[go: up one dir, main page]

CN117327673A - A highly active mammalian urate oxidase mutant - Google Patents

A highly active mammalian urate oxidase mutant Download PDF

Info

Publication number
CN117327673A
CN117327673A CN202311336226.4A CN202311336226A CN117327673A CN 117327673 A CN117327673 A CN 117327673A CN 202311336226 A CN202311336226 A CN 202311336226A CN 117327673 A CN117327673 A CN 117327673A
Authority
CN
China
Prior art keywords
mutant
urate oxidase
seq
mammalian
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311336226.4A
Other languages
Chinese (zh)
Other versions
CN117327673B (en
Inventor
张淳
朱新茹
郭勇
刘璐
赵志龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi University
Original Assignee
Linyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi University filed Critical Linyi University
Priority to CN202311336226.4A priority Critical patent/CN117327673B/en
Publication of CN117327673A publication Critical patent/CN117327673A/en
Application granted granted Critical
Publication of CN117327673B publication Critical patent/CN117327673B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0044Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
    • C12N9/0046Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7) with oxygen as acceptor (1.7.3)
    • C12N9/0048Uricase (1.7.3.3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y107/00Oxidoreductases acting on other nitrogenous compounds as donors (1.7)
    • C12Y107/03Oxidoreductases acting on other nitrogenous compounds as donors (1.7) with oxygen as acceptor (1.7.3)
    • C12Y107/03003Factor-independent urate hydroxylase (1.7.3.3), i.e. uricase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明根据尿酸氧化酶的进化趋势,通过分析多种哺乳动物尿酸氧化酶的保守序列,构建突变体库,筛选得到高活性哺乳动物尿酸氧化酶突变体MU,再对突变体MU进行定点突变,进一步筛选出更高活性的突变E208D和R249Q。本发明提供了一种高活性哺乳动物尿酸氧化酶突变体,所述突变体的氨基酸序列如SEQ ID NO:1、5或7任一所示。所述突变体的酶比活性相比于野生型尿酸氧化酶具有显著提高,例如酶比活性比野生型犬源尿酸氧化酶提高至少25%,且具有更高的热稳定性。

Based on the evolutionary trend of urate oxidase, the present invention constructs a mutant library by analyzing the conserved sequences of multiple mammalian urate oxidases, screens to obtain a highly active mammalian urate oxidase mutant MU, and then performs site-directed mutation on the mutant MU. The mutations E208D and R249Q with higher activity were further screened. The present invention provides a highly active mammalian urate oxidase mutant, the amino acid sequence of which is shown in any one of SEQ ID NO: 1, 5 or 7. The enzyme specific activity of the mutant is significantly improved compared to wild-type urate oxidase. For example, the enzyme specific activity is at least 25% higher than that of wild-type canine urate oxidase, and has higher thermal stability.

Description

一种高活性哺乳动物尿酸氧化酶突变体A highly active mammalian urate oxidase mutant

技术领域Technical field

本发明涉及基因工程和酶工程领域,具体涉及一种高活性哺乳动物尿酸氧化酶突变体。The invention relates to the fields of genetic engineering and enzyme engineering, and specifically relates to a highly active mammalian urate oxidase mutant.

背景技术Background technique

高尿酸血症和痛风是严重危害人类健康的重大疾病。现有治疗药物仅能从消炎止痛和抑制尿酸生成等方面控制此类疾病的发作及继续发展,均无法达到根治之目的。尿酸氧化酶类药物可将微溶性尿酸水解为易溶性尿囊素,已用于肿瘤放化疗和代谢紊乱引起的高尿酸血症及痛风的治疗。目前国内无任何尿酸氧化酶类药物上市,国际上已上市的尿酸氧化酶类药物有2002年美国FDA批准的啤酒酵母重组黄曲霉源尿酸氧化酶(Rasburicase)和2010年FDA批准的聚乙二醇(PEG)修饰大肠杆菌重组类猪源尿酸氧化酶(Pegloticase)。前者因与推测出的人源尿酸氧化酶的同源性低(<40%),多次给药后受试者体内极易产生抗体,仅能用于急性高尿酸血症的短期治疗;后者为PEG修饰长效生物蛋白药物,两周注射一次,具有快速消融痛风石的独特功效,被誉为潜在的顽固性痛风的突破性治疗药物(Pelgoticase 2019年销售额3.4亿美元),但存在免疫原性高和长期注射有效率低等缺陷。Hyperuricemia and gout are major diseases that seriously endanger human health. Existing therapeutic drugs can only control the onset and continued development of this type of disease from the aspects of anti-inflammatory, analgesic and inhibiting the production of uric acid, but they cannot achieve the purpose of radical cure. Uric acid oxidase drugs can hydrolyze slightly soluble uric acid into easily soluble allantoin, and have been used in the treatment of hyperuricemia and gout caused by tumor radiotherapy and chemotherapy and metabolic disorders. Currently, there are no urate oxidase drugs on the market in China. The internationally marketed urate oxidase drugs include brewer's yeast recombinant aflatoxin-derived urate oxidase (Rasburicase) approved by the US FDA in 2002 and polyethylene glycol approved by the FDA in 2010. (PEG) modified Escherichia coli recombinant porcine urate oxidase (Pegloticase). The former has low homology (<40%) with the presumed human urate oxidase, and antibodies are easily produced in subjects after multiple administrations, so it can only be used for the short-term treatment of acute hyperuricemia; the latter It is a PEG-modified long-acting biological protein drug that can be injected once every two weeks. It has the unique effect of rapidly ablating tophi. It is hailed as a potential breakthrough treatment drug for refractory gout (Pelgoticase sales in 2019 were US$340 million), but there are It has shortcomings such as high immunogenicity and low long-term injection effectiveness.

哺乳动物源尿酸氧化酶因其高同源性(与人源尿酸氧化酶同源性>90%),是开发长效尿酸氧化酶药物的重要来源。然而,哺乳动物尿酸氧化酶活性偏低,低活性意味着高剂量,注射剂量过高(8.0mg/dose)是导致Pelgoticase(PEG修饰类猪源重组尿酸氧化酶)免疫原性过高的重要因素之一。构建高比活哺乳动物源尿酸氧化酶,降低注射剂量,是开发低免疫原性尿酸氧化酶的重要手段。同时,PEG修饰尿酸氧化酶类药物注射周期为2周左右,提高尿酸氧化酶蛋白稳定性,延长体内代谢速率,亦可降低初始注射剂量,进一步降低哺乳动物尿酸氧化酶类药物的潜在免疫原性。开发高活性、高稳定性哺乳动物来源尿酸氧化酶是开发高安全性、低免疫原性长效尿酸氧化酶药物的重要手段。Mammalian urate oxidase is an important source for the development of long-acting urate oxidase drugs due to its high homology (>90% homology with human urate oxidase). However, the activity of mammalian urate oxidase is low, and low activity means high dosage. The injection dosage is too high (8.0 mg/dose), which is an important factor leading to the excessive immunogenicity of Pelgoticase (PEG-modified porcine recombinant urate oxidase). one. Constructing high-specific activity mammalian-derived urate oxidase and reducing the injection dose are important means to develop low-immunogenic urate oxidase. At the same time, the injection period of PEG-modified urate oxidase drugs is about 2 weeks, which improves the stability of urate oxidase protein, prolongs the metabolism rate in the body, and can also reduce the initial injection dose, further reducing the potential immunogenicity of mammalian urate oxidase drugs. . Developing mammalian-derived urate oxidase with high activity and stability is an important means to develop long-acting urate oxidase drugs with high safety and low immunogenicity.

专利(WO2019/010369)公开了具有提高的胰酶稳定性和/或活性的重组突变产朊假丝酵母(Candida utilis)尿酸氧化酶;专利(WO2021/068925)公开了一种改进的微球菌属(Arthrobacter globiformis)尿酸氧化酶,酶活性和热稳定性均较原始结构有所提高。上述专利尿酸氧化酶蛋白均属于微生物来源,非哺乳动物来源,在人体应用时可能存在与黄曲霉源尿酸氧化酶(Rasburicase)类似的免疫原性过高的风险。专利(WO 2011/050599)公布了人源化重组尿酸氧化酶及其突变体,专利(CN104630168A)公布了人猪嵌合尿酸氧化酶结构,上述两个专利均主要通过嵌合提高人源化程度,未涉及高活性及高稳定性尿酸氧化酶筛选。现有技术公开的方法未有涉及在哺乳动物尿酸氧化酶结构基础上进一步提高酶活性及稳定性。The patent (WO2019/010369) discloses a recombinant mutant Candida utilis urate oxidase with improved trypsin stability and/or activity; the patent (WO2021/068925) discloses an improved Micrococcus genus (Arthrobacter globiformis) urate oxidase, the enzyme activity and thermal stability are improved compared with the original structure. The above-mentioned patented urate oxidase proteins are all of microbial origin, not mammalian origin. When used in humans, there may be a risk of excessive immunogenicity similar to Aspergillus aflatoxin-derived urate oxidase (Rasburicase). The patent (WO 2011/050599) publishes humanized recombinant urate oxidase and its mutants, and the patent (CN104630168A) publishes the structure of human-pig chimeric urate oxidase. Both of the above two patents mainly improve the degree of humanization through chimerism. , did not involve the screening of high activity and high stability urate oxidase. The methods disclosed in the prior art do not involve further improving enzyme activity and stability based on the structure of mammalian urate oxidase.

发明内容Contents of the invention

为了解决上述技术问题,本发明提供了一种高活性哺乳动物尿酸氧化酶(也可简称为尿酸酶)突变体,所述突变体的酶比活性相比于野生型尿酸氧化酶具有显著提高(例如酶比活性比野生型犬源尿酸氧化酶提高约为28.9%)。In order to solve the above technical problems, the present invention provides a highly active mammalian urate oxidase (also referred to as uricase) mutant, the enzyme specific activity of the mutant is significantly improved compared to wild-type urate oxidase ( For example, the enzyme specific activity is approximately 28.9% higher than that of wild-type canine urate oxidase).

本发明提供了一种高活性哺乳动物尿酸氧化酶突变体,所述突变体的氨基酸序列如SEQ ID NO:1所示,或者与SEQ ID NO:1相比包含突变E208D和/或R249Q。The present invention provides a highly active mammalian urate oxidase mutant, the amino acid sequence of the mutant is as shown in SEQ ID NO: 1, or includes mutations E208D and/or R249Q compared with SEQ ID NO: 1.

在一些实施例中,所述突变体还可以包含其他合适的突变,只要该突变不会大幅降低酶比活性即可。在一些实施例中,所述突变体与如SEQ ID NO:3所示的野生型犬源尿酸氧化酶相比,酶比活性提高至少25%。In some embodiments, the mutant may also include other suitable mutations, as long as the mutations do not significantly reduce the enzyme specific activity. In some embodiments, the mutant has an enzyme specific activity increased by at least 25% compared to wild-type canine urate oxidase as shown in SEQ ID NO: 3.

在一些实施例中,所述突变体的氨基酸序列如SEQ ID NO:1、5或7任一所示。In some embodiments, the amino acid sequence of the mutant is as shown in any one of SEQ ID NO: 1, 5 or 7.

本发明还提供了一种核酸分子,所述核酸分子包含本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的编码序列;优选地,所述核酸分子为DNA或RNA。The present invention also provides a nucleic acid molecule comprising the coding sequence of a highly active mammalian urate oxidase mutant according to any aspect of the present invention; preferably, the nucleic acid molecule is DNA or RNA.

本发明还提供了一种基因表达框,所述基因表达框含有启动子和可操纵地连接在所述启动子后的编码序列,所述编码序列为本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的编码序列。The present invention also provides a gene expression cassette, which contains a promoter and a coding sequence operably connected behind the promoter, and the coding sequence is a high-density protein according to any aspect of the present invention. Coding sequences of active mammalian urate oxidase mutants.

在一些实施例中,所述启动子选自乳糖启动子系统、色氨酸启动子系统、β内酰胺酶启动子系统或噬菌体λ或T7来源的启动子系统。In some embodiments, the promoter is selected from a lactose promoter system, a tryptophan promoter system, a beta lactamase promoter system, or a promoter system derived from phage lambda or T7.

在一些实施例中,所述编码序列的核苷酸序列如SEQ ID NO:2、4或6任一所示。In some embodiments, the nucleotide sequence of the coding sequence is as set forth in any of SEQ ID NO: 2, 4, or 6.

本发明还提供了一种表达载体,所述表达载体包含本发明任一方案所述基因表达框。The present invention also provides an expression vector, which includes the gene expression cassette described in any aspect of the present invention.

本发明提供了一种宿主细胞,所述宿主细胞包含本发明任一方案所述核酸分子、基因表达框或表达载体。The present invention provides a host cell, which contains the nucleic acid molecule, gene expression cassette or expression vector described in any aspect of the present invention.

在一些实施例中,所述宿主细胞选自哺乳动物细胞、昆虫、酵母或细菌细胞;优选肠杆菌细胞或酵母细胞。In some embodiments, the host cells are selected from mammalian cells, insect, yeast or bacterial cells; preferably Enterobacteriaceae cells or yeast cells.

本发明还提供了一种生产本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的方法,包括:在所述宿主细胞中表达所述突变体,并分离纯化。The present invention also provides a method for producing a highly active mammalian urate oxidase mutant according to any aspect of the present invention, including: expressing the mutant in the host cell, and isolating and purifying the mutant.

本发明还提供了所述的一种高活性哺乳动物尿酸氧化酶突变体在制备尿酸氧化酶药物中的应用。The invention also provides the use of the highly active mammalian urate oxidase mutant in the preparation of urate oxidase drugs.

与现有技术相比,本发明的有益效果至少包括:Compared with the prior art, the beneficial effects of the present invention at least include:

(1)本发明根据尿酸氧化酶的进化趋势,通过分析多种哺乳动物尿酸氧化酶的保守序列,构建哺乳动物动物尿酸氧化酶突变体库,筛选得到高活性哺乳动物尿酸氧化酶突变体MU。(1) Based on the evolutionary trend of urate oxidase, the present invention constructs a mammalian urate oxidase mutant library by analyzing the conserved sequences of various mammalian urate oxidases, and screens to obtain the highly active mammalian urate oxidase mutant MU.

(2)本发明再对突变体MU进行定点突变,进一步筛选出更高活性的突变E208D和R249Q,与最高活性的野生型犬源尿酸氧化酶相比,酶比活性提高至少25%,且具有更高的热稳定性。(2) The present invention then conducts site-directed mutagenesis on the mutant MU, and further screens out the mutations E208D and R249Q with higher activity. Compared with the highest active wild-type canine-derived urate oxidase, the enzyme specific activity is increased by at least 25%, and has Higher thermal stability.

附图说明Description of drawings

图1为不同哺乳动物尿酸氧化酶序列比对.A0A5E4C3I6:Woodchuck;P11645:Rabbit;A0A2Y9P065:Beluga whale;P16164:Pig;Q3MHG7:Bovine;A0A6J0XAT6:Odocoileusvirginianus;A0A452G3H7:Goat;W5PWL1:Sheep;P25688:Mouse;P09118:Rat;L9KW26:Tupaia;A0A1S3WDJ8:Erinaceus;P25689:Hamadryas baboon;Q8MKJ2:Aotus;A0A7J7ZXM4:Myotis;G1M4M8:Ailuropoda;A0A2U3WVK7:Walrus;A0A3P4NI51:Gulo;M3Y300:Mustelafuro;A0A2Y9IZI3:Enhydra lutris;A0A673TVJ5:Suricata;A0A485N2I1:Lynx;Q5FZI9:Canine.。Figure 1 shows the sequence alignment of different mammalian urate oxidases. A0A5E4C3I6: Woodchuck; P11645: Rabbit; A0A2Y9P065: Beluga whale; P16164: Pig; Q3MHG7: Bovine; A0A6J0XAT6: Odocoileusvirginianus; A0A452G3H7: Goat; W5PWL1: Sheep; P25688: Mouse; P09118: Rat; L9KW26: Tupaia; A0A1S3WDJ8: Erinaceus; P25689: Hamadryas baboon; Q8MKJ2: Aotus; A0A7J7ZXM4: Myotis; G1M4M8: Ailuropoda; :Mustelafuro;A0A2Y9IZI3:Enhydra lutris;A0A673TVJ5:Suricata; A0A485N2I1:Lynx; Q5FZI9:Canine.

图2为哺乳动物尿酸氧化酶重组表达鉴定。M:高分子量预染蛋白marker;1:诱导前;2:诱导后。Figure 2 shows the recombinant expression identification of mammalian urate oxidase. M: high molecular weight pre-stained protein marker; 1: before induction; 2: after induction.

图3为哺乳动物尿酸氧化酶突变体纯度鉴定。A:SDS-PAGE鉴定。M:中分子量预染蛋白marker;1:R291K;2:E208D;3:R249Q。B:HPLC鉴定。Figure 3 shows the purity identification of mammalian urate oxidase mutants. A: SDS-PAGE identification. M: medium molecular weight pre-stained protein marker; 1: R291K; 2: E208D; 3: R249Q. B: HPLC identification.

图4为高活性哺乳动物尿酸氧化酶突变体与野生型犬源尿酸氧化酶酶活性比较。Figure 4 is a comparison of the enzymatic activities of highly active mammalian uricase mutants and wild-type canine uricase.

具体实施方式Detailed ways

为了使本发明的目的、技术方案和有益效果更加清楚,下面结合附图和具体的实施方式对本发明作进一步详细的说明。所述实施例的示例在附图中示出。应理解,在下述本发明的实施方式中描述的具体的实施例仅作为本发明的具体实施方式的示例性说明,旨在用于解释本发明,而不构成对本发明的限制。In order to make the purpose, technical solutions and beneficial effects of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. Examples of such embodiments are shown in the drawings. It should be understood that the specific examples described in the following embodiments of the present invention are only used to illustrate the specific embodiments of the present invention and are intended to explain the present invention, but do not constitute a limitation of the present invention.

在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围。The endpoints of ranges and any values disclosed herein are not limited to the precise range or value, but such ranges or values should be understood to include approximations of these ranges.

本发明提供了一种高活性哺乳动物尿酸氧化酶突变体,所述突变体的氨基酸序列如SEQ ID NO:1所示。The present invention provides a highly active mammalian urate oxidase mutant, the amino acid sequence of which is shown in SEQ ID NO: 1.

本发明人经过系统的研究发现随着进化的进行,各物种哺乳动物尿酸氧化酶存在酶活越来越低的趋势。通过与人源尿酸氧化酶同源性较高的哺乳动物尿酸氧化酶的多序列比对,选取保守性或共有性高的氨基酸序列,可能会排除单物种哺乳动物尿酸氧化酶在进化过程中积累的错义突变,获得更高活性的哺乳动物尿酸氧化酶突变体蛋白。Through systematic research, the inventor found that as evolution proceeds, the activity of urate oxidase in mammals of various species tends to become lower and lower. Through multiple sequence alignment of mammalian uricases with high homology to human uricases, the selection of highly conserved or shared amino acid sequences may rule out the accumulation of mammalian uricases in a single species during the evolution process. Missense mutations were used to obtain mammalian urate oxidase mutant proteins with higher activity.

基于犬、猪、牛、家兔、大鼠、夜猴等哺乳动物尿酸氧化酶蛋白序列,上述野生型哺乳动物尿酸氧化酶均被发明人证实具有降解尿酸的活性,且尿酸氧化酶蛋白序列全长为300-304个氨基酸;利用Blast等软件分析,上述野生型哺乳动物尿酸氧化酶与推测出的人源尿酸氧化酶序列的一致性(Identity)应不低于85.0%。以6种以上上述哺乳动物尿酸氧化酶氨基酸序列为基础,通过多物种序列比对(Alignment),保留其高度保守区域,在非保守可变区通过共有性分析设计1个或多个备选氨基酸构成。Based on the protein sequences of mammalian urate oxidases such as dogs, pigs, cattle, rabbits, rats, and nocturnal monkeys, the above wild-type mammalian urate oxidases have been confirmed by the inventor to have the activity of degrading uric acid, and the urate oxidase protein sequences are complete It is 300-304 amino acids long; analyzed using software such as Blast, the identity (Identity) between the wild-type mammalian urate oxidase and the deduced human urate oxidase sequence should be no less than 85.0%. Based on the amino acid sequences of more than 6 kinds of mammalian uricases mentioned above, through multi-species sequence alignment (Alignment), the highly conserved regions are retained, and one or more alternative amino acids are designed through consensus analysis in the non-conserved variable regions. constitute.

更具体的,多物种间可变区氨基酸序列差异较大时,首先选择保守性或共有性最高的1-2个氨基酸,如在第52位,犬、猪、家兔、夜猴、人为丝氨酸,牛为天冬酰胺,大鼠为精氨酸,丝氨酸共有性明显高于其他两个氨基酸,则在第52位选择为共有性最高的丝氨酸;如在291位,犬源、牛源、猪源为精氨酸,家兔、大鼠、夜猴、人为赖氨酸,精氨酸和赖氨酸共有性未有明显差异,则在第291位分别选择精氨酸和赖氨酸,构建两个备选突变体序列。以此类推,在序列有差异性的氨基酸位置选择共有性最高的1个或多个氨基酸,并以此构建哺乳动物尿酸氧化酶突变体库。获得多物种哺乳动物尿酸氧化酶保守性或共有性最高的MU蛋白氨基酸序列,即为如SEQ ID NO:1所示的高活性哺乳动物尿酸氧化酶突变体。More specifically, when there are large differences in the amino acid sequences of the variable regions between multiple species, the 1-2 amino acids with the highest conservation or commonality are first selected, such as at position 52, dog, pig, rabbit, nocturnal monkey, and artificial serine , cow is asparagine, rat is arginine, serine is significantly more common than the other two amino acids, so serine with the highest commonality is selected at position 52; for example, at position 291, canine source, cattle source, porcine source The source is arginine, rabbit, rat, night monkey, artificial lysine, there is no obvious difference in the commonality of arginine and lysine, then arginine and lysine are selected respectively at position 291 to construct Two alternative mutant sequences. By analogy, the most common amino acid or amino acids are selected at amino acid positions with different sequences, and a mammalian uricase mutant library is constructed. The amino acid sequence of the MU protein with the highest conservation or consensus among multiple species of mammalian uricases is obtained, which is a highly active mammalian uricase mutant as shown in SEQ ID NO: 1.

为了进一步提高活性和热稳定性,本发明还SEQ ID NO:1所示的突变体采用包括但不局限于利用全基因合成的方式,合成上述氨基酸序列对应的DNA序列,并通过定点突变的方式,构建不同的哺乳动物尿酸氧化酶突变体DNA序列。定点突变的方法可用本领域技术人员熟知的DNA重组、PCR等各种技术获得,包括但不局限于两轮交错延伸PCR法以及Strantagene的quick change中描述的定点突变方法。In order to further improve the activity and thermal stability, the present invention also uses methods including but not limited to the use of whole gene synthesis to synthesize the DNA sequence corresponding to the above amino acid sequence for the mutant shown in SEQ ID NO: 1, and use site-directed mutagenesis. , constructing different mammalian uricase mutant DNA sequences. The method of site-directed mutation can be obtained by various techniques such as DNA recombination and PCR that are well known to those skilled in the art, including but not limited to the two-round staggered extension PCR method and the site-directed mutation method described in Strantagene's quick change.

进一步地,在如SEQ ID NO:1所示的基础上,突变E208D、R249Q,可以提高酶比活性和热稳定性,因而本发明还提供了高活性哺乳动物尿酸氧化酶突变体,所述突变体与SEQID NO:1相比包含突变E208D和/或R249Q。所述E208D是指SEQ ID NO:1的第208位的谷氨酸突变为天冬氨酸;R249Q是指SEQ ID NO:1的第249位的精氨酸突变为谷氨酰胺。Further, on the basis of what is shown in SEQ ID NO: 1, the mutations E208D and R249Q can improve the enzyme specific activity and thermal stability. Therefore, the present invention also provides a highly active mammalian urate oxidase mutant. The mutations The body contains mutations E208D and/or R249Q compared to SEQ ID NO: 1. The E208D refers to the mutation of glutamic acid at position 208 of SEQ ID NO: 1 to aspartic acid; R249Q refers to the mutation of arginine at position 249 of SEQ ID NO: 1 to glutamine.

在一些实施例中,所述突变体还可以包含其他合适的突变,只要该突变不会大幅降低酶比活性即可。在一些实施例中,所述突变体与如SEQ ID NO:3所示的野生型犬源尿酸氧化酶相比,酶比活性提高至少25%。In some embodiments, the mutant may also include other suitable mutations, as long as the mutations do not significantly reduce the enzyme specific activity. In some embodiments, the mutant has an enzyme specific activity increased by at least 25% compared to wild-type canine urate oxidase as shown in SEQ ID NO: 3.

在一些实施例中,所述突变体的氨基酸序列如SEQ ID NO:1、5或7任一所示,此时突变体的序列如SEQ ID NO:1所示,或者包含单突变E208D或R249Q。In some embodiments, the amino acid sequence of the mutant is as shown in any one of SEQ ID NO: 1, 5 or 7, in which case the sequence of the mutant is as shown in SEQ ID NO: 1, or contains the single mutation E208D or R249Q .

根据所述高活性哺乳动物尿酸氧化酶突变体,氨基酸序列可以合成对应的DNA序列或mRNA序列,用于产生尿酸氧化酶突变体。本发明还提供了一种核酸分子,所述核酸分子包含编码本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的序列;优选地,所述核酸分子为DNA或RNA。核酸分子为DNA时,通过DNA的翻译表达,合成所述尿酸氧化酶突变体,用于蛋白生产;RNA可以为mRNA,用于在细胞中瞬时表达。According to the highly active mammalian uricase mutant, the amino acid sequence can be synthesized into the corresponding DNA sequence or mRNA sequence for producing the uricase mutant. The present invention also provides a nucleic acid molecule comprising a sequence encoding a highly active mammalian uricase mutant according to any aspect of the present invention; preferably, the nucleic acid molecule is DNA or RNA. When the nucleic acid molecule is DNA, the urate oxidase mutant is synthesized through DNA translation and expression for protein production; the RNA can be mRNA for transient expression in cells.

本发明还提供了一种基因表达框,所述基因表达框含有启动子和和可操纵地连接在所述启动子后的编码序列,所述编码序列编码本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的序列。The present invention also provides a gene expression cassette, which contains a promoter and a coding sequence operably connected behind the promoter, and the coding sequence encodes a protein according to any aspect of the present invention. Sequence of highly active mammalian urate oxidase mutants.

在一些实施例中,所述启动子选自乳糖启动子系统、色氨酸启动子系统、β内酰胺酶启动子系统或噬菌体λ或T7来源的启动子系统。In some embodiments, the promoter is selected from a lactose promoter system, a tryptophan promoter system, a beta lactamase promoter system, or a promoter system derived from phage lambda or T7.

通过氨基酸与核苷酸的对应关系,以及密码子优化,本领域技术人员可以获得不同的核苷酸序列。在一些实施例中,所述编码序列的核苷酸序列如SEQ ID NO:2、4或6任一所示。Through the correspondence between amino acids and nucleotides and codon optimization, those skilled in the art can obtain different nucleotide sequences. In some embodiments, the nucleotide sequence of the coding sequence is as set forth in any of SEQ ID NO: 2, 4, or 6.

本发明还提供了一种表达载体,所述表达载体包含本发明任一方案所述基因表达框。所述表达载体优选为质粒载体,通过细胞转导可以在哺乳动物细胞、昆虫、酵母、细菌或其他细胞中表达。The present invention also provides an expression vector, which includes the gene expression cassette described in any aspect of the present invention. The expression vector is preferably a plasmid vector, which can be expressed in mammalian cells, insects, yeast, bacteria or other cells through cell transduction.

因而,本发明提供了一种宿主细胞,所述宿主细胞包含本发明任一方案所述核酸分子、基因表达框或表达载体。Therefore, the present invention provides a host cell comprising the nucleic acid molecule, gene expression cassette or expression vector according to any aspect of the present invention.

在一些实施例中,所述宿主细胞选自哺乳动物细胞、昆虫、酵母或细菌细胞;优选肠杆菌细胞或酵母细胞。In some embodiments, the host cells are selected from mammalian cells, insect, yeast or bacterial cells; preferably Enterobacteriaceae cells or yeast cells.

本发明还提供了一种生产本发明任一方案所述的一种高活性哺乳动物尿酸氧化酶突变体的方法,包括:在所述宿主细胞中表达所述突变体,并分离纯化。The present invention also provides a method for producing a highly active mammalian urate oxidase mutant according to any aspect of the present invention, including: expressing the mutant in the host cell, and isolating and purifying the mutant.

获得本发明所述哺乳动物尿酸氧化酶突变体蛋白可以从宿主细胞内部或外部(如培养基)分离得到,且纯化为高纯度的均一蛋白。此种蛋白分离纯化的方法不限于任何特定方法,例如柱层析法、过滤法、超滤法、盐析法、等电点沉淀法、透析法等。对于层析,例如亲和层析、离子交换层析、疏水层析、凝胶排阻层析、反相层析等都可以应用。这些层析可用液相层析如快速蛋白质液相层析系统来操作。利用通用的蛋白检测方法检测蛋白纯度和浓度,例如HPLC法、SDS-聚丙烯酰胺电泳法、等电点电泳法、BCA法、Lowry法、凯氏定氮法等。利用尿酸底物降解法检测尿酸氧化酶比活性,例如基于底物尿酸在293nm特征吸收峰,利用紫外分光光度计法或高效液相色谱法检测尿酸消耗速率,并计算单位体积尿酸氧化酶活性。通过单体体积尿酸氧化酶活性与单位体积尿酸氧化酶蛋白浓度推算尿酸氧化酶蛋白比活性。通过25-37℃热稳定性检测等方法检测尿酸氧化酶热稳定性。更优的,通过37℃热稳定性检测等方法检测尿酸氧化酶热稳定性。The mammalian uricase mutant protein of the present invention can be isolated from inside or outside the host cell (such as culture medium) and purified into a high-purity homogeneous protein. This method of protein separation and purification is not limited to any specific method, such as column chromatography, filtration, ultrafiltration, salting out, isoelectric precipitation, dialysis, etc. For chromatography, such as affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel exclusion chromatography, reversed phase chromatography, etc. can be applied. These chromatographies can be performed with liquid chromatography such as fast protein liquid chromatography systems. Use common protein detection methods to detect protein purity and concentration, such as HPLC method, SDS-polyacrylamide electrophoresis method, isoelectric point electrophoresis method, BCA method, Lowry method, Kjeldahl method, etc. Use the uric acid substrate degradation method to detect the specific activity of urate oxidase. For example, based on the characteristic absorption peak of the substrate uric acid at 293 nm, use a UV spectrophotometer or high-performance liquid chromatography method to detect the uric acid consumption rate, and calculate the urate oxidase activity per unit volume. The specific activity of urate oxidase protein was calculated based on the monomer volume urate oxidase activity and unit volume urate oxidase protein concentration. Detect the thermal stability of urate oxidase through methods such as 25-37°C thermal stability testing. Even better, detect the thermal stability of urate oxidase through methods such as 37°C thermal stability testing.

本发明还提供了所述的一种高活性哺乳动物尿酸氧化酶突变体在制备尿酸氧化酶药物中的应用。所述尿酸氧化酶药物可以用于治疗高尿酸血症及痛风。The invention also provides the use of the highly active mammalian urate oxidase mutant in the preparation of urate oxidase drugs. The urate oxidase drug can be used to treat hyperuricemia and gout.

实施例1多物种哺乳动物尿酸氧化酶生物信息学分析及初始突变体设计Example 1 Bioinformatics analysis and initial mutant design of multi-species mammalian urate oxidase

基于人源尿酸氧化酶假基因(GenBank:AB074326.2)序列翻译成氨基酸序列,将33位和187位无义突变(nonsense mutantion)分别替换为夜猴源尿酸氧化酶的精氨酸和精氨酸。将该蛋白质序列进行Blast分析,获得一致性(Identity)不低于85%的哺乳动物尿酸氧化酶氨基酸序列。将上述哺乳动物尿酸氧化酶氨基酸序列利用Clustal Omega等软件进行多序列Alignment分析(如图1所示),获得多物种哺乳动物尿酸氧化酶保守性或共有性最高的MU蛋白氨基酸序列如下:Based on the sequence of the human urate oxidase pseudogene (GenBank: AB074326.2), which was translated into an amino acid sequence, the nonsense mutations at position 33 and position 187 were replaced with arginine and arginine of the night monkey-derived urate oxidase, respectively. acid. The protein sequence was subjected to Blast analysis to obtain a mammalian urate oxidase amino acid sequence with an identity of no less than 85%. The above-mentioned mammalian urate oxidase amino acid sequence was subjected to multi-sequence alignment analysis using Clustal Omega and other software (as shown in Figure 1). The most conserved or shared MU protein amino acid sequence of multi-species mammalian urate oxidase was obtained as follows:

MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVDFEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL(SEQ ID NO:1)MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVD FEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL (SEQ ID NO: 1)

根据上述氨基酸序列,按照大肠杆菌和酵母菌偏爱密码子进行DNA设计,并委托相应公司进行全基因合成,其DNA序列对应为:Based on the above amino acid sequence, DNA was designed according to the preferred codons of E. coli and yeast, and the corresponding company was entrusted to perform full gene synthesis. The corresponding DNA sequence is:

CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTTAAAGGTATTAAATCTATTGAAACCTTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTATTAAAGATCAGTTTACCACCCTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGAAGCCACCTGGGATACCGTTCGTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCGTGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATATTCATTATTTTAATATTGATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC(SEQ ID NO:2)。CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTAAAGGTATTAAATCTATTGAAACC TTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTTACCACCGATCAGTTTTACCACC CTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGAAGCCACCTGGGATACCGTTCGTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCGTGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATTTTCATTATTATTATTATTG ATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC (SEQ ID NO: 2).

将全基因合成的重组质粒扩增后,用NdeⅠ和BamHⅠ双酶切,回收目的片段,用T4DNA连接酶与同样经NdeⅠ和BamHⅠ酶切回收的质粒pET-3C(Invitrogen)连接,利用如《Current Protocols in Molecular Biology》中所述的标准方法将连接混合物转入大肠杆菌克隆宿主菌TOP10。After amplifying the recombinant plasmid synthesized by the whole gene, double digest it with NdeI and BamHI, recover the target fragment, use T4 DNA ligase to connect it to the plasmid pET-3C (Invitrogen) that has also been digested with NdeI and BamHI, and use "Current" The ligation mixture was transferred into the E. coli cloning host strain TOP10 according to the standard method described in "Protocols in Molecular Biology".

在含有氨苄青霉素的LB平板上进行转化反应,过夜生长转化体后,挑取转化后单克隆菌落以制备质粒用酶切和PCR验证的方法筛选重组质粒pET-3C-MU,经DNA测序后确定阳性重组质粒中MU序列与理论序列完全一致。Transformation reaction is carried out on LB plates containing ampicillin. After growing the transformants overnight, single clone colonies after transformation are picked to prepare plasmids. The recombinant plasmid pET-3C-MU is screened by enzyme digestion and PCR verification, and is confirmed after DNA sequencing. The MU sequence in the positive recombinant plasmid was completely consistent with the theoretical sequence.

实施例2多物种哺乳动物尿酸氧化酶重组表达Example 2 Recombinant expression of urate oxidase in multiple species of mammals

将上述测序正确的MU重组质粒转化大肠杆菌表达宿主菌并进行表达。使用大肠杆菌BL21(DE3)、BL21 Star(DE3)或BL21 Star(DE3)plysS、表达MU蛋白。这些菌株仅是许多适用于表达嵌合蛋白中的一些,它们可以分别通过商业渠道自Novagen,Invitrogen及Stratagen获得。利用转化体在含有氨苄青霉素的LB平板上的生长能力可将其鉴别出来。The above-mentioned correctly sequenced MU recombinant plasmid was transformed into E. coli expression host bacteria and expressed. Use E. coli BL21(DE3), BL21 Star(DE3) or BL21 Star(DE3)plysS to express MU protein. These strains are just some of the many suitable for expressing chimeric proteins and are commercially available from Novagen, Invitrogen and Stratagen respectively. Transformants were identified by their ability to grow on LB plates containing ampicillin.

使含有MU重组质粒的大肠杆菌表达重组菌在含有50ug/ml的氨苄青霉素的液体LB培养基中培养过夜,将上述培养液接种大型的培养物,接种比例为1:100。待这些细胞生长至600nm处光密度为一定值后,加入IPTG使其终浓度为0.5mM诱导表达目标蛋白,继续培养细胞3个小时。随后通过离心收获细胞,用50mM Tris缓冲液洗涤沉淀,离心放置-20度保存,并进行SDS-PAGE检测,表达出的蛋白条带在35kDa附近(如图2所示)。The Escherichia coli expression recombinant strain containing the MU recombinant plasmid was cultured overnight in a liquid LB medium containing 50ug/ml ampicillin, and the above culture liquid was inoculated into a large culture at an inoculation ratio of 1:100. After these cells grow to a certain optical density at 600 nm, add IPTG to a final concentration of 0.5mM to induce expression of the target protein, and continue to culture the cells for 3 hours. The cells were then harvested by centrifugation, and the pellet was washed with 50mM Tris buffer, centrifuged and stored at -20 degrees, and subjected to SDS-PAGE detection. The expressed protein band was around 35kDa (as shown in Figure 2).

实施例3多物种哺乳动物尿酸氧化酶突变体库设计Example 3 Design of multispecies mammalian urate oxidase mutant library

以MU蛋白DNA序列为原始模板,根据共有性高低,分别设计突变位点,举例如下:Q109H(突变用三联体表示:字母-数字-字母,其中的数字表示突变氨基酸的位置,数字前的字母对应突变设计的氨基酸,数字后的字母表示用于置换数字前氨基酸的氨基酸,数字按人源尿酸酶304位氨基酸进行排序)、L146M、S148N、E208D、T213A、S246T、R249Q、V250L。Using the MU protein DNA sequence as the original template, mutation sites are designed respectively according to the level of commonality, for example: Q109H (mutation is represented by a triplet: letter-number-letter, where the number indicates the position of the mutated amino acid, and the letter before the number Corresponding to the amino acid designed for mutation, the letter after the number indicates the amino acid used to replace the amino acid before the number. The numbers are ordered according to the 304th amino acid of human uricase), L146M, S148N, E208D, T213A, S246T, R249Q, V250L.

具体的,以MU为基础进行单个点突变,构建突变体库,并按照实例3、4、5方法进行重组表达、制备及酶比活性检测,筛选出酶比活性有提高的有益突变,排除有害突变,筛选酶比活性最优的哺乳动物尿酸酶突变体。本发明人前期经过系统的研究发现,野生型犬源尿酸酶蛋白酶蛋白(SEQ ID NO:3)比活性较高,故将本发明尿酸酶突变体与重组野生型犬源尿酸酶蛋白(命名为wCU)进行比对研究。野生型犬源尿酸酶氨基酸序列如下:Specifically, a single point mutation was carried out based on MU to construct a mutant library, and recombinant expression, preparation and enzyme specific activity detection were carried out according to the methods of Examples 3, 4 and 5 to screen out beneficial mutations that improve the enzyme specific activity and eliminate harmful ones. Mutation, screening mammalian uricase mutants with optimal enzyme specific activity. The inventor found through systematic research in the early stage that the wild-type canine uricase protease protein (SEQ ID NO: 3) has higher specific activity, so the uricase mutant of the present invention and the recombinant wild-type canine uricase protein (named wCU) to conduct comparative studies. The amino acid sequence of wild-type canine uricase is as follows:

MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVMAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSV

QLTLSSKKDYVYGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFQLTLSSKKDYVYGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSF

NHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHNPTGTHFCEVEQMRSGPPVIHNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHNPTGTHFCEVEQMRSGPPVIH

SGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATKVYCKWRYHQGRDVDSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATKVYCKWRYHQGRDVD

FEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVHSLSRVPEMEDMEISFEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVHSLSRVPEMEDMEIS

LPNIHYFNIDMSKMGLINKEEVLLPLDNPYGRITGTAKRKLASKL(SEQ ID NO:3)。LPNIHYFNIDMSKMGLINKEEVLLPLDNPYGRITGTAKRKLASKL (SEQ ID NO: 3).

用交错延伸PCR法突变制备含有目标突变的DNA。下面以制备Q109H为例进行说明:DNA containing the target mutation was prepared using staggered extension PCR mutagenesis. The following is an example of preparing Q109H:

引物编号Primer number DNA序列DNA sequence 引物1(SEQ ID NO:8)Primer 1 (SEQ ID NO: 8) 5'CACGACATATGGCCCATTATCATA3'5'CACGACATATGGCCATTATCATA3' 引物2(SEQ ID NO:9)Primer 2 (SEQ ID NO: 9) 5'GGATCCTTATCACAGACGAGAGCT3'5'GGATCCTTATCACAGACGAGAGCT3' 引物3(SEQ ID NO:10)Primer 3 (SEQ ID NO: 10) 5'CGTGCCCACGTTTATGTTGAAGAA3'5'CGTGCCCACGTTTATGTTGAAGAA3' 引物4(SEQ ID NO:11)Primer 4 (SEQ ID NO: 11) 5'ATAAACGTGGGCACGAATAACATG3'5'ATAAACGTGGGCACGAATAACATG3'

制备MUQ109H:第一阶段PCR:模板序列为实例1中全基因合成序列(SEQ ID NO:2),引物为表中引物1和引物3,PCR反应体系和方法均采用PCR反应试剂盒,按商家的说明书设置。PCR反应条件为:94℃1min,56℃1min,72℃1min,共30个循环,第一个循环94℃变性10min,最后一个循环72℃延伸10min。按上述PCR条件扩增得到产物MUQ109H-a片段;第二阶段PCR:模板序列同第一阶段PCR,引物为引物2和引物4,按上述PCR条件扩增得到MUQ109H-b片段;第三阶段PCR:模板为MUQ109H-a片段和MUQ109H-b片段的1:1混合溶液,引物为引物1和引物2,按上述PCR条件扩增得到产物MUQ109H。将含突变序列的DNA序列用NdeⅠ和BamHⅠ进行双酶切,连接、转化、筛选、表达方法同实例2。Preparation of MU Q109H : First-stage PCR: The template sequence is the whole gene synthesis sequence in Example 1 (SEQ ID NO: 2), and the primers are primer 1 and primer 3 in the table. The PCR reaction system and method all use PCR reaction kits, as follows Merchant's instructions settings. PCR reaction conditions were: 94°C for 1 min, 56°C for 1 min, and 72°C for 1 min, a total of 30 cycles. The first cycle was denaturation at 94°C for 10 min, and the last cycle was extension at 72°C for 10 min. Amplify the product MU Q109H -a fragment according to the above PCR conditions; second stage PCR: the template sequence is the same as the first stage PCR, and the primers are primer 2 and primer 4. Amplify according to the above PCR conditions to obtain the MU Q109H -b fragment; third stage PCR Stage PCR: The template is a 1:1 mixed solution of MU Q109H -a fragment and MU Q109H -b fragment, and the primers are primer 1 and primer 2. The product MU Q109H is amplified according to the above PCR conditions. The DNA sequence containing the mutated sequence was double digested with NdeI and BamHI. The ligation, transformation, screening and expression methods were the same as in Example 2.

实施例4哺乳动物尿酸酶突变体表达纯化Example 4 Expression and purification of mammalian uricase mutants

取50g菌体沉淀加入500ml破菌液,破菌液pH为8.3,含有25mM Tris-HCl,5mMEDTA,0.1mg/ml溶菌酶中,37℃搅拌60至80分钟,然后加入1mM MgCl2·6H2O、1μg·mL-1核酸酶搅拌过夜;4℃,8500r·min-1离心20min,收集破菌沉淀。取破菌沉淀,按100g湿菌:1L洗涤液(25mM Tris-HCl、5mM EDTA、1.5%TritonX-100、pH 8.3)悬浮沉淀,均散后,30℃搅拌2h;8500r·min-1、4℃离心15min,取沉淀按上述相同洗涤液重复洗涤一次,离心收集沉淀。取TritonX-100洗涤沉淀,按100g湿菌:1L洗涤液(PBS、0.34μg·mL-1核酸酶)悬浮沉淀,均散后,30℃搅拌2h,8500r·min-1、4℃离心15min,离心收集沉淀。取PBS和核酸酶洗涤沉淀,仍按100克湿菌:1升洗涤液(PBS)悬浮沉淀,均质机均质后,30℃搅拌2h,8500r·min-1、4℃离心15min,取沉淀按上述相同洗涤液重复洗涤一次,离心收集沉淀。取破菌洗涤后的沉淀,按10g沉淀:3L溶解缓冲液(0.1M Na2CO3-NaHCO3、pH 10.3)溶解,均质机均质后,室温搅拌过夜。8500r·min-1,4℃离心15min,收集离心上清。向上清中补入终浓度为10%饱和度的(NH4)2SO4,4℃静置过夜,8500r·min-1,4℃离心15min,收集离心沉淀;溶解缓冲液溶解,室温搅拌过夜,8500r·min-1,4℃离心15min,收集离心上清。上清进行DEAE琼脂糖阴离子交换层析柱(GE)纯化,目标蛋白全部挂柱后,用线性梯度为0至0.2M的NaCl(pH为10.3,0.1M的Na2CO3-NaHCO3)进行洗脱,目标蛋白在0.1M NaCl时被洗脱;将上述洗脱组分DEAE琼脂糖阴离子交换层析柱(GE)浓缩,用含有0.2M NaCl的(H为10.3,0.1M的Na2CO3-NaHCO3)洗脱液洗脱目标蛋白。此时进行SDS-PAGE和HPLC检测纯度,均可达到95%以上(如图3所示)。Take 50g of bacterial sediment and add 500ml of sterilization solution. The pH of the sterilization solution is 8.3, containing 25mM Tris-HCl, 5mMEDTA, and 0.1mg/ml lysozyme. Stir at 37°C for 60 to 80 minutes, then add 1mM MgCl 2 ·6H 2 O. Stir 1 μg·mL -1 nuclease overnight; centrifuge at 4°C, 8500r·min -1 for 20 min to collect the bacterial precipitate. Take the broken bacteria precipitate and suspend the precipitate in 1L washing liquid (25mM Tris-HCl, 5mM EDTA, 1.5% TritonX-100, pH 8.3) according to 100g of wet bacteria. After evenly dispersed, stir at 30°C for 2h; 8500r·min -1 , 4 Centrifuge at 15°C for 15 minutes, wash the precipitate with the same washing solution as above, and collect the precipitate by centrifugation. Take the TritonX-100 washed pellet and suspend the pellet in 1L washing solution (PBS, 0.34μg·mL -1 nuclease) for 100g of wet bacteria. After even dispersion, stir at 30℃ for 2h, centrifuge at 8500r·min -1 and 4℃ for 15min. Collect the precipitate by centrifugation. Wash the precipitate with PBS and nuclease, and suspend the precipitate in 1 liter of washing liquid (PBS) for 100 grams of wet bacteria. After homogenization, stir at 30°C for 2 hours, centrifuge at 8500r·min -1 and 4°C for 15min, and take the precipitate. Wash once with the same washing solution as above, and centrifuge to collect the precipitate. Take the precipitate after sterilization and washing, and dissolve 10g of precipitate in 3L dissolution buffer (0.1M Na 2 CO 3 -NaHCO 3 , pH 10.3). After homogenization with a homogenizer, stir at room temperature overnight. Centrifuge at 8500r·min -1 and 4℃ for 15min, and collect the centrifugation supernatant. Add (NH 4 ) 2 SO 4 to the supernatant with a final concentration of 10% saturation, let it stand at 4°C overnight, centrifuge at 8500r·min -1 for 15min at 4°C, and collect the centrifugal precipitate; dissolve in the dissolving buffer and stir at room temperature overnight. , 8500r·min -1 , centrifuge for 15min at 4°C, and collect the centrifugation supernatant. The supernatant is purified on a DEAE agarose anion exchange chromatography column (GE). After all the target proteins are hung on the column, a linear gradient of 0 to 0.2M NaCl (pH 10.3, 0.1M Na 2 CO 3 -NaHCO 3 ) is used. Elute, the target protein is eluted at 0.1M NaCl; the above-mentioned elution component DEAE agarose anion exchange chromatography column (GE) is concentrated, and it is washed with 0.2M NaCl (H is 10.3, 0.1M Na 2 CO 3 -NaHCO 3 ) eluent elutes the target protein. At this time, SDS-PAGE and HPLC were used to detect the purity, both of which could reach over 95% (as shown in Figure 3).

实施例5哺乳动物尿酸酶突变体蛋白活性检测Example 5 Activity detection of mammalian uricase mutant protein

在37℃、pH8.6时,每分钟转化1μmol尿酸为尿囊素的酶量定义为一个国际单位(IU)。尿酸在293nm处有特征吸收峰,当其被尿酸酶降解后,产物在此波长范围内无吸收峰,定时检测293nm处吸光度的变化来确定尿酸的减少量,然后利用尿酸的摩尔消光系数(1.23×104M-1·CM-1)算出尿酸浓度,根据尿酸浓度的变化可计算尿酸酶活性。将紫外分光光度计调至293nm,待机器稳定后,用0.1M四硼酸钠溶液作为空白调零,取3ml 0.1mM尿酸溶液反应溶解加入石英比色杯中,补入10ul尿酸酶突变体蛋白,每30秒进行一次读数,测量2min内OD293变化值。根据公式C=A/Kb(C为溶液尿酸浓度,A为293nm吸光值,K为摩尔消光系数-1.23×104M-1·CM-1,b为比色杯的内径),计算不同时间点OD293对应的尿酸浓度;根据△M=△CV(△M为尿酸减少的摩尔数,△C为尿酸浓度变化,C为反应液体积)计算减少的尿酸物质的量;根据U=△M/TV1(U为每毫升血浆含有的尿酸酶活性单位,T为反应分钟,V1为加入反应体系的尿酸酶突变体蛋白体积)计算尿酸酶活性。其中,MU、MUE208D(SEQ ID NO:5)、MUR249Q(SEQ ID NO:7)比活性分别比野生型犬源尿酸酶高约为29.8%、28.9%、34.3%(如图4所示)。At 37°C and pH 8.6, the amount of enzyme that converts 1 μmol of uric acid into allantoin per minute is defined as one international unit (IU). Uric acid has a characteristic absorption peak at 293nm. When it is degraded by uricase, the product has no absorption peak in this wavelength range. The change in absorbance at 293nm is regularly detected to determine the reduction of uric acid, and then the molar extinction coefficient of uric acid (1.23 ×104M -1 ·CM -1 ) to calculate the uric acid concentration, and the uricase activity can be calculated based on changes in the uric acid concentration. Adjust the UV spectrophotometer to 293nm. After the machine is stable, use 0.1M sodium tetraborate solution as a blank to zero, take 3ml of 0.1mM uric acid solution, react and dissolve it, add it to a quartz cuvette, and add 10ul of uricase mutant protein. Take a reading every 30 seconds and measure the change in OD293 within 2 minutes. According to the formula C=A/Kb (C is the concentration of uric acid in the solution, A is the absorbance value at 293nm, K is the molar extinction coefficient -1.23×104M -1 ·CM -1 , b is the inner diameter of the cuvette), calculate the OD at different time points 293 corresponding uric acid concentration; calculate the amount of reduced uric acid material according to △M=△CV (△M is the number of moles of uric acid reduced, △C is the change in uric acid concentration, and C is the volume of the reaction solution); according to U=△M/TV1 (U is the unit of uricase activity per milliliter of plasma, T is the reaction minutes, and V1 is the volume of uricase mutant protein added to the reaction system) Calculate the uricase activity. Among them, the specific activities of MU, MU E208D (SEQ ID NO: 5), and MU R249Q (SEQ ID NO: 7) are approximately 29.8%, 28.9%, and 34.3% higher than wild-type canine uricase respectively (as shown in Figure 4 ).

实施例6哺乳动物尿酸酶突变体热稳定性检测Example 6 Detection of thermal stability of mammalian uricase mutants

将尿酸酶突变体蛋白用缓冲液(0.1M Na2CO3-NaHCO3、pH 10.3)稀释至1mg/ml,放置于37℃恒温箱中,分别于0h、0.5h、1h后取出部分样品,按实例5方法测定尿酸酶活性,比较酶活保留率。Dilute the uricase mutant protein to 1mg/ml with buffer (0.1M Na 2 CO 3 -NaHCO 3 , pH 10.3), place it in a 37°C incubator, and take out some samples after 0h, 0.5h, and 1h. Determine uricase activity according to the method in Example 5, and compare the enzyme activity retention rate.

结果显示,三个尿酸酶突变体的热稳定性都优于野生型犬源尿酸酶,且MUE208D热稳定性最好。The results showed that the thermal stability of the three uricase mutants was better than that of wild-type canine uricase, and MU E208D had the best thermal stability.

实施例涉及的其他序列Other sequences involved in the embodiments

MUE208D核苷酸序列:MU E208D nucleotide sequence:

CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTTAAAGGTATTAAATCTATTGAAACCTTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTATTAAAGATCAGTTTACCACCCTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGATCCACCTGGGATACCGTTCGTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCGTGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATATTCATTATTTTAATATTGATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC(SEQ ID NO:4)CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTAAAGGTATTAAATCTATTGAAACC TTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTTACCACCGATCAGTTTTACCACC CTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGATCCACCTGGGATACCGTTCGTTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCGTGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATTCATTATTATTTTAATATTG ATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC (SEQ ID NO: 4)

对应的氨基酸序列:Corresponding amino acid sequence:

MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVDFDATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL(SEQ ID NO:5)MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVD FDATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL(SEQ ID NO: 5)

MUR249Q核苷酸序列:MU R249Q nucleotide sequence:

CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTTAAAGGTATTAAATCTATTGAAACCTTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTATTAAAGATCAGTTTACCACCCTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGAAGCCACCTGGGATACCGTTCGTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCAGGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATATTCATTATTTTAATATTGATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC(SEQ ID NO:6)。CATATGGCCCATTATCATAATGATTATAAAAAAAATGATGAAGTTGAATTTGTTCGTACCGGTTATGGTAAAGATATGGTTAAAGTTCTGCATATTCAGCGTGATGGTAAATATCATTCTATTAAAGAAGTTGCCACCTCTGTTCAGCTGACCCTGTCTTCTAAAAAAGATTATCTGCATGGTGATAATTCTGATATTATTCCAACCGATACCATTAAAAATACCGTTCATGTTCTGGCCAAATTAAAGGTATTAAATCTATTGAAACC TTTGCCATGAATATTTGTGAACATTTTCTGTCTTCTTTTAATCATGTTATTCGTGCCCAGGTTTATGTTGAAGAAGTTCCATGGAAACGTTTTGAAAAAAATGGTGTTAAACATGTTCATGCCTTTATTCATACCCCAACCGGTACCCATTTTTGTGAAGTTGAACAGCTGCGTTCTGGTCCACCAGTTATTCATTCTGGTATTAAAGATCTGAAAGTTCTGAAAACCACCCAGTCTGGTTTTGAAGGTTTTTACCACCGATCAGTTTTACCACC CTGCCAGAAGTTAAAGATCGTTGTTTTGCCACCCAGGTTTATTGTAAATGGCGTTATCATCAGGGTCGTGATGTTGATTTTGAAGCCACCTGGGATACCGTTCGTGATATTGTTCTGGAAAAATTTGCCGGTCCTTATGATAAAGGTGAATATTCTCCATCTGTTCAGAAAACCCTGTATGATATTCAGGTTCTGTCTCTGTCTCAGGTTCCAGAAATTGAAGATATGGAAATTTCTCTGCCAAATTTTCATTATTATTATTATTG ATATGTCTAAAATGGGTCTGATTAATAAAGAAGAAGTTCTGCTGCCACTGGATAATCCTTATGGTAAAATTACCGGTACCGTTAAACGTAAACTGAGCTCTCGTCTGTGATAAGGATCC (SEQ ID NO: 6).

对应的氨基酸序列:Corresponding amino acid sequence:

MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVDFEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSQVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL(SEQ ID NO:7)。MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHAFIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVD FEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSQVPEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL (SEQ ID NO: 7).

最后说明的是,以上的实施例仅用于说明本发明的技术方案,并不构成对本发明内容的限制。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention and do not constitute a limitation on the content of the present invention. Within the scope of the technical concept of the present invention, many simple modifications can be made to the technical solution of the present invention, including the combination of various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the disclosed content of the present invention. All belong to the protection scope of the present invention.

Claims (10)

1. A high activity mammal urate oxidase mutant, which is characterized in that the amino acid sequence of the mutant is shown in SEQ ID NO:1 or with SEQ ID NO:1 comprises the mutations E208D and/or R249Q.
2. The mutant of claim 1, wherein the mutant hybridizes to a sequence set forth in SEQ ID NO:3, the specific enzyme activity is improved by at least 25% compared with the wild-type canine urate oxidase.
3. The mutant of claim 1, wherein the amino acid sequence of the mutant is as set forth in SEQ ID NO: 1.5 or 7.
4. A nucleic acid molecule comprising the coding sequence of the high activity mammalian urate oxidase mutant according to any one of claims 1 to 3; preferably, the nucleic acid molecule is DNA or RNA; more preferably, the nucleotide sequence of the coding sequence is as set forth in SEQ ID NO: 2. 4 or 6.
5. A gene expression cassette comprising a promoter and a coding sequence operably linked to the promoter, wherein the coding sequence is that of a mutant highly active mammalian urate oxidase of any one of claims 1 to 3.
6. The gene expression cassette of claim 5, wherein the promoter is selected from the group consisting of lactose promoter system, tryptophan promoter system, beta lactamase promoter system, and phage lambda or T7 derived promoter system; the nucleotide sequence of the coding sequence is shown as SEQ ID NO: 2. 4 or 6.
7. An expression vector comprising the gene expression cassette of claim 5 or 6.
8. A host cell comprising the nucleic acid molecule of claim 4, the gene expression cassette of claim 5 or 6, or the expression vector of claim 7; preferably, the host cell is selected from mammalian cells, insect, yeast or bacterial cells; more preferably an enterobacter cell or a yeast cell.
9. A method of producing a high activity mammalian urate oxidase mutant according to any one of claims 1 to 3 comprising: expressing the mutant in the host cell, and separating and purifying.
10. Use of a highly active mammalian urate oxidase mutant according to any one of claims 1 to 3 for the preparation of a urate oxidase drug.
CN202311336226.4A 2023-10-16 2023-10-16 A highly active mammalian urate oxidase mutant Active CN117327673B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311336226.4A CN117327673B (en) 2023-10-16 2023-10-16 A highly active mammalian urate oxidase mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311336226.4A CN117327673B (en) 2023-10-16 2023-10-16 A highly active mammalian urate oxidase mutant

Publications (2)

Publication Number Publication Date
CN117327673A true CN117327673A (en) 2024-01-02
CN117327673B CN117327673B (en) 2024-09-24

Family

ID=89275242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311336226.4A Active CN117327673B (en) 2023-10-16 2023-10-16 A highly active mammalian urate oxidase mutant

Country Status (1)

Country Link
CN (1) CN117327673B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118497162A (en) * 2024-05-24 2024-08-16 广东少和生物科技有限公司 Black yeast uricase and its mutant and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050599A1 (en) * 2009-10-27 2011-05-05 重庆富进生物医药有限公司 Humanized recombinant uricase and mutants thereof
US20140065123A1 (en) * 2011-02-14 2014-03-06 Chongqing Fagen Biomedical Inc. No. 80 4th Street Keyuan Pegylated analogue protein or canine urate oxidase, preparation method and use thereof
CN103756983A (en) * 2014-01-10 2014-04-30 临沂大学 Preparation method of uricase of natural mammals
WO2014170916A2 (en) * 2013-04-17 2014-10-23 Council Of Scientific & Industrial Research Novel uricase mutants
CN106554948A (en) * 2015-09-29 2017-04-05 上海生物制品研究所有限责任公司 Saltant type uricase, the saltant type uricase of PEG modifications and its application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050599A1 (en) * 2009-10-27 2011-05-05 重庆富进生物医药有限公司 Humanized recombinant uricase and mutants thereof
CN102051348A (en) * 2009-10-27 2011-05-11 重庆富进生物医药有限公司 Humanized recombinant uricase and mutant thereof
US20140065123A1 (en) * 2011-02-14 2014-03-06 Chongqing Fagen Biomedical Inc. No. 80 4th Street Keyuan Pegylated analogue protein or canine urate oxidase, preparation method and use thereof
WO2014170916A2 (en) * 2013-04-17 2014-10-23 Council Of Scientific & Industrial Research Novel uricase mutants
CN103756983A (en) * 2014-01-10 2014-04-30 临沂大学 Preparation method of uricase of natural mammals
CN106554948A (en) * 2015-09-29 2017-04-05 上海生物制品研究所有限责任公司 Saltant type uricase, the saltant type uricase of PEG modifications and its application
US20180282707A1 (en) * 2015-09-29 2018-10-04 Shanghai Institute Of Biological Products Co., Ltd. Mutant-type uricase, peg modified mutant-type uricase, and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG T 等: "A Practical System for High-Throughput Screening of Mutants of Bacillus fastidiosus Uricase", 《APPL BIOCHEM BIOTECHNOL》, vol. 181, no. 2, 10 September 2016 (2016-09-10), pages 667 - 681 *
GUO Y 等: "The effects of free Cys residues on the structure, activity, and tetrameric stability of mammalian uricase", 《 APPL MICROBIOL BIOTECHNOL》, vol. 107, no. 14, 31 May 2023 (2023-05-31), pages 4533 - 4542 *
郭勇: "高稳定性哺乳动物尿酸酶结构筛选及成药性研究", 《临沂大学》, 23 August 2023 (2023-08-23), pages 1 - 67 *
霍晶晶: "哺乳动物尿酸酶重组构建筛选及Cys残基结构功能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 1, 15 January 2023 (2023-01-15), pages 016 - 2491 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118497162A (en) * 2024-05-24 2024-08-16 广东少和生物科技有限公司 Black yeast uricase and its mutant and application

Also Published As

Publication number Publication date
CN117327673B (en) 2024-09-24

Similar Documents

Publication Publication Date Title
CN107475228B (en) Keratinase mutant with improved substrate specificity and preparation method thereof
CN113862233B (en) Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application
Tong et al. Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression
WO2021027390A1 (en) Heparin lyase mutant and recombinant expression method therefor
CN117327673A (en) A highly active mammalian urate oxidase mutant
NZ225798A (en) Procaryotic xylose isomerase muteins and methods of increasing their stability
US20130330316A1 (en) Mutants of l-asparaginase
CN110129305B (en) Cephalosporin C acylase mutant for preparing 7-ACA
Chen et al. DNA shuffling of uricase gene leads to a more “human like” chimeric uricase with increased uricolytic activity
CN111269899B (en) Human uric acid oxidase with catalytic activity and application thereof
CN112662640A (en) Urate oxidase with catalytic activity
WO2024032012A1 (en) Phenylalanine ammonia lyase mutant and use thereof
CN114181288B (en) Method for preparing L-valine and gene used therefor and protein encoded by the gene
CN105838686B (en) Human-pig chimeric urate oxidase with catalytic activity
CN117230034A (en) High-stability mammal urate oxidase mutant
Wang et al. Cloning, expression and characterization of d-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173
CN108690837B (en) A method for improving the thermal stability of a multimeric protein and an alcohol dehydrogenase with improved thermal stability
CN104630168A (en) Construction and expression of recombinant human/pig chimeric uricase
KR101778878B1 (en) Highly active GABA-producing glutamate decarboxylase from Bacteroides sp. and use thereof
CN117603934B (en) Uricase purification method
CN112410319B (en) Nuclease At_NrnCM and its encoding gene and application
CN114410614B (en) Application of YH66_05415 protein or mutant thereof in preparation of L-arginine
CN117586997A (en) Rhodotorula glutinis-derived phenylalanine ammonia-lyase mutant and application thereof
CN118440926A (en) Heat-resistant phenylalanine ammonia lyase mutant and application thereof
CN107400665A (en) A kind of mannase of rite-directed mutagenesis and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20240102

Assignee: SHANDONG RENRUI BIOTECHNOLOGY Co.,Ltd.

Assignor: LINYI University

Contract record no.: X2024980020794

Denomination of invention: A highly active mammalian uric acid oxidase mutant

Granted publication date: 20240924

License type: Common License

Record date: 20241029

EE01 Entry into force of recordation of patent licensing contract