015-10-13 | Google Inc. | Touch keyboard calibration |
US9946348B2 (en) | 2014-03-21 | 2018-04-17 | Immersion Corporation | Automatic tuning of haptic effects |
US9959744B2 (en) | 2014-04-25 | 2018-05-01 | Motorola Solutions, Inc. | Method and system for providing alerts for radio communications |
US9928728B2 (en) | 2014-05-09 | 2018-03-27 | Sony Interactive Entertainment Inc. | Scheme for embedding a control signal in an audio signal using pseudo white noise |
KR102229137B1 (ko) | 2014-05-20 | 2021-03-18 | 삼성디스플레이 주식회사 | 표시장치 |
US9330547B2 (en) | 2014-05-20 | 2016-05-03 | Immersion Corporation | Haptic effect authoring tool based on a haptification model |
GB2526881B (en) | 2014-06-06 | 2017-10-04 | Cirrus Logic Int Semiconductor Ltd | Temperature monitoring for loudspeakers |
US9588586B2 (en) | 2014-06-09 | 2017-03-07 | Immersion Corporation | Programmable haptic devices and methods for modifying haptic strength based on perspective and/or proximity |
US9696859B1 (en) | 2014-06-17 | 2017-07-04 | Amazon Technologies, Inc. | Detecting tap-based user input on a mobile device based on motion sensor data |
WO2016007426A1 (en) | 2014-07-07 | 2016-01-14 | Immersion Corporation | Second screen haptics |
CN204903757U (zh) | 2014-07-11 | 2015-12-23 | 菲力尔系统公司 | 声纳系统 |
KR101641418B1 (ko) | 2014-07-25 | 2016-07-20 | 포항공과대학교 산학협력단 | 청각 주목도에 기반한 햅틱 신호 생성 방법 및 이를 위한 장치 |
US9921678B2 (en) | 2014-08-05 | 2018-03-20 | Georgia Tech Research Corporation | Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification |
EP2988528B1 (en) | 2014-08-18 | 2019-01-02 | Nxp B.V. | Voice coil motor and loudspeaker controller |
KR102019505B1 (ko) | 2014-09-02 | 2019-09-06 | 애플 인크. | 햅틱 통지 |
US9658089B2 (en) | 2014-10-01 | 2017-05-23 | Finetek Co., Ltd. | Electromagnetic flowmeter with voltage-amplitude conductivity-sensing function for a liquid in a tube |
JP6501487B2 (ja) | 2014-10-27 | 2019-04-17 | キヤノン株式会社 | 超音波モータ及び超音波モータを用いた駆動装置 |
US9697706B2 (en) | 2014-12-02 | 2017-07-04 | Texas Instruments Incorporated | Integrated circuit with single wire haptic vibration control and selective open loop operation |
US9846484B2 (en) | 2014-12-04 | 2017-12-19 | Immersion Corporation | Systems and methods for controlling haptic signals |
US10165358B2 (en) | 2014-12-11 | 2018-12-25 | Semiconductor Components Industries, Llc | Transducer controller and method therefor |
US10439513B2 (en) | 2014-12-19 | 2019-10-08 | Sinewatts, Inc. | Systems and methods for synchronizing converter modules |
US10613628B2 (en) | 2014-12-23 | 2020-04-07 | Immersion Corporation | Media driven haptics |
US9891714B2 (en) | 2014-12-24 | 2018-02-13 | Immersion Corporation | Audio enhanced simulation of high bandwidth haptic effects |
US20160328065A1 (en) | 2015-01-12 | 2016-11-10 | Rockwell Collins, Inc. | Touchscreen with Dynamic Control of Activation Force |
US9456474B2 (en) | 2015-01-29 | 2016-09-27 | Stmicroelectronics S.R.L. | Biasing and driving circuit, based on a feedback voltage regulator, for an electric load |
WO2016138144A2 (en) | 2015-02-25 | 2016-09-01 | Immersion Corporation | Systems and methods for providing context-sensitive haptic notification frameworks |
US20160277821A1 (en) | 2015-03-19 | 2016-09-22 | Panasonic Intellectual Property Management Co., Ltd. | Vibration headphones |
US9612685B2 (en) | 2015-04-09 | 2017-04-04 | Microsoft Technology Licensing, Llc | Force-sensitive touch sensor compensation |
US11247605B2 (en) | 2015-04-10 | 2022-02-15 | Maxell, Ltd. | Image projection apparatus configured to project an image on a road surface |
EE05788B1 (et) | 2015-04-20 | 2017-02-15 | Tallinna Tehnikaülikool | Impedantsi binaarse ergutusega analüüsi meetod ja seade |
US20160334912A1 (en) | 2015-05-15 | 2016-11-17 | Microsoft Technology Licensing, Llc | Force Curves and Inadvertent Input Control |
CN112947793A (zh) | 2015-05-22 | 2021-06-11 | 触觉实验室股份有限公司 | 用于双向正交信令传感器的发送与接收系统和方法 |
WO2017011026A1 (en) | 2015-07-13 | 2017-01-19 | Intel Corporation | Bearer splitting |
US10055048B2 (en) | 2015-07-31 | 2018-08-21 | Apple Inc. | Noise adaptive force touch |
WO2017023313A1 (en) | 2015-08-05 | 2017-02-09 | Ford Global Technologies, Llc | System and method for sound direction detection in a vehicle |
US10109161B2 (en) | 2015-08-21 | 2018-10-23 | Immersion Corporation | Haptic driver with attenuation |
DK3148214T3 (da) | 2015-09-15 | 2022-01-03 | Oticon As | Høreanordning der omfatter et forbedret feedback-annulleringssystem |
CN108472686B (zh) | 2015-09-16 | 2020-05-12 | 泰克宣技术有限公司 | 用于声音的音频-触觉空间化和低音的感知的设备和方法 |
CN108028725B (zh) | 2015-09-17 | 2021-07-30 | 日本电气株式会社 | 终端设备及其控制方法、以及记录介质 |
JP2018531442A (ja) | 2015-09-22 | 2018-10-25 | イマージョン コーポレーションImmersion Corporation | 圧力ベースのハプティクス |
US9842476B2 (en) | 2015-09-25 | 2017-12-12 | Immersion Corporation | Programmable haptic devices and methods for modifying haptic effects to compensate for audio-haptic interference |
US10007344B2 (en) | 2015-09-30 | 2018-06-26 | Apple Inc. | Electronic device including closed-loop controller for haptic actuator and related methods |
US9971407B2 (en) | 2015-09-30 | 2018-05-15 | Apple Inc. | Haptic feedback for rotary inputs |
US9733288B2 (en) | 2015-10-02 | 2017-08-15 | Continental Automotive Systems, Inc. | Apparatus and method for determining a resonant frequency of an LC circuit in situ, by comparing voltage and current polarity changes |
US9740245B2 (en) | 2015-10-05 | 2017-08-22 | Microsoft Technology Licensing, Llc | Locking mechanism |
US10179346B2 (en) | 2015-10-21 | 2019-01-15 | Semiconductor Components Industries, Llc | Method of forming a transducer controller and circuit therefor |
US20170153760A1 (en) | 2015-12-01 | 2017-06-01 | Apple Inc. | Gain-based error tracking for force sensing |
EP3179335B1 (en) | 2015-12-10 | 2020-03-04 | Nxp B.V. | Haptic feedback controller |
US10310804B2 (en) | 2015-12-11 | 2019-06-04 | Facebook Technologies, Llc | Modifying haptic feedback provided to a user to account for changes in user perception of haptic feedback |
CN105446646B (zh) | 2015-12-11 | 2019-01-11 | 小米科技有限责任公司 | 基于虚拟键盘的内容输入方法、装置及触控设备 |
US10102722B2 (en) | 2015-12-18 | 2018-10-16 | Immersion Corporation | Wearable article having an actuator that performs non-haptic and haptic operations |
CN105511514B (zh) * | 2015-12-31 | 2019-03-15 | 歌尔股份有限公司 | 一种智能终端的触觉振动控制系统和方法 |
CN105630021B (zh) | 2015-12-31 | 2018-07-31 | 歌尔股份有限公司 | 一种智能终端的触觉振动控制系统和方法 |
US20170220197A1 (en) | 2016-02-02 | 2017-08-03 | Fujitsu Ten Limited | Input device, system, method of manufacturing input device and display device |
US9881467B2 (en) | 2016-02-22 | 2018-01-30 | Immersion Corporation | Haptic effects conflict avoidance |
US10904664B2 (en) | 2016-03-02 | 2021-01-26 | SonicSensory, Inc. | Device for generating chest-chamber acoustic resonance and delivering the resultant audio and haptic to headphones |
US10039080B2 (en) | 2016-03-04 | 2018-07-31 | Apple Inc. | Situationally-aware alerts |
US10198125B2 (en) | 2016-03-22 | 2019-02-05 | Synaptics Incorporated | Force sensor recalibration |
US20170277360A1 (en) * | 2016-03-23 | 2017-09-28 | International Business Machines Corporation | Gaze detection to prevent inadvertent key grabbing |
US10467123B2 (en) | 2016-05-09 | 2019-11-05 | Oracle International Corporation | Compression techniques for encoding stack trace information |
KR101790892B1 (ko) | 2016-05-17 | 2017-10-26 | 주식회사 씨케이머티리얼즈랩 | 음향 신호를 촉각 신호로 변환하기 방법 및 이를 이용하는 햅틱 장치 |
US9965092B2 (en) | 2016-05-18 | 2018-05-08 | Apple Inc. | Managing power consumption of force sensors |
US10719232B2 (en) | 2016-06-08 | 2020-07-21 | Qualcomm Incorporated | Providing virtual buttons in a handheld device |
US10073525B2 (en) | 2016-06-16 | 2018-09-11 | Immersion Corporation | Systems and methods for a low profile haptic actuator |
US9886829B2 (en) | 2016-06-20 | 2018-02-06 | Immersion Corporation | Systems and methods for closed-loop control for haptic feedback |
KR102358918B1 (ko) | 2016-07-04 | 2022-02-07 | 삼성전자 주식회사 | 무선 통신 시스템에서 서비스에 따른 보안 관리 방법 및 장치 |
KR102427212B1 (ko) | 2016-07-07 | 2022-07-29 | 소니그룹주식회사 | 정보 처리 장치, 정보 처리 방법 및 프로그램 |
US10304298B2 (en) | 2016-07-27 | 2019-05-28 | Immersion Corporation | Braking characteristic detection system for haptic actuator |
US20180082673A1 (en) | 2016-07-28 | 2018-03-22 | Theodore Tzanetos | Active noise cancellation for defined spaces |
US9697450B1 (en) | 2016-07-29 | 2017-07-04 | Alpha And Omega Semiconductor Incorporated | Magnetic stripe data transmission system and method for reliable data transmission and low power consumption |
US10141496B2 (en) | 2016-08-01 | 2018-11-27 | Microsoft Technology Licensing, Llc | Device housing with vibrator component |
US9921609B2 (en) | 2016-08-02 | 2018-03-20 | Immersion Corporation | Systems and methods for deformation and haptic effects |
US10890973B2 (en) | 2016-08-31 | 2021-01-12 | Apple Inc. | Electronic device including multi-phase driven linear haptic actuator and related methods |
US10671167B2 (en) * | 2016-09-01 | 2020-06-02 | Apple Inc. | Electronic device including sensed location based driving of haptic actuators and related methods |
CN106438890B (zh) | 2016-09-05 | 2018-08-28 | 南京航空航天大学 | 电磁铁-超声换能器宏微结合的无级变速传动装置及方法 |
CN106326594B (zh) * | 2016-09-05 | 2024-04-05 | 歌尔股份有限公司 | 一种获取线性谐振致动器输出量的方法和电路 |
DK201670720A1 (en) | 2016-09-06 | 2018-03-26 | Apple Inc | Devices, Methods, and Graphical User Interfaces for Generating Tactile Outputs |
DK201670728A1 (en) | 2016-09-06 | 2018-03-19 | Apple Inc | Devices, Methods, and Graphical User Interfaces for Providing Feedback During Interaction with an Intensity-Sensitive Button |
KR102264130B1 (ko) | 2016-09-09 | 2021-06-11 | 센셀, 인크. | 터치 센서 상의 입력을 검출하고 특징화하기 위한 시스템 |
JP2020502607A (ja) | 2016-09-14 | 2020-01-23 | ソニックセンソリー、インコーポレイテッド | 同期化を伴うマルチデバイスオーディオストリーミングシステム |
US10469971B2 (en) | 2016-09-19 | 2019-11-05 | Apple Inc. | Augmented performance synchronization |
US10198122B2 (en) | 2016-09-30 | 2019-02-05 | Biocatch Ltd. | System, device, and method of estimating force applied to a touch surface |
EP3522024A4 (en) | 2016-09-30 | 2019-10-16 | Sony Corporation | SYSTEM FOR PROVISION OF CONTENT, CONTROL DEVICE AND RECEPTION DEVICE |
WO2018067613A1 (en) | 2016-10-03 | 2018-04-12 | Christopher Harrison | Touch-sensing system |
JP6977312B2 (ja) | 2016-10-07 | 2021-12-08 | ソニーグループ株式会社 | 情報処理装置、情報処理方法およびプログラム |
EP3321933B1 (en) | 2016-11-14 | 2021-08-25 | Goodix Technology (HK) Company Limited | Linear resonant actuator controller |
KR102669181B1 (ko) | 2016-11-30 | 2024-05-27 | 삼성전자주식회사 | 햅틱 신호 생성 방법 및 이를 지원하는 전자 장치 |
US10341767B2 (en) | 2016-12-06 | 2019-07-02 | Cirrus Logic, Inc. | Speaker protection excursion oversight |
GB201620746D0 (en) | 2016-12-06 | 2017-01-18 | Dialog Semiconductor Uk Ltd | An apparatus and method for controlling a haptic actuator |
US10333443B2 (en) | 2016-12-06 | 2019-06-25 | Dialog Semiconductor (Uk) Limited | Apparatus and method for controlling a device |
US10297120B2 (en) | 2016-12-13 | 2019-05-21 | Disney Enterprises, Inc. | Haptic effect generation system |
JP6588421B2 (ja) | 2016-12-28 | 2019-10-09 | 任天堂株式会社 | 情報処理システム、情報処理プログラム、情報処理装置、および、情報処理方法 |
US10261685B2 (en) | 2016-12-29 | 2019-04-16 | Google Llc | Multi-task machine learning for predicted touch interpretations |
US10780896B2 (en) | 2017-01-04 | 2020-09-22 | Joyson Safety Systems Acquisition Llc | Systems and methods of providing haptic feedback |
US20180196567A1 (en) | 2017-01-09 | 2018-07-12 | Microsoft Technology Licensing, Llc | Pressure sensitive virtual keyboard |
KR102687729B1 (ko) | 2017-02-03 | 2024-07-24 | 삼성전자주식회사 | 전자 장치 및 객체 표시 방법 |
US10075251B2 (en) | 2017-02-08 | 2018-09-11 | Immersion Corporation | Haptic broadcast with select haptic metadata based on haptic playback capability |
CN106950832B (zh) | 2017-03-08 | 2020-01-31 | 杭州电子科技大学 | 一种利用空化强度反馈的超声分散控制装置 |
KR20180104830A (ko) | 2017-03-14 | 2018-09-27 | 에스케이하이닉스 주식회사 | 메모리 시스템 및 이의 동작 방법 |
US10032550B1 (en) | 2017-03-30 | 2018-07-24 | Apple Inc. | Moving-coil haptic actuator for electronic devices |
US10748448B2 (en) | 2017-04-17 | 2020-08-18 | Facebook, Inc. | Haptic communication using interference of haptic outputs on skin |
US20180304310A1 (en) | 2017-04-24 | 2018-10-25 | Ultrahaptics Ip Ltd | Interference Reduction Techniques in Haptic Systems |
US10371544B2 (en) | 2017-05-04 | 2019-08-06 | Wearworks | Vibrating haptic device for the blind |
US10732714B2 (en) | 2017-05-08 | 2020-08-04 | Cirrus Logic, Inc. | Integrated haptic system |
US9964732B1 (en) * | 2017-05-15 | 2018-05-08 | Semiconductor Components Industries, Llc | Methods and apparatus for actuator control |
DK201770372A1 (en) | 2017-05-16 | 2019-01-08 | Apple Inc. | TACTILE FEEDBACK FOR LOCKED DEVICE USER INTERFACES |
GB2563460B (en) | 2017-06-15 | 2021-07-14 | Cirrus Logic Int Semiconductor Ltd | Temperature monitoring for loudspeakers |
US10498890B2 (en) | 2017-07-14 | 2019-12-03 | Motorola Mobility Llc | Activating virtual buttons using verbal commands |
US11259121B2 (en) | 2017-07-21 | 2022-02-22 | Cirrus Logic, Inc. | Surface speaker |
AT15914U1 (de) | 2017-07-26 | 2018-09-15 | Epcos Ag | Vorrichtung, die einen haptischen Feedback vermittelt und Bauelement mit der Vorrichtung |
US10295576B2 (en) | 2017-07-26 | 2019-05-21 | Akustica, Inc. | Ratiometric biasing for high impedance capacitive sensing |
US10467869B2 (en) | 2017-07-30 | 2019-11-05 | Immersion Corporation | Apparatus and method for providing boost protection logic |
FR3069932B1 (fr) | 2017-08-01 | 2019-09-06 | Hyvibe | Restitution sonore perfectionnee a partir d'un dispositif a actionneur mecanique vibrant |
US10360832B2 (en) | 2017-08-14 | 2019-07-23 | Microsoft Technology Licensing, Llc | Post-rendering image transformation using parallel image transformation pipelines |
US11009411B2 (en) | 2017-08-14 | 2021-05-18 | Sentons Inc. | Increasing sensitivity of a sensor using an encoded signal |
US10110152B1 (en) | 2017-09-29 | 2018-10-23 | Apple Inc. | Integrated driver and controller for haptic engine |
US10871847B2 (en) | 2017-09-29 | 2020-12-22 | Apple Inc. | Sensing force and press location in absence of touch information |
US10601355B2 (en) | 2017-09-29 | 2020-03-24 | Apple Inc. | Closed-loop control of linear resonant actuator using back EMF and inertial compensation |
GB201801661D0 (en) | 2017-10-13 | 2018-03-21 | Cirrus Logic International Uk Ltd | Detection of liveness |
US10402031B2 (en) | 2017-11-27 | 2019-09-03 | Synaptics Incorporated | Method and system for thermal drift correction |
KR102430582B1 (ko) | 2017-11-28 | 2022-08-08 | 엘지디스플레이 주식회사 | 표시 장치 |
EP3729642B1 (en) | 2017-12-20 | 2025-01-29 | Dolby Laboratories Licensing Corporation | Configurable modal amplifier system |
US10546585B2 (en) | 2017-12-29 | 2020-01-28 | Comcast Cable Communications, Llc | Localizing and verifying utterances by audio fingerprinting |
US10264348B1 (en) | 2017-12-29 | 2019-04-16 | Nvf Tech Ltd | Multi-resonant coupled system for flat panel actuation |
US10455339B2 (en) | 2018-01-19 | 2019-10-22 | Cirrus Logic, Inc. | Always-on detection systems |
US10620704B2 (en) | 2018-01-19 | 2020-04-14 | Cirrus Logic, Inc. | Haptic output systems |
US10782785B2 (en) | 2018-01-29 | 2020-09-22 | Cirrus Logic, Inc. | Vibro-haptic design and automatic evaluation of haptic stimuli |
US10637423B2 (en) | 2018-02-14 | 2020-04-28 | Cirrus Logic, Inc. | Tracking and correcting gain of open-loop driver in a multi-path processing system |
US11139767B2 (en) | 2018-03-22 | 2021-10-05 | Cirrus Logic, Inc. | Methods and apparatus for driving a transducer |
US10991499B2 (en) | 2018-03-22 | 2021-04-27 | Cirrus Logic, Inc. | Drive waveform adjustments to compensate for transducer resonant frequency |
US10795443B2 (en) | 2018-03-23 | 2020-10-06 | Cirrus Logic, Inc. | Methods and apparatus for driving a transducer |
US10667051B2 (en) | 2018-03-26 | 2020-05-26 | Cirrus Logic, Inc. | Methods and apparatus for limiting the excursion of a transducer |
US10820100B2 (en) | 2018-03-26 | 2020-10-27 | Cirrus Logic, Inc. | Methods and apparatus for limiting the excursion of a transducer |
US10547387B2 (en) | 2018-03-30 | 2020-01-28 | Mellanox Technologies Denmark ApS. | Transition based feedforward equalization method and apparatus implemented with lookup table circuits |
US10832537B2 (en) | 2018-04-04 | 2020-11-10 | Cirrus Logic, Inc. | Methods and apparatus for outputting a haptic signal to a haptic transducer |
US10707828B2 (en) | 2018-05-04 | 2020-07-07 | Samsung Electro-Mechanics Co., Ltd. | Filter including bulk acoustic wave resonator |
US11069206B2 (en) | 2018-05-04 | 2021-07-20 | Cirrus Logic, Inc. | Methods and apparatus for outputting a haptic signal to a haptic transducer |
US11461442B2 (en) | 2018-06-05 | 2022-10-04 | Rutgers, The State University Of New Jersey | Systems and methods for user input and authentication using vibration analysis |
US10579146B2 (en) | 2018-06-15 | 2020-03-03 | Immersion Corporation | Systems and methods for multi-level closed loop control of haptic effects |
KR20200001770A (ko) | 2018-06-28 | 2020-01-07 | 주식회사 동운아나텍 | 액츄에이터 제어장치 및 방법 |
WO2020055405A1 (en) | 2018-09-12 | 2020-03-19 | Google Llc | Calibrating haptic output for trackpad |
GB201817495D0 (en) | 2018-10-26 | 2018-12-12 | Cirrus Logic Int Semiconductor Ltd | A force sensing system and method |
US11325154B2 (en) | 2018-11-02 | 2022-05-10 | Texas Instruments Incorporated | Resonant frequency tracking and control |
US20200150767A1 (en) * | 2018-11-09 | 2020-05-14 | Immersion Corporation | Devices and methods for controlling a haptic actuator |
EP3677996B1 (en) | 2019-01-07 | 2022-03-23 | Goodix Technology (HK) Company Limited | Audio-haptic signal generator |
US12035445B2 (en) | 2019-03-29 | 2024-07-09 | Cirrus Logic Inc. | Resonant tracking of an electromagnetic load |
US10726683B1 (en) | 2019-03-29 | 2020-07-28 | Cirrus Logic, Inc. | Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus |
US11283337B2 (en) | 2019-03-29 | 2022-03-22 | Cirrus Logic, Inc. | Methods and systems for improving transducer dynamics |
US10955955B2 (en) | 2019-03-29 | 2021-03-23 | Cirrus Logic, Inc. | Controller for use in a device comprising force sensors |
US11509292B2 (en) | 2019-03-29 | 2022-11-22 | Cirrus Logic, Inc. | Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter |
US10828672B2 (en) | 2019-03-29 | 2020-11-10 | Cirrus Logic, Inc. | Driver circuitry |
US11238709B2 (en) | 2019-04-26 | 2022-02-01 | Cirrus Logic, Inc. | Non linear predictive model for haptic waveform generation |
US11333622B2 (en) | 2019-05-01 | 2022-05-17 | Cirrus Logic, Inc. | Thermal model of transducer for thermal protection and resistance estimation |
US10976825B2 (en) | 2019-06-07 | 2021-04-13 | Cirrus Logic, Inc. | Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system |
US11150733B2 (en) | 2019-06-07 | 2021-10-19 | Cirrus Logic, Inc. | Methods and apparatuses for providing a haptic output signal to a haptic actuator |
US11121661B2 (en) | 2019-06-20 | 2021-09-14 | Cirrus Logic, Inc. | Minimizing transducer settling time |
CN210628147U (zh) | 2019-07-31 | 2020-05-26 | 联想(北京)有限公司 | 电子设备 |
US11408787B2 (en) | 2019-10-15 | 2022-08-09 | Cirrus Logic, Inc. | Control methods for a force sensor system |
US11380175B2 (en) | 2019-10-24 | 2022-07-05 | Cirrus Logic, Inc. | Reproducibility of haptic waveform |
US11079874B2 (en) | 2019-11-19 | 2021-08-03 | Cirrus Logic, Inc. | Virtual button characterization engine |
WO2021108638A1 (en) | 2019-11-26 | 2021-06-03 | Juul Labs, Inc. | Vaporizer device with responsive inhalation detection |
US11545951B2 (en) | 2019-12-06 | 2023-01-03 | Cirrus Logic, Inc. | Methods and systems for detecting and managing amplifier instability |
US10996693B1 (en) | 2020-02-17 | 2021-05-04 | Robert Bosch Gmbh | Haptic feedback actuation via open/closed loop control system |
US11662821B2 (en) | 2020-04-16 | 2023-05-30 | Cirrus Logic, Inc. | In-situ monitoring, calibration, and testing of a haptic actuator |
US12244253B2 (en) | 2020-04-16 | 2025-03-04 | Cirrus Logic Inc. | Restricting undesired movement of a haptic actuator |
CN115868177A (zh) | 2020-05-12 | 2023-03-28 | 高通科技公司 | 具有三分贝反馈回路的换能器系统 |
US11698698B2 (en) | 2020-09-09 | 2023-07-11 | E Ink Holdings Inc. | Touch display apparatus and sensing method of the same for identifying different touch sources and reducing power consumption |
US11849643B2 (en) | 2021-03-30 | 2023-12-19 | Cirrus Logic Inc. | Circuitry for estimating displacement of a piezoelectric transducer |
US11460526B1 (en) | 2021-04-29 | 2022-10-04 | GE Precision Healthcare LLC | Pulse sequence generation systems and methods of reducing acoustic noise in magnetic resonance systems |
US11933822B2 (en) | 2021-06-16 | 2024-03-19 | Cirrus Logic Inc. | Methods and systems for in-system estimation of actuator parameters |
US11765499B2 (en) | 2021-06-22 | 2023-09-19 | Cirrus Logic Inc. | Methods and systems for managing mixed mode electromechanical actuator drive |
-
2022
- 2022-01-12 US US17/574,188 patent/US11933822B2/en active Active
- 2022-05-23 JP JP2023576385A patent/JP2024522679A/ja active Pending
- 2022-05-23 EP EP22738094.6A patent/EP4355500A1/en active Pending
- 2022-05-23 KR KR1020247001313A patent/KR20240021907A/ko active Pending
- 2022-05-23 CN CN202280043376.3A patent/CN117500611B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
KR20240021907A (ko) | 2024-02-19 |
US20220404398A1 (en) | 2022-12-22 |
US11933822B2 (en) | 2024-03-19 |
JP2024522679A (ja) | 2024-06-21 |
CN117500611A (zh) | 2024-02-02 |
EP4355500A1 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117500611B (zh) | 用于致动器参数的系统内估计的方法和系统 | |
US11545951B2 (en) | Methods and systems for detecting and managing amplifier instability | |
CN113711163B (zh) | 用于向触觉致动器提供触觉输出信号的方法和设备 | |
US11765499B2 (en) | Methods and systems for managing mixed mode electromechanical actuator drive | |
US20240310920A1 (en) | Integrated haptic system | |
US11847906B2 (en) | Reproducibility of haptic waveform | |
US11908310B2 (en) | Methods and systems for detecting and managing unexpected spectral content in an amplifier system | |
CN113994299B (zh) | 用于触觉换能器的频域触觉波形补偿 | |
WO2022265825A1 (en) | Methods and systems for in-system estimation of actuator parameters | |
US20200371592A1 (en) | Sensing and compensating for non-linear haptic vibration | |
US12276687B2 (en) | Methods and systems for estimating coil impedance of an electromagnetic transducer | |
GB2590549A (en) | Methods and systems for detecting and managing amplifier instability | |
US20210174777A1 (en) | Methods and systems for estimating coil impedance of an electromagnetic transducer | |
WO2022271472A1 (en) | Methods and systems for detecting and managing unexpected spectral content in an amplifier system | |
CN112925410A (zh) | 估计电磁换能器的线圈阻抗的方法和系统 | |
JP2024529236A (ja) | 混合モード電気機械的アクチュエータ駆動を管理する方法及びシステム | |
CN117597202A (zh) | 用于管理混合模式机电致动器驱动的方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |