CN117174726B - Semiconductor substrate, preparation method and image sensor - Google Patents
Semiconductor substrate, preparation method and image sensor Download PDFInfo
- Publication number
- CN117174726B CN117174726B CN202311114955.5A CN202311114955A CN117174726B CN 117174726 B CN117174726 B CN 117174726B CN 202311114955 A CN202311114955 A CN 202311114955A CN 117174726 B CN117174726 B CN 117174726B
- Authority
- CN
- China
- Prior art keywords
- substrate
- layer
- semiconductor substrate
- polysilicon layer
- capture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 179
- 239000004065 semiconductor Substances 0.000 title claims abstract description 81
- 238000002360 preparation method Methods 0.000 title abstract description 16
- 238000007789 sealing Methods 0.000 claims abstract description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 80
- 229920005591 polysilicon Polymers 0.000 claims description 79
- 238000000034 method Methods 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- 238000005498 polishing Methods 0.000 claims description 18
- 238000000227 grinding Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 abstract description 13
- 238000005247 gettering Methods 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102100034362 E3 ubiquitin-protein ligase KCMF1 Human genes 0.000 description 1
- 101100397797 Homo sapiens KCMF1 gene Proteins 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/805—Coatings
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/12—Production of homogeneous polycrystalline material with defined structure directly from the gas state
- C30B28/14—Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/016—Manufacture or treatment of image sensors covered by group H10F39/12 of thin-film-based image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/028—Manufacture or treatment of image sensors covered by group H10F39/12 performed after manufacture of the image sensors, e.g. annealing, gettering of impurities, short-circuit elimination or recrystallisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及半导体技术领域,具体涉及一种衬底、图像传感器及其制备方法。The present application relates to the field of semiconductor technology, and in particular to a substrate, an image sensor and a method for preparing the same.
背景技术Background Art
半导体衬底是用于制造半导体器件的基础材料,硅衬底具有良好的电学性能、热稳定性和可加工性,是常用的半导体衬底材料。硅衬底的质量对于半导体器件的性能和制造至关重要。Semiconductor substrates are the basic materials used to manufacture semiconductor devices. Silicon substrates have good electrical properties, thermal stability and processability and are commonly used semiconductor substrate materials. The quality of silicon substrates is crucial to the performance and manufacturing of semiconductor devices.
发明内容Summary of the invention
本申请的目的在于提供一种半导体衬底、制备方法及图像传感器,可以解决上述技术问题。The purpose of this application is to provide a semiconductor substrate, a preparation method and an image sensor, which can solve the above-mentioned technical problems.
本申请实施例提供一种半导体衬底,包括:The present application provides a semiconductor substrate, including:
基底,所述基底具有第一表面;a substrate having a first surface;
捕获层,所述捕获层位于所述基底远离所述第一表面一侧;a capture layer, the capture layer being located on a side of the substrate away from the first surface;
背封层,所述背封层位于所述捕获层远离所述基底一侧。A backing layer is located on a side of the capture layer away from the substrate.
在一些实施例中,所述捕获层用于捕获金属离子,所述金属离子包括所述基底中的金属离子和穿过所述第一表面进入所述的基底中金属离子。In some embodiments, the capture layer is used to capture metal ions, including metal ions in the substrate and metal ions that pass through the first surface and enter the substrate.
在一些实施例中,所述捕获层的厚度为 In some embodiments, the capture layer has a thickness of
在一些实施例中,所述基底的电阻率为0.010ohm-cm~0.020ohm-cm。In some embodiments, the resistivity of the substrate is 0.010 ohm-cm to 0.020 ohm-cm.
相应的,本申请实施例提供了一种半导体衬底的制备方法,包括:Accordingly, an embodiment of the present application provides a method for preparing a semiconductor substrate, comprising:
提供基底,所述基底具有第一表面;providing a substrate having a first surface;
形成捕获层,所述捕获层位于所述基底远离所述第一表面一侧;forming a capture layer, wherein the capture layer is located on a side of the substrate away from the first surface;
形成背封层,所述背封层位于所述捕获层远离所述基底一侧。A backing layer is formed, and the backing layer is located on a side of the capture layer away from the substrate.
在一些实施例中,沿所述基底的厚度方向,所述捕获层的厚度为 In some embodiments, along the thickness direction of the substrate, the capture layer has a thickness of
在一些实施例中,形成所述捕获层的步骤包括:In some embodiments, the step of forming the capture layer comprises:
形成第二多晶硅层,所述第二多晶硅层位于所述第一表面;形成第一多晶硅层,所述基底具有与所述第一表面背离的第二表面,所述第二多晶硅层位于所述第二表面;去除所述第二多晶硅层,保留所述第一多晶硅层;所述第一多晶硅层作为所述捕获层。A second polysilicon layer is formed, wherein the second polysilicon layer is located on the first surface; a first polysilicon layer is formed, wherein the substrate has a second surface which is away from the first surface, and the second polysilicon layer is located on the second surface; the second polysilicon layer is removed, and the first polysilicon layer is retained; the first polysilicon layer serves as the capture layer.
在一些实施例中,所述第一多晶硅层和/或所述第二多晶硅层通过以下方法制备:采用含硅气体在所述基底表面沉积多晶硅层;含硅气体的消耗量为 In some embodiments, the first polysilicon layer and/or the second polysilicon layer are prepared by the following method: using silicon-containing gas to deposit a polysilicon layer on the surface of the substrate; the consumption of the silicon-containing gas is
在一些实施例中,形成所述第一多晶硅层的步骤中,将所述基底置于温度范围为600℃~660℃的环境中;和/或,形成第二多晶硅层的步骤中,将基底置于温度范围为600℃~660℃的环境中。In some embodiments, in the step of forming the first polysilicon layer, the substrate is placed in an environment with a temperature range of 600°C to 660°C; and/or, in the step of forming the second polysilicon layer, the substrate is placed in an environment with a temperature range of 600°C to 660°C.
在一些实施例中,所述第二多晶硅层通过化学机械抛光方法去除,所述化学机械抛光方法包括:研磨所述第二多晶硅层,去除所述第二多晶硅层。In some embodiments, the second polysilicon layer is removed by a chemical mechanical polishing method, and the chemical mechanical polishing method includes: grinding the second polysilicon layer to remove the second polysilicon layer.
在一些实施例中,第一衬底吸附于抛头,所述抛头具有腔室,沿所述半导体衬底的厚度方向,所述腔室具有第一厚度H1μm,所述第一衬底具有第二厚度H2μm,满足:0<H1-H2≤20μm。In some embodiments, the first substrate is adsorbed on a polishing head having a chamber. Along the thickness direction of the semiconductor substrate, the chamber has a first thickness H 1 μm. The first substrate has a second thickness H 2 μm, satisfying: 0<H 1 -H 2 ≤20 μm.
相应地,本申请实施例提供了一种图像传感器,所述图像传感器包括上述的半导体衬底;或者,所述图像传感器包括如上述的半导体衬底的制备方法所制备的半导体衬底;所述半导体衬底作为所述图像传感器的基体。Accordingly, an embodiment of the present application provides an image sensor, which includes the above-mentioned semiconductor substrate; or, the image sensor includes a semiconductor substrate prepared by the above-mentioned semiconductor substrate preparation method; the semiconductor substrate serves as a base of the image sensor.
在一些实施例中,所述半导体衬底包括P型衬底。In some embodiments, the semiconductor substrate includes a P-type substrate.
本申请的有益效果在于:相较于现有技术,本申请提供了一种半导体衬底、制备方法及图像传感器。本申请的半导体衬底,包括:基底,基底具有第一表面;捕获层,捕获层位于基底远离第一表面一侧,捕获层用于捕获来自基底的金属离子或者捕获穿过基底的金属离子;背封层,背封层位于捕获层远离基底一侧。本申请通过在半导体衬底的基体一侧设置捕获层提升了半导体衬底的外吸杂能力。The beneficial effect of the present application is that compared with the prior art, the present application provides a semiconductor substrate, a preparation method and an image sensor. The semiconductor substrate of the present application includes: a substrate having a first surface; a capture layer, the capture layer is located on the side of the substrate away from the first surface, and the capture layer is used to capture metal ions from the substrate or capture metal ions passing through the substrate; a back-sealing layer, the back-sealing layer is located on the side of the capture layer away from the substrate. The present application improves the external impurity absorption ability of the semiconductor substrate by setting a capture layer on the base side of the semiconductor substrate.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For those skilled in the art, other drawings can be obtained based on these drawings without creative work.
图1为本申请实施例中半导体衬底的制造工艺流程图;FIG1 is a flowchart of a manufacturing process of a semiconductor substrate in an embodiment of the present application;
图2为本申请实施例中半导体衬底的制造工艺流程图;FIG2 is a flowchart of a manufacturing process of a semiconductor substrate in an embodiment of the present application;
图3为本申请实施例中半导体衬底的制造工艺流程图;FIG3 is a flowchart of a manufacturing process of a semiconductor substrate in an embodiment of the present application;
图4为本申请实施例中半导体衬底的结构示意图;FIG4 is a schematic diagram of the structure of a semiconductor substrate in an embodiment of the present application;
图5为本申请实施例中图像传感器的结构示意图;FIG5 is a schematic diagram of the structure of an image sensor in an embodiment of the present application;
图6为本申请实施例中研磨盘与半导体衬底的结构示意图;FIG6 is a schematic diagram of the structure of a grinding disc and a semiconductor substrate in an embodiment of the present application;
图7为本申请实施例制备的半导体衬底的几何平坦度测试结果,其中,A图为最大局部平坦度SFQR测试结果;B图为最大边缘平坦ESFQR测试结果,C图为最大局部平坦度均值结果,D图为最大边缘平坦度均值结果,E图为95%分布数量的最大局部平坦度测试结果;FIG7 is a geometric flatness test result of a semiconductor substrate prepared in an embodiment of the present application, wherein FIGA is a maximum local flatness SFQR test result; FIGB is a maximum edge flatness ESFQR test result; FIGC is a maximum local flatness mean result; FIGD is a maximum edge flatness mean result; and FIGE is a maximum local flatness test result of 95% distribution quantity;
图8为本申请实施例中制备的图像传感器的结构示意图;FIG8 is a schematic diagram of the structure of an image sensor prepared in an embodiment of the present application;
图9为本申请实施例中前照式图像传感器的结构示意图;FIG9 is a schematic diagram of the structure of a front-illuminated image sensor in an embodiment of the present application;
图10为本申请实施例中半导体衬底应用于图像传感器中的暗电流测试结果;FIG10 is a dark current test result of a semiconductor substrate applied to an image sensor in an embodiment of the present application;
图11为本申请实施例中半导体衬底应用于图像传感器中的白像素检测结果;FIG11 is a white pixel detection result of a semiconductor substrate applied to an image sensor in an embodiment of the present application;
图中,1-半导体衬底,100-基底,101-第一表面,102-第二表面,110-第一衬底,200-捕获层,210-第一多晶硅层,220-第二多晶硅层,300背封层;2-研磨盘,3-抛头,300-腔室,301-底面。In the figure, 1-semiconductor substrate, 100-base, 101-first surface, 102-second surface, 110-first substrate, 200-capture layer, 210-first polysilicon layer, 220-second polysilicon layer, 300 back sealing layer; 2-grinding disk, 3-polishing head, 300-chamber, 301-bottom surface.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所数范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。本申请中X方向为厚度方向,Y方向为半导体衬底的延伸方向。The technical solutions in the embodiments of the present application will be described clearly and completely below in combination with the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present application. In addition, in the description of the present application, the term "including" means "including but not limited to". The terms first, second, third, etc. are used only as labels, and no numerical requirements or order are imposed. Various embodiments of the present application may exist in the form of a range; it should be understood that the description in the form of a range is only for convenience and simplicity, and should not be understood as a hard limit to the scope of the present application; therefore, it should be considered that the range description has specifically disclosed all possible sub-ranges and single values within the range. For example, it should be considered that the range description from 1 to 6 has specifically disclosed sub-ranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., as well as single numbers within the numbered range, such as 1, 2, 3, 4, 5 and 6, which are applicable regardless of the range. In addition, whenever a numerical range is indicated herein, it is intended to include any cited numeral (fraction or integer) within the indicated range. In the present application, the X direction is the thickness direction, and the Y direction is the extending direction of the semiconductor substrate.
如图4所示,本申请的实施例提供了一种半导体衬底,包括:基底100,基底100具有第一表面101;捕获层200,捕获层200位于基底100远离第一表面101一侧,捕获层200用于捕获来自基底100的金属离子或者捕获穿过基底100的金属离子;背封层300,背封层300位于捕获层200远离基底100一侧。本申请在基底100的一侧设置捕获层200,加强半导体衬底的外吸杂能力,有效减少金属离子污染,提高产品的成品良率。As shown in FIG4 , an embodiment of the present application provides a semiconductor substrate, comprising: a substrate 100, the substrate 100 having a first surface 101; a capture layer 200, the capture layer 200 is located on a side of the substrate 100 away from the first surface 101, and the capture layer 200 is used to capture metal ions from the substrate 100 or capture metal ions passing through the substrate 100; and a backing layer 300, the backing layer 300 is located on a side of the capture layer 200 away from the substrate 100. The present application sets the capture layer 200 on one side of the substrate 100 to enhance the external impurity absorption capability of the semiconductor substrate, effectively reduce metal ion contamination, and improve the finished product yield of the product.
在一些实施例中,捕获层200的厚度为如捕获层200的厚度的取值为1000、2000、3000、4000、5000、6000、7000、8000中的任意值或者任意两值组成的范围,如捕获层200的厚度为或,本申请中,由于设置捕获层200会恶化衬底的几何平坦度,本申请的捕获层200的厚度在范围内,满足本申请半导体衬底的外吸杂功能的同时,可以改善捕获层200的设置对于器件平坦度的劣化程度。In some embodiments, the capture layer 200 has a thickness of For example, the thickness of the capture layer 200 The value of is any value among 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or a range consisting of any two values. For example, the thickness of the capture layer 200 is or, In the present application, since the provision of the capture layer 200 will deteriorate the geometric flatness of the substrate, the thickness of the capture layer 200 of the present application is Within the range, the external doping function of the semiconductor substrate of the present application is satisfied, and the degree of degradation of the device flatness caused by the setting of the capture layer 200 can be improved.
在一些实施例中,基底100采用硅衬底,基底100的电阻率为0.010ohm-cm~0.020ohm-cm。如基底100的电阻率(ohm-cm)的取值为0.01、0.011、0.012、0.013、0.014、0.015、0.016、0.017、0.018、0.019、0.020中的任意值或者任意两值组成的范围。In some embodiments, the substrate 100 is a silicon substrate, and the resistivity of the substrate 100 is 0.010 ohm-cm to 0.020 ohm-cm. For example, the resistivity (ohm-cm) of the substrate 100 is any value among 0.01, 0.011, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019, 0.020, or a range consisting of any two values.
在一些实施例中,通过以下方法改变基底100的电阻率,如对硅衬底进行离子掺杂,掺杂的方式可以是离子注入。或者,在硅衬底制备过程中,在硅材料中添加不同浓度的掺杂元素,用于改变基底100的电阻率。In some embodiments, the resistivity of the substrate 100 is changed by the following methods, such as ion doping the silicon substrate, which may be done by ion implantation. Alternatively, during the preparation of the silicon substrate, doping elements of different concentrations are added to the silicon material to change the resistivity of the substrate 100.
在一些实施例中,捕获层200包括多晶硅,多晶硅作为吸杂材料,用于捕获来自于外延层中的金属离子。本申请的半导体衬底在器件中应用时,可以捕获器件层的金属离子,降低器件的暗电流和白像素的数量。In some embodiments, the capture layer 200 includes polysilicon, which is used as a gettering material to capture metal ions from the epitaxial layer. When the semiconductor substrate of the present application is used in a device, it can capture metal ions in the device layer and reduce the dark current and the number of white pixels of the device.
在一些实施例中,背封层300为氧化硅层,背封层300的厚度为如背封层300的厚度为3000、3100、3200、3300、3400、3500、3600、3700、3800、3900、4000中的任意值或者任意两值组成的范围。In some embodiments, the back sealing layer 300 is a silicon oxide layer, and the thickness of the back sealing layer 300 is For example, the thickness of the back cover layer 300 It is any value among 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, or a range consisting of any two values.
在一些实施例中,背封层300包括低温氧化硅(LTO)。In some embodiments, the backing layer 300 includes low temperature silicon oxide (LTO).
在一些实施例中,低温氧化硅沉积的温度为400℃~800℃,如沉积温度(℃)的取值为400、450、500、550、600、650、700、750、800中的任意值或者任意两值组成的范围。在一些实施例中,背封层300的制备温度为600~650℃。In some embodiments, the temperature of low temperature silicon oxide deposition is 400°C to 800°C, such as the deposition temperature (°C) is any value of 400, 450, 500, 550, 600, 650, 700, 750, 800 or a range consisting of any two values. In some embodiments, the preparation temperature of the backing layer 300 is 600-650°C.
在一些实施例中,背封层300通过以下方法制备:将具有捕获层200的基底100进行化学气相沉积制备背封层300。在一些实施例中,氧气通入的流量(Standard CubicCentimeters per Minute,sccm)范围为495~616。在一些实施例中,SiH4通入的流量(Standard Cubic Centimeters per Minute,sccm)范围为45~56。In some embodiments, the backing layer 300 is prepared by the following method: the substrate 100 having the capture layer 200 is subjected to chemical vapor deposition to prepare the backing layer 300. In some embodiments, the flow rate of oxygen (Standard Cubic Centimeters per Minute, sccm) ranges from 495 to 616. In some embodiments, the flow rate of SiH4 (Standard Cubic Centimeters per Minute, sccm) ranges from 45 to 56.
在一些实施例中,本申请实施例提供一种半导体衬底的制备方法,包括:In some embodiments, the present application provides a method for preparing a semiconductor substrate, comprising:
如图1所示,提供基底100,基底100具有第一表面101;As shown in FIG1 , a substrate 100 is provided, and the substrate 100 has a first surface 101 ;
形成捕获层200,捕获层200位于基底100远离第一表面101一侧;形成背封层300,背封层300位于捕获层200远离基底100一侧。A capture layer 200 is formed, and the capture layer 200 is located on a side of the substrate 100 away from the first surface 101 ; a backing layer 300 is formed, and the backing layer 300 is located on a side of the capture layer 200 away from the substrate 100 .
在一些实施例中,沿基底的厚度方向X,捕获层200的厚度为 In some embodiments, along the thickness direction X of the substrate, the capture layer 200 has a thickness of
如图2所示,形成捕获层200的步骤包括:As shown in FIG. 2 , the steps of forming the capture layer 200 include:
形成第二多晶硅层220,第二多晶硅层220位于第一表面101;forming a second polysilicon layer 220 , wherein the second polysilicon layer 220 is located on the first surface 101 ;
形成第一多晶硅层210,基底100具有与第一表面101背离的第二表面102,第二多晶硅层220位于第二表面102;A first polysilicon layer 210 is formed, the substrate 100 has a second surface 102 away from the first surface 101, and a second polysilicon layer 220 is located on the second surface 102;
如图3所示,去除第二多晶硅层220,保留第一多晶硅层210;第一多晶硅层210作为捕获层200。As shown in FIG. 3 , the second polysilicon layer 220 is removed, and the first polysilicon layer 210 is retained; the first polysilicon layer 210 serves as the capture layer 200 .
在一些实施例中,第一多晶硅层210通过以下方法制备:采用含硅气体在基底100表面沉积第一多晶硅层210;含硅气体的消耗量为如含硅气体的消耗量的取值为2.0、2.5、3.0、3.5、4.0中的任意值或者任意两值组成的范围。本申请通过控制含硅气体的消耗量,可以控制第一多晶硅层210的厚度,还可以控制第一多晶硅层210的基底100表面的沉积速度,可以降低因多晶硅层的制备对于半导体衬底1平坦度的影响。In some embodiments, the first polysilicon layer 210 is prepared by the following method: using a silicon-containing gas to deposit the first polysilicon layer 210 on the surface of the substrate 100; the consumption of the silicon-containing gas is Such as the consumption of silicon-containing gas The value of is any value among 2.0, 2.5, 3.0, 3.5, 4.0 or a range consisting of any two values. The present application can control the thickness of the first polysilicon layer 210 and the deposition speed of the first polysilicon layer 210 on the surface of the substrate 100 by controlling the consumption of the silicon-containing gas, and can reduce the influence of the preparation of the polysilicon layer on the flatness of the semiconductor substrate 1.
在一些实施例中,第二多晶硅层220通过以下方法制备:采用含硅气体在基底100表面沉积第二多晶硅层220;含硅气体的消耗量为如含硅气体的消耗量的取值为2.0、2.5、3.0、3.5、4.0中的任意值或者任意两值组成的范围。本申请通过控制含硅气体的消耗量,可以控制第二多晶硅层220的厚度,还可以控制第二多晶硅层220的基底100表面的沉积速度,提升制备半导体衬底的质量。In some embodiments, the second polysilicon layer 220 is prepared by the following method: using a silicon-containing gas to deposit the second polysilicon layer 220 on the surface of the substrate 100; the consumption of the silicon-containing gas is Such as the consumption of silicon-containing gas The value of is any value among 2.0, 2.5, 3.0, 3.5, 4.0 or a range consisting of any two values. The present application can control the thickness of the second polysilicon layer 220 and the deposition speed of the second polysilicon layer 220 on the surface of the substrate 100 by controlling the consumption of the silicon-containing gas, thereby improving the quality of the semiconductor substrate.
在一些实施例中,形成第一多晶硅层210的步骤中,将基底100置于温度范围为600℃~660℃的环境中。In some embodiments, during the step of forming the first polysilicon layer 210 , the substrate 100 is placed in an environment with a temperature ranging from 600° C. to 660° C.
在一些实施例中,形成第二多晶硅层220的步骤中,将基底100置于温度范围为600℃~660℃的环境中。In some embodiments, during the step of forming the second polysilicon layer 220 , the substrate 100 is placed in an environment with a temperature ranging from 600° C. to 660° C.
在一些实施例中,形成第一多晶硅层210的温度(℃)取值为600、610、620、630、6405、650、660中的任意值或者任意两值组成的范围。In some embodiments, the temperature (° C.) for forming the first polysilicon layer 210 is any value among 600, 610, 620, 630, 6405, 650, 660, or a range consisting of any two values.
在一些实施例中,形成第二多晶硅层220的温度(℃)取值为600、610、620、630、6405、650、660中的任意值或者任意两值组成的范围。In some embodiments, the temperature (° C.) for forming the second polysilicon layer 220 is any value among 600, 610, 620, 630, 6405, 650, 660, or a range consisting of any two values.
在一些实施例中,在基底100的两侧同时形成多晶硅层,即在基底100的两侧同时形成第一多晶硅层210和第二多晶硅层220,得到第一衬底110。第一多晶硅层210和第二多晶硅层220形成的温度范围为600℃~620℃,或者,温度范围为640℃~660℃。In some embodiments, polysilicon layers are formed on both sides of the substrate 100 at the same time, that is, a first polysilicon layer 210 and a second polysilicon layer 220 are formed on both sides of the substrate 100 at the same time, to obtain a first substrate 110. The first polysilicon layer 210 and the second polysilicon layer 220 are formed at a temperature range of 600°C to 620°C, or a temperature range of 640°C to 660°C.
当制备的多晶硅层的厚度可以采用以下方法制备:When the thickness of the prepared polysilicon layer It can be prepared by the following method:
在一些实施例中,第一多晶硅层210和第二多晶硅层220采用以下方式制备:在第一温度范围为600℃~620℃,含硅气体在第一流量为的条件下制备多晶硅层。In some embodiments, the first polysilicon layer 210 and the second polysilicon layer 220 are prepared by: a first temperature range of 600° C. to 620° C., a silicon-containing gas at a first flow rate of The polysilicon layer is prepared under the conditions of.
在一些实施例中,在第二温度范围为640℃~660℃,含硅气体在第二流量为的条件下制备多晶硅层。In some embodiments, the second temperature range is 640° C. to 660° C., and the silicon-containing gas at the second flow rate is The polysilicon layer is prepared under the conditions of.
当制备的多晶硅层的厚度大于可以采用以下方法制备:When the thickness of the prepared polysilicon layer is greater than It can be prepared by the following method:
在一些实施例中,第一多晶硅层210和第二多晶硅层220采用以下方式制备:在第一温度范围为600℃~620℃,含硅气体在第三流量为的条件下制备多晶硅层。In some embodiments, the first polysilicon layer 210 and the second polysilicon layer 220 are prepared by: the first temperature range is 600° C. to 620° C., the silicon-containing gas is heated at a third flow rate of The polysilicon layer is prepared under the conditions of.
在一些实施例中,在第二温度范围为640℃~660℃,含硅气体在第四流量为的条件下制备多晶硅层。In some embodiments, the second temperature range is 640° C. to 660° C., and the silicon-containing gas is at a fourth flow rate of The polysilicon layer is prepared under the conditions of.
在一些实施例中,含硅气体包括SiH4。In some embodiments, the silicon-containing gas includes SiH 4 .
在一些实施例中,第二多晶硅层220通过化学机械抛光方法去除。In some embodiments, the second polysilicon layer 220 is removed by a chemical mechanical polishing method.
如图6所示,进行化学机械抛光方法的装置包括研磨盘2和抛头3,抛头3具有腔室300,在化学机械抛光时,通过中间气管加压气囊吸附半导体衬底表面,即第一衬底110通过真空吸附方式紧贴上方的抛头3,输送管道送出包括腐蚀液与磨粒的研磨液,通过抛头3的高速旋转,去除第二多晶硅层220。As shown in FIG6 , the device for performing the chemical mechanical polishing method includes a grinding disc 2 and a polishing head 3. The polishing head 3 has a chamber 300. During chemical mechanical polishing, the surface of the semiconductor substrate is adsorbed by a pressurized air bag through an intermediate air pipe, that is, the first substrate 110 is closely attached to the polishing head 3 above by vacuum adsorption, and the delivery pipeline delivers a grinding liquid including a corrosive liquid and abrasive particles. The second polysilicon layer 220 is removed by the high-speed rotation of the polishing head 3.
在一些实施例中,沿半导体衬底1的厚度方向(X方向),腔室300具有第一厚度H1μm,所述基底具有第二厚度H2μm,满足:0<H1-H2≤20μm。如H1-H2的取值为5、10、15、20中的任意值或者任意两值组成的范围。如5≤H1--H2≤15,或5≤H1-H2≤10,或10≤H1-H2≤15。In some embodiments, along the thickness direction (X direction) of the semiconductor substrate 1, the chamber 300 has a first thickness H1 μm, and the base has a second thickness H2 μm, satisfying: 0< H1 - H2≤20μm . For example, the value of H1 - H2 is any value among 5, 10, 15, 20 or a range consisting of any two values. For example, 5≤H1 - H2≤15 , or 5≤H1 - H2≤10 , or 10≤H1 - H2≤15 .
在一些实施例中,H1-H2之间的距离是指抛头3的底面301距离第一衬底110的顶面的距离Sμm。本申请中,底面或者是顶面是向相对方向的描述,并不限制本申请的具体结构。In some embodiments, the distance between H1 - H2 refers to the distance Sμm between the bottom surface 301 of the polishing head 3 and the top surface of the first substrate 110. In the present application, the bottom surface or the top surface is described in relative directions and does not limit the specific structure of the present application.
在一些实施例中,抛头3的底面301距离第一衬底110的顶面的距离S满足:0<S≤20μm。如S的取值为5、10、15、20中的任意值或者任意两值组成的范围。In some embodiments, the distance S between the bottom surface 301 of the polishing head 3 and the top surface of the first substrate 110 satisfies: 0<S≤20μm. For example, the value of S is any value among 5, 10, 15, 20 or a range consisting of any two values.
在一些实施例中,腔室300的第一厚度H1的取值为780μm~790μm,如第一厚度H1的取值为780、785、790中的任意值或者任意两值组成的范围。In some embodiments, the first thickness H1 of the chamber 300 is 780 μm to 790 μm, for example, the first thickness H1 is any value among 780, 785, 790 or a range consisting of any two values.
在一些实施例中,第一衬底110的第二厚度H2的取值为765μm~785μm,如第二厚度H2的取值为765、770、775、780、785中的任意值或者任意两值组成的范围。In some embodiments, the second thickness H 2 of the first substrate 110 is 765 μm to 785 μm , such as any value of 765, 770, 775, 780, 785 or a range consisting of any two values.
当本申请的H1-H2大于20μm,如选用腔室300的高度为800μm,第一衬底110的厚度为775μm,制备的多晶硅层厚度在的范围内,对于得到的衬底进行几何平坦度测试,发现衬底的几何平坦度较差,而当降低腔室300的下表面与第一衬底110之间的距离时,可以改善本申请制备的多晶硅层对于衬底几何平坦度恶化的影响。When H 1 -H 2 of the present application is greater than 20 μm, for example, the height of the chamber 300 is 800 μm, the thickness of the first substrate 110 is 775 μm, and the thickness of the prepared polysilicon layer is Within the range of , a geometric flatness test was performed on the obtained substrate, and it was found that the geometric flatness of the substrate was poor. When the distance between the lower surface of the chamber 300 and the first substrate 110 was reduced, the influence of the polycrystalline silicon layer prepared in the present application on the deterioration of the geometric flatness of the substrate could be improved.
在一些实施例中,本申请中半导体衬底1的几何平坦度可以通过最大局部平坦度以及最大边缘平坦度进行表征。In some embodiments, the geometric flatness of the semiconductor substrate 1 in the present application can be characterized by maximum local flatness and maximum edge flatness.
在一些实施例中,本申请中通过光学显微镜、扫描电子显微镜(SEM)或原子力显微镜(AFM)作为平坦度测试仪器。In some embodiments, an optical microscope, a scanning electron microscope (SEM), or an atomic force microscope (AFM) is used as a flatness testing instrument in the present application.
如图5和图7所示,本申请实施例提供了一种图像传感器(CIS,CMOS ImageSensor),图像传感器包括上述的半导体衬底1,半导体衬底1作为图像传感器的基体,其中,半导体衬底1的外延层中设置有器件层400。As shown in FIG. 5 and FIG. 7 , an embodiment of the present application provides an image sensor (CIS, CMOS Image Sensor), which includes the above-mentioned semiconductor substrate 1, and the semiconductor substrate 1 serves as a base of the image sensor, wherein a device layer 400 is provided in the epitaxial layer of the semiconductor substrate 1.
如图7所示,在一些实施例中,本申请的半导体衬底为P型衬底,图像传感器包括NMOS晶体管结构和PMOS晶体管结构。本申请图7所示的图像传感器仅作为一种列举结构,本申请的半导体衬底1还可以为N型衬底,图像传感器可以是前照式图像传感器也可以是背照式图像传感器。As shown in FIG7 , in some embodiments, the semiconductor substrate of the present application is a P-type substrate, and the image sensor includes an NMOS transistor structure and a PMOS transistor structure. The image sensor shown in FIG7 of the present application is only used as an example structure, and the semiconductor substrate 1 of the present application can also be an N-type substrate, and the image sensor can be a front-illuminated image sensor or a back-illuminated image sensor.
在一些实施例中,如图8所示,本申请的提供了一种前照式传感器的结构示意图,图像传感器包括传感器主体、彩色滤光片500及透镜600。传感器主体包括了基体和设置于基体上的CMOS器件结构即器件层400。In some embodiments, as shown in FIG8 , the present application provides a schematic diagram of the structure of a front-illuminated sensor, wherein the image sensor includes a sensor body, a color filter 500 and a lens 600. The sensor body includes a substrate and a CMOS device structure, namely, a device layer 400, disposed on the substrate.
在一些实施例中,彩色滤光片500用于捕捉不同颜色光线,可以选择如下种类的彩色滤光片:Bayer滤光片、X-Trans滤光片等。In some embodiments, the color filter 500 is used to capture light of different colors, and the following types of color filters can be selected: Bayer filter, X-Trans filter, etc.
在一些实施例中,透镜600用于聚焦光线并将其引导到传感器上,可以选择如下种类的透镜:如平凸透镜、双凸透镜等。In some embodiments, the lens 600 is used to focus the light and direct it onto the sensor, and the following types of lenses may be selected: such as a plano-convex lens, a bi-convex lens, etc.
在一些实施例中,本申请上述实施例制备的半导体衬底应用于图像传感器中,可以改善器件中过多金属离子造成的漏电会影响不同作业温度条件下所产生的暗电流及白像素的数量。In some embodiments, the semiconductor substrate prepared in the above embodiments of the present application is applied to an image sensor, which can improve the leakage caused by excessive metal ions in the device, which will affect the dark current and the number of white pixels generated under different operating temperature conditions.
在一些实施例中,应用本申请半导体衬底1的图像传感器的平均暗电流像素数(pixel)的范围为16.3~16.6。In some embodiments, the average number of dark current pixels (pixels) of an image sensor using the semiconductor substrate 1 of the present application ranges from 16.3 to 16.6.
在一些实施例中,应用本申请半导体衬底1的图像传感器的白像素数量(pixel)的范围为200~250。In some embodiments, the number of white pixels (pixels) of an image sensor using the semiconductor substrate 1 of the present application ranges from 200 to 250.
实施例1:Embodiment 1:
半导体衬底:选择直径为300mm的P型单晶硅抛光片作为基底100,电阻率为0.010~0.020ohm-cm,外延前总厚度H2为775μm。Semiconductor substrate: A P-type single crystal silicon polished wafer with a diameter of 300 mm is selected as the substrate 100, with a resistivity of 0.010-0.020 ohm-cm and a total thickness H2 of 775 μm before epitaxy.
选用LPCVD炉台加工基底100,选择含硅气体SiH4的纯度为99.9999%以上,N2的纯度为99.9999999%以上,使用LPCVD炉台进行多晶硅沉积,并选相同单晶硅来料进行加工,制备多晶硅层,制备工艺如表1所示。A LPCVD furnace is selected to process the substrate 100, the purity of the silicon-containing gas SiH4 is selected to be above 99.9999%, and the purity of N2 is selected to be above 99.9999999%. The LPCVD furnace is used for polysilicon deposition, and the same single crystal silicon material is selected for processing to prepare a polysilicon layer. The preparation process is shown in Table 1.
去除第二多晶硅层220:沿基底的厚度方向X,抛头3具有研磨腔室300,腔室300具有第一厚度H1为780μm。Removing the second polysilicon layer 220: Along the thickness direction X of the substrate, the polishing head 3 has a grinding chamber 300, and the chamber 300 has a first thickness H1 of 780 μm.
制备背封层300:选用APCVD炉台加工基底100,选择含硅气体SiH4的纯度为99.9999%以上,O2的纯度为99.9999999%以上,N2的纯度为99.9999999%以上,使用APCVD炉台进行低温氧化层层积,沉积的温度区间为640~650℃,并选相同单晶硅来料进行加工,制备氧化层背封膜厚得到如图4所示的半导体衬底。Preparation of back seal layer 300: Use APCVD furnace to process substrate 100, select silicon-containing gas SiH 4 with a purity of more than 99.9999%, O 2 with a purity of more than 99.9999999%, and N 2 with a purity of more than 99.9999999%, use APCVD furnace to deposit low-temperature oxide layer, the deposition temperature range is 640-650°C, and select the same single crystal silicon material for processing to prepare oxide layer back seal film thickness A semiconductor substrate as shown in FIG. 4 is obtained.
实施例2~实施例12:制备方法同实施例1,不同之处在于,调整多晶硅层的制备参数,详见表1。Example 2 to Example 12: The preparation method is the same as that of Example 1, except that the preparation parameters of the polysilicon layer are adjusted, as shown in Table 1 for details.
对比例1:不制备捕获层200。Comparative Example 1: No capture layer 200 was prepared.
表1半导体衬底的制备工艺参数Table 1 Preparation process parameters of semiconductor substrate
对实施例5(5k)、实施例7(4k)、实施例8(3k)、实施例10(2k)、实施例11(1K)、对比例1(BSL)的几何平坦度进行测试,测试结果如表2和图7所示。The geometric flatness of Example 5 (5k), Example 7 (4k), Example 8 (3k), Example 10 (2k), Example 11 (1K), and Comparative Example 1 (BSL) were tested, and the test results are shown in Table 2 and Figure 7.
表2半导体衬底几何平坦度的测试结果Table 2 Test results of semiconductor substrate geometric flatness
从表2和图2的结果可以看出,本申请制备的捕获层200的厚度在的范围内,与未沉积捕获层200的对比例1相比,半导体衬底1的几何平坦度的恶化得到改善。此外,本申请改善了CMP方法后,制备的捕获层200的厚度在范围内的几何平坦度恶化程度得到抑制。本申请制备的捕获层厚度范围在最大局部平坦度(nm)的范围在130nm~250nm,本申请制备的捕获层厚度范围在最大边缘平坦度(μm)的范围在130nm~250nm。From the results in Table 2 and FIG. 2 , it can be seen that the thickness of the capture layer 200 prepared in the present application is In the range of , the deterioration of the geometric flatness of the semiconductor substrate 1 is improved compared with the comparative example 1 in which the capture layer 200 is not deposited. In addition, after the CMP method is improved in the present application, the thickness of the prepared capture layer 200 is The degree of geometric flatness degradation within the range is suppressed. The capture layer thickness range prepared in this application is The maximum local flatness (nm) ranges from 130nm to 250nm, and the capture layer thickness prepared in this application ranges from The maximum edge flatness (μm) ranges from 130nm to 250nm.
从图2还可以看出,本申请的捕获层200的最大局部平坦度的均值(SFQR Mean/nm)和最大边缘平坦度的均值(ESFQR Mean/nm)。其结果与最大局部平坦度和最大边缘平坦度的趋势一致,表明本申请捕获层200的制备对于半导体衬底1平坦度恶化的情况得到改善。It can also be seen from Figure 2 that the mean value of the maximum local flatness (SFQR Mean/nm) and the mean value of the maximum edge flatness (ESFQR Mean/nm) of the capture layer 200 of the present application are consistent with the trend of the maximum local flatness and the maximum edge flatness, indicating that the preparation of the capture layer 200 of the present application improves the deterioration of the flatness of the semiconductor substrate 1.
应用例:Application examples:
将实施例2(Poly+LTO 8k+3k)、实施例5(Poly+LTO 5k+3k)、实施例8(Poly+LTO 3k+3k)和对比例1(POR)制备的半导体衬底1应用于图像传感器(CMOS)。The semiconductor substrate 1 prepared in Example 2 (Poly+LTO 8k+3k), Example 5 (Poly+LTO 5k+3k), Example 8 (Poly+LTO 3k+3k) and Comparative Example 1 (POR) was applied to an image sensor (CMOS).
图像传感器采用以下方法制备:The image sensor is prepared by the following method:
使用离子注入方法在半导体衬底1上形成如图8所示的包含NMOS和PMOS的电路结构。A circuit structure including NMOS and PMOS as shown in FIG. 8 is formed on a semiconductor substrate 1 by using an ion implantation method.
制备门极:使用多晶硅在半导体衬底1上形成门电极,用于控制电流的流动。Preparation of gate: A gate electrode is formed on a semiconductor substrate 1 using polysilicon to control the flow of current.
氧化层形成:在半导体衬底1上形成二氧化硅作为氧化层,用于隔离和保护电路。Oxide layer formation: Silicon dioxide is formed on the semiconductor substrate 1 as an oxide layer for isolating and protecting the circuit.
金属沉积:在氧化层上沉积金属铜,用于形成电极和连接线。Metal deposition: Copper metal is deposited on the oxide layer to form electrodes and connecting lines.
光刻和蚀刻:使用光刻技术在氧化层上定义电路的形状和结构,然后,通过蚀刻将多余的材料去除,形成所需的电路结构。Photolithography and etching: Use photolithography to define the shape and structure of the circuit on the oxide layer. Then, etching is used to remove excess material to form the desired circuit structure.
电介质层形成:在金属电极和连接线之间形成电介质层,用于隔离和保护电路。Dielectric layer formation: A dielectric layer is formed between metal electrodes and connecting lines to isolate and protect the circuit.
金属填充:在电介质层上填充金属,形成电极和连接线的顶部。Metal Fill: Filling metal on the dielectric layer to form the top of the electrodes and connecting lines.
封装和测试:完成图像传感器的制备后,进行封装和测试。传感器主体被封装在封装材料中,并进行电性能测试和图像质量测试。Packaging and testing: After the image sensor is prepared, packaging and testing are carried out. The sensor body is encapsulated in the packaging material and the electrical performance test and image quality test are carried out.
测试方法:Test Method:
暗电流(dark current):采用暗电流图像传感器(Dark Current Imaging)检测暗电流。Dark current: Dark current image sensor (Dark Current Imaging) is used to detect dark current.
白像素(white pixel):黑暗场测试方法。White pixel: dark field test method.
表2本申请制备的半导体衬底在前照式图像传感器中应用的测试结果Table 2 Test results of the semiconductor substrate prepared in this application used in a front-illuminated image sensor
从图10(图10中D-Mean表示暗电流的测试数据)、图11(图11中Peak02表示白像素测试数据)和表3的数据可以看出,本申请制备的半导体衬底1在器件中的验证结果可以看出,具有背面多晶硅层的图像传感器(绿蓝橘线)均较未使用背面多晶硅层的半导体衬底(红线)有明显改善趋势,暗电流及白像素均有大幅度降低且靠拢收紧现象,证明因加工过程中产生金属离子污染所导致的漏电现象在使用本申请制备的具备背面多晶硅层的半导体衬底可取得较佳的控制效果。本申请可以有效改善CIS产品的暗电流及白像素,进而提高CIS芯片器件的质量。From the data in Figure 10 (D-Mean in Figure 10 represents the test data of dark current), Figure 11 (Peak02 in Figure 11 represents the test data of white pixels) and Table 3, it can be seen that the verification results of the semiconductor substrate 1 prepared by the present application in the device show that the image sensor with a back polysilicon layer (green, blue and orange lines) has a significant improvement trend compared with the semiconductor substrate without a back polysilicon layer (red line), and the dark current and white pixels have been greatly reduced and tightened, proving that the leakage phenomenon caused by metal ion contamination generated during the processing can be better controlled by using the semiconductor substrate with a back polysilicon layer prepared by the present application. The present application can effectively improve the dark current and white pixels of CIS products, thereby improving the quality of CIS chip devices.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.
以上对本申请实施例所提供的一种半导体衬底、制备方法及图像传感器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The semiconductor substrate, preparation method and image sensor provided in the embodiments of the present application are introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of the present application. The description of the above embodiments is only used to help understand the method of the present application and its core idea. At the same time, for technical personnel in this field, according to the idea of the present application, there will be changes in the specific implementation method and application scope. In summary, the content of this specification should not be understood as a limitation on the present application.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311114955.5A CN117174726B (en) | 2023-08-30 | 2023-08-30 | Semiconductor substrate, preparation method and image sensor |
KR1020247040484A KR20250034025A (en) | 2023-08-30 | 2023-09-05 | Semiconductor base substrate, manufacturing method and image sensor |
PCT/CN2023/117117 WO2025043744A1 (en) | 2023-08-30 | 2023-09-05 | Semiconductor substrate, manufacturing method, and image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311114955.5A CN117174726B (en) | 2023-08-30 | 2023-08-30 | Semiconductor substrate, preparation method and image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117174726A CN117174726A (en) | 2023-12-05 |
CN117174726B true CN117174726B (en) | 2024-08-09 |
Family
ID=88934837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311114955.5A Active CN117174726B (en) | 2023-08-30 | 2023-08-30 | Semiconductor substrate, preparation method and image sensor |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20250034025A (en) |
CN (1) | CN117174726B (en) |
WO (1) | WO2025043744A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4608095A (en) * | 1983-02-14 | 1986-08-26 | Monsanto Company | Gettering |
US5360748A (en) * | 1992-01-24 | 1994-11-01 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device |
CN115847282A (en) * | 2022-12-05 | 2023-03-28 | 浙江晶盛机电股份有限公司 | Wafer discharging structure of polishing equipment, polishing equipment and wafer discharging method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053335A (en) * | 1976-04-02 | 1977-10-11 | International Business Machines Corporation | Method of gettering using backside polycrystalline silicon |
JPH05235004A (en) * | 1992-02-24 | 1993-09-10 | Sony Corp | Manufacture of semiconductor substrate |
KR100396890B1 (en) * | 2001-03-09 | 2003-09-03 | 삼성전자주식회사 | Method for manufacturing solid state image pick up device |
KR100654354B1 (en) * | 2005-07-25 | 2006-12-08 | 삼성전자주식회사 | Low defect epitaxial semiconductor substrate having a gathering function, an image sensor using the same, and a manufacturing method thereof |
CN103811328B (en) * | 2014-03-05 | 2016-06-22 | 上海先进半导体制造股份有限公司 | When preventing multilayer epitaxial from growing, the back side forms method and the back of the body seal structure of polycrystalline particle |
CN104112653B (en) * | 2014-07-15 | 2017-04-12 | 北京燕东微电子有限公司 | Preparation method of self-compensation back-sealing semiconductor substrate |
CN106158776A (en) * | 2015-04-17 | 2016-11-23 | 上海申和热磁电子有限公司 | The seal coat structure of composite back without trimming and manufacture method thereof for silicon chip |
CN114497197B (en) * | 2022-04-15 | 2022-08-09 | 济南晶正电子科技有限公司 | Composite substrate with capture structure, preparation method thereof and electronic component |
CN115831995A (en) * | 2022-11-30 | 2023-03-21 | 华虹半导体(无锡)有限公司 | Method for reducing white pixel of CMOS image sensor |
-
2023
- 2023-08-30 CN CN202311114955.5A patent/CN117174726B/en active Active
- 2023-09-05 KR KR1020247040484A patent/KR20250034025A/en active Pending
- 2023-09-05 WO PCT/CN2023/117117 patent/WO2025043744A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4608095A (en) * | 1983-02-14 | 1986-08-26 | Monsanto Company | Gettering |
US5360748A (en) * | 1992-01-24 | 1994-11-01 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device |
CN115847282A (en) * | 2022-12-05 | 2023-03-28 | 浙江晶盛机电股份有限公司 | Wafer discharging structure of polishing equipment, polishing equipment and wafer discharging method |
Also Published As
Publication number | Publication date |
---|---|
CN117174726A (en) | 2023-12-05 |
KR20250034025A (en) | 2025-03-10 |
WO2025043744A1 (en) | 2025-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104319235B (en) | A kind of manufacture method of fast recovery diode silicon epitaxial wafer | |
JP5487565B2 (en) | Epitaxial wafer and method for manufacturing the same | |
TWI544614B (en) | Complementary metal oxide semiconductor image sensing device and forming method thereof | |
JPH11204771A (en) | Method of manufacturing semiconductor substrate and method of manufacturing solid-state imaging device | |
JP5757088B2 (en) | Epitaxial wafer manufacturing method, epitaxial wafer | |
CN103367252B (en) | Manufacturing method for two-layer silicon epitaxial wafer used for bipolar transistor | |
TW202111946A (en) | Hihg-resistivity silicon-on-insulator substrate and method of forming the same | |
JPH0817163B2 (en) | Epitaxial wafer manufacturing method | |
CN117174726B (en) | Semiconductor substrate, preparation method and image sensor | |
CN105810696A (en) | Backside deep trench-isolated backside-illuminated image sensor manufacturing method | |
JP4957108B2 (en) | Color filter and manufacturing method thereof | |
JP3420653B2 (en) | Thin film transistor and liquid crystal display device | |
JPH04355959A (en) | Semiconductor device and its manufacturing method | |
CN103456834B (en) | Process the system and method for back-illuminated photodiode | |
CN106298966B (en) | Semiconductor device, method of manufacturing the same, and electronic apparatus | |
TWI727515B (en) | Method of forming soi structure | |
JPH04122023A (en) | Method for manufacturing semiconductor wafers and methods for manufacturing semiconductor integrated circuit devices | |
CN106876248B (en) | 8-inch thin-layer epitaxial wafer, uniformity control method and application | |
TW202001988A (en) | Manufacturing method of bonded SOI wafer and bonded SOI wafer | |
JPS60136218A (en) | Semiconductor device and manufacture thereof | |
CN110010445A (en) | The manufacturing method of bonding wafer supporting substrate and the manufacturing method of bonding wafer | |
US20060151813A1 (en) | Substrate for forming a solid-state image pickup element, solid-state image pickup element using the same, and method of producing the same | |
CN104465346B (en) | The method for forming grid | |
US6936530B1 (en) | Deposition method for Si-Ge epi layer on different intermediate substrates | |
JP2007335591A (en) | Semiconductor substrate, semiconductor substrate manufacturing method, solid-state imaging device, and solid-state imaging device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 214203 Dongfeng Avenue, Yixing Economic and Technological Development Zone, Wuxi City, Jiangsu Province Applicant after: Zhonghuan Leading Semiconductor Technology Co.,Ltd. Address before: 214203 Dongfeng Avenue, Yixing Economic and Technological Development Zone, Wuxi City, Jiangsu Province Applicant before: Zhonghuan leading semiconductor materials Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |