CN117497601B - Structure, manufacturing method and electronic equipment of planar silicon carbide transistor - Google Patents
Structure, manufacturing method and electronic equipment of planar silicon carbide transistor Download PDFInfo
- Publication number
- CN117497601B CN117497601B CN202311835796.8A CN202311835796A CN117497601B CN 117497601 B CN117497601 B CN 117497601B CN 202311835796 A CN202311835796 A CN 202311835796A CN 117497601 B CN117497601 B CN 117497601B
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- active
- layer
- drift layer
- planar silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title abstract description 68
- 229910010271 silicon carbide Inorganic materials 0.000 title abstract description 67
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- 238000000034 method Methods 0.000 abstract description 24
- 239000000758 substrate Substances 0.000 abstract description 15
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域Technical Field
本申请属于半导体技术领域,尤其涉及一种平面型碳化硅晶体管的结构、制造方法及电子设备。The present application belongs to the field of semiconductor technology, and in particular relates to a structure, a manufacturing method and an electronic device of a planar silicon carbide transistor.
背景技术Background technique
碳化硅(SiC)功率金属-氧化-半导体场效应晶体管(metal-oxide-semiconductorfield-effect transistor,MOSFET)由于其更快的开关速度、更低的开关损耗和更高的工作温度范围,已成为电动汽车和光伏逆变器等高功率应用中硅绝缘栅双极晶体管(IGBT)的有力竞争对手。在实际应用中,MOSFET 需要反并联二极管来处理反向电流,硅基MOSFET常采用体二极管来降低寄生电感,起到续流作用,但是对于SiC MOSFET,其材料带隙较宽,体二极管开启电压(约2.7V)远高于硅基MOSFET(约1.5V),导通损耗较大。Silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) have become a strong competitor to silicon insulated gate bipolar transistors (IGBTs) in high-power applications such as electric vehicles and photovoltaic inverters due to their faster switching speeds, lower switching losses, and higher operating temperature ranges. In practical applications, MOSFETs require anti-parallel diodes to handle reverse currents, and silicon-based MOSFETs often use body diodes to reduce parasitic inductance and play a freewheeling role. However, for SiC MOSFETs, the material bandgap is wide, and the body diode turn-on voltage (about 2.7V) is much higher than that of silicon-based MOSFETs (about 1.5V), resulting in large conduction losses.
相关的碳化硅晶体管将SiC MOSFET与SBD或JFET反并联集成可以起到反向续流作用,但通常并联在平面,其会使芯片面积有所增大;也有相关的碳化硅晶体管通过分裂栅在反向时控制续流通道开启的结构,但其存在栅极可靠性、工艺复杂以及电流密度低的问题。Related silicon carbide transistors integrate SiC MOSFET with SBD or JFET in anti-parallel to achieve reverse freewheeling, but they are usually connected in parallel on a plane, which increases the chip area. There are also related silicon carbide transistors that use a split gate to control the opening of the freewheeling channel in the reverse direction, but they have problems with gate reliability, complex process and low current density.
故相关的碳化硅晶体管存在导通损耗大、芯片面积大、可靠性差、工艺复杂以及电流密度低的缺陷。Therefore, the related silicon carbide transistors have defects such as large conduction loss, large chip area, poor reliability, complex process and low current density.
发明内容Summary of the invention
本申请的目的在于提供一种平面型碳化硅晶体管的结构、制造方法及电子设备,旨在解决相关的氮化镓功率器件导通损耗大、芯片面积大、可靠性差、工艺复杂以及电流密度低的问题。The purpose of the present application is to provide a structure, a manufacturing method and an electronic device of a planar silicon carbide transistor, aiming to solve the problems of large conduction loss, large chip area, poor reliability, complex process and low current density of related gallium nitride power devices.
本申请实施例提供了一种平面型碳化硅晶体管的结构,包括左右对称的两个栅源结构、衬底、漂移层以及第一有源区,左右对称的切面为矢状面;The embodiment of the present application provides a structure of a planar silicon carbide transistor, including two left-right symmetrical gate-source structures, a substrate, a drift layer, and a first active region, wherein the left-right symmetrical section is a sagittal plane;
所述漂移层设置于所述衬底的上表面的;The drift layer is disposed on the upper surface of the substrate;
两个所述栅源结构和所述第一有源区均位于所述漂移层的上表面且间隔设置;The two gate-source structures and the first active region are both located on the upper surface of the drift layer and are spaced apart from each other;
所述栅源结构包括:The gate-source structure comprises:
设置于所述漂移层的上表面的第一阱;其中,所述第一阱与所述矢状面之间设置预设距离;A first well disposed on the upper surface of the drift layer; wherein a preset distance is set between the first well and the sagittal plane;
设置于所述第一阱中且位于所述第一阱上表面的第一有源层;A first active layer disposed in the first well and located on an upper surface of the first well;
覆盖所述第一阱的顶部的栅极结构;a gate structure covering a top portion of the first well;
所述平面型碳化硅晶体管的结构还包括:The structure of the planar silicon carbide transistor further includes:
设置于两个所述栅极结构之间的多个第二有源层;A plurality of second active layers disposed between the two gate structures;
其中,所述衬底、所述第二有源层和所述第一阱为第一类型;所述漂移层、所述第一有源区和所述第一有源层的为第二类型。The substrate, the second active layer and the first well are of the first type; the drift layer, the first active region and the first active layer are of the second type.
在其中一个实施例中,所述平面型碳化硅晶体管的结构还包括:In one embodiment, the structure of the planar silicon carbide transistor further includes:
设置于所述第一阱远离所述矢状面一侧的两个第二有源区。Two second active regions are arranged on a side of the first well away from the sagittal plane.
在其中一个实施例中,所述平面型碳化硅晶体管的结构包括:In one embodiment, the structure of the planar silicon carbide transistor includes:
位于所述第二有源区和所述第一有源区之间且位于所述漂移层上表面的第三有源区。A third active region is located between the second active region and the first active region and on an upper surface of the drift layer.
在其中一个实施例中,所述平面型碳化硅晶体管的结构包括:In one embodiment, the structure of the planar silicon carbide transistor includes:
设置于两个所述第一阱之间的电荷存储区。A charge storage region is arranged between the two first wells.
在其中一个实施例中,所述第一类型为P型,所述第二类型为N型;或者In one embodiment, the first type is P type, and the second type is N type; or
所述第一类型为N型,所述第二类型为P型。The first type is N type, and the second type is P type.
在其中一个实施例中,还包括:In one embodiment, it also includes:
覆盖所述第一有源层和所述第二有源层的第一金属层;a first metal layer covering the first active layer and the second active layer;
位于所述第一有源区的上表面的第二金属层;a second metal layer located on the upper surface of the first active area;
与所述栅极结构连接的第三金属层;a third metal layer connected to the gate structure;
所述第一金属层为所述平面型碳化硅晶体管的源极电极,所述第二金属层为所述平面型碳化硅晶体管的漏极电极,所述第三金属层为所述平面型碳化硅晶体管的栅极电极。The first metal layer is a source electrode of the planar silicon carbide transistor, the second metal layer is a drain electrode of the planar silicon carbide transistor, and the third metal layer is a gate electrode of the planar silicon carbide transistor.
在其中一个实施例中,所述栅极结构的材料包括二氧化硅和多晶硅;所述第二有源层的材料包括多晶硅;所述漂移层、所述第一有源区、所述第一有源层和所述第一阱的材料包括碳化硅。In one embodiment, the material of the gate structure includes silicon dioxide and polysilicon; the material of the second active layer includes polysilicon; and the material of the drift layer, the first active region, the first active layer and the first well includes silicon carbide.
本申请实施例还提供一种平面型碳化硅晶体管的制造方法, 所述制造方法包括:The present application also provides a method for manufacturing a planar silicon carbide transistor, the method comprising:
在衬底的上表面形成漂移层;forming a drift layer on the upper surface of the substrate;
在所述漂移层第一侧的上表面形成左右对称的两个第一阱;其中,左右对称的切面为矢状面,所述第一阱与所述矢状面之间设置预设距离;Two left-right symmetrical first wells are formed on the upper surface of the first side of the drift layer; wherein the left-right symmetrical section is a sagittal plane, and a preset distance is set between the first well and the sagittal plane;
分别在两个所述第一阱中且位于所述第一阱上表面形成两个第一有源层,并在所述漂移层第二侧的上表面形成第一有源区;forming two first active layers respectively in the two first wells and on upper surfaces of the first wells, and forming a first active region on an upper surface of a second side of the drift layer;
分别在两个所述第一阱的顶部形成两个栅极结构;forming two gate structures on top of the two first wells respectively;
在两个所述栅极结构之间形成多个第二有源层。A plurality of second active layers are formed between the two gate structures.
在其中一个实施例中,所述在所述漂移层的上表面形成左右对称的两个第一阱之后还包括:In one embodiment, after forming two left-right symmetrical first wells on the upper surface of the drift layer, the method further comprises:
在两个所述第一阱远离所述矢状面一侧分别形成两个第二有源区。Two second active regions are respectively formed on the sides of the two first wells away from the sagittal plane.
在其中一个实施例中,所述在两个所述第一阱远离所述矢状面一侧分别形成两个第二有源区之后还包括:In one embodiment, after forming two second active regions on the two first wells away from the sagittal plane respectively, the method further comprises:
在所述第二有源区和所述第一有源区之间且在所述漂移层上表面形成第三有源区。A third active region is formed between the second active region and the first active region and on an upper surface of the drift layer.
在其中一个实施例中,所述在两个所述栅极结构之间形成多个第二有源层之后还包括:In one embodiment, after forming a plurality of second active layers between the two gate structures, the method further includes:
在第一有源层的上表面和第二有源层的上表面形成第一金属层;forming a first metal layer on an upper surface of the first active layer and an upper surface of the second active layer;
在所述第一有源区的上表面形成第二金属层;forming a second metal layer on the upper surface of the first active area;
形成与所述栅极结构连接的第三金属层。A third metal layer connected to the gate structure is formed.
本申请实施例还提供一种电子设备,所述电子设备包括上述的平面型碳化硅晶体管的结构。An embodiment of the present application also provides an electronic device, which includes the structure of the above-mentioned planar silicon carbide transistor.
本发明实施例与现有技术相比存在的有益效果是:由于第一有源区作为漏极,第一阱作为栅极,第一有源层作为源极。第二有源层与漂移层构成异质结。当平面型碳化硅晶体管加正向电压时,漏极和源极导通,异质结反偏,异质结的耗尽层扩展夹断续流通道;当平面型碳化硅晶体管加反向电压时,漏极和源极关断,异质结正偏,异质结的耗尽层扩展夹断续流导通,从而无需将SiC MOSFET与肖特基势垒二极管(schottky barrier diode,SBD)或结型场效应管(junction field-effect transistor,JFET)反并联集成即可以起到反向续流作用,减小了导通损耗和芯片面积,增大了可靠性和电流密度,简化了工艺。Compared with the prior art, the embodiment of the present invention has the following beneficial effects: since the first active region is used as the drain, the first well is used as the gate, and the first active layer is used as the source. The second active layer and the drift layer form a heterojunction. When a forward voltage is applied to the planar silicon carbide transistor, the drain and the source are turned on, the heterojunction is reverse biased, and the depletion layer of the heterojunction expands and pinches off the freewheeling channel; when a reverse voltage is applied to the planar silicon carbide transistor, the drain and the source are turned off, the heterojunction is forward biased, and the depletion layer of the heterojunction expands and pinches off the freewheeling conduction, so that the reverse freewheeling effect can be achieved without the need to integrate the SiC MOSFET with a Schottky barrier diode (SBD) or a junction field-effect transistor (JFET) in anti-parallel connection, thereby reducing the conduction loss and chip area, increasing reliability and current density, and simplifying the process.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例中的技术发明,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical invention in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本申请一实施例提供的平面型碳化硅晶体管的结构的一种结构示意图;FIG1 is a schematic diagram of a structure of a planar silicon carbide transistor provided in an embodiment of the present application;
图2为本申请一实施例提供的平面型碳化硅晶体管的结构中续流通道的一种结构示意图;FIG2 is a schematic diagram of a freewheeling channel in a planar silicon carbide transistor according to an embodiment of the present application;
图3为本申请一实施例提供的平面型碳化硅晶体管的结构的一种能带图;FIG3 is an energy band diagram of a planar silicon carbide transistor structure provided in one embodiment of the present application;
图4为本申请一实施例提供的平面型碳化硅晶体管的结构的另一种结构示意图;FIG4 is another schematic diagram of the structure of a planar silicon carbide transistor provided in an embodiment of the present application;
图5为本申请一实施例提供的平面型碳化硅晶体管的结构的另一种结构示意图;FIG5 is another schematic diagram of the structure of a planar silicon carbide transistor provided in an embodiment of the present application;
图6为本申请一实施例提供的平面型碳化硅晶体管的结构的另一种能带图;FIG6 is another energy band diagram of the structure of a planar silicon carbide transistor provided in one embodiment of the present application;
图7为本申请一实施例提供的平面型碳化硅晶体管的结构的另一种结构示意图;FIG7 is another schematic diagram of the structure of a planar silicon carbide transistor provided in an embodiment of the present application;
图8为本申请一实施例提供的平面型碳化硅晶体管的结构的另一种结构示意图;FIG8 is another schematic diagram of the structure of a planar silicon carbide transistor provided in an embodiment of the present application;
图9为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成漂移层的一种示意图;FIG9 is a schematic diagram of forming a drift layer in a method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图10为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成第一阱的一种示意图;FIG10 is a schematic diagram of forming a first well in the method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图11为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成第一有源层和第一有源区的一种示意图;FIG11 is a schematic diagram of forming a first active layer and a first active region in a method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图12为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成栅极结构的一种示意图;FIG12 is a schematic diagram of forming a gate structure in a method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图13为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成第二有源层的一种示意图;FIG13 is a schematic diagram of forming a second active layer in the method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图14为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成第二有源区的一种示意图;FIG14 is a schematic diagram of forming a second active region in the method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application;
图15为本申请实施例提供的平面型碳化硅晶体管的制造方法中形成第三有源区的一种示意图。FIG. 15 is a schematic diagram of forming a third active region in the method for manufacturing a planar silicon carbide transistor provided in an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by this application more clearly understood, this application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain this application and are not used to limit this application.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It should be understood that the orientation or position relationship indicated by terms such as "length", "width", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside" and "outside" are based on the orientation or position relationship shown in the drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as "first" or "second" may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
图1示出了本发明实施例提供的平面型碳化硅晶体管的结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:FIG. 1 shows the structure of a planar silicon carbide transistor provided by an embodiment of the present invention. For ease of description, only the parts related to the embodiment of the present invention are shown, which are described in detail as follows:
平面型碳化硅晶体管的结构,包括左右对称的两个栅源结构、衬底10、漂移层20、第一有源区90以及多个第二有源层60,左右对称的切面为矢状面100。The structure of the planar silicon carbide transistor includes two left-right symmetrical gate-source structures, a substrate 10 , a drift layer 20 , a first active region 90 , and a plurality of second active layers 60 , and the left-right symmetrical section is a sagittal plane 100 .
漂移层20设置于衬底10的上表面。The drift layer 20 is disposed on the upper surface of the substrate 10 .
两个栅源结构和第一有源区90均位于漂移层20的上表面且间隔设置。The two gate-source structures and the first active region 90 are both located on the upper surface of the drift layer 20 and are spaced apart from each other.
栅源结构包括第一阱30、第一有源层40和栅极结构50。The gate-source structure includes a first well 30 , a first active layer 40 and a gate structure 50 .
第一阱30设置于漂移层20的上表面;其中,第一阱30与矢状面100之间设置预设距离。The first well 30 is disposed on the upper surface of the drift layer 20 ; wherein a preset distance is set between the first well 30 and the sagittal plane 100 .
第一有源层40设置于第一阱30中且位于第一阱30上表面。The first active layer 40 is disposed in the first well 30 and is located on an upper surface of the first well 30 .
栅极结构50覆盖第一阱30的顶部。The gate structure 50 covers the top of the first well 30 .
多个第二有源层60设置于两个栅极结构50之间。The plurality of second active layers 60 are disposed between the two gate structures 50 .
其中,衬底10、第二有源层60和第一阱30的掺杂类型为第一类型;漂移层20、第一有源区90和第一有源层40的为第二类型。第一类型和第二类型不同。The doping types of the substrate 10, the second active layer 60 and the first well 30 are of the first type, and the doping types of the drift layer 20, the first active region 90 and the first active layer 40 are of the second type. The first type and the second type are different.
需要说明的是,第二有源层60为高掺杂,掺杂浓度在1e19以上,宽度约为0.1至0.2μm,续流沟道宽度在0.1至0.2μm,该结构可以在对元胞面积很小增加的情况下增加续流通道。It should be noted that the second active layer 60 is highly doped with a doping concentration above 1e19, a width of about 0.1 to 0.2 μm, and a freewheeling channel width of 0.1 to 0.2 μm. This structure can increase the freewheeling channel with a very small increase in the cell area.
第二有源层60的数量为两个以上,本申请的说明书附图以2个第二有源层60形成续流通道进行说明,简单增加第二有源层60与续流通道的数目的实施例也在本申请保护范围内。The number of the second active layers 60 is more than two. The drawings in the specification of the present application illustrate that two second active layers 60 form a freewheeling channel. An embodiment of simply increasing the number of second active layers 60 and freewheeling channels is also within the protection scope of the present application.
具体实施中,第一有源区90作为漏极,第一阱30作为栅极,第一有源层40作为源极。第二有源层60与漂移层20构成异质结。以第一类型为P型且第二类型为N型为例,当平面型碳化硅晶体管加正向电压时,源极接低电位,漏极和源极导通,异质结反偏,异质结的耗尽层扩展夹断续流通道,如图2的左半部分所示。当平面型碳化硅晶体管加反向电压时,源极接高电位,漏极和源极关断,异质结正偏,异质结的耗尽层扩展夹断续流导通,如图2的右半部分所示,从而无需将SiC MOSFET与SBD或结型场效应管JFET反并联集成即可以起到反向续流作用,减小了导通损耗和芯片面积,增大了可靠性和电流密度,简化了工艺。In a specific implementation, the first active region 90 serves as a drain, the first well 30 serves as a gate, and the first active layer 40 serves as a source. The second active layer 60 and the drift layer 20 form a heterojunction. Taking the first type as P type and the second type as N type as an example, when a forward voltage is applied to the planar silicon carbide transistor, the source is connected to a low potential, the drain and the source are turned on, the heterojunction is reverse biased, and the depletion layer of the heterojunction expands to pinch off the freewheeling channel, as shown in the left half of FIG. 2. When a reverse voltage is applied to the planar silicon carbide transistor, the source is connected to a high potential, the drain and the source are turned off, the heterojunction is forward biased, and the depletion layer of the heterojunction expands to pinch off the freewheeling conduction, as shown in the right half of FIG. 2, so that the reverse freewheeling function can be achieved without the need to integrate the SiC MOSFET with the SBD or the junction field effect transistor JFET in anti-parallel connection, which reduces the conduction loss and chip area, increases the reliability and current density, and simplifies the process.
异质结能带图如图3所示,由于禁带宽度差异,硅与碳化硅接触会形成导带的势垒差,为了防止正向漏电过大而对耐压产生影响,正向电子势垒∆E-forward应该足够大,此处正向电子势垒∆Ep-forward约0.7eV;为增加正向电子势垒高度,可考虑在第二有源层60上形成肖特基接触。硅与碳化硅接触没有形成价带的势垒差,故空穴可以自由通过。The heterojunction energy band diagram is shown in FIG3 . Due to the difference in bandgap width, the contact between silicon and silicon carbide will form a barrier difference in the conduction band. In order to prevent excessive forward leakage and affect the withstand voltage, the forward electron barrier ∆E-forward should be large enough. Here, the forward electron barrier ∆Ep-forward is about 0.7 eV. In order to increase the height of the forward electron barrier, it is possible to consider forming a Schottky contact on the second active layer 60. The contact between silicon and silicon carbide does not form a barrier difference in the valence band, so holes can pass freely.
如图4所示,平面型碳化硅晶体管的结构还包括第二有源区70。As shown in FIG. 4 , the structure of the planar silicon carbide transistor further includes a second active region 70 .
第二有源区70设置于第一阱30远离矢状面100一侧。The second active region 70 is disposed on a side of the first well 30 away from the sagittal plane 100 .
需要说明的是,第二有源区70的掺杂类型为第一类型。第二有源区70为重掺杂。第二有源区70的材料可以为碳化硅。It should be noted that the doping type of the second active region 70 is the first type. The second active region 70 is heavily doped. The material of the second active region 70 may be silicon carbide.
通过设置第二有源区70,相邻的平面型碳化硅晶体管之间形成隔离,实现了多个平面型碳化硅晶体管的元胞的集成。By providing the second active region 70 , adjacent planar silicon carbide transistors are isolated from each other, thereby realizing the integration of cells of multiple planar silicon carbide transistors.
如图5所示,平面型碳化硅晶体管的结构还包括第三有源区03。As shown in FIG. 5 , the structure of the planar silicon carbide transistor further includes a third active region 03 .
第三有源区03位于第二有源区70和第一有源区90之间且位于漂移层20上表面。The third active region 03 is located between the second active region 70 and the first active region 90 and on the upper surface of the drift layer 20 .
需要说明的是,第三有源区03的掺杂类型为第一类型。第三有源区03为轻掺杂。第三有源区03的材料可以为碳化硅。It should be noted that the doping type of the third active region 03 is the first type. The third active region 03 is lightly doped. The material of the third active region 03 can be silicon carbide.
第三有源区03和漂移层20形成超结结构,提高了耐压能力;且对于超结结构,由于漂移区存在大面积半导体柱,所以存在一定的少子存储效应,开关特性较差,而异质结没有空穴势垒,空穴可以自由通过,从而起到快速抽取空穴的作用,提升了开关频率。The third active region 03 and the drift layer 20 form a super junction structure, which improves the voltage resistance. In addition, for the super junction structure, due to the presence of a large-area semiconductor column in the drift region, there is a certain minority carrier storage effect, and the switching characteristics are poor. However, the heterojunction has no hole barrier, and holes can pass freely, thereby playing a role in quickly extracting holes and improving the switching frequency.
如图6所示,平面型碳化硅晶体管的结构还包括电荷存储区80(charge storagelayer,CSL)。As shown in FIG. 6 , the structure of the planar silicon carbide transistor further includes a charge storage layer 80 (CSL).
电荷存储区80设置于两个第一阱30之间。The charge storage region 80 is disposed between the two first wells 30 .
需要说明的是,电荷存储区80的掺杂类型为第二类型。电荷存储区80的掺杂浓度大于漂移层20的掺杂浓度且小于第一有源层40的掺杂浓度。电荷存储区80的材料为碳化硅。It should be noted that the doping type of the charge storage region 80 is the second type. The doping concentration of the charge storage region 80 is greater than the doping concentration of the drift layer 20 and less than the doping concentration of the first active layer 40. The material of the charge storage region 80 is silicon carbide.
需要注意的是,CSL浓度不宜超过1E17,如图7所示,高浓度SiC会使异质结势垒变薄,更容易发生自第二有源区70到漂移层20的电子隧穿,使正向漏电流增加,耐压性能劣化。It should be noted that the CSL concentration should not exceed 1E17. As shown in FIG. 7 , a high concentration of SiC will make the heterojunction barrier thinner, making it easier for electrons to tunnel from the second active region 70 to the drift layer 20 , thereby increasing the forward leakage current and deteriorating the withstand voltage performance.
通过设置电荷存储区80,减小了第一阱30之间的JFET效应,增大了平面型碳化硅晶体管正向导通电流。By providing the charge storage region 80 , the JFET effect between the first wells 30 is reduced, and the forward conduction current of the planar silicon carbide transistor is increased.
作为示例而非限定,第一类型为P型,第二类型为N型;或者As an example and not limitation, the first type is P type and the second type is N type; or
第一类型为N型,第二类型为P型。The first type is N type, and the second type is P type.
如图8所示,平面型碳化硅晶体管的结构还包括第一金属层01、第二金属层02和第三金属层。As shown in FIG. 8 , the structure of the planar silicon carbide transistor further includes a first metal layer 01 , a second metal layer 02 and a third metal layer.
第一金属层01覆盖第一有源层40和第二有源层60。The first metal layer 01 covers the first active layer 40 and the second active layer 60 .
第二金属层02位于第一有源区90的上表面。The second metal layer 02 is located on the upper surface of the first active region 90 .
第三金属层与栅极结构50连接。The third metal layer is connected to the gate structure 50 .
需要说明的是,第一金属层01为平面型碳化硅晶体管的源极电极,第二金属层02为平面型碳化硅晶体管的漏极电极,第三金属层为平面型碳化硅晶体管的栅极电极。It should be noted that the first metal layer 01 is the source electrode of the planar silicon carbide transistor, the second metal layer 02 is the drain electrode of the planar silicon carbide transistor, and the third metal layer is the gate electrode of the planar silicon carbide transistor.
作为示例而非限定,第二有源层60和第一金属层01为肖特基接触,从而提高了势垒,在平面型碳化硅晶体管加正向电压时,减少了漏电流。As an example but not a limitation, the second active layer 60 and the first metal layer 01 are in Schottky contact, thereby increasing the potential barrier and reducing the leakage current when a forward voltage is applied to the planar silicon carbide transistor.
具体实施中,栅极结构50的材料包括二氧化硅和多晶硅;第二有源层60的材料包括多晶硅;漂移层20、第一有源区90、第一有源层40和第一阱30的材料包括碳化硅。In a specific implementation, the material of the gate structure 50 includes silicon dioxide and polysilicon; the material of the second active layer 60 includes polysilicon; and the material of the drift layer 20 , the first active region 90 , the first active layer 40 and the first well 30 includes silicon carbide.
与一种平面型碳化硅晶体管实施例相对应,本发明还提供了一种平面型碳化硅晶体管的制造方法的一种实施例。Corresponding to an embodiment of a planar silicon carbide transistor, the present invention also provides an embodiment of a method for manufacturing a planar silicon carbide transistor.
一种平面型碳化硅晶体管的制造方法,方法包括步骤401至步骤405。A method for manufacturing a planar silicon carbide transistor includes steps 401 to 405.
在步骤401中,如图9所示,在衬底10的上表面形成漂移层20;In step 401, as shown in FIG9 , a drift layer 20 is formed on the upper surface of a substrate 10;
通过溅射或气相沉积在衬底10的上表面形成漂移层20。The drift layer 20 is formed on the upper surface of the substrate 10 by sputtering or vapor deposition.
在步骤402中,如图10所示,在漂移层20第一侧的上表面形成左右对称的两个第一阱30;其中,左右对称的切面为矢状面100,第一阱30与矢状面100之间设置预设距离。In step 402 , as shown in FIG. 10 , two left-right symmetrical first wells 30 are formed on the upper surface of the first side of the drift layer 20 ; wherein the left-right symmetrical section is the sagittal plane 100 , and a preset distance is set between the first well 30 and the sagittal plane 100 .
通过离子注入在漂移层20第一侧的上表面形成左右对称的两个第一阱30。Two left-right symmetrical first wells 30 are formed on the upper surface of the first side of the drift layer 20 by ion implantation.
在步骤403中,如图11所示,分别在两个第一阱30中且位于第一阱30上表面形成两个第一有源层40,并在漂移层20第二侧的上表面形成第一有源区90。In step 403 , as shown in FIG. 11 , two first active layers 40 are formed in the two first wells 30 and on the upper surfaces of the first wells 30 , respectively, and a first active region 90 is formed on the upper surface of the second side of the drift layer 20 .
通过离子注入分别在两个第一阱30中且位于第一阱30上表面形成两个第一有源层40,并在漂移层20第二侧的上表面形成第一有源区90。Two first active layers 40 are formed in the two first wells 30 and on the upper surfaces of the first wells 30 by ion implantation, and a first active region 90 is formed on the upper surface of the second side of the drift layer 20 .
在步骤404中,如图12所示,分别在两个第一阱30的顶部形成两个栅极结构50。In step 404 , as shown in FIG. 12 , two gate structures 50 are formed on the tops of the two first wells 30 , respectively.
通过热氧氧化和多晶硅沉积分别在两个第一阱30的顶部形成两个栅极结构5050。Two gate structures 5050 are formed on the tops of the two first wells 30 respectively by thermal oxidation and polysilicon deposition.
在步骤405中,如图13所示,在两个栅极结构50之间形成多个第二有源层60。In step 405 , as shown in FIG. 13 , a plurality of second active layers 60 are formed between two gate structures 50 .
通过气相沉积和离子注入在两个栅极结构50之间形成多个第二有源层60。A plurality of second active layers 60 are formed between the two gate structures 50 by vapor deposition and ion implantation.
具体实施中,步骤402之后还包括步骤402-2和步骤403。In a specific implementation, step 402 also includes step 402-2 and step 403.
在步骤402-2中,如图14所示,在两个第一阱30远离矢状面100一侧分别形成两个第二有源区70。In step 402 - 2 , as shown in FIG. 14 , two second active regions 70 are respectively formed on the sides of the two first wells 30 away from the sagittal plane 100 .
通过离子注入在两个第一阱30远离矢状面100一侧分别形成两个第二有源区70。Two second active regions 70 are respectively formed on the sides of the two first wells 30 away from the sagittal plane 100 by ion implantation.
在步骤405-3中,如图15所示,在第二有源区70和第一有源区90之间且在漂移层20上表面形成第三有源区03。In step 405 - 3 , as shown in FIG. 15 , a third active region 03 is formed between the second active region 70 and the first active region 90 and on the upper surface of the drift layer 20 .
通过离子注入在第二有源区70和第一有源区90之间且在漂移层20上表面形成第三有源区03。The third active region 03 is formed between the second active region 70 and the first active region 90 and on the upper surface of the drift layer 20 by ion implantation.
具体实施中,步骤405之后还包括步骤406至步骤408。In a specific implementation, step 405 also includes steps 406 to 408.
在步骤406中,在第一有源层的上表面和第二有源层的上表面形成第一金属层。In step 406 , a first metal layer is formed on an upper surface of the first active layer and an upper surface of the second active layer.
在步骤407中,在第一有源区的上表面形成第二金属层。In step 407 , a second metal layer is formed on the upper surface of the first active region.
在步骤408中,形成与栅极结构连接的第三金属层。In step 408 , a third metal layer connected to the gate structure is formed.
值得强调的是,第一金属层为平面型碳化硅晶体管的源极电极,第二金属层为平面型碳化硅晶体管的漏极电极,第三金属层为平面型碳化硅晶体管的栅极电极。It is worth emphasizing that the first metal layer is the source electrode of the planar silicon carbide transistor, the second metal layer is the drain electrode of the planar silicon carbide transistor, and the third metal layer is the gate electrode of the planar silicon carbide transistor.
值得注意的是,金属层可以为金或钯。It is worth noting that the metal layer can be gold or palladium.
本发明实施例包括左右对称的两个栅源结构、衬底、漂移层、第一有源区以及多个第二有源,左右对称的切面为矢状面;漂移层设置于衬底的上表面;两个栅源结构和第一有源区均位于漂移层的上表面且间隔设置;栅源结构包括第一阱、第一有源层和栅极结构;第一阱设置于漂移层的上表面;其中,第一阱与矢状面之间设置预设距离;第一有源层设置于第一阱中且位于第一阱上表面;栅极结构覆盖第一阱的顶部;多个第二有源层设置于两个栅极结构之间;衬底、第二有源层和第一阱的为第一类型;漂移层、第一有源区和第一有源层为第二类型;减小了导通损耗和芯片面积,增大了可靠性和电流密度,简化了工艺。The embodiment of the present invention includes two left-right symmetrical gate-source structures, a substrate, a drift layer, a first active region and a plurality of second active regions, wherein the left-right symmetrical section is a sagittal plane; the drift layer is arranged on the upper surface of the substrate; the two gate-source structures and the first active region are all located on the upper surface of the drift layer and are arranged at intervals; the gate-source structure includes a first well, a first active layer and a gate structure; the first well is arranged on the upper surface of the drift layer; wherein a preset distance is arranged between the first well and the sagittal plane; the first active layer is arranged in the first well and is located on the upper surface of the first well; the gate structure covers the top of the first well; a plurality of second active layers are arranged between the two gate structures; the substrate, the second active layer and the first well are of the first type; the drift layer, the first active region and the first active layer are of the second type; the conduction loss and the chip area are reduced, the reliability and the current density are increased, and the process is simplified.
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the size of the serial numbers of the steps in the above embodiments does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The embodiments described above are only used to illustrate the technical solutions of the present application, rather than to limit them. Although the present application has been described in detail with reference to the aforementioned embodiments, a person skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. Such modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present application, and should all be included in the protection scope of the present application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311835796.8A CN117497601B (en) | 2023-12-28 | 2023-12-28 | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311835796.8A CN117497601B (en) | 2023-12-28 | 2023-12-28 | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117497601A CN117497601A (en) | 2024-02-02 |
CN117497601B true CN117497601B (en) | 2024-05-07 |
Family
ID=89685259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311835796.8A Active CN117497601B (en) | 2023-12-28 | 2023-12-28 | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117497601B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117690970A (en) * | 2024-02-04 | 2024-03-12 | 深圳天狼芯半导体有限公司 | Silicon carbide power device and manufacturing method thereof |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449057A (en) * | 2002-03-27 | 2003-10-15 | 株式会社东芝 | Field effect transistor and devices using same |
JP2004214268A (en) * | 2002-12-27 | 2004-07-29 | Nissan Motor Co Ltd | Silicon carbide semiconductor device |
JP2004253510A (en) * | 2003-02-19 | 2004-09-09 | Nissan Motor Co Ltd | Semiconductor device |
CN103745997A (en) * | 2013-12-31 | 2014-04-23 | 上海新傲科技股份有限公司 | High-voltage transistor with super-junction structure and production method thereof |
CN107248533A (en) * | 2017-06-09 | 2017-10-13 | 电子科技大学 | A kind of carborundum VDMOS device and preparation method thereof |
CN107256884A (en) * | 2017-06-09 | 2017-10-17 | 电子科技大学 | A kind of silicon carbide power diode component and preparation method thereof |
CN107275407A (en) * | 2017-06-09 | 2017-10-20 | 电子科技大学 | A kind of carborundum VDMOS device and preparation method thereof |
CN109192780A (en) * | 2018-08-29 | 2019-01-11 | 电子科技大学 | A kind of lateral MOSFET device and preparation method thereof |
CN110473872A (en) * | 2019-10-14 | 2019-11-19 | 派恩杰半导体(杭州)有限公司 | A kind of carbide MOS devices with majority carrier diode |
CN111354793A (en) * | 2018-12-21 | 2020-06-30 | 深圳比亚迪微电子有限公司 | Field effect transistor, preparation method and electronic equipment |
WO2020192569A1 (en) * | 2019-03-27 | 2020-10-01 | Nanjing University | Schottky-type heterojunction structure, method of making the same and schottky barrier diode device including the same |
CN113013227A (en) * | 2015-02-11 | 2021-06-22 | 莫诺利斯半导体有限公司 | High voltage semiconductor device and method of manufacturing the same |
CN114664929A (en) * | 2022-04-21 | 2022-06-24 | 电子科技大学 | A split-gate SiC MOSFET with integrated heterojunction diode and its fabrication method |
CN114784108A (en) * | 2022-04-21 | 2022-07-22 | 电子科技大学 | Planar gate SiC MOSFET (silicon carbide metal oxide semiconductor field effect transistor) integrated with junction barrier Schottky diode and manufacturing method thereof |
CN115602734A (en) * | 2022-11-11 | 2023-01-13 | 电子科技大学(Cn) | Novel silicon carbide power diodes with high forward current density |
CN115832052A (en) * | 2022-11-23 | 2023-03-21 | 北京智慧能源研究院 | Silicon carbide MOSFET device with integrated diode in cell and preparation method thereof |
KR20230050726A (en) * | 2021-10-08 | 2023-04-17 | 서강대학교산학협력단 | Mosfet device and method thereof |
CN116565023A (en) * | 2023-05-29 | 2023-08-08 | 深圳市威兆半导体股份有限公司 | Field effect transistor and method of manufacturing the same |
CN116632065A (en) * | 2023-05-24 | 2023-08-22 | 中国电子科技集团公司第五十五研究所 | Silicon carbide trench gate MOSFET device integrated with SBD and manufacturing method thereof |
CN117253905A (en) * | 2023-11-13 | 2023-12-19 | 深圳天狼芯半导体有限公司 | SiC device with floating island structure and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4066946B2 (en) * | 2003-12-18 | 2008-03-26 | 日産自動車株式会社 | Semiconductor device |
US20110156810A1 (en) * | 2009-12-30 | 2011-06-30 | Intersil Americas Inc. | Integrated dmos and schottky |
US9117739B2 (en) * | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
WO2013036641A1 (en) * | 2011-09-09 | 2013-03-14 | Cree, Inc. | Semiconductor devices with non-implanted barrier regions and methods of fabricating same |
US8686502B2 (en) * | 2012-03-19 | 2014-04-01 | Texas Instruments Incorporated | Schottky diode integrated into LDMOS |
CN109473476B (en) * | 2017-09-07 | 2020-12-25 | 无锡华润上华科技有限公司 | Lateral double-diffusion metal oxide semiconductor device and manufacturing method thereof |
-
2023
- 2023-12-28 CN CN202311835796.8A patent/CN117497601B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449057A (en) * | 2002-03-27 | 2003-10-15 | 株式会社东芝 | Field effect transistor and devices using same |
JP2004214268A (en) * | 2002-12-27 | 2004-07-29 | Nissan Motor Co Ltd | Silicon carbide semiconductor device |
JP2004253510A (en) * | 2003-02-19 | 2004-09-09 | Nissan Motor Co Ltd | Semiconductor device |
CN103745997A (en) * | 2013-12-31 | 2014-04-23 | 上海新傲科技股份有限公司 | High-voltage transistor with super-junction structure and production method thereof |
CN113013227A (en) * | 2015-02-11 | 2021-06-22 | 莫诺利斯半导体有限公司 | High voltage semiconductor device and method of manufacturing the same |
CN107248533A (en) * | 2017-06-09 | 2017-10-13 | 电子科技大学 | A kind of carborundum VDMOS device and preparation method thereof |
CN107256884A (en) * | 2017-06-09 | 2017-10-17 | 电子科技大学 | A kind of silicon carbide power diode component and preparation method thereof |
CN107275407A (en) * | 2017-06-09 | 2017-10-20 | 电子科技大学 | A kind of carborundum VDMOS device and preparation method thereof |
CN109192780A (en) * | 2018-08-29 | 2019-01-11 | 电子科技大学 | A kind of lateral MOSFET device and preparation method thereof |
CN111354793A (en) * | 2018-12-21 | 2020-06-30 | 深圳比亚迪微电子有限公司 | Field effect transistor, preparation method and electronic equipment |
WO2020192569A1 (en) * | 2019-03-27 | 2020-10-01 | Nanjing University | Schottky-type heterojunction structure, method of making the same and schottky barrier diode device including the same |
CN110473872A (en) * | 2019-10-14 | 2019-11-19 | 派恩杰半导体(杭州)有限公司 | A kind of carbide MOS devices with majority carrier diode |
KR20230050726A (en) * | 2021-10-08 | 2023-04-17 | 서강대학교산학협력단 | Mosfet device and method thereof |
CN114664929A (en) * | 2022-04-21 | 2022-06-24 | 电子科技大学 | A split-gate SiC MOSFET with integrated heterojunction diode and its fabrication method |
CN114784108A (en) * | 2022-04-21 | 2022-07-22 | 电子科技大学 | Planar gate SiC MOSFET (silicon carbide metal oxide semiconductor field effect transistor) integrated with junction barrier Schottky diode and manufacturing method thereof |
CN115602734A (en) * | 2022-11-11 | 2023-01-13 | 电子科技大学(Cn) | Novel silicon carbide power diodes with high forward current density |
CN115832052A (en) * | 2022-11-23 | 2023-03-21 | 北京智慧能源研究院 | Silicon carbide MOSFET device with integrated diode in cell and preparation method thereof |
CN116632065A (en) * | 2023-05-24 | 2023-08-22 | 中国电子科技集团公司第五十五研究所 | Silicon carbide trench gate MOSFET device integrated with SBD and manufacturing method thereof |
CN116565023A (en) * | 2023-05-29 | 2023-08-08 | 深圳市威兆半导体股份有限公司 | Field effect transistor and method of manufacturing the same |
CN117253905A (en) * | 2023-11-13 | 2023-12-19 | 深圳天狼芯半导体有限公司 | SiC device with floating island structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN117497601A (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110148629B (en) | A trench type silicon carbide MOSFET device and preparation method thereof | |
CN101345243B (en) | Semiconductor device | |
CN114122123B (en) | Silicon carbide split gate MOSFET with integrated high-speed freewheeling diode and preparation method | |
CN111312802A (en) | Silicon carbide diode with low turn-on voltage and low on-resistance and preparation method thereof | |
CN106784008A (en) | A kind of SiC MOSFET elements of integrated schottky diode | |
CN105206656A (en) | Reverse conducting IGBT device | |
JPH06196705A (en) | Reverse conduction type insulated gate bipolar transistor and manufacturing method thereof | |
JP2024526524A (en) | Trench-type SiC-MOSFET with integrated high-speed freewheel diode and manufacturing method thereof | |
CN114551586B (en) | Silicon carbide split gate MOSFET cell with integrated gated diode and preparation method | |
CN116387362A (en) | HJD integrated SiC UMOSFET device and preparation method thereof | |
JP2012089824A (en) | Semiconductor element and manufacturing method thereof | |
CN109920838B (en) | A trench type silicon carbide MOSFET device and preparation method thereof | |
CN113471290B (en) | Tunneling-assisted conduction silicon/silicon carbide heterojunction MOSFET power device | |
CN110473914A (en) | A kind of preparation method of SiC-MOS device | |
CN117497601B (en) | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor | |
CN117476774B (en) | Structure, manufacturing method and electronic device of vertical silicon carbide transistor | |
CN117497600B (en) | Structure, manufacturing method and electronic equipment of super-junction silicon carbide transistor | |
CN117497579B (en) | Structure, manufacturing method and electronic device of silicon carbide IGBT | |
CN113964120B (en) | A power semiconductor device and a method for manufacturing the same | |
CN115188814A (en) | A kind of RC-JGBT device and its making method | |
CN114695519A (en) | Groove type silicon carbide IGBT device with shielding layer state automatically switched and preparation method thereof | |
CN117878142A (en) | Planar gate type MOSFET integrated with Schottky diode and preparation method thereof | |
CN118472038A (en) | A trench superjunction SiC VDMOSFET device | |
CN118116974A (en) | Field effect transistor integrated with Schottky barrier and preparation method thereof | |
CN117832276A (en) | MOSFET with built-in heterojunction diode and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |