CN117314988B - DBT reconstruction method for multi-angle projection registration - Google Patents
DBT reconstruction method for multi-angle projection registration Download PDFInfo
- Publication number
- CN117314988B CN117314988B CN202311606533.XA CN202311606533A CN117314988B CN 117314988 B CN117314988 B CN 117314988B CN 202311606533 A CN202311606533 A CN 202311606533A CN 117314988 B CN117314988 B CN 117314988B
- Authority
- CN
- China
- Prior art keywords
- projection data
- projection
- angle
- translated
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10084—Hybrid tomography; Concurrent acquisition with multiple different tomographic modalities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明公开了一种多角度投影配准的DBT重建法,包括如下步骤:获取多角度的投影数据;基于比尔定理对投影数据进行预处理,得到预处理后的投影数据;基于等中心圆弧运动的位移量配准法,对预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据;对平移后的投影数据中的像素空缺值进行图像插值处理,得到插值后的投影数据;根据插值后的投影数据,基于DBT重建算法、获得并输出DBT重建层。通过获取多角度的投影数据,基于等中心圆弧运动的位移量配准法,实现了中心投影标准化,满足了不同角度投影对重建层的不同放大率要求,使得对比度更高,聚焦重建层纹理更清晰,边界更加清晰,不易产生伪影。
The invention discloses a DBT reconstruction method for multi-angle projection registration, which includes the following steps: obtaining multi-angle projection data; preprocessing the projection data based on Beer's theorem to obtain preprocessed projection data; based on isocenter arc The motion displacement registration method performs block coordinate translation processing on the preprocessed projection data to obtain the translated projection data; performs image interpolation processing on the pixel vacancy values in the translated projection data to obtain the interpolated projection Data; based on the interpolated projection data, the DBT reconstruction layer is obtained and output based on the DBT reconstruction algorithm. By acquiring multi-angle projection data and based on the displacement registration method of isocentric arc motion, the central projection is standardized, which meets the different magnification requirements of different angle projections for the reconstruction layer, making the contrast higher and focusing on the texture of the reconstruction layer. Sharper, clearer borders and less prone to artifacts.
Description
技术领域Technical field
本发明涉及一种多角度投影配准的DBT重建法,属于医学图像处理技术领域。The invention relates to a multi-angle projection registration DBT reconstruction method, belonging to the technical field of medical image processing.
背景技术Background technique
乳腺癌是一种发生在乳腺上皮组织的恶性肿瘤,严重威胁女性生命和健康。通过对乳腺癌的早期发现和及时诊断治疗,可以使90%的患者延长寿命,由此可见,对于乳腺癌的早期筛查十分重要。数字乳腺断层合成(Digital Breast Tomosynthesis,DBT)是一种利用有限角度范围内少数投影进行乳腺三维成像的技术,在DBT中,当X射线源沿着预定轨迹(通常60°或更小角度范围的圆弧)移动时,通过获取多个投影重构出与乳房支撑平面平行的截面。整个数据采集扫描过程耗时短,扫描采集的有限角度投影数据包含了不同角度下乳腺组织的所有解剖结构信息。与目前广泛应用的计算机断层成像技术(ComputedTomography,CT)的全角度数据采集方式相比,DBT的采集角度范围小,并且只在小角度范围内采集10到25个投影数据,而CT投影数量多达上千个。因此,DBT采集方式下的总射线辐射损害远远小于常规CT。Breast cancer is a malignant tumor that occurs in breast epithelial tissue and seriously threatens women's life and health. Through early detection and timely diagnosis and treatment of breast cancer, 90% of patients can live longer. It can be seen that early screening for breast cancer is very important. Digital Breast Tomosynthesis (DBT) is a technology that uses a few projections within a limited angular range to perform three-dimensional breast imaging. In DBT, when the X-ray source follows a predetermined trajectory (usually 60° or less in the angular range) When moving (arc), multiple projections are obtained to reconstruct a cross-section parallel to the breast support plane. The entire data collection and scanning process takes a short time, and the limited-angle projection data collected by the scan contains all anatomical structure information of breast tissue at different angles. Compared with the currently widely used full-angle data collection method of computed tomography (CT), DBT has a small collection angle range and only collects 10 to 25 projection data within a small angle range, while CT has a large number of projections. Up to thousands. Therefore, the total radiation damage under DBT acquisition mode is much less than that of conventional CT.
但是目前有关DBT成像的相关文献中,均是采用X射线管相对于静止探测面的平行运行模式来推导位移量公式,对比度低,聚焦效果不好,边界模糊不清,易产生伪影。However, in the current literature on DBT imaging, the displacement formula is derived using the parallel operation mode of the X-ray tube relative to the stationary detection surface. The contrast is low, the focusing effect is poor, the boundaries are blurred, and artifacts are easily produced.
发明内容Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种多角度投影配准的DBT重建法,通过获取多角度的投影数据,基于等中心圆弧运动的位移量配准法,实现了中心投影标准化,满足了不同角度投影对重建层的不同放大率要求,使得对比度更高,聚焦重建层纹理更清晰,边界更加清晰,不易产生伪影。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a DBT reconstruction method for multi-angle projection registration. By acquiring multi-angle projection data and a displacement registration method based on isocentric arc motion, the center is realized. Projection standardization meets the different magnification requirements of the reconstruction layer for different angle projections, making the contrast higher, the texture of the focused reconstruction layer clearer, the boundary clearer, and artifacts less likely to occur.
为达到上述目的,本发明是采用下述技术方案实现的:In order to achieve the above objects, the present invention is achieved by adopting the following technical solutions:
本发明公开了一种多角度投影配准的DBT重建法,包括如下步骤:The invention discloses a multi-angle projection registration DBT reconstruction method, which includes the following steps:
获取多角度的投影数据;Obtain multi-angle projection data;
基于比尔定理对所述投影数据进行预处理,得到预处理后的投影数据;Preprocess the projection data based on Beer's theorem to obtain preprocessed projection data;
基于等中心圆弧运动的位移量配准法,对所述预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据;Based on the displacement registration method of isocentric arc motion, perform block coordinate translation processing on the preprocessed projection data to obtain the translated projection data;
对所述平移后的投影数据中的像素空缺值进行图像插值处理,得到插值后的投影数据;Perform image interpolation processing on the pixel gap values in the translated projection data to obtain interpolated projection data;
根据所述插值后的投影数据,基于DBT重建算法,获得并输出DBT重建层。According to the interpolated projection data and based on the DBT reconstruction algorithm, a DBT reconstruction layer is obtained and output.
进一步的,所述获取多角度的投影数据,包括:Further, the acquisition of multi-angle projection data includes:
基于X射线管做等中心圆弧运动投影,使用探测器等角度间隔拍摄X射线投影,获取多角度的投影数据。Based on the X-ray tube, the isocenter arc motion projection is performed, and the detector is used to shoot the X-ray projection at equal angle intervals to obtain multi-angle projection data.
进一步的,所述预处理后的投影数据的表达式如下:Further, the expression of the preprocessed projection data is as follows:
; ;
其中,表示投影角度;/>表示预处理后的投影角度/>的投影数据;/>表示未预处理的投影角度/>的投影数据;/>表示以常数e为底数的对数运算。in, Indicates the projection angle;/> Represents the preprocessed projection angle/> projection data;/> Represents the unpreprocessed projection angle/> projection data;/> Represents the logarithmic operation with constant e as the base.
进一步的,所述等中心圆弧运动的位移量配准法,包括:Further, the displacement registration method of isocentric arc motion includes:
获取预处理后的投影数据;Get preprocessed projection data;
基于预设的不同重建层深度的等中心圆弧运动模型,计算不同角度的预处理后的投影数据的位移量,得到由角度和重建层深度确定的投影数据沿x轴的位移量;Based on the preset isocenter arc motion model with different reconstruction layer depths, calculate the displacement of the preprocessed projection data at different angles, and obtain the displacement of the projection data along the x-axis determined by the angle and reconstruction layer depth;
根据所述投影数据沿x轴的位移量,对所述预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据。According to the displacement of the projection data along the x-axis, the preprocessed projection data is subjected to block coordinate translation processing to obtain translated projection data.
进一步的,所述投影数据沿x轴的位移量的表达式如下:Further, the expression of the displacement of the projection data along the x-axis is as follows:
; ;
其中,表示投影角度;/>表示投影角度为/>时待平移的x轴坐标;/>表示重建层深度;/>表示当重建层深度为/>、投影角度为/>时的投影数据沿x轴的位移量;d表示等中心圆弧的半径。in, Indicates the projection angle;/> Indicates that the projection angle is/> The x-axis coordinate to be translated;/> Indicates the reconstruction layer depth;/> Indicates that when the reconstruction layer depth is/> , the projection angle is/> The displacement of the projection data along the x-axis; d represents the radius of the isocenter arc.
进一步的,所述平移后的投影数据表示为:Further, the translated projection data is expressed as:
; ;
其中,表示平移后的投影数据;/>表示投影角度为/>时平移后的x轴坐标,,/>表示投影角度为/>时待平移的x轴坐标;/>表示投影角度为/>时的y轴坐标;/>表示重建层深度。in, Represents the projection data after translation;/> Indicates that the projection angle is/> The x-axis coordinate after translation, ,/> Indicates that the projection angle is/> The x-axis coordinate to be translated;/> Indicates that the projection angle is/> The y-axis coordinate at;/> Indicates the reconstruction layer depth.
进一步的,得到插值后的投影数据,包括:Further, the interpolated projection data is obtained, including:
获取平移后的投影数据;Get the translated projection data;
对所述平移后的投影数据进行像素空缺查找处理,得到像素空缺值;Perform pixel gap search processing on the translated projection data to obtain pixel gap values;
根据所述像素空缺值,采用一维线性插值法,取所述像素空缺值的相邻的两侧像素进行插值,得到插值后的投影数据。According to the pixel vacancy value, a one-dimensional linear interpolation method is used to interpolate the adjacent pixels on both sides of the pixel vacancy value to obtain interpolated projection data.
进一步的,所述一维线性插值法的表达式如下:Further, the expression of the one-dimensional linear interpolation method is as follows:
; ;
其中,表示平移后的投影数据中的y轴分量的像素空缺值;/>表示像素空缺值相邻的上像素值;/>表示像素空缺值/>相邻的下像素值。in, Represents the pixel gap value of the y-axis component in the translated projection data;/> Represents the pixel gap value Adjacent upper pixel value;/> Indicates the pixel vacant value/> The adjacent lower pixel value.
与现有技术相比,本发明所达到的有益效果:Compared with the prior art, the beneficial effects achieved by the present invention are:
本发明通过获取多角度的投影数据,基于等中心圆弧运动的位移量配准法,实现了中心投影标准化,满足了不同角度投影对重建层的不同放大率要求,提高了多角度投影的配准精度,使得对比度更高,聚焦重建层纹理更清晰,边界更加清晰,不易产生伪影。By acquiring multi-angle projection data and based on the displacement registration method of isocentric arc motion, the present invention realizes the standardization of center projection, meets the different magnification requirements of different angle projections for the reconstruction layer, and improves the configuration of multi-angle projection. Accurate precision makes the contrast higher, the texture of the focused reconstruction layer clearer, the boundaries clearer, and artifacts are less likely to occur.
附图说明Description of the drawings
图1为本实施例提供的一种多角度投影配准的DBT重建法的流程图;Figure 1 is a flow chart of a multi-angle projection registration DBT reconstruction method provided in this embodiment;
图2为本实施例提供的优化后的X射线管做等中心圆弧运动模式的示意图;Figure 2 is a schematic diagram of the optimized X-ray tube performing isocentric arc motion mode provided in this embodiment;
图3为现有技术的X射线管做平行运行模式的示意图;Figure 3 is a schematic diagram of a parallel operation mode of an X-ray tube in the prior art;
图4为多角度采集的乳腺图像投影数据;Figure 4 shows breast image projection data collected from multiple angles;
图5为采用现有技术与本实施例方法分别得到的聚焦重建层及两个聚焦重建层的差值图像;Figure 5 shows the difference image of the focused reconstruction layer and the two focused reconstruction layers respectively obtained by using the existing technology and the method of this embodiment;
图6为对图5中标记点等比例放大800倍的效果展示图;Figure 6 shows the effect of enlarging the marked points in Figure 5 by 800 times at equal proportions;
图7为采用现有技术与本实施例方法分别得到的聚焦重建层及对应傅立叶频谱。Figure 7 shows the focused reconstruction layer and the corresponding Fourier spectrum respectively obtained using the existing technology and the method of this embodiment.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to more clearly illustrate the technical solutions of the present invention, but cannot be used to limit the scope of the present invention.
本实施例提供了一种多角度投影配准的DBT重建法,包括如下步骤:This embodiment provides a multi-angle projection registration DBT reconstruction method, which includes the following steps:
获取多角度的投影数据;Obtain multi-angle projection data;
基于比尔定理对投影数据进行预处理,得到预处理后的投影数据;Preprocess the projection data based on Beer's theorem to obtain the preprocessed projection data;
基于等中心圆弧运动的位移量配准法,对预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据;Based on the displacement registration method of isocentric arc motion, the preprocessed projection data is processed by block coordinate translation to obtain the translated projection data;
对平移后的投影数据中的像素空缺值进行图像插值处理,得到插值后的投影数据;Perform image interpolation processing on the pixel gap values in the translated projection data to obtain the interpolated projection data;
根据插值后的投影数据,基于DBT重建算法,获得并输出DBT重建层。According to the interpolated projection data, based on the DBT reconstruction algorithm, the DBT reconstruction layer is obtained and output.
本发明的技术构思为:通过获取多角度的投影数据,基于等中心圆弧运动的位移量配准法,实现了中心投影标准化,满足了不同角度投影对重建层的不同放大率要求,提高了多角度投影的配准精度,使得对比度更高,聚焦重建层纹理更清晰,边界更加清晰,不易产生伪影。The technical concept of the present invention is: by acquiring multi-angle projection data and based on the displacement registration method of isocentric arc motion, the standardization of center projection is realized, which satisfies the different magnification requirements of different angle projections for the reconstruction layer, and improves the The registration accuracy of multi-angle projection makes the contrast higher, the texture of the focused reconstruction layer clearer, the boundaries clearer, and artifacts are less likely to occur.
如图1所示,具体步骤如下:As shown in Figure 1, the specific steps are as follows:
步骤1、获取多角度的投影数据。Step 1. Obtain multi-angle projection data.
基于X射线管做等中心圆弧运动投影,使用X射线平板探测器等角度间隔拍摄X射线投影,获取多角度的投影数据。Based on the X-ray tube, the isocenter arc motion projection is performed, and the X-ray flat panel detector is used to shoot the X-ray projections at equal angle intervals to obtain multi-angle projection data.
本实施例采集15个角度的投影数据,投影角度总范围为15°。相比较传统的CT采集投影,其投影角度范围更小,采集数量更少,对人的伤害性更小。This embodiment collects projection data from 15 angles, and the total range of projection angles is 15°. Compared with traditional CT acquisition and projection, its projection angle range is smaller, the number of acquisitions is smaller, and it is less harmful to people.
如图2所示,以X射线管等中心圆弧运行的中心线定义为z轴,将圆弧所在平面和探测器平面的交线定义为x轴,则z轴与探测器平面的交点为中心O,假设以 Z轴为中心投影0°,所采集的投影角度范围为(-7.5°,7.5°),采集15个角度的投影数据,分别为-7×(7.5°/7)、-6×(7.5°/7)、-5×(7.5°/7)、-4×(7.5°/7)、-3×(7.5°/7)、-2×(7.5°/7)、-1×(7.5°/7)、0°、1×(7.5°/7)、2×(7.5°/7)、3×(7.5°/7)、4×(7.5°/7)、5×(7.5°/7)、6×(7.5°/7)、7×(7.5°/7)。As shown in Figure 2, the center line running on the center arc of the X-ray tube is defined as the z-axis. The intersection of the plane where the arc is located and the detector plane is defined as the x-axis. Then the intersection point of the z-axis and the detector plane is Center O, assuming 0° is projected with the Z axis as the center, the collected projection angle range is (-7.5°, 7.5°), and the projection data collected at 15 angles are -7×(7.5°/7), - 6×(7.5°/7), -5×(7.5°/7), -4×(7.5°/7), -3×(7.5°/7), -2×(7.5°/7), - 1×(7.5°/7), 0°, 1×(7.5°/7), 2×(7.5°/7), 3×(7.5°/7), 4×(7.5°/7), 5× (7.5°/7), 6×(7.5°/7), 7×(7.5°/7).
步骤2、基于比尔定理对投影数据进行预处理,即进行对数变换操作,得到预处理后的投影数据。Step 2. Preprocess the projection data based on Beer's theorem, that is, perform a logarithmic transformation operation to obtain the preprocessed projection data.
预处理后的投影数据的表达式如下:The expression of the preprocessed projection data is as follows:
; ;
其中,表示投影角度;/>表示预处理后的投影角度/>的投影数据;/>表示未预处理的投影角度/>的投影数据;/>表示以常数e为底数的对数运算。in, Indicates the projection angle;/> Represents the preprocessed projection angle/> projection data;/> Represents the unpreprocessed projection angle/> projection data;/> Represents the logarithmic operation with constant e as the base.
需要说明的是,未预处理的投影角度的投影数据/>包括未预处理的探测器平面上投影的x轴坐标和y轴坐标,即/>。It should be noted that the unpreprocessed projection angle projection data/> Including the x-axis coordinate and y-axis coordinate projected on the detector plane without preprocessing, that is/> .
预处理后的投影角度的投影数据/>,包括预处理后的探测器平面上投影的x轴坐标和y轴坐标,/>。Preprocessed projection angle projection data/> , including the x-axis coordinate and y-axis coordinate projected on the detector plane after preprocessing, /> .
表示步骤3、基于等中心圆弧运动的位移量配准法,对预处理后的多角度投影数据进行分块坐标平移处理,得到平移后的投影数据。Indicates step 3. Based on the displacement registration method of isocentric arc motion, perform block coordinate translation processing on the preprocessed multi-angle projection data to obtain the translated projection data.
步骤3.1、获取预处理后的投影数据。Step 3.1. Obtain the preprocessed projection data.
步骤3.2、基于预设的不同重建层深度的等中心圆弧运动模型,计算不同角度的预处理后的投影数据的位移量,得到由角度和重建层深度确定的投影数据沿x轴的位移量。具体的,预先构建一个等中心圆弧运动模型,如图2所示,以X射线管等中心圆弧运行的中心线定义为z轴,将圆弧所在平面和探测器平面的交线定义为x轴,则z轴与探测器平面的交点为中心O,探测器平面内与x轴垂直的直线为y轴。Step 3.2. Based on the preset isocentric arc motion model with different reconstruction layer depths, calculate the displacement of the preprocessed projection data at different angles, and obtain the displacement of the projection data along the x-axis determined by the angle and reconstruction layer depth. . Specifically, an isocenter arc motion model is constructed in advance, as shown in Figure 2. The center line of the X-ray tube isocenter arc movement is defined as the z-axis, and the intersection line between the plane where the arc is located and the detector plane is defined as x axis, then the intersection point of the z axis and the detector plane is the center O, and the straight line perpendicular to the x axis in the detector plane is the y axis.
将预处理后的投影角度的投影数据表示为/>,包括探测器平面的投影的x轴坐标和y轴坐标。接下来本实施例的步骤3.3会对x轴坐标/>进行配准。The preprocessed projection angle The projection data of is expressed as/> , including the x-axis coordinate and y-axis coordinate of the projection of the detector plane. Next, step 3.3 of this embodiment will determine the x-axis coordinate/> Perform registration.
本步骤中,根据距离探测器平面,即x轴与y轴形成的平面是1mm的非负整数倍数,在其上方设置62个不同深度的重建层,分别标号为:0、1、2、…、61,即是设定重建层厚度最大为61mm。In this step, according to the distance from the detector plane, that is, the plane formed by the x-axis and the y-axis is a non-negative integer multiple of 1mm, 62 reconstruction layers of different depths are set above it, respectively labeled: 0, 1, 2, ... , 61, which means the maximum thickness of the reconstruction layer is set to 61mm.
以深度为61的重建层为例,记点P/>为重建层上任意一点,当X射线管位于中心投影角度(即0°)时,将X射线管的位置记为点R(0,d),则射线RP交x轴于点N(xN,0),点P在x轴上的投影记为点C/>,点P在z轴上的投影记为点F/>;with depth Take the reconstruction layer 61 as an example, mark point P/> For any point on the reconstruction layer, when the X-ray tube is at the central projection angle (i.e. 0°), the position of the X-ray tube is recorded as point R(0,d), then the ray RP intersects the x-axis at point N(x N ,0), the projection of point P on the x-axis is recorded as point C/> , the projection of point P on the z-axis is recorded as point F/> ;
当X射线管投影角度为θ时,X射线管的位置记为点S(-dsinθ,dcosθ),则射线SP交x轴于点M(xM,0),点S在x轴上的投影记为点H(-dsinθ,0),点S在z轴上的投影记为点D(0,dcosθ)。When the X-ray tube projection angle is θ, the position of the X-ray tube is recorded as point S (-dsinθ, dcosθ), then the ray SP intersects the x-axis at point M (x M ,0), and the projection of point S on the x-axis It is marked as point H(-dsinθ,0), and the projection of point S on the z-axis is marked as point D(0,dcosθ).
其中,d为等中心圆弧运动的旋转半径,为重建聚焦层的深度,即重建聚焦层与X射线探测器平面间的距离,θ为X射线管在当前投影相对中心投影的角度,中心投影的投影为0°。/>为重建层上一点P待平移配准的x轴坐标。Among them, d is the rotation radius of isocentric arc motion, To reconstruct the depth of the focusing layer, that is, to reconstruct the distance between the focusing layer and the X-ray detector plane, θ is the angle of the current projection of the X-ray tube relative to the center projection, and the projection of the center projection is 0°. /> is the x-axis coordinate of a point P on the reconstruction layer to be translated and aligned.
所构建出的三角形中,,/>,根据相似关系得到:In the triangle constructed, ,/> , based on the similarity relationship:
; ;
将相应坐标带入上面两个式子,分别得到:Put the corresponding coordinates into the above two formulas to get:
。 .
图2中NM为当投影角度为时相对于中心投影(投影角度为0°)在探测面上沿x轴的位移量,令=NM=x M -x N,则用于配准的位移量的表达式如下:In Figure 2, NM is the displacement along the x-axis on the detection surface relative to the central projection (projection angle is 0°) when the projection angle is, let =NM= x M -x N , then the expression of the displacement used for registration is as follows:
; ;
其中,表示投影角度;/>表示投影角度为/>时待平移的x轴坐标;/>表示重建层深度;/>表示当重建层深度为/>、投影角度为/>时,投影数据沿x轴的位移量;d表示等中心圆弧的半径。in, Indicates the projection angle;/> Indicates that the projection angle is/> The x-axis coordinate to be translated;/> Indicates the reconstruction layer depth;/> Indicates that when the reconstruction layer depth is/> , the projection angle is/> When , the displacement of the projection data along the x-axis; d represents the radius of the isocenter arc.
位移量公式的第一项,,为与被投影物体其水平位置、投影角度相关的线性函数,其物理意义为对投影位移量在x坐标上的线性变换,以实现中心投影的标准化;The first term of the displacement formula, , is a linear function related to the horizontal position and projection angle of the projected object. Its physical meaning is the linear transformation of the projection displacement on the x coordinate to achieve the standardization of the center projection;
位移量公式的第二项,,仅与投影角度/>相关,表示标准化后的不同角度/>的投影向中心投影校准时所需的在x轴上的相对位移。The second term of the displacement formula, , only related to the projection angle/> Relevant, indicating different angles after normalization/> The relative displacement on the x-axis required when the projection is calibrated toward the center.
值得注意的是,当探测面也随X射线管同时作微小角度±φ范围内摆动时,还需要将上述公式求得的每个位移量乘以,n=0,1,2,...m;2m+1为投影角度数量,通常φ值非常小,可以忽略,因此直接取余弦值/>为1。It is worth noting that when the detection surface also swings within a small angle ±φ with the X-ray tube at the same time, each displacement calculated by the above formula needs to be multiplied by , n=0,1,2,...m; 2m+1 is the number of projection angles. Usually the φ value is very small and can be ignored, so the cosine value is taken directly/> is 1.
最终得到了每个重建层上任一点P的沿x轴的位移量。Finally, the displacement along the x-axis of any point P on each reconstruction layer is obtained.
步骤3.3、根据投影数据沿x轴的位移量,对预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据。Step 3.3: According to the displacement of the projection data along the x-axis, perform block coordinate translation processing on the preprocessed projection data to obtain the translated projection data.
此处需要说明的是,步骤2的预处理后的投影数据包括15个投影角度的探测器平面的投影数据,此时z轴坐标为0。步骤3.1和3.2得到了不同深度重建层和不同投影角度的x轴分量的位移量,对预处理后的投影数据进行分块坐标平移处理,得到平移后的投影数据,相当于在原先的探测器平面的投影数据堆积了多个不同深度的重建层。It should be noted here that the preprocessed projection data in step 2 includes the projection data of the detector plane at 15 projection angles, and the z-axis coordinate is 0 at this time. Steps 3.1 and 3.2 obtain the displacements of the x-axis components of different depth reconstruction layers and different projection angles. The preprocessed projection data is processed by block coordinate translation to obtain the translated projection data, which is equivalent to the original detector. Planar projection data accumulates multiple reconstruction layers of different depths.
故平移后的投影数据表示为,/>,其中,/>表示投影角度为时经平移后的x轴坐标,/>,/>表示投影角度为/>时待平移的x轴坐标;/>表示投影角度为/>时的y轴坐标;/>表示重建层深度。Therefore, the projection data after translation is expressed as ,/> , where,/> Indicates that the projection angle is The x-axis coordinate after time translation,/> ,/> Indicates that the projection angle is/> The x-axis coordinate to be translated;/> Indicates that the projection angle is/> The y-axis coordinate at;/> Indicates the reconstruction layer depth.
步骤4、对平移后的投影数据中的像素空缺值进行图像插值处理,得到插值后的投影数据。Step 4: Perform image interpolation processing on the pixel vacancy values in the translated projection data to obtain interpolated projection data.
获取平移后的投影数据;Get the translated projection data;
对平移后的投影数据进行像素空缺查找处理,得到像素空缺值;Perform pixel gap search processing on the translated projection data to obtain the pixel gap value;
根据像素空缺值,采用一维线性插值法,取像素空缺值的相邻的两侧像素进行插值,得到插值后的投影数据。According to the pixel vacancy value, a one-dimensional linear interpolation method is used to interpolate the adjacent pixels on both sides of the pixel vacancy value to obtain the interpolated projection data.
具体的,对预处理后的投影数据进行分块坐标平移处理,即进行水平位置x轴分量的线性变换后,易出现y轴分量的像素空缺。Specifically, after the preprocessed projection data is subjected to block coordinate translation processing, that is, after linear transformation of the x-axis component of the horizontal position, pixel gaps in the y-axis component are prone to occur.
本步骤中,先从平移后的投影数据,找到y轴分量的像素空缺值/>,取像素空缺值/>的上下相邻像素/>,/>求平均对其进行插值,插值的表达式为:In this step, first start with the translated projection data , find the pixel gap value of the y-axis component/> , take the pixel gap value/> The upper and lower adjacent pixels/> ,/> Find the average and interpolate it. The expression of interpolation is:
; ;
其中,表示平移后的投影数据中的y轴分量的像素空缺值;/>表示像素空缺值相邻的上像素值;/>表示像素空缺值/>相邻的下像素值。in, Represents the pixel gap value of the y-axis component in the translated projection data;/> Represents the pixel gap value Adjacent upper pixel value;/> Indicates the pixel vacant value/> The adjacent lower pixel value.
图像插值处理如图4所示,投影数据在进行水平位置线性变换后会出现像素空缺等现象, X射线管的投影角度的变化,投影图像在X射线探测器上的位置也发生了相应的位移,使用本方法提出的位移量配准公式将投影图像进行标准化、移位和配准,可以提取到更加精确的聚焦重建层信息。Image interpolation processing is shown in Figure 4. After the linear position transformation of the horizontal position of the projection data, pixel vacancies and other phenomena will appear. As the projection angle of the X-ray tube changes, the position of the projected image on the X-ray detector also undergoes corresponding displacements. , use the displacement registration formula proposed by this method to standardize, shift and register the projection image, and more accurate focus reconstruction layer information can be extracted.
步骤5、根据插值后的投影数据,输出DBT重建层。Step 5: Output the DBT reconstruction layer based on the interpolated projection data.
本步骤中采用位移叠加法(ShiftAndAdd,SAA)进行DBT重建,主要是将配准后的多投影进行叠加求均值,具有快速简单的优点。后面将基于此重建方法进行本发明优势的展示、分析。In this step, the displacement superposition method (ShiftAndAdd, SAA) is used for DBT reconstruction, which mainly superimposes and averages the registered multiple projections, which has the advantage of being fast and simple. The advantages of the present invention will be demonstrated and analyzed based on this reconstruction method later.
此外,也可以采用反滤波投影法(Filtered Back Projection, FBP)、极大似然期望最大值法(Maximum Likelihood Expectation Maximization, MLEM)、基于盲源分离的聚焦层分离重建法(BlindSource Separation basedSeparatingtheFocusing Plane,BSFP)进行DBT重建。In addition, you can also use the filtered back projection method (Filtered Back Projection, FBP), the maximum likelihood expectation maximum method (Maximum Likelihood Expectation Maximization, MLEM), the blind source separation based focusing layer separation reconstruction method (BlindSource Separation basedSeparatingtheFocusing Plane, BSFP) for DBT reconstruction.
目前现有技术的文献中,大多采用X射线管相对于探测面做平行运行的模式来推导位移量公式,推导过程如下,In the current literature on the prior art, most of them use the mode of X-ray tube running parallel to the detection surface to derive the displacement formula. The derivation process is as follows:
建立如图3所示的坐标系,当X射线管位于第一个投影角处时,它在x轴上投影位于,此时X射线在z轴分别穿过z、/>,在x轴分别落到x1、b1,相应于X射线管位于中心投影角处时发出射线在x轴分别落到x0、0。定义投影放大率/>,D表示X射线管的高度。记此时深度为/>时,第一个投影角的投影相对于中心投影的在x轴上位移量为:Establish a coordinate system as shown in Figure 3. When the X-ray tube is located at the first projection angle, its projection on the x-axis is at , at this time, the X-rays pass through z, /> respectively on the z-axis. , fall to x 1 and b 1 respectively on the x-axis, corresponding to when the X-ray tube is located at the central projection angle, the rays emitted fall to x 0 and 0 respectively on the x-axis. Define projection magnification/> , D represents the height of the X-ray tube. Record the depth at this time as/> When , the displacement of the projection of the first projection angle relative to the center projection on the x-axis is :
; ;
式中,表示X射线管的x轴投影分量;/>表示重建层深度为/>时的投影放大率。上述公式表明x轴上位移量与重建深度和X射线管位置有关。In the formula, Represents the x-axis projection component of the X-ray tube;/> Indicates that the reconstruction layer depth is/> projection magnification. The above formula shows that the displacement on the x-axis is related to the reconstruction depth and the position of the X-ray tube.
则对于重建深度为z的层面,其x位移量为:Then for the layer with reconstruction depth z, its x displacement is:
; ;
则重建深度为z、的投影间在x轴上的相对位移量为:Then the reconstruction depth is z, The relative displacement between the projections on the x-axis is:
; ;
同理,当X射线管在x轴上投影为时,重建深度为z、/>的投影间在x轴上的相对位移量为:In the same way, when the X-ray tube is projected on the x-axis as When , the reconstruction depth is z,/> The relative displacement between the projections on the x-axis is:
。 .
为了对比验证利用本发明的位移公式的可以将多投影更精度配准,对现有技术的位移公式和本发明所提出的位移公式进行配准后的聚焦层重建效果对比,以图4中HOLOGIC公司DBT系统采集的15个投影基于SAA进行聚焦层重建为例。In order to compare and verify that the displacement formula of the present invention can be used to register multiple projections more accurately, the focusing layer reconstruction effect after registration is compared between the displacement formula of the prior art and the displacement formula proposed by the present invention, as shown in Figure 4 HOLOGIC The focus layer reconstruction based on SAA for 15 projections collected by the company's DBT system is used as an example.
如图5所示,选择同一个深度的重建的聚焦层进行视觉对比效果对比分析,图5(a)是图3所示原方法校正后的重建聚焦层将经本发明校正后,图5(b)是经本发明校正后再重建的聚焦层图像减去原方法校正后的重建图像,图5(c)是图5(a)、图5(b)的差值图。可以看出,两者的校准点在靠近中间部分差异很小,但在重建图像中腺体边缘及两侧部分有较大差别,越远离腺体中轴,其差异越大。As shown in Figure 5, the reconstructed focusing layer of the same depth is selected for comparative analysis of visual contrast effects. Figure 5(a) is the reconstructed focusing layer corrected by the original method shown in Figure 3. After being corrected by the present invention, Figure 5(a) b) is the reconstructed focus layer image corrected by the present invention minus the reconstructed image corrected by the original method. Figure 5(c) is the difference diagram of Figure 5(a) and Figure 5(b). It can be seen that the difference between the two calibration points is very small near the middle part, but there is a big difference in the edge and both sides of the gland in the reconstructed image. The farther away from the central axis of the gland, the greater the difference.
图5(a)、(b)中标记出来的四个重建的校准点,分别截取相同位置的小圆点图像,将重建的小圆点等比例放大800倍观察,如图6所示,通过图6(a)和(b)对比,图6(a)具有在靠近中间轴的一侧较为明显的伪影;图6(b)本方法所提出的位移公式处理结果虽然也有少量的伪影存在,但其相对于图6(a),较大程度的减少了重建点的伪影;从图6(g)和图6(h)可以看出,在背景较亮的情况下,图6(g)使用原位移公式得到的重建点的对比度大大降低,其边界点变得模糊不清;而图6(h)是校正后的图像,不仅聚焦更好,而且其对比度也明显增加,边界较为清楚。从图6(a)和图6(b)、图6(c)和图6(d)、图6(e)和图6(f)、图6(g)和图6(h)的对比中,可以验证本发明的位移公式在配准精度上明显高于原位移公式,降低了聚焦点的模糊以及伪影。For the four reconstructed calibration points marked in Figure 5(a) and (b), images of small dots at the same position were intercepted, and the reconstructed small dots were magnified 800 times for observation, as shown in Figure 6. Comparing Figure 6(a) and (b), Figure 6(a) has obvious artifacts on the side close to the middle axis; Figure 6(b) Although the processing result of the displacement formula proposed by this method also has a small amount of artifacts exists, but compared to Figure 6(a), it greatly reduces the artifacts of the reconstruction points; it can be seen from Figure 6(g) and Figure 6(h) that when the background is bright, Figure 6 (g) The contrast of the reconstructed points obtained using the original displacement formula is greatly reduced, and its boundary points become blurred; while Figure 6(h) is the corrected image. Not only is the focus better, but its contrast is also significantly increased, and the boundaries are more clearly. Comparison between Figure 6(a) and Figure 6(b), Figure 6(c) and Figure 6(d), Figure 6(e) and Figure 6(f), Figure 6(g) and Figure 6(h) , it can be verified that the registration accuracy of the displacement formula of the present invention is significantly higher than that of the original displacement formula, and the blurring and artifacts of the focus point are reduced.
图7(a)、图7(b)分别是使用经原位移方法配准和本发明方法配准后的投影所重建层面的效果对比,上面为重建层,下面是其对应的傅立叶变换(Fourier Transform,FT)频谱。从图7(a)、(b)重建聚焦层对比来看,使用本发明位移量配准公式将对角度投影配准校正后,重建层中所聚焦的小金属更清晰,图像对比度更高。从重建层的频谱来分析,图7(a)频率在横向上较干净,但在纵向有更多高频噪声,这说明在对其纵向的校准过程中产生了高频噪声。对比之下,图7(b)中重建层对应的频谱在横向、纵向上都更干净,说明经本发明方法进行位移量校正后,投影配准更精确,校正过程中避免更多噪声产生,可以使聚焦层纹理更清晰,对比度更高,抑制模糊。Figure 7(a) and Figure 7(b) are respectively a comparison of the effects of reconstructed layers using projections registered by the original displacement method and the method of the present invention. The upper part is the reconstructed layer, and the lower part is its corresponding Fourier transform. Transform, FT) spectrum. From the comparison of the reconstructed focusing layers in Figure 7(a) and (b), after using the displacement registration formula of the present invention to correct the angle projection registration, the focused small metal in the reconstructed layer is clearer and the image contrast is higher. Analyzing the spectrum of the reconstruction layer, Figure 7(a) shows that the frequency is cleaner in the transverse direction, but there is more high-frequency noise in the longitudinal direction, which indicates that high-frequency noise is generated during the longitudinal calibration process. In contrast, the spectrum corresponding to the reconstruction layer in Figure 7(b) is cleaner both horizontally and vertically, indicating that after displacement correction by the method of the present invention, the projection registration is more accurate and more noise is avoided during the correction process. It can make the focus layer texture clearer, have higher contrast and suppress blur.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in a process or processes in a flowchart and/or a block or blocks in a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes in the flowchart and/or in a block or blocks in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that those of ordinary skill in the art can make several improvements and modifications without departing from the principles of the present invention. These improvements and modifications can also be made. should be regarded as the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311606533.XA CN117314988B (en) | 2023-11-29 | 2023-11-29 | DBT reconstruction method for multi-angle projection registration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311606533.XA CN117314988B (en) | 2023-11-29 | 2023-11-29 | DBT reconstruction method for multi-angle projection registration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117314988A CN117314988A (en) | 2023-12-29 |
CN117314988B true CN117314988B (en) | 2024-02-20 |
Family
ID=89285104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311606533.XA Active CN117314988B (en) | 2023-11-29 | 2023-11-29 | DBT reconstruction method for multi-angle projection registration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117314988B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119206097B (en) * | 2024-11-28 | 2025-01-28 | 南京邮电大学 | DBT reconstruction method, medium and electronic device based on three-dimensional coordinate displacement |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665556A (en) * | 2009-11-20 | 2012-09-12 | 皇家飞利浦电子股份有限公司 | Tomosynthesis mammography system with enlarged field of view |
CN107545551A (en) * | 2017-09-07 | 2018-01-05 | 广州华端科技有限公司 | The method for reconstructing and system of digital galactophore body layer composograph |
CN109685863A (en) * | 2018-12-11 | 2019-04-26 | 帝工(杭州)科技产业有限公司 | A method of rebuilding medicine breast image |
CN110430817A (en) * | 2017-02-01 | 2019-11-08 | 埃斯彭有限公司 | Computed tomography apparatus |
CN111915514A (en) * | 2020-07-13 | 2020-11-10 | 南京邮电大学 | Weight adjustment second-order blind identification-based digital mammary tomosynthesis photography reconstruction method |
CN112150426A (en) * | 2020-09-17 | 2020-12-29 | 南京邮电大学 | Digital Breast Tomosynthesis Reconstruction Method Based on Nonparametric Kernel Density Estimation |
CN113662573A (en) * | 2021-09-10 | 2021-11-19 | 上海联影医疗科技股份有限公司 | Mammary gland focus positioning method, device, computer equipment and storage medium |
CN114305469A (en) * | 2021-12-02 | 2022-04-12 | 中国科学院苏州生物医学工程技术研究所 | Low-dose digital breast tomography method and device and breast imaging equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8634622B2 (en) * | 2008-10-16 | 2014-01-21 | Icad, Inc. | Computer-aided detection of regions of interest in tomographic breast imagery |
DE102015204957A1 (en) * | 2014-03-27 | 2015-10-01 | Siemens Aktiengesellschaft | Imaging tomosynthesis system, in particular mammography system |
-
2023
- 2023-11-29 CN CN202311606533.XA patent/CN117314988B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665556A (en) * | 2009-11-20 | 2012-09-12 | 皇家飞利浦电子股份有限公司 | Tomosynthesis mammography system with enlarged field of view |
CN110430817A (en) * | 2017-02-01 | 2019-11-08 | 埃斯彭有限公司 | Computed tomography apparatus |
CN107545551A (en) * | 2017-09-07 | 2018-01-05 | 广州华端科技有限公司 | The method for reconstructing and system of digital galactophore body layer composograph |
CN109685863A (en) * | 2018-12-11 | 2019-04-26 | 帝工(杭州)科技产业有限公司 | A method of rebuilding medicine breast image |
CN111915514A (en) * | 2020-07-13 | 2020-11-10 | 南京邮电大学 | Weight adjustment second-order blind identification-based digital mammary tomosynthesis photography reconstruction method |
CN112150426A (en) * | 2020-09-17 | 2020-12-29 | 南京邮电大学 | Digital Breast Tomosynthesis Reconstruction Method Based on Nonparametric Kernel Density Estimation |
CN113662573A (en) * | 2021-09-10 | 2021-11-19 | 上海联影医疗科技股份有限公司 | Mammary gland focus positioning method, device, computer equipment and storage medium |
CN114305469A (en) * | 2021-12-02 | 2022-04-12 | 中国科学院苏州生物医学工程技术研究所 | Low-dose digital breast tomography method and device and breast imaging equipment |
Non-Patent Citations (6)
Title |
---|
A comparison between traditional shift-and-add (SAA) and point-by-point back projection (BP) -- relevance to morphology of microcalcifications for isocentric motion in Digital Breast tomosynthesis (DBT);Ying Chen等;《2007 IEEE 7th International Symposium on BioInformatics and BioEngineering》;563-569 * |
Breast cancer imaging: A perspective for the next decade;Andrew Karellas等;《Medical Physics》;第35卷(第11期);4878-4897 * |
Combined Reconstruction and Registration of Digital Breast Tomosynthesis;Guang Yang等;《Digital Mammography. IWDM 2010. Lecture Notes in Computer Science》;第6136卷;760–768 * |
医学乳腺成像优化与辅助诊断研究;王育昕;《中国博士学位论文全文数据库 (医药卫生科技辑)》(第06期);E072-235 * |
数字乳腺三维断层合成摄影重建算法研究;李慧君;《中国优秀硕士学位论文全文数据库 (医药卫生科技辑)》(第12期);E072-27 * |
运动平台下的红外目标检测预处理技术研究;张贵榕;《中国优秀硕士学位论文全文数据库 (信息科技辑)》(第3期);I138-5655 * |
Also Published As
Publication number | Publication date |
---|---|
CN117314988A (en) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4477360B2 (en) | General-purpose filter-corrected backprojection reconstruction in digital tomosynthesis | |
CN106023200B (en) | A kind of x-ray chest radiograph image rib cage suppressing method based on Poisson model | |
Kesner et al. | A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods | |
JP6165809B2 (en) | Tomographic image generating apparatus, method and program | |
JP6273291B2 (en) | Image processing apparatus and method | |
Sujlana et al. | Digital breast tomosynthesis: Image acquisition principles and artifacts | |
WO2014172938A1 (en) | Ct image reconstruction method | |
US9538974B2 (en) | Methods and systems for correcting table deflection | |
US20150154765A1 (en) | Tomosynthesis reconstruction with rib suppression | |
CN111553849B (en) | Cone beam CT geometric artifact removing method and device based on local feature matching | |
CN101980302A (en) | Non-local Average Low Dose CT Reconstruction Method Guided by Projection Data Restoration | |
CN109920020A (en) | An Artifact Suppression Method for Cone Beam CT Pathological Projection Reconstruction | |
CN103679706A (en) | CT sparse angle reconstructing method based on image anisotropy edge detection | |
CN117314988B (en) | DBT reconstruction method for multi-angle projection registration | |
CN109345608A (en) | A Cone Beam CT Image Reconstruction Method Based on Asymmetric Scatter Correction Plate | |
CN110866878A (en) | A multi-scale denoising method for low-dose X-ray CT images | |
JP2020503913A (en) | Motion estimation and compensation system and method in helical computed tomography | |
CN107106107B (en) | Method and system for processing tomosynthesis data | |
CN102062740B (en) | Cone-beam CT (Computed Tomography) scanning imaging method and system | |
CN111553959B (en) | Cone beam CT truncation artifact suppression method based on projection hyperbolic extrapolation | |
US20090304256A1 (en) | Method of extrapolating a grey-level bidimensional image in a radiography device and a radiography device implementing such a method | |
Zhang et al. | Application of boundary detection information in breast tomosynthesis reconstruction | |
CN107492132B (en) | An image artifact removal method for digital tomography system | |
CN112529980B (en) | A Multi-target Finite-Angle CT Image Reconstruction Method Based on Minimization | |
CN112396700B (en) | Computer-implemented method and medium for deriving 3D image data of a reconstructed volume |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |