CN117458059B - Material for vacuum sealing of new energy power battery and preparation method thereof - Google Patents
Material for vacuum sealing of new energy power battery and preparation method thereof Download PDFInfo
- Publication number
- CN117458059B CN117458059B CN202311659829.8A CN202311659829A CN117458059B CN 117458059 B CN117458059 B CN 117458059B CN 202311659829 A CN202311659829 A CN 202311659829A CN 117458059 B CN117458059 B CN 117458059B
- Authority
- CN
- China
- Prior art keywords
- parts
- add
- glass
- powder
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 35
- 239000000463 material Substances 0.000 title claims abstract description 20
- 239000011521 glass Substances 0.000 claims abstract description 85
- 239000000843 powder Substances 0.000 claims abstract description 75
- 239000002131 composite material Substances 0.000 claims abstract description 62
- 239000012782 phase change material Substances 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 54
- 238000003756 stirring Methods 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 21
- 239000002002 slurry Substances 0.000 claims description 20
- 239000000853 adhesive Substances 0.000 claims description 19
- 230000001070 adhesive effect Effects 0.000 claims description 19
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 15
- 238000000498 ball milling Methods 0.000 claims description 15
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000011268 mixed slurry Substances 0.000 claims description 14
- 239000012188 paraffin wax Substances 0.000 claims description 12
- NJSUFZNXBBXAAC-UHFFFAOYSA-N ethanol;toluene Chemical compound CCO.CC1=CC=CC=C1 NJSUFZNXBBXAAC-UHFFFAOYSA-N 0.000 claims description 11
- 239000003822 epoxy resin Substances 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 10
- 239000007764 o/w emulsion Substances 0.000 claims description 10
- 229920000647 polyepoxide Polymers 0.000 claims description 10
- 239000002893 slag Substances 0.000 claims description 10
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 claims description 9
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 9
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 9
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- NGXAWGOVQDFBPW-UHFFFAOYSA-N n-[(propanoylamino)methyl]propanamide Chemical compound CCC(=O)NCNC(=O)CC NGXAWGOVQDFBPW-UHFFFAOYSA-N 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 229920000136 polysorbate Polymers 0.000 claims description 9
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 9
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 8
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- -1 0.2-0.5 parts of N Chemical compound 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000000498 cooling water Substances 0.000 claims description 7
- 229910052593 corundum Inorganic materials 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000006060 molten glass Substances 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 7
- 239000010431 corundum Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000010907 mechanical stirring Methods 0.000 claims description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 5
- 239000010949 copper Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 3
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 2
- 238000002425 crystallisation Methods 0.000 abstract description 2
- 230000008025 crystallization Effects 0.000 abstract description 2
- 229910052700 potassium Inorganic materials 0.000 abstract description 2
- 229910052708 sodium Inorganic materials 0.000 abstract description 2
- 239000002585 base Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 17
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/191—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/14—Primary casings; Jackets or wrappings for protecting against damage caused by external factors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/14—Primary casings; Jackets or wrappings for protecting against damage caused by external factors
- H01M50/141—Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/14—Primary casings; Jackets or wrappings for protecting against damage caused by external factors
- H01M50/145—Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及封接技术领域,具体涉及一种用于新能源动力电池真空封接的材料及制备方法。The present invention relates to the field of sealing technology, and in particular to a material and a preparation method for vacuum sealing of new energy power batteries.
背景技术Background Art
近年来,由于电动汽车等新能源汽车具有无污染、噪声低、能源效率高、多样化、结构简单、维修方便等优点,电动汽车等新能源汽车将成为未来汽车行业的新趋势。特别是,我国电动汽车等新能源汽车经过十年一剑的历程,已初步从研究开发的阶段进入了产业化的阶段。In recent years, electric vehicles and other new energy vehicles have become a new trend in the future automotive industry due to their advantages of no pollution, low noise, high energy efficiency, diversification, simple structure, and easy maintenance. In particular, after a decade of development, my country's electric vehicles and other new energy vehicles have initially entered the stage of industrialization from the stage of research and development.
电动汽车等新能源汽车中的动力电池是由电池单元(也称作电芯)、由电芯组成的电池堆、以及由电池堆组成的模组所组成。电芯包括由无氧铜或者铜合金制成的负极极耳,该负极极耳要与电池铝制外壳做电绝缘以及气密性封接。The power battery in electric vehicles and other new energy vehicles is composed of battery cells (also called battery cells), battery stacks composed of battery cells, and modules composed of battery stacks. The battery cell includes a negative electrode tab made of oxygen-free copper or copper alloy, which is electrically insulated and airtightly sealed with the battery aluminum casing.
目前主要有三种封接方法:第一种是利用塑胶密封件,但是热注塑后密封塑料会变形,导致气密性下降、电解液泄漏;第二种是利用镀镍陶瓷环,再利用金属焊料对陶瓷环分别与极耳和外壳进行器皿性焊接,缺点是镀镍层的界面结合性差,焊接工艺复杂;第三种是利用低熔点封接玻璃进行封接。There are currently three main sealing methods: the first is to use plastic seals, but the sealing plastic will deform after hot injection molding, resulting in reduced airtightness and electrolyte leakage; the second is to use nickel-plated ceramic rings, and then use metal solder to weld the ceramic rings to the tabs and the outer shell respectively. The disadvantage is that the interface bonding of the nickel plating is poor and the welding process is complicated; the third is to use low-melting-point sealing glass for sealing.
但是,含有二氧化硅的玻璃的抗电解液腐蚀性差,氧化铋系玻璃虽然具有较高的机械性能和电绝缘性能以及良好的耐腐蚀性能,但是,热膨胀系数小于铜、铝等的热膨胀系数,封装过程中需要高温以及惰性气体保护,封装结束后容易出现开裂。However, glass containing silicon dioxide has poor resistance to corrosion by electrolytes. Although bismuth oxide-based glass has high mechanical properties, electrical insulation properties and good corrosion resistance, its thermal expansion coefficient is smaller than that of copper, aluminum, etc., and high temperature and inert gas protection are required during the packaging process. It is prone to cracking after packaging.
因此,我们提出了一种具有较高热膨胀系数的用于新能源动力电池真空封接的材料及制备方法。Therefore, we proposed a material with a higher thermal expansion coefficient for vacuum sealing of new energy power batteries and a preparation method thereof.
发明内容Summary of the invention
针对现有技术存在的不足,本发明的目的在于提供一种用于新能源动力电池真空封接的材料及制备方法。In view of the deficiencies in the prior art, the object of the present invention is to provide a material and a preparation method for vacuum sealing of new energy power batteries.
一种用于新能源动力电池真空封接的材料,以重量份数计,包括如下组分:A material for vacuum sealing of new energy power batteries, comprising the following components in parts by weight:
25-30份Bi2O3、10-30份ZnO、5-10份Al2O3、2-10份Li2O、1-5份TiO2、1-5份CuO、3-5份ZrO2、20-30份P2O5、20-30份Tl2O、5-8份复合粘结剂和3-5份相变材料。25-30 parts of Bi2O3 , 10-30 parts of ZnO, 5-10 parts of Al2O3 , 2-10 parts of Li2O , 1-5 parts of TiO2 , 1-5 parts of CuO, 3-5 parts of ZrO2 , 20-30 parts of P2O5 , 20-30 parts of Tl2O , 5-8 parts of composite binder and 3-5 parts of phase change material.
进一步地,以重量份数计,所述复合粘结剂包括如下组分:Furthermore, the composite binder comprises the following components in parts by weight:
40-60份环氧树脂、0.1-0.2份硅烷偶联剂、2-3份氧化铝粉末、8-10份乙醇-甲苯溶液、3-5份甲基四氢苯酐、0.1-0.2份3-苯基-1,1-二甲基脲和1-2份磷酸三苯酯。40-60 parts of epoxy resin, 0.1-0.2 parts of silane coupling agent, 2-3 parts of aluminum oxide powder, 8-10 parts of ethanol-toluene solution, 3-5 parts of methyltetrahydrophthalic anhydride, 0.1-0.2 parts of 3-phenyl-1,1-dimethylurea and 1-2 parts of triphenyl phosphate.
进一步地,以重量份数计,所述相变材料包括如下组分:Furthermore, the phase change material comprises the following components in parts by weight:
10-20份石蜡、30-50份膨胀石墨、1-2份丙烯酰胺、0.2-0.5份N,N-亚甲基双丙酰胺、0.1-0.2份聚乙烯吡咯烷酮、5-8份的蒸馏水、0.01-0.05份吐温85、0.01-0.03份过硫酸铵和0.01-0.05份N,N,N,N-四甲基乙二胺。10-20 parts of paraffin, 30-50 parts of expanded graphite, 1-2 parts of acrylamide, 0.2-0.5 parts of N,N-methylenebispropionamide, 0.1-0.2 parts of polyvinylpyrrolidone, 5-8 parts of distilled water, 0.01-0.05 parts of Tween 85, 0.01-0.03 parts of ammonium persulfate and 0.01-0.05 parts of N,N,N,N-tetramethylethylenediamine.
一种用于新能源动力电池真空封接的材料及制备方法,包括如下步骤:A material and preparation method for vacuum sealing of new energy power batteries, comprising the following steps:
S1:制备复合粘结剂S1: Preparation of composite binder
取环氧树脂加入硅烷偶联剂、氧化铝粉末和乙醇-甲苯溶液,超声混合后再次加入甲基四氢苯酐、3-苯基-1,1-二甲基脲和磷酸三苯酯混合均匀后得到复合粘结剂;Take epoxy resin, add silane coupling agent, aluminum oxide powder and ethanol-toluene solution, add methyltetrahydrophthalic anhydride, 3-phenyl-1,1-dimethylurea and triphenyl phosphate again after ultrasonic mixing, and mix well to obtain a composite adhesive;
S2:玻璃粉体的制备S2: Preparation of glass powder
称取Bi2O3、ZnO、Al2O3、Li2O、TiO2、CuO、ZrO2、P2O5混合球磨后至玻璃熔炼炉中熔炼,将熔融后的玻璃溶液倒入冷却水中进行水淬后球磨过筛得到玻璃粉体;Weigh Bi 2 O 3 , ZnO, Al 2 O 3 , Li 2 O, TiO 2 , CuO, ZrO 2 , and P 2 O 5 , mix and ball-mill, and then melt in a glass melting furnace; pour the molten glass solution into cooling water for water quenching, and then ball-mill and sieve to obtain glass powder;
S3:制备相变材料S3: Preparation of phase change materials
制备石蜡-石墨混合物,将丙烯酰胺、N,N-亚甲基双丙酰胺和聚乙烯吡咯烷酮混合,加入蒸馏水,加入吐温85搅拌,得到混合水溶液,水浴下石蜡-石墨混合物加入到混合水溶液内,再加入过硫酸铵和N,N,N,N-四甲基乙二胺搅拌,置于真空干燥箱固化,得到相变材料;Prepare a paraffin-graphite mixture, mix acrylamide, N,N-methylenebispropionamide and polyvinyl pyrrolidone, add distilled water, add Tween 85 and stir to obtain a mixed aqueous solution, add the paraffin-graphite mixture into the mixed aqueous solution under a water bath, then add ammonium persulfate and N,N,N,N-tetramethylethylenediamine and stir, place in a vacuum drying oven for solidification, and obtain a phase change material;
S4:制备封接复合材料S4: Preparation of sealing composite materials
取Tl2O和玻璃粉体加入球磨得到混合浆料,将混合浆料干燥过筛后用硅烷偶联剂浸渍,再加入复合粘结剂和相变材料搅拌得到封接复合材料。Tl 2 O and glass powder are added to a ball mill to obtain a mixed slurry, the mixed slurry is dried and sieved, and then impregnated with a silane coupling agent, and then a composite adhesive and a phase change material are added and stirred to obtain a sealing composite material.
进一步地,步骤S1制备复合粘结剂,具体包括如下步骤:Furthermore, step S1 prepares the composite adhesive, which specifically includes the following steps:
S1.1:取40-60份环氧树脂加入0.1-0.2份KH560硅烷偶联剂、2-3份氧化铝粉末和8-10份乙醇-甲苯溶液,在超声搅拌下混合10-15min,得到混合物;S1.1: Take 40-60 parts of epoxy resin, add 0.1-0.2 parts of KH560 silane coupling agent, 2-3 parts of aluminum oxide powder and 8-10 parts of ethanol-toluene solution, and mix under ultrasonic stirring for 10-15 minutes to obtain a mixture;
S1.2:向混合物中加入3-5份甲基四氢苯酐、0.1-0.2份3-苯基-1,1-二甲基脲、1-2份磷酸三苯酯混合均匀后得到复合粘结剂。S1.2: Add 3-5 parts of methyltetrahydrophthalic anhydride, 0.1-0.2 parts of 3-phenyl-1,1-dimethylurea and 1-2 parts of triphenyl phosphate to the mixture and mix well to obtain a composite adhesive.
进一步地,步骤S2玻璃粉体的制备,具体包括如下步骤:Furthermore, the preparation of the glass powder in step S2 specifically includes the following steps:
S2.1:称取25-30份Bi2O3、10-30份ZnO、5-10份Al2O3、2-10份Li2O、1-5份TiO2、1-5份CuO、3-5份ZrO2、20-30份P2O5,将粉料过50-60目筛,初步混合后放入球磨罐中加入玛瑙球体和100-120份酒精,置于行星式球磨机中,进行湿法球磨2-3h,得到浆料;S2.1: Weigh 25-30 parts of Bi 2 O 3 , 10-30 parts of ZnO, 5-10 parts of Al 2 O 3 , 2-10 parts of Li 2 O, 1-5 parts of TiO 2 , 1-5 parts of CuO, 3-5 parts of ZrO 2 , and 20-30 parts of P 2 O 5 , sieve the powder through a 50-60 mesh sieve, mix them preliminarily, put them into a ball mill, add agate spheres and 100-120 parts of alcohol, place them in a planetary ball mill, and perform wet ball milling for 2-3 hours to obtain a slurry;
S2.2:将浆料置于烘箱内在80-85℃下干燥6-7h,将烘干后的粉料加入刚玉坩埚中,将坩埚置于预先升温好的马弗炉中在650-700℃下预加热20-30min,预加热完成后转移至玻璃熔炼炉中,以10-15℃/min的加热速率升温至1060-1065℃,加热2-3h,得到熔融后的玻璃溶液;S2.2: The slurry is placed in an oven and dried at 80-85°C for 6-7h, the dried powder is added into a corundum crucible, the crucible is placed in a pre-heated muffle furnace and preheated at 650-700°C for 20-30min, after preheating, it is transferred to a glass melting furnace, heated to 1060-1065°C at a heating rate of 10-15°C/min, heated for 2-3h, and a molten glass solution is obtained;
S2.3:将玻璃溶液直接倒入冷却水中进行水淬,得到玻璃渣,将玻璃渣置于球磨罐中,加入无水乙醇和玛瑙球,玛瑙球:粉料为3-4:1,进行湿法球磨10-12h,转速为300-350r/min,得到玻璃浆料,将玻璃浆料干燥,过100-200目筛得到玻璃粉体。S2.3: Pour the glass solution directly into cooling water for quenching to obtain glass slag, place the glass slag in a ball mill, add anhydrous ethanol and agate balls, the agate balls: powder ratio is 3-4:1, and wet ball milling is performed for 10-12 hours at a speed of 300-350r/min to obtain glass slurry, dry the glass slurry, and pass through a 100-200 mesh sieve to obtain glass powder.
进一步地,步骤S3制备相变材料,具体包括如下步骤:Furthermore, step S3 prepares the phase change material, which specifically includes the following steps:
S3.1:将10-20份石蜡加入到烧杯中,升温至90-100℃,在机械搅拌下将30-50份膨胀石墨加入到容器中,与石蜡混合均匀,得到石蜡-石墨混合物;S3.1: Add 10-20 parts of paraffin wax into a beaker, raise the temperature to 90-100°C, add 30-50 parts of expanded graphite into the container under mechanical stirring, and mix well with the paraffin wax to obtain a paraffin-graphite mixture;
S3.2:称取1-2份丙烯酰胺、0.2-0.5份N,N-亚甲基双丙酰胺和0.1-0.2份聚乙烯吡咯烷酮混合,加入5-8份的蒸馏水,超声震荡至完全溶解,加入0.01-0.05份吐温85搅拌至溶解,得到混合水溶液;S3.2: Weigh 1-2 parts of acrylamide, 0.2-0.5 parts of N,N-methylenebispropionamide and 0.1-0.2 parts of polyvinyl pyrrolidone, mix, add 5-8 parts of distilled water, ultrasonically shake until completely dissolved, add 0.01-0.05 parts of Tween 85 and stir until dissolved to obtain a mixed aqueous solution;
S3.3:70-75℃水浴条件下将石蜡-石墨混合物匀速加入到混合水溶液中,高速搅拌10-20min得到水包油乳液;S3.3: adding the paraffin-graphite mixture to the mixed aqueous solution at a uniform speed under a 70-75°C water bath condition, and stirring at a high speed for 10-20 minutes to obtain an oil-in-water emulsion;
S3.4:向水包油乳液中加入0.01-0.03份过硫酸铵搅拌分散,降低水浴温度至50-55℃,加入0.01-0.05份N,N,N,N-四甲基乙二胺快速搅拌5-10min,置于真空干燥箱50-55℃条件下继续固化5-10min,得到相变材料。S3.4: Add 0.01-0.03 parts of ammonium persulfate to the oil-in-water emulsion and stir to disperse, lower the water bath temperature to 50-55°C, add 0.01-0.05 parts of N,N,N,N-tetramethylethylenediamine and stir rapidly for 5-10 minutes, place in a vacuum drying oven at 50-55°C and continue to cure for 5-10 minutes to obtain a phase change material.
进一步地,步骤S4制备封接复合材料,具体包括如下步骤:Furthermore, step S4 prepares the sealing composite material, which specifically includes the following steps:
S4.1:取20-30份Tl2O和100-120份玻璃粉体加入到球磨罐中加入玛瑙球体和100-120份酒精,置于行星式球磨机中,进行湿法球磨2-3h,玛瑙球:粉料为3-4:1,得到混合浆料;S4.1: Take 20-30 parts of Tl 2 O and 100-120 parts of glass powder, add agate balls and 100-120 parts of alcohol into a ball mill, place in a planetary ball mill, and perform wet ball milling for 2-3 hours, with a ratio of agate balls to powder being 3-4:1, to obtain a mixed slurry;
S4.2:将混合浆料置于烘箱内在80-85℃下干燥6-7h,得到混合粉末,将混合粉末过100-200目筛得到玻璃粉;S4.2: drying the mixed slurry in an oven at 80-85°C for 6-7 hours to obtain a mixed powder, and passing the mixed powder through a 100-200 mesh sieve to obtain glass powder;
S4.3:将玻璃粉用KH560硅烷偶联剂浸渍10-15min后,加入5-8份复合粘结剂和3-5份相变材料通过搅拌机搅拌10-20min,搅拌均匀后得到封接复合材料。S4.3: After impregnating the glass powder with KH560 silane coupling agent for 10-15 minutes, add 5-8 parts of composite adhesive and 3-5 parts of phase change material and stir them in a mixer for 10-20 minutes. After stirring evenly, a sealing composite material is obtained.
进一步地,步骤S1.1中乙醇-甲苯溶液中乙醇-甲苯体积比为0.5-2。Furthermore, in step S1.1, the volume ratio of ethanol to toluene in the ethanol toluene solution is 0.5-2.
进一步地,步骤S2.1中玛瑙球:粉料为3-4:1。Furthermore, in step S2.1, the ratio of agate balls to powder is 3-4:1.
本发明与现有技术相比,至少具有如下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
1、本发明通过调整玻璃粉体中各组分及组分含量,使封接复合材料的热膨胀系数得到提高,通过加入Tl2O,可以进一步提高封接复合材料的热膨胀系数,使封接复合材料的热膨胀系数与铜、铝等的热膨胀系数相近,封接复合材料中没有引入易挥发的碱金属元素Na、K,有利于玻璃的化学稳定性和结构稳定性,加入的Al2O3提高玻璃与基材之间的结合力,加入ZrO2可以使析晶变得容易,提高玻璃的耐湿性,可以提高固化玻璃的封接强度。1. The present invention improves the thermal expansion coefficient of the sealing composite material by adjusting the components and the content of the components in the glass powder. By adding Tl2O , the thermal expansion coefficient of the sealing composite material can be further improved, and the thermal expansion coefficient of the sealing composite material can be close to the thermal expansion coefficient of copper, aluminum, etc. The sealing composite material does not introduce volatile alkali metal elements Na and K, which is beneficial to the chemical stability and structural stability of the glass. The added Al2O3 improves the bonding force between the glass and the substrate. The addition of ZrO2 can make crystallization easier, improve the moisture resistance of the glass, and improve the sealing strength of the solidified glass.
2、本发明通过在复合粘结剂内加入氧化铝粉末,可以增加复合粘结剂的导热性能,有利于提高玻璃与连接体之间的粘性,同时环氧树脂还具有优良的电绝缘性、耐热性和耐化学腐蚀性,通过加入复合粘结剂可以提高封接复合材料的耐腐蚀性能和导热性能,有利于电池热量的传递。2. The present invention can increase the thermal conductivity of the composite adhesive by adding alumina powder to the composite adhesive, which is beneficial to improving the adhesion between the glass and the connector. At the same time, the epoxy resin also has excellent electrical insulation, heat resistance and chemical corrosion resistance. By adding the composite adhesive, the corrosion resistance and thermal conductivity of the sealing composite material can be improved, which is beneficial to the transfer of battery heat.
3、本发明通过加入相变材料,可以使封接复合材料具有一定的导热以及相变储热,封接复合材料在电池充放电的放热过程中可以吸收一部分热量代替部分水冷板作用,在电池放热时吸收的能量可以在低温时放出,起到低温状态下的保温作用。3. By adding phase change material, the present invention can make the sealing composite material have a certain thermal conductivity and phase change heat storage. The sealing composite material can absorb part of the heat in the heat release process of battery charging and discharging to replace part of the water cooling plate. The energy absorbed when the battery releases heat can be released at low temperature, playing a role of heat preservation in low temperature state.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
并入本文中并且构成说明书的部分的附图示出了本公开的实施例,并且与说明书一起进一步用来对本公开的原理进行解释,并且使相关领域技术人员能够实施和使用本公开。The accompanying drawings, which are incorporated herein and constitute a part of the specification, illustrate embodiments of the present disclosure and, together with the description, further serve to explain the principles of the present disclosure and to enable those skilled in the relevant art to make and use the present disclosure.
图1为本发明实施例所采用的一种用于新能源动力电池真空封接的材料及制备方法流程图;FIG1 is a flow chart of a material and preparation method for vacuum sealing of new energy power batteries used in an embodiment of the present invention;
图2为本发明对比例1热膨胀系数的对比表格图;FIG2 is a comparative table diagram of thermal expansion coefficients of Comparative Example 1 of the present invention;
图3为本发明对比例2热膨胀系数的对比表格图。FIG. 3 is a comparison table of thermal expansion coefficients of Comparative Example 2 of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图和具体实施例对本发明提供的一种用于新能源动力电池真空封接的材料及制备方法进行详细描述。同时在这里做以说明的是,为了使实施例更加详尽,下面的实施例为最佳、优选实施例,对于一些公知技术本领域技术人员也可采用其他替代方式而进行实施;而且附图部分仅是为了更具体的描述实施例,而并不旨在对本发明进行具体的限定。The following is a detailed description of a material and preparation method for vacuum sealing of new energy power batteries provided by the present invention in combination with the accompanying drawings and specific embodiments. At the same time, it is explained here that in order to make the embodiments more detailed, the following embodiments are the best and preferred embodiments, and those skilled in the art may also adopt other alternative methods to implement some known technologies; and the accompanying drawings are only for a more specific description of the embodiments, and are not intended to specifically limit the present invention.
实施例1Example 1
一种用于新能源动力电池真空封接的材料及制备方法,如图1所示,包括如下步骤:A material and preparation method for vacuum sealing of new energy power batteries, as shown in FIG1 , comprises the following steps:
S1:制备复合粘结剂S1: Preparation of composite binder
S1.1:取40份环氧树脂加入0.1份KH560硅烷偶联剂、2份氧化铝粉末和8份乙醇-甲苯溶液,在超声搅拌下混合10min,得到混合物,乙醇-甲苯体积比为0.5;S1.1: Take 40 parts of epoxy resin, add 0.1 parts of KH560 silane coupling agent, 2 parts of aluminum oxide powder and 8 parts of ethanol-toluene solution, mix for 10 minutes under ultrasonic stirring to obtain a mixture, wherein the volume ratio of ethanol to toluene is 0.5;
S1.2:向混合物中加入3份甲基四氢苯酐、0.1份3-苯基-1,1-二甲基脲、1份磷酸三苯酯混合均匀后得到复合粘结剂。S1.2: Add 3 parts of methyltetrahydrophthalic anhydride, 0.1 parts of 3-phenyl-1,1-dimethylurea and 1 part of triphenyl phosphate to the mixture and mix well to obtain a composite adhesive.
S2:玻璃粉体的制备S2: Preparation of glass powder
S2.1:称取25份Bi2O3、10份ZnO、5份Al2O3、2份Li2O、1份TiO2、1份CuO、3份ZrO2、20份P2O5,将粉料过50目筛,初步混合后放入球磨罐中加入玛瑙球体和100份酒精,置于行星式球磨机中,进行湿法球磨2h,玛瑙球:粉料为3:1,得到浆料;S2.1: Weigh 25 parts of Bi 2 O 3 , 10 parts of ZnO, 5 parts of Al 2 O 3 , 2 parts of Li 2 O, 1 part of TiO 2 , 1 part of CuO, 3 parts of ZrO 2 , and 20 parts of P 2 O 5 , sieve the powder through a 50-mesh sieve, mix them initially, put them into a ball mill, add agate balls and 100 parts of alcohol, place them in a planetary ball mill, and perform wet ball milling for 2 hours, with a ratio of agate balls to powder being 3:1, to obtain a slurry;
S2.2:将浆料置于烘箱内在80℃下干燥6h,将烘干后的粉料加入刚玉坩埚中,将坩埚置于预先升温好的马弗炉中在650℃下预加热20min,预加热完成后转移至玻璃熔炼炉中,以10℃/min的加热速率升温至1060℃,加热2h,得到熔融后的玻璃溶液;S2.2: The slurry is placed in an oven and dried at 80°C for 6 hours. The dried powder is added into a corundum crucible. The crucible is placed in a preheated muffle furnace and preheated at 650°C for 20 minutes. After preheating, the crucible is transferred to a glass melting furnace and heated to 1060°C at a heating rate of 10°C/min for 2 hours to obtain a molten glass solution.
S2.3:将玻璃溶液直接倒入冷却水中进行水淬,得到玻璃渣,将玻璃渣置于球磨罐中,加入无水乙醇和玛瑙球,玛瑙球:粉料为3:1,进行湿法球磨10h,转速为300r/min,得到玻璃浆料,将玻璃浆料干燥,过100目筛得到玻璃粉体。S2.3: Pour the glass solution directly into cooling water for quenching to obtain glass slag, place the glass slag in a ball mill, add anhydrous ethanol and agate balls, the agate balls: powder ratio is 3:1, and wet ball milling is performed for 10 hours at a speed of 300r/min to obtain glass slurry, dry the glass slurry, and pass through a 100-mesh sieve to obtain glass powder.
S3:制备相变材料S3: Preparation of phase change materials
S3.1:将10份石蜡加入到烧杯中,升温至90℃,在机械搅拌下将50份膨胀石墨加入到容器中,与石蜡混合均匀,得到石蜡-石墨混合物;S3.1: Add 10 parts of paraffin wax into a beaker, heat it to 90°C, add 50 parts of expanded graphite into the container under mechanical stirring, mix well with the paraffin wax, and obtain a paraffin-graphite mixture;
S3.2:称取1份丙烯酰胺、0.2份N,N-亚甲基双丙酰胺和0.1份聚乙烯吡咯烷酮混合,加入5份的蒸馏水,超声震荡至完全溶解,加入0.01份吐温85搅拌至溶解,得到混合水溶液;S3.2: Weigh 1 part of acrylamide, 0.2 parts of N,N-methylenebispropionamide and 0.1 parts of polyvinyl pyrrolidone, mix them, add 5 parts of distilled water, shake them ultrasonically until they are completely dissolved, add 0.01 parts of Tween 85 and stir until they are dissolved, to obtain a mixed aqueous solution;
S3.3:70℃水浴条件下将石蜡-石墨混合物匀速加入到混合水溶液中,高速搅拌10min得到水包油乳液;S3.3: adding the paraffin-graphite mixture to the mixed aqueous solution at a uniform speed under a 70°C water bath condition, and stirring at a high speed for 10 min to obtain an oil-in-water emulsion;
S3.4:向水包油乳液中加入0.01份过硫酸铵搅拌分散,降低水浴温度至50℃,加入0.01份N,N,N,N-四甲基乙二胺快速搅拌5min,置于真空干燥箱50℃条件下继续固化5min,得到相变材料。S3.4: Add 0.01 parts of ammonium persulfate to the oil-in-water emulsion and stir to disperse, lower the water bath temperature to 50°C, add 0.01 parts of N,N,N,N-tetramethylethylenediamine and stir rapidly for 5 minutes, place in a vacuum drying oven at 50°C and continue to cure for 5 minutes to obtain a phase change material.
S4:制备封接复合材料S4: Preparation of sealing composite materials
S4.1:取20份Tl2O和100份玻璃粉体加入到球磨罐中加入玛瑙球体和100份酒精,置于行星式球磨机中,进行湿法球磨2h,玛瑙球:粉料为3:1,得到混合浆料;S4.1: Take 20 parts of Tl 2 O and 100 parts of glass powder, add agate balls and 100 parts of alcohol into a ball mill, place in a planetary ball mill, and perform wet ball milling for 2 hours, with a ratio of agate balls to powder being 3:1, to obtain a mixed slurry;
S4.2:将混合浆料置于烘箱内在80℃下干燥6h,得到混合粉末,将混合粉末过100目筛得到玻璃粉;S4.2: drying the mixed slurry in an oven at 80° C. for 6 h to obtain a mixed powder, and passing the mixed powder through a 100-mesh sieve to obtain glass powder;
S4.3:将玻璃粉用KH560硅烷偶联剂浸渍10min后,加入5份复合粘结剂和3份相变材料通过搅拌机搅拌10min,搅拌均匀后得到封接复合材料。S4.3: After impregnating the glass powder with KH560 silane coupling agent for 10 minutes, add 5 parts of composite adhesive and 3 parts of phase change material and stir them in a mixer for 10 minutes. After stirring evenly, a sealing composite material is obtained.
实施例2Example 2
一种用于新能源动力电池真空封接的材料及制备方法,如图1所示,包括如下步骤:A material and preparation method for vacuum sealing of new energy power batteries, as shown in FIG1 , comprises the following steps:
S1:制备复合粘结剂S1: Preparation of composite binder
S1.1:取60份环氧树脂加入0.2份KH560硅烷偶联剂、3份氧化铝粉末和10份乙醇-甲苯溶液,在超声搅拌下混合10min,得到混合物,乙醇-甲苯体积比为2;S1.1: Take 60 parts of epoxy resin, add 0.2 parts of KH560 silane coupling agent, 3 parts of aluminum oxide powder and 10 parts of ethanol-toluene solution, mix for 10 minutes under ultrasonic stirring to obtain a mixture, wherein the volume ratio of ethanol to toluene is 2;
S1.2:向混合物中加入5份甲基四氢苯酐、0.2份3-苯基-1,1-二甲基脲、2份磷酸三苯酯混合均匀后得到复合粘结剂。S1.2: Add 5 parts of methyltetrahydrophthalic anhydride, 0.2 parts of 3-phenyl-1,1-dimethylurea and 2 parts of triphenyl phosphate to the mixture and mix well to obtain a composite adhesive.
S2:玻璃粉体的制备S2: Preparation of glass powder
S2.1:称取30份Bi2O3、30份ZnO、10份Al2O3、10份Li2O、5份TiO2、5份CuO、5份ZrO2、30份P2O5,将粉料过50目筛,初步混合后放入球磨罐中加入玛瑙球体和120份酒精,置于行星式球磨机中,进行湿法球磨2h,玛瑙球:粉料为4:1,得到浆料;S2.1: Weigh 30 parts of Bi 2 O 3 , 30 parts of ZnO, 10 parts of Al 2 O 3 , 10 parts of Li 2 O, 5 parts of TiO 2 , 5 parts of CuO, 5 parts of ZrO 2 , and 30 parts of P 2 O 5 , sieve the powder through a 50-mesh sieve, mix them initially, put them into a ball mill, add agate balls and 120 parts of alcohol, place them in a planetary ball mill, and perform wet ball milling for 2 hours, with a ratio of agate balls to powder being 4:1, to obtain a slurry;
S2.2:将浆料置于烘箱内在80℃下干燥6h,将烘干后的粉料加入刚玉坩埚中,将坩埚置于预先升温好的马弗炉中在650℃下预加热20min,预加热完成后转移至玻璃熔炼炉中,以10℃/min的加热速率升温至1060℃,加热2h,得到熔融后的玻璃溶液;S2.2: The slurry is placed in an oven and dried at 80°C for 6 hours. The dried powder is added into a corundum crucible. The crucible is placed in a preheated muffle furnace and preheated at 650°C for 20 minutes. After preheating, the crucible is transferred to a glass melting furnace and heated to 1060°C at a heating rate of 10°C/min for 2 hours to obtain a molten glass solution.
S2.3:将玻璃溶液直接倒入冷却水中进行水淬,得到玻璃渣,将玻璃渣置于球磨罐中,加入无水乙醇和玛瑙球,玛瑙球:粉料为4:1,进行湿法球磨10h,转速为300r/min,得到玻璃浆料,将玻璃浆料干燥,过100目筛得到玻璃粉体。S2.3: Pour the glass solution directly into cooling water for quenching to obtain glass slag, place the glass slag in a ball mill, add anhydrous ethanol and agate balls, the agate ball: powder ratio is 4:1, and wet ball milling is performed for 10 hours at a speed of 300r/min to obtain glass slurry, dry the glass slurry, and pass through a 100-mesh sieve to obtain glass powder.
S3:制备相变材料S3: Preparation of phase change materials
S3.1:将20份石蜡加入到烧杯中,升温至90℃,在机械搅拌下将50份膨胀石墨加入到容器中,与石蜡混合均匀,得到石蜡-石墨混合物;S3.1: Add 20 parts of paraffin wax into a beaker, heat it to 90°C, add 50 parts of expanded graphite into the container under mechanical stirring, mix well with the paraffin wax, and obtain a paraffin-graphite mixture;
S3.2:称取2份丙烯酰胺、0.5份N,N-亚甲基双丙酰胺和0.2份聚乙烯吡咯烷酮混合,加入8份的蒸馏水,超声震荡至完全溶解,加入0.01份吐温85搅拌至溶解,得到混合水溶液;S3.2: Weigh 2 parts of acrylamide, 0.5 parts of N,N-methylenebispropionamide and 0.2 parts of polyvinyl pyrrolidone, mix, add 8 parts of distilled water, shake by ultrasound until completely dissolved, add 0.01 parts of Tween 85 and stir until dissolved, to obtain a mixed aqueous solution;
S3.3:70℃水浴条件下将石蜡-石墨混合物匀速加入到混合水溶液中,高速搅拌10min得到水包油乳液;S3.3: adding the paraffin-graphite mixture to the mixed aqueous solution at a uniform speed under a 70°C water bath condition, and stirring at a high speed for 10 min to obtain an oil-in-water emulsion;
S3.4:向水包油乳液中加入0.03份过硫酸铵搅拌分散,降低水浴温度至50℃,加入0.05份N,N,N,N-四甲基乙二胺快速搅拌5min,置于真空干燥箱50℃条件下继续固化5min,得到相变材料。S3.4: Add 0.03 parts of ammonium persulfate to the oil-in-water emulsion and stir to disperse, lower the water bath temperature to 50°C, add 0.05 parts of N,N,N,N-tetramethylethylenediamine and stir rapidly for 5 minutes, place in a vacuum drying oven at 50°C and continue to cure for 5 minutes to obtain a phase change material.
S4:制备封接复合材料S4: Preparation of sealing composite materials
S4.1:取30份Tl2O和120份玻璃粉体加入到球磨罐中加入玛瑙球体和120份酒精,置于行星式球磨机中,进行湿法球磨2h,玛瑙球:粉料为4:1,得到混合浆料;S4.1: Take 30 parts of Tl 2 O and 120 parts of glass powder, add agate balls and 120 parts of alcohol into a ball mill, place in a planetary ball mill, and perform wet ball milling for 2 hours, with a ratio of agate balls to powder being 4:1, to obtain a mixed slurry;
S4.2:将混合浆料置于烘箱内在80℃下干燥6h,得到混合粉末,将混合粉末过100目筛得到玻璃粉;S4.2: drying the mixed slurry in an oven at 80° C. for 6 h to obtain a mixed powder, and passing the mixed powder through a 100-mesh sieve to obtain glass powder;
S4.3:将玻璃粉用KH560硅烷偶联剂浸渍10min后,加入8份复合粘结剂和5份相变材料通过搅拌机搅拌10min,搅拌均匀后得到封接复合材料。S4.3: After impregnating the glass powder with KH560 silane coupling agent for 10 minutes, add 8 parts of composite adhesive and 5 parts of phase change material and stir them in a mixer for 10 minutes. After stirring evenly, a sealing composite material is obtained.
实施例3Example 3
一种用于新能源动力电池真空封接的材料及制备方法,如图1所示,包括如下步骤:A material and preparation method for vacuum sealing of new energy power batteries, as shown in FIG1 , comprises the following steps:
S1:制备复合粘结剂S1: Preparation of composite binder
S1.1:取40份环氧树脂加入0.1份KH560硅烷偶联剂、2份氧化铝粉末和8份乙醇-甲苯溶液,在超声搅拌下混合15min,得到混合物,乙醇-甲苯体积比为0.5;S1.1: Take 40 parts of epoxy resin, add 0.1 parts of KH560 silane coupling agent, 2 parts of aluminum oxide powder and 8 parts of ethanol-toluene solution, mix for 15 minutes under ultrasonic stirring to obtain a mixture, wherein the volume ratio of ethanol to toluene is 0.5;
S1.2:向混合物中加入3份甲基四氢苯酐、0.1份3-苯基-1,1-二甲基脲、1份磷酸三苯酯混合均匀后得到复合粘结剂。S1.2: Add 3 parts of methyltetrahydrophthalic anhydride, 0.1 parts of 3-phenyl-1,1-dimethylurea and 1 part of triphenyl phosphate to the mixture and mix well to obtain a composite adhesive.
S2:玻璃粉体的制备S2: Preparation of glass powder
S2.1:称取25份Bi2O3、10份ZnO、5份Al2O3、2份Li2O、1份TiO2、1份CuO、3份ZrO2、20份P2O5,将粉料过60目筛,初步混合后放入球磨罐中加入玛瑙球体和100份酒精,置于行星式球磨机中,进行湿法球磨3h,玛瑙球:粉料为3:1,得到浆料;S2.1: Weigh 25 parts of Bi 2 O 3 , 10 parts of ZnO, 5 parts of Al 2 O 3 , 2 parts of Li 2 O, 1 part of TiO 2 , 1 part of CuO, 3 parts of ZrO 2 , and 20 parts of P 2 O 5 , sieve the powder through a 60-mesh sieve, mix them initially, put them into a ball mill, add agate balls and 100 parts of alcohol, place them in a planetary ball mill, and perform wet ball milling for 3 hours, with a ratio of agate balls to powder being 3:1, to obtain a slurry;
S2.2:将浆料置于烘箱内在85℃下干燥7h,将烘干后的粉料加入刚玉坩埚中,将坩埚置于预先升温好的马弗炉中在700℃下预加热30min,预加热完成后转移至玻璃熔炼炉中,以10-15℃/min的加热速率升温至1065℃,加热2h,得到熔融后的玻璃溶液;S2.2: The slurry is placed in an oven and dried at 85°C for 7 hours. The dried powder is added into a corundum crucible. The crucible is placed in a preheated muffle furnace and preheated at 700°C for 30 minutes. After preheating, the crucible is transferred to a glass melting furnace and heated to 1065°C at a heating rate of 10-15°C/min for 2 hours to obtain a molten glass solution.
S2.3:将玻璃溶液直接倒入冷却水中进行水淬,得到玻璃渣,将玻璃渣置于球磨罐中,加入无水乙醇和玛瑙球,玛瑙球:粉料为3:1,进行湿法球磨12h,转速为350r/min,得到玻璃浆料,将玻璃浆料干燥,过200目筛得到玻璃粉体。S2.3: Pour the glass solution directly into cooling water for quenching to obtain glass slag. Place the glass slag in a ball mill and add anhydrous ethanol and agate balls (the ratio of agate balls to powder is 3:1). Perform wet ball milling for 12 hours at a speed of 350 r/min to obtain glass slurry. Dry the glass slurry and pass it through a 200-mesh sieve to obtain glass powder.
S3:制备相变材料S3: Preparation of phase change materials
S3.1:将10份石蜡加入到烧杯中,升温至100℃,在机械搅拌下将50份膨胀石墨加入到容器中,与石蜡混合均匀,得到石蜡-石墨混合物;S3.1: Add 10 parts of paraffin wax into a beaker, heat it to 100°C, add 50 parts of expanded graphite into the container under mechanical stirring, mix well with the paraffin wax, and obtain a paraffin-graphite mixture;
S3.2:称取1份丙烯酰胺、0.2份N,N-亚甲基双丙酰胺和0.1份聚乙烯吡咯烷酮混合,加入5份的蒸馏水,超声震荡至完全溶解,加入0.05份吐温85搅拌至溶解,得到混合水溶液;S3.2: Weigh 1 part of acrylamide, 0.2 parts of N,N-methylenebispropionamide and 0.1 parts of polyvinyl pyrrolidone, add 5 parts of distilled water, shake with ultrasound until completely dissolved, add 0.05 parts of Tween 85 and stir until dissolved to obtain a mixed aqueous solution;
S3.3:75℃水浴条件下将石蜡-石墨混合物匀速加入到混合水溶液中,高速搅拌20min得到水包油乳液;S3.3: adding the paraffin-graphite mixture to the mixed aqueous solution at a uniform speed under a 75°C water bath condition, and stirring at a high speed for 20 min to obtain an oil-in-water emulsion;
S3.4:向水包油乳液中加入0.01份过硫酸铵搅拌分散,降低水浴温度至55℃,加入0.01份N,N,N,N-四甲基乙二胺快速搅拌10min,置于真空干燥箱55℃条件下继续固化10min,得到相变材料。S3.4: Add 0.01 parts of ammonium persulfate to the oil-in-water emulsion and stir to disperse, lower the water bath temperature to 55°C, add 0.01 parts of N,N,N,N-tetramethylethylenediamine and stir rapidly for 10 minutes, place in a vacuum drying oven at 55°C and continue to cure for 10 minutes to obtain a phase change material.
S4:制备封接复合材料S4: Preparation of sealing composite materials
S4.1:取20份Tl2O和100份玻璃粉体加入到球磨罐中加入玛瑙球体和100份酒精,置于行星式球磨机中,进行湿法球磨3h,玛瑙球:粉料为3:1,得到混合浆料;S4.1: Take 20 parts of Tl 2 O and 100 parts of glass powder, add agate balls and 100 parts of alcohol into a ball mill, place in a planetary ball mill, and perform wet ball milling for 3 hours, with a ratio of agate balls to powder being 3:1, to obtain a mixed slurry;
S4.2:将混合浆料置于烘箱内在85℃下干燥7h,得到混合粉末,将混合粉末过100-200目筛得到玻璃粉;S4.2: drying the mixed slurry in an oven at 85°C for 7 hours to obtain a mixed powder, and passing the mixed powder through a 100-200 mesh sieve to obtain glass powder;
S4.3:将玻璃粉用KH560硅烷偶联剂浸渍15min后,加入5-8份复合粘结剂和3-5份相变材料通过搅拌机搅拌20min,搅拌均匀后得到封接复合材料。S4.3: After impregnating the glass powder with KH560 silane coupling agent for 15 minutes, add 5-8 parts of composite adhesive and 3-5 parts of phase change material and stir them in a stirrer for 20 minutes. After stirring evenly, a sealing composite material is obtained.
对比例1Comparative Example 1
与实施例1相比,对比例1的不同之处在于,对比例1为市售玻璃粉,具体为晨民矿产品加工厂销售的玻璃粉,记为对比例1。Compared with Example 1, the difference of Comparative Example 1 is that Comparative Example 1 is commercially available glass powder, specifically glass powder sold by Chenmin Mineral Products Processing Plant, recorded as Comparative Example 1.
取相同质量实施例1、实施例2、实施例3制备的封接复合材料和对比例1的玻璃粉,利用SJ689-83中公开的电真空玻璃线膨胀系数的测试方法分别测试实施例1、实施例2、实施例3制备的封接复合材料的热膨胀系数和对比例1玻璃粉的热膨胀系数,平行测试2次,测试结果参考图2,可以看出实施例的热膨胀系数均高于对比例,实施例的热膨胀系数在215×10-7/℃左右,与铜、铝等的热膨胀系数较为接近,证明实施例的制备工艺制备的封接复合材料具有较高的热膨胀系数。The same mass of the sealing composite materials prepared in Example 1, Example 2 and Example 3 and the glass powder of Comparative Example 1 were taken, and the thermal expansion coefficients of the sealing composite materials prepared in Example 1, Example 2 and Example 3 and the thermal expansion coefficient of the glass powder of Comparative Example 1 were tested respectively by using the test method for the linear expansion coefficient of electric vacuum glass disclosed in SJ689-83. The tests were conducted twice in parallel. With reference to FIG2 for the test results, it can be seen that the thermal expansion coefficients of the embodiments are higher than those of the comparative examples. The thermal expansion coefficients of the embodiments are around 215×10 -7 /°C, which is relatively close to the thermal expansion coefficients of copper, aluminum, etc., proving that the sealing composite materials prepared by the preparation process of the embodiments have a higher thermal expansion coefficient.
对比例2Comparative Example 2
与实施例1相比,对比例2的不同之处在于,对比例2为去除步骤S4.1-S4.2,将步骤S4.3中的玻璃粉替换为等质量的S2.3中的玻璃粉体,其余步骤不变制备封接复合材料,记为对比例2。Compared with Example 1, the difference of Comparative Example 2 is that Comparative Example 2 removes steps S4.1-S4.2, replaces the glass powder in step S4.3 with the glass powder in S2.3 of equal mass, and prepares the sealing composite material without changing the other steps, which is recorded as Comparative Example 2.
沿用实施例1、实施例2、实施例3制得的实验数据,取与实施例相同质量的对比例2制备的封接复合材料,利用SJ689-83中公开的电真空玻璃线膨胀系数的测试方法测试对比例2制备的封接复合材料的热膨胀系数,平行测试2次,测试结果参考图3,可以看出实施例的热膨胀系数均高于对比例,说明加入Tl2O可以提高封接复合材料的热膨胀系数。Using the experimental data obtained in Example 1, Example 2, and Example 3, the sealing composite material prepared in Comparative Example 2 with the same mass as that of the example was taken, and the thermal expansion coefficient of the sealing composite material prepared in Comparative Example 2 was tested using the test method for the linear expansion coefficient of electric vacuum glass disclosed in SJ689-83. The test was conducted twice in parallel. The test results are shown in Figure 3. It can be seen that the thermal expansion coefficients of the examples are higher than those of the comparative examples, indicating that the addition of Tl2O can increase the thermal expansion coefficient of the sealing composite material.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Anyone familiar with the art may modify or alter the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or alterations made by a person of ordinary skill in the art without departing from the spirit and technical concept disclosed by the present invention shall still be covered by the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311659829.8A CN117458059B (en) | 2023-12-06 | 2023-12-06 | Material for vacuum sealing of new energy power battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311659829.8A CN117458059B (en) | 2023-12-06 | 2023-12-06 | Material for vacuum sealing of new energy power battery and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117458059A CN117458059A (en) | 2024-01-26 |
CN117458059B true CN117458059B (en) | 2024-10-29 |
Family
ID=89591041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311659829.8A Active CN117458059B (en) | 2023-12-06 | 2023-12-06 | Material for vacuum sealing of new energy power battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117458059B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139209A1 (en) * | 2017-01-30 | 2018-08-02 | 株式会社日立製作所 | Joining material and joined body |
CN111620565A (en) * | 2020-06-19 | 2020-09-04 | 淄博市宝泉轻工制品有限公司 | High-expansion-coefficient sealing glass ceramic and low-melting-point processing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5224102B2 (en) * | 2008-03-26 | 2013-07-03 | 日本電気硝子株式会社 | Sealing material for organic EL display |
EP2765153B1 (en) * | 2013-02-12 | 2017-03-29 | Heraeus Precious Metals North America Conshohocken LLC | Sealing glass composition and methods of applying it |
JP6753096B2 (en) * | 2015-08-04 | 2020-09-09 | 株式会社村田製作所 | Rechargeable battery |
JP2022155512A (en) * | 2021-03-30 | 2022-10-13 | 日本山村硝子株式会社 | Sealing composition |
-
2023
- 2023-12-06 CN CN202311659829.8A patent/CN117458059B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139209A1 (en) * | 2017-01-30 | 2018-08-02 | 株式会社日立製作所 | Joining material and joined body |
CN111620565A (en) * | 2020-06-19 | 2020-09-04 | 淄博市宝泉轻工制品有限公司 | High-expansion-coefficient sealing glass ceramic and low-melting-point processing method |
Also Published As
Publication number | Publication date |
---|---|
CN117458059A (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103298763B (en) | Feedthrough | |
CN106277794A (en) | Glass-glass composite seal and its preparation method and application | |
US12225836B2 (en) | Phase change thermal storage ceramic and preparation method thereof | |
CN108423998B (en) | Glass powder composition, glass sealing material, preparation method of glass sealing material and battery | |
CN109256499B (en) | Sealing assembly for sealing electrode post glass of aluminum shell power battery and sealing method thereof | |
CN117458059B (en) | Material for vacuum sealing of new energy power battery and preparation method thereof | |
CN101684034B (en) | Sealing glass powder, sealing glass ceramic powder and application | |
CN108172704B (en) | Glass sealing assembly of power battery cover plate and pole and manufacturing method thereof | |
CN113937419A (en) | Ceramic diaphragm based on organic-inorganic composite binder and preparation method thereof | |
CN109301151B (en) | Battery electrode post glass sealing structure and sealing method thereof | |
CN116283321B (en) | Ablation-resistant coated zirconium-based phosphate material and preparation method thereof | |
CN105397336B (en) | For the sealed composite soldering of flat-plate-type solid-oxide fuel battery and its method for welding | |
CN105502949A (en) | Bismuth oxide series low-melting-point glass for copper-aluminum sealing and preparation method thereof | |
CN209045627U (en) | A kind of glass-sealed seal assembly of aluminum hull power battery electrode pole | |
CN114230181B (en) | Preparation method and sealing process of sealing glass for high-temperature vibration acceleration sensor | |
EP3392937A1 (en) | Method for modifying lithium iron phosphate cathode material, cathode plate, and lithium iron phosphate battery | |
CN105397340A (en) | Composite brazing filler material system for self-adaptive sealing of medium-temperature solid oxide fuel battery and brazing method of composite brazing filler material system | |
CN109546152A (en) | A kind of solid lithium battery electrode material and preparation method thereof | |
CN114335694A (en) | A preparation method for improving the density of garnet-type lithium ion solid electrolyte and the wettability with metal lithium | |
CN106299399B (en) | The compound seal, sealing materials of solid oxide fuel cell and battery method for sealing | |
CN208904123U (en) | A kind of battery electrode pole glass sealing structure | |
CN117682759B (en) | Sealing glass blank for power lithium battery and preparation method thereof | |
CN116789366A (en) | Composite glass powder and its preparation method and application | |
CN102295414A (en) | Sealing glass for sodium sulfur battery and preparation method and application of sealing glass | |
CN118652051A (en) | Preparation method of sealing film tape material and sealing film tape material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |